xref: /titanic_41/usr/src/uts/common/dtrace/dtrace.c (revision 2654012f83cec5dc15b61dfe3e4a4915f186e7a6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * DTrace - Dynamic Tracing for Solaris
29  *
30  * This is the implementation of the Solaris Dynamic Tracing framework
31  * (DTrace).  The user-visible interface to DTrace is described at length in
32  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
33  * library, the in-kernel DTrace framework, and the DTrace providers are
34  * described in the block comments in the <sys/dtrace.h> header file.  The
35  * internal architecture of DTrace is described in the block comments in the
36  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
37  * implementation very much assume mastery of all of these sources; if one has
38  * an unanswered question about the implementation, one should consult them
39  * first.
40  *
41  * The functions here are ordered roughly as follows:
42  *
43  *   - Probe context functions
44  *   - Probe hashing functions
45  *   - Non-probe context utility functions
46  *   - Matching functions
47  *   - Provider-to-Framework API functions
48  *   - Probe management functions
49  *   - DIF object functions
50  *   - Format functions
51  *   - Predicate functions
52  *   - ECB functions
53  *   - Buffer functions
54  *   - Enabling functions
55  *   - DOF functions
56  *   - Anonymous enabling functions
57  *   - Consumer state functions
58  *   - Helper functions
59  *   - Hook functions
60  *   - Driver cookbook functions
61  *
62  * Each group of functions begins with a block comment labelled the "DTrace
63  * [Group] Functions", allowing one to find each block by searching forward
64  * on capital-f functions.
65  */
66 #include <sys/errno.h>
67 #include <sys/stat.h>
68 #include <sys/modctl.h>
69 #include <sys/conf.h>
70 #include <sys/systm.h>
71 #include <sys/ddi.h>
72 #include <sys/sunddi.h>
73 #include <sys/cpuvar.h>
74 #include <sys/kmem.h>
75 #include <sys/strsubr.h>
76 #include <sys/sysmacros.h>
77 #include <sys/dtrace_impl.h>
78 #include <sys/atomic.h>
79 #include <sys/cmn_err.h>
80 #include <sys/mutex_impl.h>
81 #include <sys/rwlock_impl.h>
82 #include <sys/ctf_api.h>
83 #include <sys/panic.h>
84 #include <sys/priv_impl.h>
85 #include <sys/policy.h>
86 #include <sys/cred_impl.h>
87 #include <sys/procfs_isa.h>
88 #include <sys/taskq.h>
89 #include <sys/mkdev.h>
90 #include <sys/kdi.h>
91 #include <sys/zone.h>
92 #include <sys/socket.h>
93 #include <netinet/in.h>
94 
95 /*
96  * DTrace Tunable Variables
97  *
98  * The following variables may be tuned by adding a line to /etc/system that
99  * includes both the name of the DTrace module ("dtrace") and the name of the
100  * variable.  For example:
101  *
102  *   set dtrace:dtrace_destructive_disallow = 1
103  *
104  * In general, the only variables that one should be tuning this way are those
105  * that affect system-wide DTrace behavior, and for which the default behavior
106  * is undesirable.  Most of these variables are tunable on a per-consumer
107  * basis using DTrace options, and need not be tuned on a system-wide basis.
108  * When tuning these variables, avoid pathological values; while some attempt
109  * is made to verify the integrity of these variables, they are not considered
110  * part of the supported interface to DTrace, and they are therefore not
111  * checked comprehensively.  Further, these variables should not be tuned
112  * dynamically via "mdb -kw" or other means; they should only be tuned via
113  * /etc/system.
114  */
115 int		dtrace_destructive_disallow = 0;
116 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
117 size_t		dtrace_difo_maxsize = (256 * 1024);
118 dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
119 size_t		dtrace_global_maxsize = (16 * 1024);
120 size_t		dtrace_actions_max = (16 * 1024);
121 size_t		dtrace_retain_max = 1024;
122 dtrace_optval_t	dtrace_helper_actions_max = 32;
123 dtrace_optval_t	dtrace_helper_providers_max = 32;
124 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
125 size_t		dtrace_strsize_default = 256;
126 dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
127 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
128 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
129 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
130 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
131 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
132 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
133 dtrace_optval_t	dtrace_nspec_default = 1;
134 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
135 dtrace_optval_t dtrace_stackframes_default = 20;
136 dtrace_optval_t dtrace_ustackframes_default = 20;
137 dtrace_optval_t dtrace_jstackframes_default = 50;
138 dtrace_optval_t dtrace_jstackstrsize_default = 512;
139 int		dtrace_msgdsize_max = 128;
140 hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
141 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
142 int		dtrace_devdepth_max = 32;
143 int		dtrace_err_verbose;
144 hrtime_t	dtrace_deadman_interval = NANOSEC;
145 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
146 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
147 
148 /*
149  * DTrace External Variables
150  *
151  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
152  * available to DTrace consumers via the backtick (`) syntax.  One of these,
153  * dtrace_zero, is made deliberately so:  it is provided as a source of
154  * well-known, zero-filled memory.  While this variable is not documented,
155  * it is used by some translators as an implementation detail.
156  */
157 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
158 
159 /*
160  * DTrace Internal Variables
161  */
162 static dev_info_t	*dtrace_devi;		/* device info */
163 static vmem_t		*dtrace_arena;		/* probe ID arena */
164 static vmem_t		*dtrace_minor;		/* minor number arena */
165 static taskq_t		*dtrace_taskq;		/* task queue */
166 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
167 static int		dtrace_nprobes;		/* number of probes */
168 static dtrace_provider_t *dtrace_provider;	/* provider list */
169 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
170 static int		dtrace_opens;		/* number of opens */
171 static int		dtrace_helpers;		/* number of helpers */
172 static void		*dtrace_softstate;	/* softstate pointer */
173 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
174 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
175 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
176 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
177 static int		dtrace_toxranges;	/* number of toxic ranges */
178 static int		dtrace_toxranges_max;	/* size of toxic range array */
179 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
180 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
181 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
182 static kthread_t	*dtrace_panicked;	/* panicking thread */
183 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
184 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
185 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
186 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
187 static dtrace_genid_t	dtrace_retained_gen;	/* current retained enab gen */
188 static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
189 
190 /*
191  * DTrace Locking
192  * DTrace is protected by three (relatively coarse-grained) locks:
193  *
194  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
195  *     including enabling state, probes, ECBs, consumer state, helper state,
196  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
197  *     probe context is lock-free -- synchronization is handled via the
198  *     dtrace_sync() cross call mechanism.
199  *
200  * (2) dtrace_provider_lock is required when manipulating provider state, or
201  *     when provider state must be held constant.
202  *
203  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
204  *     when meta provider state must be held constant.
205  *
206  * The lock ordering between these three locks is dtrace_meta_lock before
207  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
208  * several places where dtrace_provider_lock is held by the framework as it
209  * calls into the providers -- which then call back into the framework,
210  * grabbing dtrace_lock.)
211  *
212  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
213  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
214  * role as a coarse-grained lock; it is acquired before both of these locks.
215  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
216  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
217  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
218  * acquired _between_ dtrace_provider_lock and dtrace_lock.
219  */
220 static kmutex_t		dtrace_lock;		/* probe state lock */
221 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
222 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
223 
224 /*
225  * DTrace Provider Variables
226  *
227  * These are the variables relating to DTrace as a provider (that is, the
228  * provider of the BEGIN, END, and ERROR probes).
229  */
230 static dtrace_pattr_t	dtrace_provider_attr = {
231 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
232 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
233 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
234 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
235 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
236 };
237 
238 static void
239 dtrace_nullop(void)
240 {}
241 
242 static dtrace_pops_t	dtrace_provider_ops = {
243 	(void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
244 	(void (*)(void *, struct modctl *))dtrace_nullop,
245 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
246 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
247 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
248 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
249 	NULL,
250 	NULL,
251 	NULL,
252 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
253 };
254 
255 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
256 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
257 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
258 
259 /*
260  * DTrace Helper Tracing Variables
261  */
262 uint32_t dtrace_helptrace_next = 0;
263 uint32_t dtrace_helptrace_nlocals;
264 char	*dtrace_helptrace_buffer;
265 int	dtrace_helptrace_bufsize = 512 * 1024;
266 
267 #ifdef DEBUG
268 int	dtrace_helptrace_enabled = 1;
269 #else
270 int	dtrace_helptrace_enabled = 0;
271 #endif
272 
273 /*
274  * DTrace Error Hashing
275  *
276  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
277  * table.  This is very useful for checking coverage of tests that are
278  * expected to induce DIF or DOF processing errors, and may be useful for
279  * debugging problems in the DIF code generator or in DOF generation .  The
280  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
281  */
282 #ifdef DEBUG
283 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
284 static const char *dtrace_errlast;
285 static kthread_t *dtrace_errthread;
286 static kmutex_t dtrace_errlock;
287 #endif
288 
289 /*
290  * DTrace Macros and Constants
291  *
292  * These are various macros that are useful in various spots in the
293  * implementation, along with a few random constants that have no meaning
294  * outside of the implementation.  There is no real structure to this cpp
295  * mishmash -- but is there ever?
296  */
297 #define	DTRACE_HASHSTR(hash, probe)	\
298 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
299 
300 #define	DTRACE_HASHNEXT(hash, probe)	\
301 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
302 
303 #define	DTRACE_HASHPREV(hash, probe)	\
304 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
305 
306 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
307 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
308 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
309 
310 #define	DTRACE_AGGHASHSIZE_SLEW		17
311 
312 #define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
313 
314 /*
315  * The key for a thread-local variable consists of the lower 61 bits of the
316  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
317  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
318  * equal to a variable identifier.  This is necessary (but not sufficient) to
319  * assure that global associative arrays never collide with thread-local
320  * variables.  To guarantee that they cannot collide, we must also define the
321  * order for keying dynamic variables.  That order is:
322  *
323  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
324  *
325  * Because the variable-key and the tls-key are in orthogonal spaces, there is
326  * no way for a global variable key signature to match a thread-local key
327  * signature.
328  */
329 #define	DTRACE_TLS_THRKEY(where) { \
330 	uint_t intr = 0; \
331 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
332 	for (; actv; actv >>= 1) \
333 		intr++; \
334 	ASSERT(intr < (1 << 3)); \
335 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
336 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
337 }
338 
339 #define	DT_BSWAP_8(x)	((x) & 0xff)
340 #define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
341 #define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
342 #define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
343 
344 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
345 
346 #define	DTRACE_STORE(type, tomax, offset, what) \
347 	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
348 
349 #ifndef __i386
350 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
351 	if (addr & (size - 1)) {					\
352 		*flags |= CPU_DTRACE_BADALIGN;				\
353 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
354 		return (0);						\
355 	}
356 #else
357 #define	DTRACE_ALIGNCHECK(addr, size, flags)
358 #endif
359 
360 /*
361  * Test whether a range of memory starting at testaddr of size testsz falls
362  * within the range of memory described by addr, sz.  We take care to avoid
363  * problems with overflow and underflow of the unsigned quantities, and
364  * disallow all negative sizes.  Ranges of size 0 are allowed.
365  */
366 #define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
367 	((testaddr) - (baseaddr) < (basesz) && \
368 	(testaddr) + (testsz) - (baseaddr) <= (basesz) && \
369 	(testaddr) + (testsz) >= (testaddr))
370 
371 /*
372  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
373  * alloc_sz on the righthand side of the comparison in order to avoid overflow
374  * or underflow in the comparison with it.  This is simpler than the INRANGE
375  * check above, because we know that the dtms_scratch_ptr is valid in the
376  * range.  Allocations of size zero are allowed.
377  */
378 #define	DTRACE_INSCRATCH(mstate, alloc_sz) \
379 	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
380 	(mstate)->dtms_scratch_ptr >= (alloc_sz))
381 
382 #define	DTRACE_LOADFUNC(bits)						\
383 /*CSTYLED*/								\
384 uint##bits##_t								\
385 dtrace_load##bits(uintptr_t addr)					\
386 {									\
387 	size_t size = bits / NBBY;					\
388 	/*CSTYLED*/							\
389 	uint##bits##_t rval;						\
390 	int i;								\
391 	volatile uint16_t *flags = (volatile uint16_t *)		\
392 	    &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;			\
393 									\
394 	DTRACE_ALIGNCHECK(addr, size, flags);				\
395 									\
396 	for (i = 0; i < dtrace_toxranges; i++) {			\
397 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
398 			continue;					\
399 									\
400 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
401 			continue;					\
402 									\
403 		/*							\
404 		 * This address falls within a toxic region; return 0.	\
405 		 */							\
406 		*flags |= CPU_DTRACE_BADADDR;				\
407 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
408 		return (0);						\
409 	}								\
410 									\
411 	*flags |= CPU_DTRACE_NOFAULT;					\
412 	/*CSTYLED*/							\
413 	rval = *((volatile uint##bits##_t *)addr);			\
414 	*flags &= ~CPU_DTRACE_NOFAULT;					\
415 									\
416 	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
417 }
418 
419 #ifdef _LP64
420 #define	dtrace_loadptr	dtrace_load64
421 #else
422 #define	dtrace_loadptr	dtrace_load32
423 #endif
424 
425 #define	DTRACE_DYNHASH_FREE	0
426 #define	DTRACE_DYNHASH_SINK	1
427 #define	DTRACE_DYNHASH_VALID	2
428 
429 #define	DTRACE_MATCH_NEXT	0
430 #define	DTRACE_MATCH_DONE	1
431 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
432 #define	DTRACE_STATE_ALIGN	64
433 
434 #define	DTRACE_FLAGS2FLT(flags)						\
435 	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
436 	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
437 	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
438 	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
439 	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
440 	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
441 	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
442 	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
443 	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
444 	DTRACEFLT_UNKNOWN)
445 
446 #define	DTRACEACT_ISSTRING(act)						\
447 	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
448 	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
449 
450 static size_t dtrace_strlen(const char *, size_t);
451 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
452 static void dtrace_enabling_provide(dtrace_provider_t *);
453 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
454 static void dtrace_enabling_matchall(void);
455 static dtrace_state_t *dtrace_anon_grab(void);
456 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
457     dtrace_state_t *, uint64_t, uint64_t);
458 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
459 static void dtrace_buffer_drop(dtrace_buffer_t *);
460 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
461     dtrace_state_t *, dtrace_mstate_t *);
462 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
463     dtrace_optval_t);
464 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
465 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
466 
467 /*
468  * DTrace Probe Context Functions
469  *
470  * These functions are called from probe context.  Because probe context is
471  * any context in which C may be called, arbitrarily locks may be held,
472  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
473  * As a result, functions called from probe context may only call other DTrace
474  * support functions -- they may not interact at all with the system at large.
475  * (Note that the ASSERT macro is made probe-context safe by redefining it in
476  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
477  * loads are to be performed from probe context, they _must_ be in terms of
478  * the safe dtrace_load*() variants.
479  *
480  * Some functions in this block are not actually called from probe context;
481  * for these functions, there will be a comment above the function reading
482  * "Note:  not called from probe context."
483  */
484 void
485 dtrace_panic(const char *format, ...)
486 {
487 	va_list alist;
488 
489 	va_start(alist, format);
490 	dtrace_vpanic(format, alist);
491 	va_end(alist);
492 }
493 
494 int
495 dtrace_assfail(const char *a, const char *f, int l)
496 {
497 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
498 
499 	/*
500 	 * We just need something here that even the most clever compiler
501 	 * cannot optimize away.
502 	 */
503 	return (a[(uintptr_t)f]);
504 }
505 
506 /*
507  * Atomically increment a specified error counter from probe context.
508  */
509 static void
510 dtrace_error(uint32_t *counter)
511 {
512 	/*
513 	 * Most counters stored to in probe context are per-CPU counters.
514 	 * However, there are some error conditions that are sufficiently
515 	 * arcane that they don't merit per-CPU storage.  If these counters
516 	 * are incremented concurrently on different CPUs, scalability will be
517 	 * adversely affected -- but we don't expect them to be white-hot in a
518 	 * correctly constructed enabling...
519 	 */
520 	uint32_t oval, nval;
521 
522 	do {
523 		oval = *counter;
524 
525 		if ((nval = oval + 1) == 0) {
526 			/*
527 			 * If the counter would wrap, set it to 1 -- assuring
528 			 * that the counter is never zero when we have seen
529 			 * errors.  (The counter must be 32-bits because we
530 			 * aren't guaranteed a 64-bit compare&swap operation.)
531 			 * To save this code both the infamy of being fingered
532 			 * by a priggish news story and the indignity of being
533 			 * the target of a neo-puritan witch trial, we're
534 			 * carefully avoiding any colorful description of the
535 			 * likelihood of this condition -- but suffice it to
536 			 * say that it is only slightly more likely than the
537 			 * overflow of predicate cache IDs, as discussed in
538 			 * dtrace_predicate_create().
539 			 */
540 			nval = 1;
541 		}
542 	} while (dtrace_cas32(counter, oval, nval) != oval);
543 }
544 
545 /*
546  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
547  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
548  */
549 DTRACE_LOADFUNC(8)
550 DTRACE_LOADFUNC(16)
551 DTRACE_LOADFUNC(32)
552 DTRACE_LOADFUNC(64)
553 
554 static int
555 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
556 {
557 	if (dest < mstate->dtms_scratch_base)
558 		return (0);
559 
560 	if (dest + size < dest)
561 		return (0);
562 
563 	if (dest + size > mstate->dtms_scratch_ptr)
564 		return (0);
565 
566 	return (1);
567 }
568 
569 static int
570 dtrace_canstore_statvar(uint64_t addr, size_t sz,
571     dtrace_statvar_t **svars, int nsvars)
572 {
573 	int i;
574 
575 	for (i = 0; i < nsvars; i++) {
576 		dtrace_statvar_t *svar = svars[i];
577 
578 		if (svar == NULL || svar->dtsv_size == 0)
579 			continue;
580 
581 		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
582 			return (1);
583 	}
584 
585 	return (0);
586 }
587 
588 /*
589  * Check to see if the address is within a memory region to which a store may
590  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
591  * region.  The caller of dtrace_canstore() is responsible for performing any
592  * alignment checks that are needed before stores are actually executed.
593  */
594 static int
595 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
596     dtrace_vstate_t *vstate)
597 {
598 	/*
599 	 * First, check to see if the address is in scratch space...
600 	 */
601 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
602 	    mstate->dtms_scratch_size))
603 		return (1);
604 
605 	/*
606 	 * Now check to see if it's a dynamic variable.  This check will pick
607 	 * up both thread-local variables and any global dynamically-allocated
608 	 * variables.
609 	 */
610 	if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
611 	    vstate->dtvs_dynvars.dtds_size)) {
612 		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
613 		uintptr_t base = (uintptr_t)dstate->dtds_base +
614 		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
615 		uintptr_t chunkoffs;
616 
617 		/*
618 		 * Before we assume that we can store here, we need to make
619 		 * sure that it isn't in our metadata -- storing to our
620 		 * dynamic variable metadata would corrupt our state.  For
621 		 * the range to not include any dynamic variable metadata,
622 		 * it must:
623 		 *
624 		 *	(1) Start above the hash table that is at the base of
625 		 *	the dynamic variable space
626 		 *
627 		 *	(2) Have a starting chunk offset that is beyond the
628 		 *	dtrace_dynvar_t that is at the base of every chunk
629 		 *
630 		 *	(3) Not span a chunk boundary
631 		 *
632 		 */
633 		if (addr < base)
634 			return (0);
635 
636 		chunkoffs = (addr - base) % dstate->dtds_chunksize;
637 
638 		if (chunkoffs < sizeof (dtrace_dynvar_t))
639 			return (0);
640 
641 		if (chunkoffs + sz > dstate->dtds_chunksize)
642 			return (0);
643 
644 		return (1);
645 	}
646 
647 	/*
648 	 * Finally, check the static local and global variables.  These checks
649 	 * take the longest, so we perform them last.
650 	 */
651 	if (dtrace_canstore_statvar(addr, sz,
652 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
653 		return (1);
654 
655 	if (dtrace_canstore_statvar(addr, sz,
656 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
657 		return (1);
658 
659 	return (0);
660 }
661 
662 
663 /*
664  * Convenience routine to check to see if the address is within a memory
665  * region in which a load may be issued given the user's privilege level;
666  * if not, it sets the appropriate error flags and loads 'addr' into the
667  * illegal value slot.
668  *
669  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
670  * appropriate memory access protection.
671  */
672 static int
673 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
674     dtrace_vstate_t *vstate)
675 {
676 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
677 
678 	/*
679 	 * If we hold the privilege to read from kernel memory, then
680 	 * everything is readable.
681 	 */
682 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
683 		return (1);
684 
685 	/*
686 	 * You can obviously read that which you can store.
687 	 */
688 	if (dtrace_canstore(addr, sz, mstate, vstate))
689 		return (1);
690 
691 	/*
692 	 * We're allowed to read from our own string table.
693 	 */
694 	if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
695 	    mstate->dtms_difo->dtdo_strlen))
696 		return (1);
697 
698 	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
699 	*illval = addr;
700 	return (0);
701 }
702 
703 /*
704  * Convenience routine to check to see if a given string is within a memory
705  * region in which a load may be issued given the user's privilege level;
706  * this exists so that we don't need to issue unnecessary dtrace_strlen()
707  * calls in the event that the user has all privileges.
708  */
709 static int
710 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
711     dtrace_vstate_t *vstate)
712 {
713 	size_t strsz;
714 
715 	/*
716 	 * If we hold the privilege to read from kernel memory, then
717 	 * everything is readable.
718 	 */
719 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
720 		return (1);
721 
722 	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
723 	if (dtrace_canload(addr, strsz, mstate, vstate))
724 		return (1);
725 
726 	return (0);
727 }
728 
729 /*
730  * Convenience routine to check to see if a given variable is within a memory
731  * region in which a load may be issued given the user's privilege level.
732  */
733 static int
734 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
735     dtrace_vstate_t *vstate)
736 {
737 	size_t sz;
738 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
739 
740 	/*
741 	 * If we hold the privilege to read from kernel memory, then
742 	 * everything is readable.
743 	 */
744 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
745 		return (1);
746 
747 	if (type->dtdt_kind == DIF_TYPE_STRING)
748 		sz = dtrace_strlen(src,
749 		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
750 	else
751 		sz = type->dtdt_size;
752 
753 	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
754 }
755 
756 /*
757  * Compare two strings using safe loads.
758  */
759 static int
760 dtrace_strncmp(char *s1, char *s2, size_t limit)
761 {
762 	uint8_t c1, c2;
763 	volatile uint16_t *flags;
764 
765 	if (s1 == s2 || limit == 0)
766 		return (0);
767 
768 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
769 
770 	do {
771 		if (s1 == NULL) {
772 			c1 = '\0';
773 		} else {
774 			c1 = dtrace_load8((uintptr_t)s1++);
775 		}
776 
777 		if (s2 == NULL) {
778 			c2 = '\0';
779 		} else {
780 			c2 = dtrace_load8((uintptr_t)s2++);
781 		}
782 
783 		if (c1 != c2)
784 			return (c1 - c2);
785 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
786 
787 	return (0);
788 }
789 
790 /*
791  * Compute strlen(s) for a string using safe memory accesses.  The additional
792  * len parameter is used to specify a maximum length to ensure completion.
793  */
794 static size_t
795 dtrace_strlen(const char *s, size_t lim)
796 {
797 	uint_t len;
798 
799 	for (len = 0; len != lim; len++) {
800 		if (dtrace_load8((uintptr_t)s++) == '\0')
801 			break;
802 	}
803 
804 	return (len);
805 }
806 
807 /*
808  * Check if an address falls within a toxic region.
809  */
810 static int
811 dtrace_istoxic(uintptr_t kaddr, size_t size)
812 {
813 	uintptr_t taddr, tsize;
814 	int i;
815 
816 	for (i = 0; i < dtrace_toxranges; i++) {
817 		taddr = dtrace_toxrange[i].dtt_base;
818 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
819 
820 		if (kaddr - taddr < tsize) {
821 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
822 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
823 			return (1);
824 		}
825 
826 		if (taddr - kaddr < size) {
827 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
828 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
829 			return (1);
830 		}
831 	}
832 
833 	return (0);
834 }
835 
836 /*
837  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
838  * memory specified by the DIF program.  The dst is assumed to be safe memory
839  * that we can store to directly because it is managed by DTrace.  As with
840  * standard bcopy, overlapping copies are handled properly.
841  */
842 static void
843 dtrace_bcopy(const void *src, void *dst, size_t len)
844 {
845 	if (len != 0) {
846 		uint8_t *s1 = dst;
847 		const uint8_t *s2 = src;
848 
849 		if (s1 <= s2) {
850 			do {
851 				*s1++ = dtrace_load8((uintptr_t)s2++);
852 			} while (--len != 0);
853 		} else {
854 			s2 += len;
855 			s1 += len;
856 
857 			do {
858 				*--s1 = dtrace_load8((uintptr_t)--s2);
859 			} while (--len != 0);
860 		}
861 	}
862 }
863 
864 /*
865  * Copy src to dst using safe memory accesses, up to either the specified
866  * length, or the point that a nul byte is encountered.  The src is assumed to
867  * be unsafe memory specified by the DIF program.  The dst is assumed to be
868  * safe memory that we can store to directly because it is managed by DTrace.
869  * Unlike dtrace_bcopy(), overlapping regions are not handled.
870  */
871 static void
872 dtrace_strcpy(const void *src, void *dst, size_t len)
873 {
874 	if (len != 0) {
875 		uint8_t *s1 = dst, c;
876 		const uint8_t *s2 = src;
877 
878 		do {
879 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
880 		} while (--len != 0 && c != '\0');
881 	}
882 }
883 
884 /*
885  * Copy src to dst, deriving the size and type from the specified (BYREF)
886  * variable type.  The src is assumed to be unsafe memory specified by the DIF
887  * program.  The dst is assumed to be DTrace variable memory that is of the
888  * specified type; we assume that we can store to directly.
889  */
890 static void
891 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
892 {
893 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
894 
895 	if (type->dtdt_kind == DIF_TYPE_STRING) {
896 		dtrace_strcpy(src, dst, type->dtdt_size);
897 	} else {
898 		dtrace_bcopy(src, dst, type->dtdt_size);
899 	}
900 }
901 
902 /*
903  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
904  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
905  * safe memory that we can access directly because it is managed by DTrace.
906  */
907 static int
908 dtrace_bcmp(const void *s1, const void *s2, size_t len)
909 {
910 	volatile uint16_t *flags;
911 
912 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
913 
914 	if (s1 == s2)
915 		return (0);
916 
917 	if (s1 == NULL || s2 == NULL)
918 		return (1);
919 
920 	if (s1 != s2 && len != 0) {
921 		const uint8_t *ps1 = s1;
922 		const uint8_t *ps2 = s2;
923 
924 		do {
925 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
926 				return (1);
927 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
928 	}
929 	return (0);
930 }
931 
932 /*
933  * Zero the specified region using a simple byte-by-byte loop.  Note that this
934  * is for safe DTrace-managed memory only.
935  */
936 static void
937 dtrace_bzero(void *dst, size_t len)
938 {
939 	uchar_t *cp;
940 
941 	for (cp = dst; len != 0; len--)
942 		*cp++ = 0;
943 }
944 
945 static void
946 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
947 {
948 	uint64_t result[2];
949 
950 	result[0] = addend1[0] + addend2[0];
951 	result[1] = addend1[1] + addend2[1] +
952 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
953 
954 	sum[0] = result[0];
955 	sum[1] = result[1];
956 }
957 
958 /*
959  * Shift the 128-bit value in a by b. If b is positive, shift left.
960  * If b is negative, shift right.
961  */
962 static void
963 dtrace_shift_128(uint64_t *a, int b)
964 {
965 	uint64_t mask;
966 
967 	if (b == 0)
968 		return;
969 
970 	if (b < 0) {
971 		b = -b;
972 		if (b >= 64) {
973 			a[0] = a[1] >> (b - 64);
974 			a[1] = 0;
975 		} else {
976 			a[0] >>= b;
977 			mask = 1LL << (64 - b);
978 			mask -= 1;
979 			a[0] |= ((a[1] & mask) << (64 - b));
980 			a[1] >>= b;
981 		}
982 	} else {
983 		if (b >= 64) {
984 			a[1] = a[0] << (b - 64);
985 			a[0] = 0;
986 		} else {
987 			a[1] <<= b;
988 			mask = a[0] >> (64 - b);
989 			a[1] |= mask;
990 			a[0] <<= b;
991 		}
992 	}
993 }
994 
995 /*
996  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
997  * use native multiplication on those, and then re-combine into the
998  * resulting 128-bit value.
999  *
1000  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1001  *     hi1 * hi2 << 64 +
1002  *     hi1 * lo2 << 32 +
1003  *     hi2 * lo1 << 32 +
1004  *     lo1 * lo2
1005  */
1006 static void
1007 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1008 {
1009 	uint64_t hi1, hi2, lo1, lo2;
1010 	uint64_t tmp[2];
1011 
1012 	hi1 = factor1 >> 32;
1013 	hi2 = factor2 >> 32;
1014 
1015 	lo1 = factor1 & DT_MASK_LO;
1016 	lo2 = factor2 & DT_MASK_LO;
1017 
1018 	product[0] = lo1 * lo2;
1019 	product[1] = hi1 * hi2;
1020 
1021 	tmp[0] = hi1 * lo2;
1022 	tmp[1] = 0;
1023 	dtrace_shift_128(tmp, 32);
1024 	dtrace_add_128(product, tmp, product);
1025 
1026 	tmp[0] = hi2 * lo1;
1027 	tmp[1] = 0;
1028 	dtrace_shift_128(tmp, 32);
1029 	dtrace_add_128(product, tmp, product);
1030 }
1031 
1032 /*
1033  * This privilege check should be used by actions and subroutines to
1034  * verify that the user credentials of the process that enabled the
1035  * invoking ECB match the target credentials
1036  */
1037 static int
1038 dtrace_priv_proc_common_user(dtrace_state_t *state)
1039 {
1040 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1041 
1042 	/*
1043 	 * We should always have a non-NULL state cred here, since if cred
1044 	 * is null (anonymous tracing), we fast-path bypass this routine.
1045 	 */
1046 	ASSERT(s_cr != NULL);
1047 
1048 	if ((cr = CRED()) != NULL &&
1049 	    s_cr->cr_uid == cr->cr_uid &&
1050 	    s_cr->cr_uid == cr->cr_ruid &&
1051 	    s_cr->cr_uid == cr->cr_suid &&
1052 	    s_cr->cr_gid == cr->cr_gid &&
1053 	    s_cr->cr_gid == cr->cr_rgid &&
1054 	    s_cr->cr_gid == cr->cr_sgid)
1055 		return (1);
1056 
1057 	return (0);
1058 }
1059 
1060 /*
1061  * This privilege check should be used by actions and subroutines to
1062  * verify that the zone of the process that enabled the invoking ECB
1063  * matches the target credentials
1064  */
1065 static int
1066 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1067 {
1068 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1069 
1070 	/*
1071 	 * We should always have a non-NULL state cred here, since if cred
1072 	 * is null (anonymous tracing), we fast-path bypass this routine.
1073 	 */
1074 	ASSERT(s_cr != NULL);
1075 
1076 	if ((cr = CRED()) != NULL &&
1077 	    s_cr->cr_zone == cr->cr_zone)
1078 		return (1);
1079 
1080 	return (0);
1081 }
1082 
1083 /*
1084  * This privilege check should be used by actions and subroutines to
1085  * verify that the process has not setuid or changed credentials.
1086  */
1087 static int
1088 dtrace_priv_proc_common_nocd()
1089 {
1090 	proc_t *proc;
1091 
1092 	if ((proc = ttoproc(curthread)) != NULL &&
1093 	    !(proc->p_flag & SNOCD))
1094 		return (1);
1095 
1096 	return (0);
1097 }
1098 
1099 static int
1100 dtrace_priv_proc_destructive(dtrace_state_t *state)
1101 {
1102 	int action = state->dts_cred.dcr_action;
1103 
1104 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1105 	    dtrace_priv_proc_common_zone(state) == 0)
1106 		goto bad;
1107 
1108 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1109 	    dtrace_priv_proc_common_user(state) == 0)
1110 		goto bad;
1111 
1112 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1113 	    dtrace_priv_proc_common_nocd() == 0)
1114 		goto bad;
1115 
1116 	return (1);
1117 
1118 bad:
1119 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1120 
1121 	return (0);
1122 }
1123 
1124 static int
1125 dtrace_priv_proc_control(dtrace_state_t *state)
1126 {
1127 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1128 		return (1);
1129 
1130 	if (dtrace_priv_proc_common_zone(state) &&
1131 	    dtrace_priv_proc_common_user(state) &&
1132 	    dtrace_priv_proc_common_nocd())
1133 		return (1);
1134 
1135 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1136 
1137 	return (0);
1138 }
1139 
1140 static int
1141 dtrace_priv_proc(dtrace_state_t *state)
1142 {
1143 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1144 		return (1);
1145 
1146 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1147 
1148 	return (0);
1149 }
1150 
1151 static int
1152 dtrace_priv_kernel(dtrace_state_t *state)
1153 {
1154 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1155 		return (1);
1156 
1157 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1158 
1159 	return (0);
1160 }
1161 
1162 static int
1163 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1164 {
1165 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1166 		return (1);
1167 
1168 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1169 
1170 	return (0);
1171 }
1172 
1173 /*
1174  * Note:  not called from probe context.  This function is called
1175  * asynchronously (and at a regular interval) from outside of probe context to
1176  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1177  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1178  */
1179 void
1180 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1181 {
1182 	dtrace_dynvar_t *dirty;
1183 	dtrace_dstate_percpu_t *dcpu;
1184 	int i, work = 0;
1185 
1186 	for (i = 0; i < NCPU; i++) {
1187 		dcpu = &dstate->dtds_percpu[i];
1188 
1189 		ASSERT(dcpu->dtdsc_rinsing == NULL);
1190 
1191 		/*
1192 		 * If the dirty list is NULL, there is no dirty work to do.
1193 		 */
1194 		if (dcpu->dtdsc_dirty == NULL)
1195 			continue;
1196 
1197 		/*
1198 		 * If the clean list is non-NULL, then we're not going to do
1199 		 * any work for this CPU -- it means that there has not been
1200 		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1201 		 * since the last time we cleaned house.
1202 		 */
1203 		if (dcpu->dtdsc_clean != NULL)
1204 			continue;
1205 
1206 		work = 1;
1207 
1208 		/*
1209 		 * Atomically move the dirty list aside.
1210 		 */
1211 		do {
1212 			dirty = dcpu->dtdsc_dirty;
1213 
1214 			/*
1215 			 * Before we zap the dirty list, set the rinsing list.
1216 			 * (This allows for a potential assertion in
1217 			 * dtrace_dynvar():  if a free dynamic variable appears
1218 			 * on a hash chain, either the dirty list or the
1219 			 * rinsing list for some CPU must be non-NULL.)
1220 			 */
1221 			dcpu->dtdsc_rinsing = dirty;
1222 			dtrace_membar_producer();
1223 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1224 		    dirty, NULL) != dirty);
1225 	}
1226 
1227 	if (!work) {
1228 		/*
1229 		 * We have no work to do; we can simply return.
1230 		 */
1231 		return;
1232 	}
1233 
1234 	dtrace_sync();
1235 
1236 	for (i = 0; i < NCPU; i++) {
1237 		dcpu = &dstate->dtds_percpu[i];
1238 
1239 		if (dcpu->dtdsc_rinsing == NULL)
1240 			continue;
1241 
1242 		/*
1243 		 * We are now guaranteed that no hash chain contains a pointer
1244 		 * into this dirty list; we can make it clean.
1245 		 */
1246 		ASSERT(dcpu->dtdsc_clean == NULL);
1247 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1248 		dcpu->dtdsc_rinsing = NULL;
1249 	}
1250 
1251 	/*
1252 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1253 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1254 	 * This prevents a race whereby a CPU incorrectly decides that
1255 	 * the state should be something other than DTRACE_DSTATE_CLEAN
1256 	 * after dtrace_dynvar_clean() has completed.
1257 	 */
1258 	dtrace_sync();
1259 
1260 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1261 }
1262 
1263 /*
1264  * Depending on the value of the op parameter, this function looks-up,
1265  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1266  * allocation is requested, this function will return a pointer to a
1267  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1268  * variable can be allocated.  If NULL is returned, the appropriate counter
1269  * will be incremented.
1270  */
1271 dtrace_dynvar_t *
1272 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1273     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1274     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1275 {
1276 	uint64_t hashval = DTRACE_DYNHASH_VALID;
1277 	dtrace_dynhash_t *hash = dstate->dtds_hash;
1278 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1279 	processorid_t me = CPU->cpu_id, cpu = me;
1280 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1281 	size_t bucket, ksize;
1282 	size_t chunksize = dstate->dtds_chunksize;
1283 	uintptr_t kdata, lock, nstate;
1284 	uint_t i;
1285 
1286 	ASSERT(nkeys != 0);
1287 
1288 	/*
1289 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1290 	 * algorithm.  For the by-value portions, we perform the algorithm in
1291 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1292 	 * bit, and seems to have only a minute effect on distribution.  For
1293 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1294 	 * over each referenced byte.  It's painful to do this, but it's much
1295 	 * better than pathological hash distribution.  The efficacy of the
1296 	 * hashing algorithm (and a comparison with other algorithms) may be
1297 	 * found by running the ::dtrace_dynstat MDB dcmd.
1298 	 */
1299 	for (i = 0; i < nkeys; i++) {
1300 		if (key[i].dttk_size == 0) {
1301 			uint64_t val = key[i].dttk_value;
1302 
1303 			hashval += (val >> 48) & 0xffff;
1304 			hashval += (hashval << 10);
1305 			hashval ^= (hashval >> 6);
1306 
1307 			hashval += (val >> 32) & 0xffff;
1308 			hashval += (hashval << 10);
1309 			hashval ^= (hashval >> 6);
1310 
1311 			hashval += (val >> 16) & 0xffff;
1312 			hashval += (hashval << 10);
1313 			hashval ^= (hashval >> 6);
1314 
1315 			hashval += val & 0xffff;
1316 			hashval += (hashval << 10);
1317 			hashval ^= (hashval >> 6);
1318 		} else {
1319 			/*
1320 			 * This is incredibly painful, but it beats the hell
1321 			 * out of the alternative.
1322 			 */
1323 			uint64_t j, size = key[i].dttk_size;
1324 			uintptr_t base = (uintptr_t)key[i].dttk_value;
1325 
1326 			if (!dtrace_canload(base, size, mstate, vstate))
1327 				break;
1328 
1329 			for (j = 0; j < size; j++) {
1330 				hashval += dtrace_load8(base + j);
1331 				hashval += (hashval << 10);
1332 				hashval ^= (hashval >> 6);
1333 			}
1334 		}
1335 	}
1336 
1337 	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1338 		return (NULL);
1339 
1340 	hashval += (hashval << 3);
1341 	hashval ^= (hashval >> 11);
1342 	hashval += (hashval << 15);
1343 
1344 	/*
1345 	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1346 	 * comes out to be one of our two sentinel hash values.  If this
1347 	 * actually happens, we set the hashval to be a value known to be a
1348 	 * non-sentinel value.
1349 	 */
1350 	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1351 		hashval = DTRACE_DYNHASH_VALID;
1352 
1353 	/*
1354 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1355 	 * important here, tricks can be pulled to reduce it.  (However, it's
1356 	 * critical that hash collisions be kept to an absolute minimum;
1357 	 * they're much more painful than a divide.)  It's better to have a
1358 	 * solution that generates few collisions and still keeps things
1359 	 * relatively simple.
1360 	 */
1361 	bucket = hashval % dstate->dtds_hashsize;
1362 
1363 	if (op == DTRACE_DYNVAR_DEALLOC) {
1364 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1365 
1366 		for (;;) {
1367 			while ((lock = *lockp) & 1)
1368 				continue;
1369 
1370 			if (dtrace_casptr((void *)lockp,
1371 			    (void *)lock, (void *)(lock + 1)) == (void *)lock)
1372 				break;
1373 		}
1374 
1375 		dtrace_membar_producer();
1376 	}
1377 
1378 top:
1379 	prev = NULL;
1380 	lock = hash[bucket].dtdh_lock;
1381 
1382 	dtrace_membar_consumer();
1383 
1384 	start = hash[bucket].dtdh_chain;
1385 	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1386 	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1387 	    op != DTRACE_DYNVAR_DEALLOC));
1388 
1389 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1390 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1391 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1392 
1393 		if (dvar->dtdv_hashval != hashval) {
1394 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1395 				/*
1396 				 * We've reached the sink, and therefore the
1397 				 * end of the hash chain; we can kick out of
1398 				 * the loop knowing that we have seen a valid
1399 				 * snapshot of state.
1400 				 */
1401 				ASSERT(dvar->dtdv_next == NULL);
1402 				ASSERT(dvar == &dtrace_dynhash_sink);
1403 				break;
1404 			}
1405 
1406 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1407 				/*
1408 				 * We've gone off the rails:  somewhere along
1409 				 * the line, one of the members of this hash
1410 				 * chain was deleted.  Note that we could also
1411 				 * detect this by simply letting this loop run
1412 				 * to completion, as we would eventually hit
1413 				 * the end of the dirty list.  However, we
1414 				 * want to avoid running the length of the
1415 				 * dirty list unnecessarily (it might be quite
1416 				 * long), so we catch this as early as
1417 				 * possible by detecting the hash marker.  In
1418 				 * this case, we simply set dvar to NULL and
1419 				 * break; the conditional after the loop will
1420 				 * send us back to top.
1421 				 */
1422 				dvar = NULL;
1423 				break;
1424 			}
1425 
1426 			goto next;
1427 		}
1428 
1429 		if (dtuple->dtt_nkeys != nkeys)
1430 			goto next;
1431 
1432 		for (i = 0; i < nkeys; i++, dkey++) {
1433 			if (dkey->dttk_size != key[i].dttk_size)
1434 				goto next; /* size or type mismatch */
1435 
1436 			if (dkey->dttk_size != 0) {
1437 				if (dtrace_bcmp(
1438 				    (void *)(uintptr_t)key[i].dttk_value,
1439 				    (void *)(uintptr_t)dkey->dttk_value,
1440 				    dkey->dttk_size))
1441 					goto next;
1442 			} else {
1443 				if (dkey->dttk_value != key[i].dttk_value)
1444 					goto next;
1445 			}
1446 		}
1447 
1448 		if (op != DTRACE_DYNVAR_DEALLOC)
1449 			return (dvar);
1450 
1451 		ASSERT(dvar->dtdv_next == NULL ||
1452 		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1453 
1454 		if (prev != NULL) {
1455 			ASSERT(hash[bucket].dtdh_chain != dvar);
1456 			ASSERT(start != dvar);
1457 			ASSERT(prev->dtdv_next == dvar);
1458 			prev->dtdv_next = dvar->dtdv_next;
1459 		} else {
1460 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1461 			    start, dvar->dtdv_next) != start) {
1462 				/*
1463 				 * We have failed to atomically swing the
1464 				 * hash table head pointer, presumably because
1465 				 * of a conflicting allocation on another CPU.
1466 				 * We need to reread the hash chain and try
1467 				 * again.
1468 				 */
1469 				goto top;
1470 			}
1471 		}
1472 
1473 		dtrace_membar_producer();
1474 
1475 		/*
1476 		 * Now set the hash value to indicate that it's free.
1477 		 */
1478 		ASSERT(hash[bucket].dtdh_chain != dvar);
1479 		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1480 
1481 		dtrace_membar_producer();
1482 
1483 		/*
1484 		 * Set the next pointer to point at the dirty list, and
1485 		 * atomically swing the dirty pointer to the newly freed dvar.
1486 		 */
1487 		do {
1488 			next = dcpu->dtdsc_dirty;
1489 			dvar->dtdv_next = next;
1490 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1491 
1492 		/*
1493 		 * Finally, unlock this hash bucket.
1494 		 */
1495 		ASSERT(hash[bucket].dtdh_lock == lock);
1496 		ASSERT(lock & 1);
1497 		hash[bucket].dtdh_lock++;
1498 
1499 		return (NULL);
1500 next:
1501 		prev = dvar;
1502 		continue;
1503 	}
1504 
1505 	if (dvar == NULL) {
1506 		/*
1507 		 * If dvar is NULL, it is because we went off the rails:
1508 		 * one of the elements that we traversed in the hash chain
1509 		 * was deleted while we were traversing it.  In this case,
1510 		 * we assert that we aren't doing a dealloc (deallocs lock
1511 		 * the hash bucket to prevent themselves from racing with
1512 		 * one another), and retry the hash chain traversal.
1513 		 */
1514 		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1515 		goto top;
1516 	}
1517 
1518 	if (op != DTRACE_DYNVAR_ALLOC) {
1519 		/*
1520 		 * If we are not to allocate a new variable, we want to
1521 		 * return NULL now.  Before we return, check that the value
1522 		 * of the lock word hasn't changed.  If it has, we may have
1523 		 * seen an inconsistent snapshot.
1524 		 */
1525 		if (op == DTRACE_DYNVAR_NOALLOC) {
1526 			if (hash[bucket].dtdh_lock != lock)
1527 				goto top;
1528 		} else {
1529 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1530 			ASSERT(hash[bucket].dtdh_lock == lock);
1531 			ASSERT(lock & 1);
1532 			hash[bucket].dtdh_lock++;
1533 		}
1534 
1535 		return (NULL);
1536 	}
1537 
1538 	/*
1539 	 * We need to allocate a new dynamic variable.  The size we need is the
1540 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1541 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1542 	 * the size of any referred-to data (dsize).  We then round the final
1543 	 * size up to the chunksize for allocation.
1544 	 */
1545 	for (ksize = 0, i = 0; i < nkeys; i++)
1546 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1547 
1548 	/*
1549 	 * This should be pretty much impossible, but could happen if, say,
1550 	 * strange DIF specified the tuple.  Ideally, this should be an
1551 	 * assertion and not an error condition -- but that requires that the
1552 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1553 	 * bullet-proof.  (That is, it must not be able to be fooled by
1554 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1555 	 * solving this would presumably not amount to solving the Halting
1556 	 * Problem -- but it still seems awfully hard.
1557 	 */
1558 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1559 	    ksize + dsize > chunksize) {
1560 		dcpu->dtdsc_drops++;
1561 		return (NULL);
1562 	}
1563 
1564 	nstate = DTRACE_DSTATE_EMPTY;
1565 
1566 	do {
1567 retry:
1568 		free = dcpu->dtdsc_free;
1569 
1570 		if (free == NULL) {
1571 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1572 			void *rval;
1573 
1574 			if (clean == NULL) {
1575 				/*
1576 				 * We're out of dynamic variable space on
1577 				 * this CPU.  Unless we have tried all CPUs,
1578 				 * we'll try to allocate from a different
1579 				 * CPU.
1580 				 */
1581 				switch (dstate->dtds_state) {
1582 				case DTRACE_DSTATE_CLEAN: {
1583 					void *sp = &dstate->dtds_state;
1584 
1585 					if (++cpu >= NCPU)
1586 						cpu = 0;
1587 
1588 					if (dcpu->dtdsc_dirty != NULL &&
1589 					    nstate == DTRACE_DSTATE_EMPTY)
1590 						nstate = DTRACE_DSTATE_DIRTY;
1591 
1592 					if (dcpu->dtdsc_rinsing != NULL)
1593 						nstate = DTRACE_DSTATE_RINSING;
1594 
1595 					dcpu = &dstate->dtds_percpu[cpu];
1596 
1597 					if (cpu != me)
1598 						goto retry;
1599 
1600 					(void) dtrace_cas32(sp,
1601 					    DTRACE_DSTATE_CLEAN, nstate);
1602 
1603 					/*
1604 					 * To increment the correct bean
1605 					 * counter, take another lap.
1606 					 */
1607 					goto retry;
1608 				}
1609 
1610 				case DTRACE_DSTATE_DIRTY:
1611 					dcpu->dtdsc_dirty_drops++;
1612 					break;
1613 
1614 				case DTRACE_DSTATE_RINSING:
1615 					dcpu->dtdsc_rinsing_drops++;
1616 					break;
1617 
1618 				case DTRACE_DSTATE_EMPTY:
1619 					dcpu->dtdsc_drops++;
1620 					break;
1621 				}
1622 
1623 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1624 				return (NULL);
1625 			}
1626 
1627 			/*
1628 			 * The clean list appears to be non-empty.  We want to
1629 			 * move the clean list to the free list; we start by
1630 			 * moving the clean pointer aside.
1631 			 */
1632 			if (dtrace_casptr(&dcpu->dtdsc_clean,
1633 			    clean, NULL) != clean) {
1634 				/*
1635 				 * We are in one of two situations:
1636 				 *
1637 				 *  (a)	The clean list was switched to the
1638 				 *	free list by another CPU.
1639 				 *
1640 				 *  (b)	The clean list was added to by the
1641 				 *	cleansing cyclic.
1642 				 *
1643 				 * In either of these situations, we can
1644 				 * just reattempt the free list allocation.
1645 				 */
1646 				goto retry;
1647 			}
1648 
1649 			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1650 
1651 			/*
1652 			 * Now we'll move the clean list to the free list.
1653 			 * It's impossible for this to fail:  the only way
1654 			 * the free list can be updated is through this
1655 			 * code path, and only one CPU can own the clean list.
1656 			 * Thus, it would only be possible for this to fail if
1657 			 * this code were racing with dtrace_dynvar_clean().
1658 			 * (That is, if dtrace_dynvar_clean() updated the clean
1659 			 * list, and we ended up racing to update the free
1660 			 * list.)  This race is prevented by the dtrace_sync()
1661 			 * in dtrace_dynvar_clean() -- which flushes the
1662 			 * owners of the clean lists out before resetting
1663 			 * the clean lists.
1664 			 */
1665 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1666 			ASSERT(rval == NULL);
1667 			goto retry;
1668 		}
1669 
1670 		dvar = free;
1671 		new_free = dvar->dtdv_next;
1672 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1673 
1674 	/*
1675 	 * We have now allocated a new chunk.  We copy the tuple keys into the
1676 	 * tuple array and copy any referenced key data into the data space
1677 	 * following the tuple array.  As we do this, we relocate dttk_value
1678 	 * in the final tuple to point to the key data address in the chunk.
1679 	 */
1680 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1681 	dvar->dtdv_data = (void *)(kdata + ksize);
1682 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1683 
1684 	for (i = 0; i < nkeys; i++) {
1685 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1686 		size_t kesize = key[i].dttk_size;
1687 
1688 		if (kesize != 0) {
1689 			dtrace_bcopy(
1690 			    (const void *)(uintptr_t)key[i].dttk_value,
1691 			    (void *)kdata, kesize);
1692 			dkey->dttk_value = kdata;
1693 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1694 		} else {
1695 			dkey->dttk_value = key[i].dttk_value;
1696 		}
1697 
1698 		dkey->dttk_size = kesize;
1699 	}
1700 
1701 	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1702 	dvar->dtdv_hashval = hashval;
1703 	dvar->dtdv_next = start;
1704 
1705 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1706 		return (dvar);
1707 
1708 	/*
1709 	 * The cas has failed.  Either another CPU is adding an element to
1710 	 * this hash chain, or another CPU is deleting an element from this
1711 	 * hash chain.  The simplest way to deal with both of these cases
1712 	 * (though not necessarily the most efficient) is to free our
1713 	 * allocated block and tail-call ourselves.  Note that the free is
1714 	 * to the dirty list and _not_ to the free list.  This is to prevent
1715 	 * races with allocators, above.
1716 	 */
1717 	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1718 
1719 	dtrace_membar_producer();
1720 
1721 	do {
1722 		free = dcpu->dtdsc_dirty;
1723 		dvar->dtdv_next = free;
1724 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1725 
1726 	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1727 }
1728 
1729 /*ARGSUSED*/
1730 static void
1731 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1732 {
1733 	if ((int64_t)nval < (int64_t)*oval)
1734 		*oval = nval;
1735 }
1736 
1737 /*ARGSUSED*/
1738 static void
1739 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1740 {
1741 	if ((int64_t)nval > (int64_t)*oval)
1742 		*oval = nval;
1743 }
1744 
1745 static void
1746 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1747 {
1748 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1749 	int64_t val = (int64_t)nval;
1750 
1751 	if (val < 0) {
1752 		for (i = 0; i < zero; i++) {
1753 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1754 				quanta[i] += incr;
1755 				return;
1756 			}
1757 		}
1758 	} else {
1759 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1760 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1761 				quanta[i - 1] += incr;
1762 				return;
1763 			}
1764 		}
1765 
1766 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1767 		return;
1768 	}
1769 
1770 	ASSERT(0);
1771 }
1772 
1773 static void
1774 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1775 {
1776 	uint64_t arg = *lquanta++;
1777 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1778 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1779 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1780 	int32_t val = (int32_t)nval, level;
1781 
1782 	ASSERT(step != 0);
1783 	ASSERT(levels != 0);
1784 
1785 	if (val < base) {
1786 		/*
1787 		 * This is an underflow.
1788 		 */
1789 		lquanta[0] += incr;
1790 		return;
1791 	}
1792 
1793 	level = (val - base) / step;
1794 
1795 	if (level < levels) {
1796 		lquanta[level + 1] += incr;
1797 		return;
1798 	}
1799 
1800 	/*
1801 	 * This is an overflow.
1802 	 */
1803 	lquanta[levels + 1] += incr;
1804 }
1805 
1806 /*ARGSUSED*/
1807 static void
1808 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1809 {
1810 	data[0]++;
1811 	data[1] += nval;
1812 }
1813 
1814 /*ARGSUSED*/
1815 static void
1816 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
1817 {
1818 	int64_t snval = (int64_t)nval;
1819 	uint64_t tmp[2];
1820 
1821 	data[0]++;
1822 	data[1] += nval;
1823 
1824 	/*
1825 	 * What we want to say here is:
1826 	 *
1827 	 * data[2] += nval * nval;
1828 	 *
1829 	 * But given that nval is 64-bit, we could easily overflow, so
1830 	 * we do this as 128-bit arithmetic.
1831 	 */
1832 	if (snval < 0)
1833 		snval = -snval;
1834 
1835 	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
1836 	dtrace_add_128(data + 2, tmp, data + 2);
1837 }
1838 
1839 /*ARGSUSED*/
1840 static void
1841 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
1842 {
1843 	*oval = *oval + 1;
1844 }
1845 
1846 /*ARGSUSED*/
1847 static void
1848 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
1849 {
1850 	*oval += nval;
1851 }
1852 
1853 /*
1854  * Aggregate given the tuple in the principal data buffer, and the aggregating
1855  * action denoted by the specified dtrace_aggregation_t.  The aggregation
1856  * buffer is specified as the buf parameter.  This routine does not return
1857  * failure; if there is no space in the aggregation buffer, the data will be
1858  * dropped, and a corresponding counter incremented.
1859  */
1860 static void
1861 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
1862     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
1863 {
1864 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
1865 	uint32_t i, ndx, size, fsize;
1866 	uint32_t align = sizeof (uint64_t) - 1;
1867 	dtrace_aggbuffer_t *agb;
1868 	dtrace_aggkey_t *key;
1869 	uint32_t hashval = 0, limit, isstr;
1870 	caddr_t tomax, data, kdata;
1871 	dtrace_actkind_t action;
1872 	dtrace_action_t *act;
1873 	uintptr_t offs;
1874 
1875 	if (buf == NULL)
1876 		return;
1877 
1878 	if (!agg->dtag_hasarg) {
1879 		/*
1880 		 * Currently, only quantize() and lquantize() take additional
1881 		 * arguments, and they have the same semantics:  an increment
1882 		 * value that defaults to 1 when not present.  If additional
1883 		 * aggregating actions take arguments, the setting of the
1884 		 * default argument value will presumably have to become more
1885 		 * sophisticated...
1886 		 */
1887 		arg = 1;
1888 	}
1889 
1890 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
1891 	size = rec->dtrd_offset - agg->dtag_base;
1892 	fsize = size + rec->dtrd_size;
1893 
1894 	ASSERT(dbuf->dtb_tomax != NULL);
1895 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
1896 
1897 	if ((tomax = buf->dtb_tomax) == NULL) {
1898 		dtrace_buffer_drop(buf);
1899 		return;
1900 	}
1901 
1902 	/*
1903 	 * The metastructure is always at the bottom of the buffer.
1904 	 */
1905 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
1906 	    sizeof (dtrace_aggbuffer_t));
1907 
1908 	if (buf->dtb_offset == 0) {
1909 		/*
1910 		 * We just kludge up approximately 1/8th of the size to be
1911 		 * buckets.  If this guess ends up being routinely
1912 		 * off-the-mark, we may need to dynamically readjust this
1913 		 * based on past performance.
1914 		 */
1915 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
1916 
1917 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
1918 		    (uintptr_t)tomax || hashsize == 0) {
1919 			/*
1920 			 * We've been given a ludicrously small buffer;
1921 			 * increment our drop count and leave.
1922 			 */
1923 			dtrace_buffer_drop(buf);
1924 			return;
1925 		}
1926 
1927 		/*
1928 		 * And now, a pathetic attempt to try to get a an odd (or
1929 		 * perchance, a prime) hash size for better hash distribution.
1930 		 */
1931 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
1932 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
1933 
1934 		agb->dtagb_hashsize = hashsize;
1935 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
1936 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
1937 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
1938 
1939 		for (i = 0; i < agb->dtagb_hashsize; i++)
1940 			agb->dtagb_hash[i] = NULL;
1941 	}
1942 
1943 	ASSERT(agg->dtag_first != NULL);
1944 	ASSERT(agg->dtag_first->dta_intuple);
1945 
1946 	/*
1947 	 * Calculate the hash value based on the key.  Note that we _don't_
1948 	 * include the aggid in the hashing (but we will store it as part of
1949 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
1950 	 * algorithm: a simple, quick algorithm that has no known funnels, and
1951 	 * gets good distribution in practice.  The efficacy of the hashing
1952 	 * algorithm (and a comparison with other algorithms) may be found by
1953 	 * running the ::dtrace_aggstat MDB dcmd.
1954 	 */
1955 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
1956 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
1957 		limit = i + act->dta_rec.dtrd_size;
1958 		ASSERT(limit <= size);
1959 		isstr = DTRACEACT_ISSTRING(act);
1960 
1961 		for (; i < limit; i++) {
1962 			hashval += data[i];
1963 			hashval += (hashval << 10);
1964 			hashval ^= (hashval >> 6);
1965 
1966 			if (isstr && data[i] == '\0')
1967 				break;
1968 		}
1969 	}
1970 
1971 	hashval += (hashval << 3);
1972 	hashval ^= (hashval >> 11);
1973 	hashval += (hashval << 15);
1974 
1975 	/*
1976 	 * Yes, the divide here is expensive -- but it's generally the least
1977 	 * of the performance issues given the amount of data that we iterate
1978 	 * over to compute hash values, compare data, etc.
1979 	 */
1980 	ndx = hashval % agb->dtagb_hashsize;
1981 
1982 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
1983 		ASSERT((caddr_t)key >= tomax);
1984 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
1985 
1986 		if (hashval != key->dtak_hashval || key->dtak_size != size)
1987 			continue;
1988 
1989 		kdata = key->dtak_data;
1990 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
1991 
1992 		for (act = agg->dtag_first; act->dta_intuple;
1993 		    act = act->dta_next) {
1994 			i = act->dta_rec.dtrd_offset - agg->dtag_base;
1995 			limit = i + act->dta_rec.dtrd_size;
1996 			ASSERT(limit <= size);
1997 			isstr = DTRACEACT_ISSTRING(act);
1998 
1999 			for (; i < limit; i++) {
2000 				if (kdata[i] != data[i])
2001 					goto next;
2002 
2003 				if (isstr && data[i] == '\0')
2004 					break;
2005 			}
2006 		}
2007 
2008 		if (action != key->dtak_action) {
2009 			/*
2010 			 * We are aggregating on the same value in the same
2011 			 * aggregation with two different aggregating actions.
2012 			 * (This should have been picked up in the compiler,
2013 			 * so we may be dealing with errant or devious DIF.)
2014 			 * This is an error condition; we indicate as much,
2015 			 * and return.
2016 			 */
2017 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2018 			return;
2019 		}
2020 
2021 		/*
2022 		 * This is a hit:  we need to apply the aggregator to
2023 		 * the value at this key.
2024 		 */
2025 		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2026 		return;
2027 next:
2028 		continue;
2029 	}
2030 
2031 	/*
2032 	 * We didn't find it.  We need to allocate some zero-filled space,
2033 	 * link it into the hash table appropriately, and apply the aggregator
2034 	 * to the (zero-filled) value.
2035 	 */
2036 	offs = buf->dtb_offset;
2037 	while (offs & (align - 1))
2038 		offs += sizeof (uint32_t);
2039 
2040 	/*
2041 	 * If we don't have enough room to both allocate a new key _and_
2042 	 * its associated data, increment the drop count and return.
2043 	 */
2044 	if ((uintptr_t)tomax + offs + fsize >
2045 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2046 		dtrace_buffer_drop(buf);
2047 		return;
2048 	}
2049 
2050 	/*CONSTCOND*/
2051 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2052 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2053 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2054 
2055 	key->dtak_data = kdata = tomax + offs;
2056 	buf->dtb_offset = offs + fsize;
2057 
2058 	/*
2059 	 * Now copy the data across.
2060 	 */
2061 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2062 
2063 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2064 		kdata[i] = data[i];
2065 
2066 	/*
2067 	 * Because strings are not zeroed out by default, we need to iterate
2068 	 * looking for actions that store strings, and we need to explicitly
2069 	 * pad these strings out with zeroes.
2070 	 */
2071 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2072 		int nul;
2073 
2074 		if (!DTRACEACT_ISSTRING(act))
2075 			continue;
2076 
2077 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2078 		limit = i + act->dta_rec.dtrd_size;
2079 		ASSERT(limit <= size);
2080 
2081 		for (nul = 0; i < limit; i++) {
2082 			if (nul) {
2083 				kdata[i] = '\0';
2084 				continue;
2085 			}
2086 
2087 			if (data[i] != '\0')
2088 				continue;
2089 
2090 			nul = 1;
2091 		}
2092 	}
2093 
2094 	for (i = size; i < fsize; i++)
2095 		kdata[i] = 0;
2096 
2097 	key->dtak_hashval = hashval;
2098 	key->dtak_size = size;
2099 	key->dtak_action = action;
2100 	key->dtak_next = agb->dtagb_hash[ndx];
2101 	agb->dtagb_hash[ndx] = key;
2102 
2103 	/*
2104 	 * Finally, apply the aggregator.
2105 	 */
2106 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2107 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2108 }
2109 
2110 /*
2111  * Given consumer state, this routine finds a speculation in the INACTIVE
2112  * state and transitions it into the ACTIVE state.  If there is no speculation
2113  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2114  * incremented -- it is up to the caller to take appropriate action.
2115  */
2116 static int
2117 dtrace_speculation(dtrace_state_t *state)
2118 {
2119 	int i = 0;
2120 	dtrace_speculation_state_t current;
2121 	uint32_t *stat = &state->dts_speculations_unavail, count;
2122 
2123 	while (i < state->dts_nspeculations) {
2124 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2125 
2126 		current = spec->dtsp_state;
2127 
2128 		if (current != DTRACESPEC_INACTIVE) {
2129 			if (current == DTRACESPEC_COMMITTINGMANY ||
2130 			    current == DTRACESPEC_COMMITTING ||
2131 			    current == DTRACESPEC_DISCARDING)
2132 				stat = &state->dts_speculations_busy;
2133 			i++;
2134 			continue;
2135 		}
2136 
2137 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2138 		    current, DTRACESPEC_ACTIVE) == current)
2139 			return (i + 1);
2140 	}
2141 
2142 	/*
2143 	 * We couldn't find a speculation.  If we found as much as a single
2144 	 * busy speculation buffer, we'll attribute this failure as "busy"
2145 	 * instead of "unavail".
2146 	 */
2147 	do {
2148 		count = *stat;
2149 	} while (dtrace_cas32(stat, count, count + 1) != count);
2150 
2151 	return (0);
2152 }
2153 
2154 /*
2155  * This routine commits an active speculation.  If the specified speculation
2156  * is not in a valid state to perform a commit(), this routine will silently do
2157  * nothing.  The state of the specified speculation is transitioned according
2158  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2159  */
2160 static void
2161 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2162     dtrace_specid_t which)
2163 {
2164 	dtrace_speculation_t *spec;
2165 	dtrace_buffer_t *src, *dest;
2166 	uintptr_t daddr, saddr, dlimit;
2167 	dtrace_speculation_state_t current, new;
2168 	intptr_t offs;
2169 
2170 	if (which == 0)
2171 		return;
2172 
2173 	if (which > state->dts_nspeculations) {
2174 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2175 		return;
2176 	}
2177 
2178 	spec = &state->dts_speculations[which - 1];
2179 	src = &spec->dtsp_buffer[cpu];
2180 	dest = &state->dts_buffer[cpu];
2181 
2182 	do {
2183 		current = spec->dtsp_state;
2184 
2185 		if (current == DTRACESPEC_COMMITTINGMANY)
2186 			break;
2187 
2188 		switch (current) {
2189 		case DTRACESPEC_INACTIVE:
2190 		case DTRACESPEC_DISCARDING:
2191 			return;
2192 
2193 		case DTRACESPEC_COMMITTING:
2194 			/*
2195 			 * This is only possible if we are (a) commit()'ing
2196 			 * without having done a prior speculate() on this CPU
2197 			 * and (b) racing with another commit() on a different
2198 			 * CPU.  There's nothing to do -- we just assert that
2199 			 * our offset is 0.
2200 			 */
2201 			ASSERT(src->dtb_offset == 0);
2202 			return;
2203 
2204 		case DTRACESPEC_ACTIVE:
2205 			new = DTRACESPEC_COMMITTING;
2206 			break;
2207 
2208 		case DTRACESPEC_ACTIVEONE:
2209 			/*
2210 			 * This speculation is active on one CPU.  If our
2211 			 * buffer offset is non-zero, we know that the one CPU
2212 			 * must be us.  Otherwise, we are committing on a
2213 			 * different CPU from the speculate(), and we must
2214 			 * rely on being asynchronously cleaned.
2215 			 */
2216 			if (src->dtb_offset != 0) {
2217 				new = DTRACESPEC_COMMITTING;
2218 				break;
2219 			}
2220 			/*FALLTHROUGH*/
2221 
2222 		case DTRACESPEC_ACTIVEMANY:
2223 			new = DTRACESPEC_COMMITTINGMANY;
2224 			break;
2225 
2226 		default:
2227 			ASSERT(0);
2228 		}
2229 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2230 	    current, new) != current);
2231 
2232 	/*
2233 	 * We have set the state to indicate that we are committing this
2234 	 * speculation.  Now reserve the necessary space in the destination
2235 	 * buffer.
2236 	 */
2237 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2238 	    sizeof (uint64_t), state, NULL)) < 0) {
2239 		dtrace_buffer_drop(dest);
2240 		goto out;
2241 	}
2242 
2243 	/*
2244 	 * We have the space; copy the buffer across.  (Note that this is a
2245 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2246 	 * a serious performance issue, a high-performance DTrace-specific
2247 	 * bcopy() should obviously be invented.)
2248 	 */
2249 	daddr = (uintptr_t)dest->dtb_tomax + offs;
2250 	dlimit = daddr + src->dtb_offset;
2251 	saddr = (uintptr_t)src->dtb_tomax;
2252 
2253 	/*
2254 	 * First, the aligned portion.
2255 	 */
2256 	while (dlimit - daddr >= sizeof (uint64_t)) {
2257 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2258 
2259 		daddr += sizeof (uint64_t);
2260 		saddr += sizeof (uint64_t);
2261 	}
2262 
2263 	/*
2264 	 * Now any left-over bit...
2265 	 */
2266 	while (dlimit - daddr)
2267 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2268 
2269 	/*
2270 	 * Finally, commit the reserved space in the destination buffer.
2271 	 */
2272 	dest->dtb_offset = offs + src->dtb_offset;
2273 
2274 out:
2275 	/*
2276 	 * If we're lucky enough to be the only active CPU on this speculation
2277 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2278 	 */
2279 	if (current == DTRACESPEC_ACTIVE ||
2280 	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2281 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2282 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2283 
2284 		ASSERT(rval == DTRACESPEC_COMMITTING);
2285 	}
2286 
2287 	src->dtb_offset = 0;
2288 	src->dtb_xamot_drops += src->dtb_drops;
2289 	src->dtb_drops = 0;
2290 }
2291 
2292 /*
2293  * This routine discards an active speculation.  If the specified speculation
2294  * is not in a valid state to perform a discard(), this routine will silently
2295  * do nothing.  The state of the specified speculation is transitioned
2296  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2297  */
2298 static void
2299 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2300     dtrace_specid_t which)
2301 {
2302 	dtrace_speculation_t *spec;
2303 	dtrace_speculation_state_t current, new;
2304 	dtrace_buffer_t *buf;
2305 
2306 	if (which == 0)
2307 		return;
2308 
2309 	if (which > state->dts_nspeculations) {
2310 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2311 		return;
2312 	}
2313 
2314 	spec = &state->dts_speculations[which - 1];
2315 	buf = &spec->dtsp_buffer[cpu];
2316 
2317 	do {
2318 		current = spec->dtsp_state;
2319 
2320 		switch (current) {
2321 		case DTRACESPEC_INACTIVE:
2322 		case DTRACESPEC_COMMITTINGMANY:
2323 		case DTRACESPEC_COMMITTING:
2324 		case DTRACESPEC_DISCARDING:
2325 			return;
2326 
2327 		case DTRACESPEC_ACTIVE:
2328 		case DTRACESPEC_ACTIVEMANY:
2329 			new = DTRACESPEC_DISCARDING;
2330 			break;
2331 
2332 		case DTRACESPEC_ACTIVEONE:
2333 			if (buf->dtb_offset != 0) {
2334 				new = DTRACESPEC_INACTIVE;
2335 			} else {
2336 				new = DTRACESPEC_DISCARDING;
2337 			}
2338 			break;
2339 
2340 		default:
2341 			ASSERT(0);
2342 		}
2343 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2344 	    current, new) != current);
2345 
2346 	buf->dtb_offset = 0;
2347 	buf->dtb_drops = 0;
2348 }
2349 
2350 /*
2351  * Note:  not called from probe context.  This function is called
2352  * asynchronously from cross call context to clean any speculations that are
2353  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2354  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2355  * speculation.
2356  */
2357 static void
2358 dtrace_speculation_clean_here(dtrace_state_t *state)
2359 {
2360 	dtrace_icookie_t cookie;
2361 	processorid_t cpu = CPU->cpu_id;
2362 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2363 	dtrace_specid_t i;
2364 
2365 	cookie = dtrace_interrupt_disable();
2366 
2367 	if (dest->dtb_tomax == NULL) {
2368 		dtrace_interrupt_enable(cookie);
2369 		return;
2370 	}
2371 
2372 	for (i = 0; i < state->dts_nspeculations; i++) {
2373 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2374 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2375 
2376 		if (src->dtb_tomax == NULL)
2377 			continue;
2378 
2379 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2380 			src->dtb_offset = 0;
2381 			continue;
2382 		}
2383 
2384 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2385 			continue;
2386 
2387 		if (src->dtb_offset == 0)
2388 			continue;
2389 
2390 		dtrace_speculation_commit(state, cpu, i + 1);
2391 	}
2392 
2393 	dtrace_interrupt_enable(cookie);
2394 }
2395 
2396 /*
2397  * Note:  not called from probe context.  This function is called
2398  * asynchronously (and at a regular interval) to clean any speculations that
2399  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2400  * is work to be done, it cross calls all CPUs to perform that work;
2401  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2402  * INACTIVE state until they have been cleaned by all CPUs.
2403  */
2404 static void
2405 dtrace_speculation_clean(dtrace_state_t *state)
2406 {
2407 	int work = 0, rv;
2408 	dtrace_specid_t i;
2409 
2410 	for (i = 0; i < state->dts_nspeculations; i++) {
2411 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2412 
2413 		ASSERT(!spec->dtsp_cleaning);
2414 
2415 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2416 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2417 			continue;
2418 
2419 		work++;
2420 		spec->dtsp_cleaning = 1;
2421 	}
2422 
2423 	if (!work)
2424 		return;
2425 
2426 	dtrace_xcall(DTRACE_CPUALL,
2427 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2428 
2429 	/*
2430 	 * We now know that all CPUs have committed or discarded their
2431 	 * speculation buffers, as appropriate.  We can now set the state
2432 	 * to inactive.
2433 	 */
2434 	for (i = 0; i < state->dts_nspeculations; i++) {
2435 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2436 		dtrace_speculation_state_t current, new;
2437 
2438 		if (!spec->dtsp_cleaning)
2439 			continue;
2440 
2441 		current = spec->dtsp_state;
2442 		ASSERT(current == DTRACESPEC_DISCARDING ||
2443 		    current == DTRACESPEC_COMMITTINGMANY);
2444 
2445 		new = DTRACESPEC_INACTIVE;
2446 
2447 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2448 		ASSERT(rv == current);
2449 		spec->dtsp_cleaning = 0;
2450 	}
2451 }
2452 
2453 /*
2454  * Called as part of a speculate() to get the speculative buffer associated
2455  * with a given speculation.  Returns NULL if the specified speculation is not
2456  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2457  * the active CPU is not the specified CPU -- the speculation will be
2458  * atomically transitioned into the ACTIVEMANY state.
2459  */
2460 static dtrace_buffer_t *
2461 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2462     dtrace_specid_t which)
2463 {
2464 	dtrace_speculation_t *spec;
2465 	dtrace_speculation_state_t current, new;
2466 	dtrace_buffer_t *buf;
2467 
2468 	if (which == 0)
2469 		return (NULL);
2470 
2471 	if (which > state->dts_nspeculations) {
2472 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2473 		return (NULL);
2474 	}
2475 
2476 	spec = &state->dts_speculations[which - 1];
2477 	buf = &spec->dtsp_buffer[cpuid];
2478 
2479 	do {
2480 		current = spec->dtsp_state;
2481 
2482 		switch (current) {
2483 		case DTRACESPEC_INACTIVE:
2484 		case DTRACESPEC_COMMITTINGMANY:
2485 		case DTRACESPEC_DISCARDING:
2486 			return (NULL);
2487 
2488 		case DTRACESPEC_COMMITTING:
2489 			ASSERT(buf->dtb_offset == 0);
2490 			return (NULL);
2491 
2492 		case DTRACESPEC_ACTIVEONE:
2493 			/*
2494 			 * This speculation is currently active on one CPU.
2495 			 * Check the offset in the buffer; if it's non-zero,
2496 			 * that CPU must be us (and we leave the state alone).
2497 			 * If it's zero, assume that we're starting on a new
2498 			 * CPU -- and change the state to indicate that the
2499 			 * speculation is active on more than one CPU.
2500 			 */
2501 			if (buf->dtb_offset != 0)
2502 				return (buf);
2503 
2504 			new = DTRACESPEC_ACTIVEMANY;
2505 			break;
2506 
2507 		case DTRACESPEC_ACTIVEMANY:
2508 			return (buf);
2509 
2510 		case DTRACESPEC_ACTIVE:
2511 			new = DTRACESPEC_ACTIVEONE;
2512 			break;
2513 
2514 		default:
2515 			ASSERT(0);
2516 		}
2517 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2518 	    current, new) != current);
2519 
2520 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2521 	return (buf);
2522 }
2523 
2524 /*
2525  * Return a string.  In the event that the user lacks the privilege to access
2526  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2527  * don't fail access checking.
2528  *
2529  * dtrace_dif_variable() uses this routine as a helper for various
2530  * builtin values such as 'execname' and 'probefunc.'
2531  */
2532 uintptr_t
2533 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2534     dtrace_mstate_t *mstate)
2535 {
2536 	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2537 	uintptr_t ret;
2538 	size_t strsz;
2539 
2540 	/*
2541 	 * The easy case: this probe is allowed to read all of memory, so
2542 	 * we can just return this as a vanilla pointer.
2543 	 */
2544 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2545 		return (addr);
2546 
2547 	/*
2548 	 * This is the tougher case: we copy the string in question from
2549 	 * kernel memory into scratch memory and return it that way: this
2550 	 * ensures that we won't trip up when access checking tests the
2551 	 * BYREF return value.
2552 	 */
2553 	strsz = dtrace_strlen((char *)addr, size) + 1;
2554 
2555 	if (mstate->dtms_scratch_ptr + strsz >
2556 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2557 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2558 		return (NULL);
2559 	}
2560 
2561 	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2562 	    strsz);
2563 	ret = mstate->dtms_scratch_ptr;
2564 	mstate->dtms_scratch_ptr += strsz;
2565 	return (ret);
2566 }
2567 
2568 /*
2569  * This function implements the DIF emulator's variable lookups.  The emulator
2570  * passes a reserved variable identifier and optional built-in array index.
2571  */
2572 static uint64_t
2573 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2574     uint64_t ndx)
2575 {
2576 	/*
2577 	 * If we're accessing one of the uncached arguments, we'll turn this
2578 	 * into a reference in the args array.
2579 	 */
2580 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2581 		ndx = v - DIF_VAR_ARG0;
2582 		v = DIF_VAR_ARGS;
2583 	}
2584 
2585 	switch (v) {
2586 	case DIF_VAR_ARGS:
2587 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2588 		if (ndx >= sizeof (mstate->dtms_arg) /
2589 		    sizeof (mstate->dtms_arg[0])) {
2590 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2591 			dtrace_provider_t *pv;
2592 			uint64_t val;
2593 
2594 			pv = mstate->dtms_probe->dtpr_provider;
2595 			if (pv->dtpv_pops.dtps_getargval != NULL)
2596 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2597 				    mstate->dtms_probe->dtpr_id,
2598 				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2599 			else
2600 				val = dtrace_getarg(ndx, aframes);
2601 
2602 			/*
2603 			 * This is regrettably required to keep the compiler
2604 			 * from tail-optimizing the call to dtrace_getarg().
2605 			 * The condition always evaluates to true, but the
2606 			 * compiler has no way of figuring that out a priori.
2607 			 * (None of this would be necessary if the compiler
2608 			 * could be relied upon to _always_ tail-optimize
2609 			 * the call to dtrace_getarg() -- but it can't.)
2610 			 */
2611 			if (mstate->dtms_probe != NULL)
2612 				return (val);
2613 
2614 			ASSERT(0);
2615 		}
2616 
2617 		return (mstate->dtms_arg[ndx]);
2618 
2619 	case DIF_VAR_UREGS: {
2620 		klwp_t *lwp;
2621 
2622 		if (!dtrace_priv_proc(state))
2623 			return (0);
2624 
2625 		if ((lwp = curthread->t_lwp) == NULL) {
2626 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2627 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL;
2628 			return (0);
2629 		}
2630 
2631 		return (dtrace_getreg(lwp->lwp_regs, ndx));
2632 	}
2633 
2634 	case DIF_VAR_CURTHREAD:
2635 		if (!dtrace_priv_kernel(state))
2636 			return (0);
2637 		return ((uint64_t)(uintptr_t)curthread);
2638 
2639 	case DIF_VAR_TIMESTAMP:
2640 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2641 			mstate->dtms_timestamp = dtrace_gethrtime();
2642 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2643 		}
2644 		return (mstate->dtms_timestamp);
2645 
2646 	case DIF_VAR_VTIMESTAMP:
2647 		ASSERT(dtrace_vtime_references != 0);
2648 		return (curthread->t_dtrace_vtime);
2649 
2650 	case DIF_VAR_WALLTIMESTAMP:
2651 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2652 			mstate->dtms_walltimestamp = dtrace_gethrestime();
2653 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2654 		}
2655 		return (mstate->dtms_walltimestamp);
2656 
2657 	case DIF_VAR_IPL:
2658 		if (!dtrace_priv_kernel(state))
2659 			return (0);
2660 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2661 			mstate->dtms_ipl = dtrace_getipl();
2662 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2663 		}
2664 		return (mstate->dtms_ipl);
2665 
2666 	case DIF_VAR_EPID:
2667 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2668 		return (mstate->dtms_epid);
2669 
2670 	case DIF_VAR_ID:
2671 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2672 		return (mstate->dtms_probe->dtpr_id);
2673 
2674 	case DIF_VAR_STACKDEPTH:
2675 		if (!dtrace_priv_kernel(state))
2676 			return (0);
2677 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2678 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2679 
2680 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2681 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2682 		}
2683 		return (mstate->dtms_stackdepth);
2684 
2685 	case DIF_VAR_USTACKDEPTH:
2686 		if (!dtrace_priv_proc(state))
2687 			return (0);
2688 		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2689 			/*
2690 			 * See comment in DIF_VAR_PID.
2691 			 */
2692 			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2693 			    CPU_ON_INTR(CPU)) {
2694 				mstate->dtms_ustackdepth = 0;
2695 			} else {
2696 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2697 				mstate->dtms_ustackdepth =
2698 				    dtrace_getustackdepth();
2699 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2700 			}
2701 			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2702 		}
2703 		return (mstate->dtms_ustackdepth);
2704 
2705 	case DIF_VAR_CALLER:
2706 		if (!dtrace_priv_kernel(state))
2707 			return (0);
2708 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2709 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2710 
2711 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2712 				/*
2713 				 * If this is an unanchored probe, we are
2714 				 * required to go through the slow path:
2715 				 * dtrace_caller() only guarantees correct
2716 				 * results for anchored probes.
2717 				 */
2718 				pc_t caller[2];
2719 
2720 				dtrace_getpcstack(caller, 2, aframes,
2721 				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2722 				mstate->dtms_caller = caller[1];
2723 			} else if ((mstate->dtms_caller =
2724 			    dtrace_caller(aframes)) == -1) {
2725 				/*
2726 				 * We have failed to do this the quick way;
2727 				 * we must resort to the slower approach of
2728 				 * calling dtrace_getpcstack().
2729 				 */
2730 				pc_t caller;
2731 
2732 				dtrace_getpcstack(&caller, 1, aframes, NULL);
2733 				mstate->dtms_caller = caller;
2734 			}
2735 
2736 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2737 		}
2738 		return (mstate->dtms_caller);
2739 
2740 	case DIF_VAR_UCALLER:
2741 		if (!dtrace_priv_proc(state))
2742 			return (0);
2743 
2744 		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
2745 			uint64_t ustack[3];
2746 
2747 			/*
2748 			 * dtrace_getupcstack() fills in the first uint64_t
2749 			 * with the current PID.  The second uint64_t will
2750 			 * be the program counter at user-level.  The third
2751 			 * uint64_t will contain the caller, which is what
2752 			 * we're after.
2753 			 */
2754 			ustack[2] = NULL;
2755 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2756 			dtrace_getupcstack(ustack, 3);
2757 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2758 			mstate->dtms_ucaller = ustack[2];
2759 			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
2760 		}
2761 
2762 		return (mstate->dtms_ucaller);
2763 
2764 	case DIF_VAR_PROBEPROV:
2765 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2766 		return (dtrace_dif_varstr(
2767 		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
2768 		    state, mstate));
2769 
2770 	case DIF_VAR_PROBEMOD:
2771 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2772 		return (dtrace_dif_varstr(
2773 		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
2774 		    state, mstate));
2775 
2776 	case DIF_VAR_PROBEFUNC:
2777 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2778 		return (dtrace_dif_varstr(
2779 		    (uintptr_t)mstate->dtms_probe->dtpr_func,
2780 		    state, mstate));
2781 
2782 	case DIF_VAR_PROBENAME:
2783 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2784 		return (dtrace_dif_varstr(
2785 		    (uintptr_t)mstate->dtms_probe->dtpr_name,
2786 		    state, mstate));
2787 
2788 	case DIF_VAR_PID:
2789 		if (!dtrace_priv_proc(state))
2790 			return (0);
2791 
2792 		/*
2793 		 * Note that we are assuming that an unanchored probe is
2794 		 * always due to a high-level interrupt.  (And we're assuming
2795 		 * that there is only a single high level interrupt.)
2796 		 */
2797 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2798 			return (pid0.pid_id);
2799 
2800 		/*
2801 		 * It is always safe to dereference one's own t_procp pointer:
2802 		 * it always points to a valid, allocated proc structure.
2803 		 * Further, it is always safe to dereference the p_pidp member
2804 		 * of one's own proc structure.  (These are truisms becuase
2805 		 * threads and processes don't clean up their own state --
2806 		 * they leave that task to whomever reaps them.)
2807 		 */
2808 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
2809 
2810 	case DIF_VAR_PPID:
2811 		if (!dtrace_priv_proc(state))
2812 			return (0);
2813 
2814 		/*
2815 		 * See comment in DIF_VAR_PID.
2816 		 */
2817 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2818 			return (pid0.pid_id);
2819 
2820 		/*
2821 		 * It is always safe to dereference one's own t_procp pointer:
2822 		 * it always points to a valid, allocated proc structure.
2823 		 * (This is true because threads don't clean up their own
2824 		 * state -- they leave that task to whomever reaps them.)
2825 		 */
2826 		return ((uint64_t)curthread->t_procp->p_ppid);
2827 
2828 	case DIF_VAR_TID:
2829 		/*
2830 		 * See comment in DIF_VAR_PID.
2831 		 */
2832 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2833 			return (0);
2834 
2835 		return ((uint64_t)curthread->t_tid);
2836 
2837 	case DIF_VAR_EXECNAME:
2838 		if (!dtrace_priv_proc(state))
2839 			return (0);
2840 
2841 		/*
2842 		 * See comment in DIF_VAR_PID.
2843 		 */
2844 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2845 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
2846 
2847 		/*
2848 		 * It is always safe to dereference one's own t_procp pointer:
2849 		 * it always points to a valid, allocated proc structure.
2850 		 * (This is true because threads don't clean up their own
2851 		 * state -- they leave that task to whomever reaps them.)
2852 		 */
2853 		return (dtrace_dif_varstr(
2854 		    (uintptr_t)curthread->t_procp->p_user.u_comm,
2855 		    state, mstate));
2856 
2857 	case DIF_VAR_ZONENAME:
2858 		if (!dtrace_priv_proc(state))
2859 			return (0);
2860 
2861 		/*
2862 		 * See comment in DIF_VAR_PID.
2863 		 */
2864 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2865 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
2866 
2867 		/*
2868 		 * It is always safe to dereference one's own t_procp pointer:
2869 		 * it always points to a valid, allocated proc structure.
2870 		 * (This is true because threads don't clean up their own
2871 		 * state -- they leave that task to whomever reaps them.)
2872 		 */
2873 		return (dtrace_dif_varstr(
2874 		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
2875 		    state, mstate));
2876 
2877 	case DIF_VAR_UID:
2878 		if (!dtrace_priv_proc(state))
2879 			return (0);
2880 
2881 		/*
2882 		 * See comment in DIF_VAR_PID.
2883 		 */
2884 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2885 			return ((uint64_t)p0.p_cred->cr_uid);
2886 
2887 		/*
2888 		 * It is always safe to dereference one's own t_procp pointer:
2889 		 * it always points to a valid, allocated proc structure.
2890 		 * (This is true because threads don't clean up their own
2891 		 * state -- they leave that task to whomever reaps them.)
2892 		 *
2893 		 * Additionally, it is safe to dereference one's own process
2894 		 * credential, since this is never NULL after process birth.
2895 		 */
2896 		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
2897 
2898 	case DIF_VAR_GID:
2899 		if (!dtrace_priv_proc(state))
2900 			return (0);
2901 
2902 		/*
2903 		 * See comment in DIF_VAR_PID.
2904 		 */
2905 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2906 			return ((uint64_t)p0.p_cred->cr_gid);
2907 
2908 		/*
2909 		 * It is always safe to dereference one's own t_procp pointer:
2910 		 * it always points to a valid, allocated proc structure.
2911 		 * (This is true because threads don't clean up their own
2912 		 * state -- they leave that task to whomever reaps them.)
2913 		 *
2914 		 * Additionally, it is safe to dereference one's own process
2915 		 * credential, since this is never NULL after process birth.
2916 		 */
2917 		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
2918 
2919 	case DIF_VAR_ERRNO: {
2920 		klwp_t *lwp;
2921 		if (!dtrace_priv_proc(state))
2922 			return (0);
2923 
2924 		/*
2925 		 * See comment in DIF_VAR_PID.
2926 		 */
2927 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2928 			return (0);
2929 
2930 		/*
2931 		 * It is always safe to dereference one's own t_lwp pointer in
2932 		 * the event that this pointer is non-NULL.  (This is true
2933 		 * because threads and lwps don't clean up their own state --
2934 		 * they leave that task to whomever reaps them.)
2935 		 */
2936 		if ((lwp = curthread->t_lwp) == NULL)
2937 			return (0);
2938 
2939 		return ((uint64_t)lwp->lwp_errno);
2940 	}
2941 	default:
2942 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2943 		return (0);
2944 	}
2945 }
2946 
2947 /*
2948  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
2949  * Notice that we don't bother validating the proper number of arguments or
2950  * their types in the tuple stack.  This isn't needed because all argument
2951  * interpretation is safe because of our load safety -- the worst that can
2952  * happen is that a bogus program can obtain bogus results.
2953  */
2954 static void
2955 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
2956     dtrace_key_t *tupregs, int nargs,
2957     dtrace_mstate_t *mstate, dtrace_state_t *state)
2958 {
2959 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
2960 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
2961 	dtrace_vstate_t *vstate = &state->dts_vstate;
2962 
2963 	union {
2964 		mutex_impl_t mi;
2965 		uint64_t mx;
2966 	} m;
2967 
2968 	union {
2969 		krwlock_t ri;
2970 		uintptr_t rw;
2971 	} r;
2972 
2973 	switch (subr) {
2974 	case DIF_SUBR_RAND:
2975 		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
2976 		break;
2977 
2978 	case DIF_SUBR_MUTEX_OWNED:
2979 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
2980 		    mstate, vstate)) {
2981 			regs[rd] = NULL;
2982 			break;
2983 		}
2984 
2985 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2986 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
2987 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
2988 		else
2989 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
2990 		break;
2991 
2992 	case DIF_SUBR_MUTEX_OWNER:
2993 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
2994 		    mstate, vstate)) {
2995 			regs[rd] = NULL;
2996 			break;
2997 		}
2998 
2999 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3000 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3001 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3002 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3003 		else
3004 			regs[rd] = 0;
3005 		break;
3006 
3007 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3008 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3009 		    mstate, vstate)) {
3010 			regs[rd] = NULL;
3011 			break;
3012 		}
3013 
3014 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3015 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3016 		break;
3017 
3018 	case DIF_SUBR_MUTEX_TYPE_SPIN:
3019 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3020 		    mstate, vstate)) {
3021 			regs[rd] = NULL;
3022 			break;
3023 		}
3024 
3025 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3026 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3027 		break;
3028 
3029 	case DIF_SUBR_RW_READ_HELD: {
3030 		uintptr_t tmp;
3031 
3032 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3033 		    mstate, vstate)) {
3034 			regs[rd] = NULL;
3035 			break;
3036 		}
3037 
3038 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3039 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3040 		break;
3041 	}
3042 
3043 	case DIF_SUBR_RW_WRITE_HELD:
3044 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3045 		    mstate, vstate)) {
3046 			regs[rd] = NULL;
3047 			break;
3048 		}
3049 
3050 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3051 		regs[rd] = _RW_WRITE_HELD(&r.ri);
3052 		break;
3053 
3054 	case DIF_SUBR_RW_ISWRITER:
3055 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3056 		    mstate, vstate)) {
3057 			regs[rd] = NULL;
3058 			break;
3059 		}
3060 
3061 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3062 		regs[rd] = _RW_ISWRITER(&r.ri);
3063 		break;
3064 
3065 	case DIF_SUBR_BCOPY: {
3066 		/*
3067 		 * We need to be sure that the destination is in the scratch
3068 		 * region -- no other region is allowed.
3069 		 */
3070 		uintptr_t src = tupregs[0].dttk_value;
3071 		uintptr_t dest = tupregs[1].dttk_value;
3072 		size_t size = tupregs[2].dttk_value;
3073 
3074 		if (!dtrace_inscratch(dest, size, mstate)) {
3075 			*flags |= CPU_DTRACE_BADADDR;
3076 			*illval = regs[rd];
3077 			break;
3078 		}
3079 
3080 		if (!dtrace_canload(src, size, mstate, vstate)) {
3081 			regs[rd] = NULL;
3082 			break;
3083 		}
3084 
3085 		dtrace_bcopy((void *)src, (void *)dest, size);
3086 		break;
3087 	}
3088 
3089 	case DIF_SUBR_ALLOCA:
3090 	case DIF_SUBR_COPYIN: {
3091 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3092 		uint64_t size =
3093 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3094 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3095 
3096 		/*
3097 		 * This action doesn't require any credential checks since
3098 		 * probes will not activate in user contexts to which the
3099 		 * enabling user does not have permissions.
3100 		 */
3101 
3102 		/*
3103 		 * Rounding up the user allocation size could have overflowed
3104 		 * a large, bogus allocation (like -1ULL) to 0.
3105 		 */
3106 		if (scratch_size < size ||
3107 		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
3108 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3109 			regs[rd] = NULL;
3110 			break;
3111 		}
3112 
3113 		if (subr == DIF_SUBR_COPYIN) {
3114 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3115 			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3116 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3117 		}
3118 
3119 		mstate->dtms_scratch_ptr += scratch_size;
3120 		regs[rd] = dest;
3121 		break;
3122 	}
3123 
3124 	case DIF_SUBR_COPYINTO: {
3125 		uint64_t size = tupregs[1].dttk_value;
3126 		uintptr_t dest = tupregs[2].dttk_value;
3127 
3128 		/*
3129 		 * This action doesn't require any credential checks since
3130 		 * probes will not activate in user contexts to which the
3131 		 * enabling user does not have permissions.
3132 		 */
3133 		if (!dtrace_inscratch(dest, size, mstate)) {
3134 			*flags |= CPU_DTRACE_BADADDR;
3135 			*illval = regs[rd];
3136 			break;
3137 		}
3138 
3139 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3140 		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3141 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3142 		break;
3143 	}
3144 
3145 	case DIF_SUBR_COPYINSTR: {
3146 		uintptr_t dest = mstate->dtms_scratch_ptr;
3147 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3148 
3149 		if (nargs > 1 && tupregs[1].dttk_value < size)
3150 			size = tupregs[1].dttk_value + 1;
3151 
3152 		/*
3153 		 * This action doesn't require any credential checks since
3154 		 * probes will not activate in user contexts to which the
3155 		 * enabling user does not have permissions.
3156 		 */
3157 		if (!DTRACE_INSCRATCH(mstate, size)) {
3158 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3159 			regs[rd] = NULL;
3160 			break;
3161 		}
3162 
3163 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3164 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3165 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3166 
3167 		((char *)dest)[size - 1] = '\0';
3168 		mstate->dtms_scratch_ptr += size;
3169 		regs[rd] = dest;
3170 		break;
3171 	}
3172 
3173 	case DIF_SUBR_MSGSIZE:
3174 	case DIF_SUBR_MSGDSIZE: {
3175 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
3176 		uintptr_t wptr, rptr;
3177 		size_t count = 0;
3178 		int cont = 0;
3179 
3180 		while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3181 
3182 			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3183 			    vstate)) {
3184 				regs[rd] = NULL;
3185 				break;
3186 			}
3187 
3188 			wptr = dtrace_loadptr(baddr +
3189 			    offsetof(mblk_t, b_wptr));
3190 
3191 			rptr = dtrace_loadptr(baddr +
3192 			    offsetof(mblk_t, b_rptr));
3193 
3194 			if (wptr < rptr) {
3195 				*flags |= CPU_DTRACE_BADADDR;
3196 				*illval = tupregs[0].dttk_value;
3197 				break;
3198 			}
3199 
3200 			daddr = dtrace_loadptr(baddr +
3201 			    offsetof(mblk_t, b_datap));
3202 
3203 			baddr = dtrace_loadptr(baddr +
3204 			    offsetof(mblk_t, b_cont));
3205 
3206 			/*
3207 			 * We want to prevent against denial-of-service here,
3208 			 * so we're only going to search the list for
3209 			 * dtrace_msgdsize_max mblks.
3210 			 */
3211 			if (cont++ > dtrace_msgdsize_max) {
3212 				*flags |= CPU_DTRACE_ILLOP;
3213 				break;
3214 			}
3215 
3216 			if (subr == DIF_SUBR_MSGDSIZE) {
3217 				if (dtrace_load8(daddr +
3218 				    offsetof(dblk_t, db_type)) != M_DATA)
3219 					continue;
3220 			}
3221 
3222 			count += wptr - rptr;
3223 		}
3224 
3225 		if (!(*flags & CPU_DTRACE_FAULT))
3226 			regs[rd] = count;
3227 
3228 		break;
3229 	}
3230 
3231 	case DIF_SUBR_PROGENYOF: {
3232 		pid_t pid = tupregs[0].dttk_value;
3233 		proc_t *p;
3234 		int rval = 0;
3235 
3236 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3237 
3238 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3239 			if (p->p_pidp->pid_id == pid) {
3240 				rval = 1;
3241 				break;
3242 			}
3243 		}
3244 
3245 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3246 
3247 		regs[rd] = rval;
3248 		break;
3249 	}
3250 
3251 	case DIF_SUBR_SPECULATION:
3252 		regs[rd] = dtrace_speculation(state);
3253 		break;
3254 
3255 	case DIF_SUBR_COPYOUT: {
3256 		uintptr_t kaddr = tupregs[0].dttk_value;
3257 		uintptr_t uaddr = tupregs[1].dttk_value;
3258 		uint64_t size = tupregs[2].dttk_value;
3259 
3260 		if (!dtrace_destructive_disallow &&
3261 		    dtrace_priv_proc_control(state) &&
3262 		    !dtrace_istoxic(kaddr, size)) {
3263 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3264 			dtrace_copyout(kaddr, uaddr, size, flags);
3265 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3266 		}
3267 		break;
3268 	}
3269 
3270 	case DIF_SUBR_COPYOUTSTR: {
3271 		uintptr_t kaddr = tupregs[0].dttk_value;
3272 		uintptr_t uaddr = tupregs[1].dttk_value;
3273 		uint64_t size = tupregs[2].dttk_value;
3274 
3275 		if (!dtrace_destructive_disallow &&
3276 		    dtrace_priv_proc_control(state) &&
3277 		    !dtrace_istoxic(kaddr, size)) {
3278 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3279 			dtrace_copyoutstr(kaddr, uaddr, size, flags);
3280 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3281 		}
3282 		break;
3283 	}
3284 
3285 	case DIF_SUBR_STRLEN: {
3286 		size_t sz;
3287 		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3288 		sz = dtrace_strlen((char *)addr,
3289 		    state->dts_options[DTRACEOPT_STRSIZE]);
3290 
3291 		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3292 			regs[rd] = NULL;
3293 			break;
3294 		}
3295 
3296 		regs[rd] = sz;
3297 
3298 		break;
3299 	}
3300 
3301 	case DIF_SUBR_STRCHR:
3302 	case DIF_SUBR_STRRCHR: {
3303 		/*
3304 		 * We're going to iterate over the string looking for the
3305 		 * specified character.  We will iterate until we have reached
3306 		 * the string length or we have found the character.  If this
3307 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3308 		 * of the specified character instead of the first.
3309 		 */
3310 		uintptr_t saddr = tupregs[0].dttk_value;
3311 		uintptr_t addr = tupregs[0].dttk_value;
3312 		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3313 		char c, target = (char)tupregs[1].dttk_value;
3314 
3315 		for (regs[rd] = NULL; addr < limit; addr++) {
3316 			if ((c = dtrace_load8(addr)) == target) {
3317 				regs[rd] = addr;
3318 
3319 				if (subr == DIF_SUBR_STRCHR)
3320 					break;
3321 			}
3322 
3323 			if (c == '\0')
3324 				break;
3325 		}
3326 
3327 		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3328 			regs[rd] = NULL;
3329 			break;
3330 		}
3331 
3332 		break;
3333 	}
3334 
3335 	case DIF_SUBR_STRSTR:
3336 	case DIF_SUBR_INDEX:
3337 	case DIF_SUBR_RINDEX: {
3338 		/*
3339 		 * We're going to iterate over the string looking for the
3340 		 * specified string.  We will iterate until we have reached
3341 		 * the string length or we have found the string.  (Yes, this
3342 		 * is done in the most naive way possible -- but considering
3343 		 * that the string we're searching for is likely to be
3344 		 * relatively short, the complexity of Rabin-Karp or similar
3345 		 * hardly seems merited.)
3346 		 */
3347 		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3348 		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3349 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3350 		size_t len = dtrace_strlen(addr, size);
3351 		size_t sublen = dtrace_strlen(substr, size);
3352 		char *limit = addr + len, *orig = addr;
3353 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3354 		int inc = 1;
3355 
3356 		regs[rd] = notfound;
3357 
3358 		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3359 			regs[rd] = NULL;
3360 			break;
3361 		}
3362 
3363 		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3364 		    vstate)) {
3365 			regs[rd] = NULL;
3366 			break;
3367 		}
3368 
3369 		/*
3370 		 * strstr() and index()/rindex() have similar semantics if
3371 		 * both strings are the empty string: strstr() returns a
3372 		 * pointer to the (empty) string, and index() and rindex()
3373 		 * both return index 0 (regardless of any position argument).
3374 		 */
3375 		if (sublen == 0 && len == 0) {
3376 			if (subr == DIF_SUBR_STRSTR)
3377 				regs[rd] = (uintptr_t)addr;
3378 			else
3379 				regs[rd] = 0;
3380 			break;
3381 		}
3382 
3383 		if (subr != DIF_SUBR_STRSTR) {
3384 			if (subr == DIF_SUBR_RINDEX) {
3385 				limit = orig - 1;
3386 				addr += len;
3387 				inc = -1;
3388 			}
3389 
3390 			/*
3391 			 * Both index() and rindex() take an optional position
3392 			 * argument that denotes the starting position.
3393 			 */
3394 			if (nargs == 3) {
3395 				int64_t pos = (int64_t)tupregs[2].dttk_value;
3396 
3397 				/*
3398 				 * If the position argument to index() is
3399 				 * negative, Perl implicitly clamps it at
3400 				 * zero.  This semantic is a little surprising
3401 				 * given the special meaning of negative
3402 				 * positions to similar Perl functions like
3403 				 * substr(), but it appears to reflect a
3404 				 * notion that index() can start from a
3405 				 * negative index and increment its way up to
3406 				 * the string.  Given this notion, Perl's
3407 				 * rindex() is at least self-consistent in
3408 				 * that it implicitly clamps positions greater
3409 				 * than the string length to be the string
3410 				 * length.  Where Perl completely loses
3411 				 * coherence, however, is when the specified
3412 				 * substring is the empty string ("").  In
3413 				 * this case, even if the position is
3414 				 * negative, rindex() returns 0 -- and even if
3415 				 * the position is greater than the length,
3416 				 * index() returns the string length.  These
3417 				 * semantics violate the notion that index()
3418 				 * should never return a value less than the
3419 				 * specified position and that rindex() should
3420 				 * never return a value greater than the
3421 				 * specified position.  (One assumes that
3422 				 * these semantics are artifacts of Perl's
3423 				 * implementation and not the results of
3424 				 * deliberate design -- it beggars belief that
3425 				 * even Larry Wall could desire such oddness.)
3426 				 * While in the abstract one would wish for
3427 				 * consistent position semantics across
3428 				 * substr(), index() and rindex() -- or at the
3429 				 * very least self-consistent position
3430 				 * semantics for index() and rindex() -- we
3431 				 * instead opt to keep with the extant Perl
3432 				 * semantics, in all their broken glory.  (Do
3433 				 * we have more desire to maintain Perl's
3434 				 * semantics than Perl does?  Probably.)
3435 				 */
3436 				if (subr == DIF_SUBR_RINDEX) {
3437 					if (pos < 0) {
3438 						if (sublen == 0)
3439 							regs[rd] = 0;
3440 						break;
3441 					}
3442 
3443 					if (pos > len)
3444 						pos = len;
3445 				} else {
3446 					if (pos < 0)
3447 						pos = 0;
3448 
3449 					if (pos >= len) {
3450 						if (sublen == 0)
3451 							regs[rd] = len;
3452 						break;
3453 					}
3454 				}
3455 
3456 				addr = orig + pos;
3457 			}
3458 		}
3459 
3460 		for (regs[rd] = notfound; addr != limit; addr += inc) {
3461 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
3462 				if (subr != DIF_SUBR_STRSTR) {
3463 					/*
3464 					 * As D index() and rindex() are
3465 					 * modeled on Perl (and not on awk),
3466 					 * we return a zero-based (and not a
3467 					 * one-based) index.  (For you Perl
3468 					 * weenies: no, we're not going to add
3469 					 * $[ -- and shouldn't you be at a con
3470 					 * or something?)
3471 					 */
3472 					regs[rd] = (uintptr_t)(addr - orig);
3473 					break;
3474 				}
3475 
3476 				ASSERT(subr == DIF_SUBR_STRSTR);
3477 				regs[rd] = (uintptr_t)addr;
3478 				break;
3479 			}
3480 		}
3481 
3482 		break;
3483 	}
3484 
3485 	case DIF_SUBR_STRTOK: {
3486 		uintptr_t addr = tupregs[0].dttk_value;
3487 		uintptr_t tokaddr = tupregs[1].dttk_value;
3488 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3489 		uintptr_t limit, toklimit = tokaddr + size;
3490 		uint8_t c, tokmap[32];	 /* 256 / 8 */
3491 		char *dest = (char *)mstate->dtms_scratch_ptr;
3492 		int i;
3493 
3494 		/*
3495 		 * Check both the token buffer and (later) the input buffer,
3496 		 * since both could be non-scratch addresses.
3497 		 */
3498 		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3499 			regs[rd] = NULL;
3500 			break;
3501 		}
3502 
3503 		if (!DTRACE_INSCRATCH(mstate, size)) {
3504 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3505 			regs[rd] = NULL;
3506 			break;
3507 		}
3508 
3509 		if (addr == NULL) {
3510 			/*
3511 			 * If the address specified is NULL, we use our saved
3512 			 * strtok pointer from the mstate.  Note that this
3513 			 * means that the saved strtok pointer is _only_
3514 			 * valid within multiple enablings of the same probe --
3515 			 * it behaves like an implicit clause-local variable.
3516 			 */
3517 			addr = mstate->dtms_strtok;
3518 		} else {
3519 			/*
3520 			 * If the user-specified address is non-NULL we must
3521 			 * access check it.  This is the only time we have
3522 			 * a chance to do so, since this address may reside
3523 			 * in the string table of this clause-- future calls
3524 			 * (when we fetch addr from mstate->dtms_strtok)
3525 			 * would fail this access check.
3526 			 */
3527 			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3528 				regs[rd] = NULL;
3529 				break;
3530 			}
3531 		}
3532 
3533 		/*
3534 		 * First, zero the token map, and then process the token
3535 		 * string -- setting a bit in the map for every character
3536 		 * found in the token string.
3537 		 */
3538 		for (i = 0; i < sizeof (tokmap); i++)
3539 			tokmap[i] = 0;
3540 
3541 		for (; tokaddr < toklimit; tokaddr++) {
3542 			if ((c = dtrace_load8(tokaddr)) == '\0')
3543 				break;
3544 
3545 			ASSERT((c >> 3) < sizeof (tokmap));
3546 			tokmap[c >> 3] |= (1 << (c & 0x7));
3547 		}
3548 
3549 		for (limit = addr + size; addr < limit; addr++) {
3550 			/*
3551 			 * We're looking for a character that is _not_ contained
3552 			 * in the token string.
3553 			 */
3554 			if ((c = dtrace_load8(addr)) == '\0')
3555 				break;
3556 
3557 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3558 				break;
3559 		}
3560 
3561 		if (c == '\0') {
3562 			/*
3563 			 * We reached the end of the string without finding
3564 			 * any character that was not in the token string.
3565 			 * We return NULL in this case, and we set the saved
3566 			 * address to NULL as well.
3567 			 */
3568 			regs[rd] = NULL;
3569 			mstate->dtms_strtok = NULL;
3570 			break;
3571 		}
3572 
3573 		/*
3574 		 * From here on, we're copying into the destination string.
3575 		 */
3576 		for (i = 0; addr < limit && i < size - 1; addr++) {
3577 			if ((c = dtrace_load8(addr)) == '\0')
3578 				break;
3579 
3580 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
3581 				break;
3582 
3583 			ASSERT(i < size);
3584 			dest[i++] = c;
3585 		}
3586 
3587 		ASSERT(i < size);
3588 		dest[i] = '\0';
3589 		regs[rd] = (uintptr_t)dest;
3590 		mstate->dtms_scratch_ptr += size;
3591 		mstate->dtms_strtok = addr;
3592 		break;
3593 	}
3594 
3595 	case DIF_SUBR_SUBSTR: {
3596 		uintptr_t s = tupregs[0].dttk_value;
3597 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3598 		char *d = (char *)mstate->dtms_scratch_ptr;
3599 		int64_t index = (int64_t)tupregs[1].dttk_value;
3600 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
3601 		size_t len = dtrace_strlen((char *)s, size);
3602 		int64_t i = 0;
3603 
3604 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
3605 			regs[rd] = NULL;
3606 			break;
3607 		}
3608 
3609 		if (!DTRACE_INSCRATCH(mstate, size)) {
3610 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3611 			regs[rd] = NULL;
3612 			break;
3613 		}
3614 
3615 		if (nargs <= 2)
3616 			remaining = (int64_t)size;
3617 
3618 		if (index < 0) {
3619 			index += len;
3620 
3621 			if (index < 0 && index + remaining > 0) {
3622 				remaining += index;
3623 				index = 0;
3624 			}
3625 		}
3626 
3627 		if (index >= len || index < 0) {
3628 			remaining = 0;
3629 		} else if (remaining < 0) {
3630 			remaining += len - index;
3631 		} else if (index + remaining > size) {
3632 			remaining = size - index;
3633 		}
3634 
3635 		for (i = 0; i < remaining; i++) {
3636 			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
3637 				break;
3638 		}
3639 
3640 		d[i] = '\0';
3641 
3642 		mstate->dtms_scratch_ptr += size;
3643 		regs[rd] = (uintptr_t)d;
3644 		break;
3645 	}
3646 
3647 	case DIF_SUBR_GETMAJOR:
3648 #ifdef _LP64
3649 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
3650 #else
3651 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
3652 #endif
3653 		break;
3654 
3655 	case DIF_SUBR_GETMINOR:
3656 #ifdef _LP64
3657 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
3658 #else
3659 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
3660 #endif
3661 		break;
3662 
3663 	case DIF_SUBR_DDI_PATHNAME: {
3664 		/*
3665 		 * This one is a galactic mess.  We are going to roughly
3666 		 * emulate ddi_pathname(), but it's made more complicated
3667 		 * by the fact that we (a) want to include the minor name and
3668 		 * (b) must proceed iteratively instead of recursively.
3669 		 */
3670 		uintptr_t dest = mstate->dtms_scratch_ptr;
3671 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3672 		char *start = (char *)dest, *end = start + size - 1;
3673 		uintptr_t daddr = tupregs[0].dttk_value;
3674 		int64_t minor = (int64_t)tupregs[1].dttk_value;
3675 		char *s;
3676 		int i, len, depth = 0;
3677 
3678 		/*
3679 		 * Due to all the pointer jumping we do and context we must
3680 		 * rely upon, we just mandate that the user must have kernel
3681 		 * read privileges to use this routine.
3682 		 */
3683 		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
3684 			*flags |= CPU_DTRACE_KPRIV;
3685 			*illval = daddr;
3686 			regs[rd] = NULL;
3687 		}
3688 
3689 		if (!DTRACE_INSCRATCH(mstate, size)) {
3690 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3691 			regs[rd] = NULL;
3692 			break;
3693 		}
3694 
3695 		*end = '\0';
3696 
3697 		/*
3698 		 * We want to have a name for the minor.  In order to do this,
3699 		 * we need to walk the minor list from the devinfo.  We want
3700 		 * to be sure that we don't infinitely walk a circular list,
3701 		 * so we check for circularity by sending a scout pointer
3702 		 * ahead two elements for every element that we iterate over;
3703 		 * if the list is circular, these will ultimately point to the
3704 		 * same element.  You may recognize this little trick as the
3705 		 * answer to a stupid interview question -- one that always
3706 		 * seems to be asked by those who had to have it laboriously
3707 		 * explained to them, and who can't even concisely describe
3708 		 * the conditions under which one would be forced to resort to
3709 		 * this technique.  Needless to say, those conditions are
3710 		 * found here -- and probably only here.  Is this the only use
3711 		 * of this infamous trick in shipping, production code?  If it
3712 		 * isn't, it probably should be...
3713 		 */
3714 		if (minor != -1) {
3715 			uintptr_t maddr = dtrace_loadptr(daddr +
3716 			    offsetof(struct dev_info, devi_minor));
3717 
3718 			uintptr_t next = offsetof(struct ddi_minor_data, next);
3719 			uintptr_t name = offsetof(struct ddi_minor_data,
3720 			    d_minor) + offsetof(struct ddi_minor, name);
3721 			uintptr_t dev = offsetof(struct ddi_minor_data,
3722 			    d_minor) + offsetof(struct ddi_minor, dev);
3723 			uintptr_t scout;
3724 
3725 			if (maddr != NULL)
3726 				scout = dtrace_loadptr(maddr + next);
3727 
3728 			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3729 				uint64_t m;
3730 #ifdef _LP64
3731 				m = dtrace_load64(maddr + dev) & MAXMIN64;
3732 #else
3733 				m = dtrace_load32(maddr + dev) & MAXMIN;
3734 #endif
3735 				if (m != minor) {
3736 					maddr = dtrace_loadptr(maddr + next);
3737 
3738 					if (scout == NULL)
3739 						continue;
3740 
3741 					scout = dtrace_loadptr(scout + next);
3742 
3743 					if (scout == NULL)
3744 						continue;
3745 
3746 					scout = dtrace_loadptr(scout + next);
3747 
3748 					if (scout == NULL)
3749 						continue;
3750 
3751 					if (scout == maddr) {
3752 						*flags |= CPU_DTRACE_ILLOP;
3753 						break;
3754 					}
3755 
3756 					continue;
3757 				}
3758 
3759 				/*
3760 				 * We have the minor data.  Now we need to
3761 				 * copy the minor's name into the end of the
3762 				 * pathname.
3763 				 */
3764 				s = (char *)dtrace_loadptr(maddr + name);
3765 				len = dtrace_strlen(s, size);
3766 
3767 				if (*flags & CPU_DTRACE_FAULT)
3768 					break;
3769 
3770 				if (len != 0) {
3771 					if ((end -= (len + 1)) < start)
3772 						break;
3773 
3774 					*end = ':';
3775 				}
3776 
3777 				for (i = 1; i <= len; i++)
3778 					end[i] = dtrace_load8((uintptr_t)s++);
3779 				break;
3780 			}
3781 		}
3782 
3783 		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3784 			ddi_node_state_t devi_state;
3785 
3786 			devi_state = dtrace_load32(daddr +
3787 			    offsetof(struct dev_info, devi_node_state));
3788 
3789 			if (*flags & CPU_DTRACE_FAULT)
3790 				break;
3791 
3792 			if (devi_state >= DS_INITIALIZED) {
3793 				s = (char *)dtrace_loadptr(daddr +
3794 				    offsetof(struct dev_info, devi_addr));
3795 				len = dtrace_strlen(s, size);
3796 
3797 				if (*flags & CPU_DTRACE_FAULT)
3798 					break;
3799 
3800 				if (len != 0) {
3801 					if ((end -= (len + 1)) < start)
3802 						break;
3803 
3804 					*end = '@';
3805 				}
3806 
3807 				for (i = 1; i <= len; i++)
3808 					end[i] = dtrace_load8((uintptr_t)s++);
3809 			}
3810 
3811 			/*
3812 			 * Now for the node name...
3813 			 */
3814 			s = (char *)dtrace_loadptr(daddr +
3815 			    offsetof(struct dev_info, devi_node_name));
3816 
3817 			daddr = dtrace_loadptr(daddr +
3818 			    offsetof(struct dev_info, devi_parent));
3819 
3820 			/*
3821 			 * If our parent is NULL (that is, if we're the root
3822 			 * node), we're going to use the special path
3823 			 * "devices".
3824 			 */
3825 			if (daddr == NULL)
3826 				s = "devices";
3827 
3828 			len = dtrace_strlen(s, size);
3829 			if (*flags & CPU_DTRACE_FAULT)
3830 				break;
3831 
3832 			if ((end -= (len + 1)) < start)
3833 				break;
3834 
3835 			for (i = 1; i <= len; i++)
3836 				end[i] = dtrace_load8((uintptr_t)s++);
3837 			*end = '/';
3838 
3839 			if (depth++ > dtrace_devdepth_max) {
3840 				*flags |= CPU_DTRACE_ILLOP;
3841 				break;
3842 			}
3843 		}
3844 
3845 		if (end < start)
3846 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3847 
3848 		if (daddr == NULL) {
3849 			regs[rd] = (uintptr_t)end;
3850 			mstate->dtms_scratch_ptr += size;
3851 		}
3852 
3853 		break;
3854 	}
3855 
3856 	case DIF_SUBR_STRJOIN: {
3857 		char *d = (char *)mstate->dtms_scratch_ptr;
3858 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3859 		uintptr_t s1 = tupregs[0].dttk_value;
3860 		uintptr_t s2 = tupregs[1].dttk_value;
3861 		int i = 0;
3862 
3863 		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
3864 		    !dtrace_strcanload(s2, size, mstate, vstate)) {
3865 			regs[rd] = NULL;
3866 			break;
3867 		}
3868 
3869 		if (!DTRACE_INSCRATCH(mstate, size)) {
3870 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3871 			regs[rd] = NULL;
3872 			break;
3873 		}
3874 
3875 		for (;;) {
3876 			if (i >= size) {
3877 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3878 				regs[rd] = NULL;
3879 				break;
3880 			}
3881 
3882 			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
3883 				i--;
3884 				break;
3885 			}
3886 		}
3887 
3888 		for (;;) {
3889 			if (i >= size) {
3890 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3891 				regs[rd] = NULL;
3892 				break;
3893 			}
3894 
3895 			if ((d[i++] = dtrace_load8(s2++)) == '\0')
3896 				break;
3897 		}
3898 
3899 		if (i < size) {
3900 			mstate->dtms_scratch_ptr += i;
3901 			regs[rd] = (uintptr_t)d;
3902 		}
3903 
3904 		break;
3905 	}
3906 
3907 	case DIF_SUBR_LLTOSTR: {
3908 		int64_t i = (int64_t)tupregs[0].dttk_value;
3909 		int64_t val = i < 0 ? i * -1 : i;
3910 		uint64_t size = 22;	/* enough room for 2^64 in decimal */
3911 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
3912 
3913 		if (!DTRACE_INSCRATCH(mstate, size)) {
3914 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3915 			regs[rd] = NULL;
3916 			break;
3917 		}
3918 
3919 		for (*end-- = '\0'; val; val /= 10)
3920 			*end-- = '0' + (val % 10);
3921 
3922 		if (i == 0)
3923 			*end-- = '0';
3924 
3925 		if (i < 0)
3926 			*end-- = '-';
3927 
3928 		regs[rd] = (uintptr_t)end + 1;
3929 		mstate->dtms_scratch_ptr += size;
3930 		break;
3931 	}
3932 
3933 	case DIF_SUBR_HTONS:
3934 	case DIF_SUBR_NTOHS:
3935 #ifdef _BIG_ENDIAN
3936 		regs[rd] = (uint16_t)tupregs[0].dttk_value;
3937 #else
3938 		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
3939 #endif
3940 		break;
3941 
3942 
3943 	case DIF_SUBR_HTONL:
3944 	case DIF_SUBR_NTOHL:
3945 #ifdef _BIG_ENDIAN
3946 		regs[rd] = (uint32_t)tupregs[0].dttk_value;
3947 #else
3948 		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
3949 #endif
3950 		break;
3951 
3952 
3953 	case DIF_SUBR_HTONLL:
3954 	case DIF_SUBR_NTOHLL:
3955 #ifdef _BIG_ENDIAN
3956 		regs[rd] = (uint64_t)tupregs[0].dttk_value;
3957 #else
3958 		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
3959 #endif
3960 		break;
3961 
3962 
3963 	case DIF_SUBR_DIRNAME:
3964 	case DIF_SUBR_BASENAME: {
3965 		char *dest = (char *)mstate->dtms_scratch_ptr;
3966 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3967 		uintptr_t src = tupregs[0].dttk_value;
3968 		int i, j, len = dtrace_strlen((char *)src, size);
3969 		int lastbase = -1, firstbase = -1, lastdir = -1;
3970 		int start, end;
3971 
3972 		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
3973 			regs[rd] = NULL;
3974 			break;
3975 		}
3976 
3977 		if (!DTRACE_INSCRATCH(mstate, size)) {
3978 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3979 			regs[rd] = NULL;
3980 			break;
3981 		}
3982 
3983 		/*
3984 		 * The basename and dirname for a zero-length string is
3985 		 * defined to be "."
3986 		 */
3987 		if (len == 0) {
3988 			len = 1;
3989 			src = (uintptr_t)".";
3990 		}
3991 
3992 		/*
3993 		 * Start from the back of the string, moving back toward the
3994 		 * front until we see a character that isn't a slash.  That
3995 		 * character is the last character in the basename.
3996 		 */
3997 		for (i = len - 1; i >= 0; i--) {
3998 			if (dtrace_load8(src + i) != '/')
3999 				break;
4000 		}
4001 
4002 		if (i >= 0)
4003 			lastbase = i;
4004 
4005 		/*
4006 		 * Starting from the last character in the basename, move
4007 		 * towards the front until we find a slash.  The character
4008 		 * that we processed immediately before that is the first
4009 		 * character in the basename.
4010 		 */
4011 		for (; i >= 0; i--) {
4012 			if (dtrace_load8(src + i) == '/')
4013 				break;
4014 		}
4015 
4016 		if (i >= 0)
4017 			firstbase = i + 1;
4018 
4019 		/*
4020 		 * Now keep going until we find a non-slash character.  That
4021 		 * character is the last character in the dirname.
4022 		 */
4023 		for (; i >= 0; i--) {
4024 			if (dtrace_load8(src + i) != '/')
4025 				break;
4026 		}
4027 
4028 		if (i >= 0)
4029 			lastdir = i;
4030 
4031 		ASSERT(!(lastbase == -1 && firstbase != -1));
4032 		ASSERT(!(firstbase == -1 && lastdir != -1));
4033 
4034 		if (lastbase == -1) {
4035 			/*
4036 			 * We didn't find a non-slash character.  We know that
4037 			 * the length is non-zero, so the whole string must be
4038 			 * slashes.  In either the dirname or the basename
4039 			 * case, we return '/'.
4040 			 */
4041 			ASSERT(firstbase == -1);
4042 			firstbase = lastbase = lastdir = 0;
4043 		}
4044 
4045 		if (firstbase == -1) {
4046 			/*
4047 			 * The entire string consists only of a basename
4048 			 * component.  If we're looking for dirname, we need
4049 			 * to change our string to be just "."; if we're
4050 			 * looking for a basename, we'll just set the first
4051 			 * character of the basename to be 0.
4052 			 */
4053 			if (subr == DIF_SUBR_DIRNAME) {
4054 				ASSERT(lastdir == -1);
4055 				src = (uintptr_t)".";
4056 				lastdir = 0;
4057 			} else {
4058 				firstbase = 0;
4059 			}
4060 		}
4061 
4062 		if (subr == DIF_SUBR_DIRNAME) {
4063 			if (lastdir == -1) {
4064 				/*
4065 				 * We know that we have a slash in the name --
4066 				 * or lastdir would be set to 0, above.  And
4067 				 * because lastdir is -1, we know that this
4068 				 * slash must be the first character.  (That
4069 				 * is, the full string must be of the form
4070 				 * "/basename".)  In this case, the last
4071 				 * character of the directory name is 0.
4072 				 */
4073 				lastdir = 0;
4074 			}
4075 
4076 			start = 0;
4077 			end = lastdir;
4078 		} else {
4079 			ASSERT(subr == DIF_SUBR_BASENAME);
4080 			ASSERT(firstbase != -1 && lastbase != -1);
4081 			start = firstbase;
4082 			end = lastbase;
4083 		}
4084 
4085 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4086 			dest[j] = dtrace_load8(src + i);
4087 
4088 		dest[j] = '\0';
4089 		regs[rd] = (uintptr_t)dest;
4090 		mstate->dtms_scratch_ptr += size;
4091 		break;
4092 	}
4093 
4094 	case DIF_SUBR_CLEANPATH: {
4095 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4096 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4097 		uintptr_t src = tupregs[0].dttk_value;
4098 		int i = 0, j = 0;
4099 
4100 		if (!dtrace_strcanload(src, size, mstate, vstate)) {
4101 			regs[rd] = NULL;
4102 			break;
4103 		}
4104 
4105 		if (!DTRACE_INSCRATCH(mstate, size)) {
4106 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4107 			regs[rd] = NULL;
4108 			break;
4109 		}
4110 
4111 		/*
4112 		 * Move forward, loading each character.
4113 		 */
4114 		do {
4115 			c = dtrace_load8(src + i++);
4116 next:
4117 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
4118 				break;
4119 
4120 			if (c != '/') {
4121 				dest[j++] = c;
4122 				continue;
4123 			}
4124 
4125 			c = dtrace_load8(src + i++);
4126 
4127 			if (c == '/') {
4128 				/*
4129 				 * We have two slashes -- we can just advance
4130 				 * to the next character.
4131 				 */
4132 				goto next;
4133 			}
4134 
4135 			if (c != '.') {
4136 				/*
4137 				 * This is not "." and it's not ".." -- we can
4138 				 * just store the "/" and this character and
4139 				 * drive on.
4140 				 */
4141 				dest[j++] = '/';
4142 				dest[j++] = c;
4143 				continue;
4144 			}
4145 
4146 			c = dtrace_load8(src + i++);
4147 
4148 			if (c == '/') {
4149 				/*
4150 				 * This is a "/./" component.  We're not going
4151 				 * to store anything in the destination buffer;
4152 				 * we're just going to go to the next component.
4153 				 */
4154 				goto next;
4155 			}
4156 
4157 			if (c != '.') {
4158 				/*
4159 				 * This is not ".." -- we can just store the
4160 				 * "/." and this character and continue
4161 				 * processing.
4162 				 */
4163 				dest[j++] = '/';
4164 				dest[j++] = '.';
4165 				dest[j++] = c;
4166 				continue;
4167 			}
4168 
4169 			c = dtrace_load8(src + i++);
4170 
4171 			if (c != '/' && c != '\0') {
4172 				/*
4173 				 * This is not ".." -- it's "..[mumble]".
4174 				 * We'll store the "/.." and this character
4175 				 * and continue processing.
4176 				 */
4177 				dest[j++] = '/';
4178 				dest[j++] = '.';
4179 				dest[j++] = '.';
4180 				dest[j++] = c;
4181 				continue;
4182 			}
4183 
4184 			/*
4185 			 * This is "/../" or "/..\0".  We need to back up
4186 			 * our destination pointer until we find a "/".
4187 			 */
4188 			i--;
4189 			while (j != 0 && dest[--j] != '/')
4190 				continue;
4191 
4192 			if (c == '\0')
4193 				dest[++j] = '/';
4194 		} while (c != '\0');
4195 
4196 		dest[j] = '\0';
4197 		regs[rd] = (uintptr_t)dest;
4198 		mstate->dtms_scratch_ptr += size;
4199 		break;
4200 	}
4201 
4202 	case DIF_SUBR_INET_NTOA:
4203 	case DIF_SUBR_INET_NTOA6:
4204 	case DIF_SUBR_INET_NTOP: {
4205 		size_t size;
4206 		int af, argi, i;
4207 		char *base, *end;
4208 
4209 		if (subr == DIF_SUBR_INET_NTOP) {
4210 			af = (int)tupregs[0].dttk_value;
4211 			argi = 1;
4212 		} else {
4213 			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4214 			argi = 0;
4215 		}
4216 
4217 		if (af == AF_INET) {
4218 			ipaddr_t ip4;
4219 			uint8_t *ptr8, val;
4220 
4221 			/*
4222 			 * Safely load the IPv4 address.
4223 			 */
4224 			ip4 = dtrace_load32(tupregs[argi].dttk_value);
4225 
4226 			/*
4227 			 * Check an IPv4 string will fit in scratch.
4228 			 */
4229 			size = INET_ADDRSTRLEN;
4230 			if (!DTRACE_INSCRATCH(mstate, size)) {
4231 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4232 				regs[rd] = NULL;
4233 				break;
4234 			}
4235 			base = (char *)mstate->dtms_scratch_ptr;
4236 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4237 
4238 			/*
4239 			 * Stringify as a dotted decimal quad.
4240 			 */
4241 			*end-- = '\0';
4242 			ptr8 = (uint8_t *)&ip4;
4243 			for (i = 3; i >= 0; i--) {
4244 				val = ptr8[i];
4245 
4246 				if (val == 0) {
4247 					*end-- = '0';
4248 				} else {
4249 					for (; val; val /= 10) {
4250 						*end-- = '0' + (val % 10);
4251 					}
4252 				}
4253 
4254 				if (i > 0)
4255 					*end-- = '.';
4256 			}
4257 			ASSERT(end + 1 >= base);
4258 
4259 		} else if (af == AF_INET6) {
4260 			struct in6_addr ip6;
4261 			int firstzero, tryzero, numzero, v6end;
4262 			uint16_t val;
4263 			const char digits[] = "0123456789abcdef";
4264 
4265 			/*
4266 			 * Stringify using RFC 1884 convention 2 - 16 bit
4267 			 * hexadecimal values with a zero-run compression.
4268 			 * Lower case hexadecimal digits are used.
4269 			 * 	eg, fe80::214:4fff:fe0b:76c8.
4270 			 * The IPv4 embedded form is returned for inet_ntop,
4271 			 * just the IPv4 string is returned for inet_ntoa6.
4272 			 */
4273 
4274 			/*
4275 			 * Safely load the IPv6 address.
4276 			 */
4277 			dtrace_bcopy(
4278 			    (void *)(uintptr_t)tupregs[argi].dttk_value,
4279 			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4280 
4281 			/*
4282 			 * Check an IPv6 string will fit in scratch.
4283 			 */
4284 			size = INET6_ADDRSTRLEN;
4285 			if (!DTRACE_INSCRATCH(mstate, size)) {
4286 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4287 				regs[rd] = NULL;
4288 				break;
4289 			}
4290 			base = (char *)mstate->dtms_scratch_ptr;
4291 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4292 			*end-- = '\0';
4293 
4294 			/*
4295 			 * Find the longest run of 16 bit zero values
4296 			 * for the single allowed zero compression - "::".
4297 			 */
4298 			firstzero = -1;
4299 			tryzero = -1;
4300 			numzero = 1;
4301 			for (i = 0; i < sizeof (struct in6_addr); i++) {
4302 				if (ip6._S6_un._S6_u8[i] == 0 &&
4303 				    tryzero == -1 && i % 2 == 0) {
4304 					tryzero = i;
4305 					continue;
4306 				}
4307 
4308 				if (tryzero != -1 &&
4309 				    (ip6._S6_un._S6_u8[i] != 0 ||
4310 				    i == sizeof (struct in6_addr) - 1)) {
4311 
4312 					if (i - tryzero <= numzero) {
4313 						tryzero = -1;
4314 						continue;
4315 					}
4316 
4317 					firstzero = tryzero;
4318 					numzero = i - i % 2 - tryzero;
4319 					tryzero = -1;
4320 
4321 					if (ip6._S6_un._S6_u8[i] == 0 &&
4322 					    i == sizeof (struct in6_addr) - 1)
4323 						numzero += 2;
4324 				}
4325 			}
4326 			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4327 
4328 			/*
4329 			 * Check for an IPv4 embedded address.
4330 			 */
4331 			v6end = sizeof (struct in6_addr) - 2;
4332 			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4333 			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
4334 				for (i = sizeof (struct in6_addr) - 1;
4335 				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
4336 					ASSERT(end >= base);
4337 
4338 					val = ip6._S6_un._S6_u8[i];
4339 
4340 					if (val == 0) {
4341 						*end-- = '0';
4342 					} else {
4343 						for (; val; val /= 10) {
4344 							*end-- = '0' + val % 10;
4345 						}
4346 					}
4347 
4348 					if (i > DTRACE_V4MAPPED_OFFSET)
4349 						*end-- = '.';
4350 				}
4351 
4352 				if (subr == DIF_SUBR_INET_NTOA6)
4353 					goto inetout;
4354 
4355 				/*
4356 				 * Set v6end to skip the IPv4 address that
4357 				 * we have already stringified.
4358 				 */
4359 				v6end = 10;
4360 			}
4361 
4362 			/*
4363 			 * Build the IPv6 string by working through the
4364 			 * address in reverse.
4365 			 */
4366 			for (i = v6end; i >= 0; i -= 2) {
4367 				ASSERT(end >= base);
4368 
4369 				if (i == firstzero + numzero - 2) {
4370 					*end-- = ':';
4371 					*end-- = ':';
4372 					i -= numzero - 2;
4373 					continue;
4374 				}
4375 
4376 				if (i < 14 && i != firstzero - 2)
4377 					*end-- = ':';
4378 
4379 				val = (ip6._S6_un._S6_u8[i] << 8) +
4380 				    ip6._S6_un._S6_u8[i + 1];
4381 
4382 				if (val == 0) {
4383 					*end-- = '0';
4384 				} else {
4385 					for (; val; val /= 16) {
4386 						*end-- = digits[val % 16];
4387 					}
4388 				}
4389 			}
4390 			ASSERT(end + 1 >= base);
4391 
4392 		} else {
4393 			/*
4394 			 * The user didn't use AH_INET or AH_INET6.
4395 			 */
4396 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4397 			regs[rd] = NULL;
4398 			break;
4399 		}
4400 
4401 inetout:	regs[rd] = (uintptr_t)end + 1;
4402 		mstate->dtms_scratch_ptr += size;
4403 		break;
4404 	}
4405 
4406 	}
4407 }
4408 
4409 /*
4410  * Emulate the execution of DTrace IR instructions specified by the given
4411  * DIF object.  This function is deliberately void of assertions as all of
4412  * the necessary checks are handled by a call to dtrace_difo_validate().
4413  */
4414 static uint64_t
4415 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4416     dtrace_vstate_t *vstate, dtrace_state_t *state)
4417 {
4418 	const dif_instr_t *text = difo->dtdo_buf;
4419 	const uint_t textlen = difo->dtdo_len;
4420 	const char *strtab = difo->dtdo_strtab;
4421 	const uint64_t *inttab = difo->dtdo_inttab;
4422 
4423 	uint64_t rval = 0;
4424 	dtrace_statvar_t *svar;
4425 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4426 	dtrace_difv_t *v;
4427 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
4428 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
4429 
4430 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4431 	uint64_t regs[DIF_DIR_NREGS];
4432 	uint64_t *tmp;
4433 
4434 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4435 	int64_t cc_r;
4436 	uint_t pc = 0, id, opc;
4437 	uint8_t ttop = 0;
4438 	dif_instr_t instr;
4439 	uint_t r1, r2, rd;
4440 
4441 	/*
4442 	 * We stash the current DIF object into the machine state: we need it
4443 	 * for subsequent access checking.
4444 	 */
4445 	mstate->dtms_difo = difo;
4446 
4447 	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
4448 
4449 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4450 		opc = pc;
4451 
4452 		instr = text[pc++];
4453 		r1 = DIF_INSTR_R1(instr);
4454 		r2 = DIF_INSTR_R2(instr);
4455 		rd = DIF_INSTR_RD(instr);
4456 
4457 		switch (DIF_INSTR_OP(instr)) {
4458 		case DIF_OP_OR:
4459 			regs[rd] = regs[r1] | regs[r2];
4460 			break;
4461 		case DIF_OP_XOR:
4462 			regs[rd] = regs[r1] ^ regs[r2];
4463 			break;
4464 		case DIF_OP_AND:
4465 			regs[rd] = regs[r1] & regs[r2];
4466 			break;
4467 		case DIF_OP_SLL:
4468 			regs[rd] = regs[r1] << regs[r2];
4469 			break;
4470 		case DIF_OP_SRL:
4471 			regs[rd] = regs[r1] >> regs[r2];
4472 			break;
4473 		case DIF_OP_SUB:
4474 			regs[rd] = regs[r1] - regs[r2];
4475 			break;
4476 		case DIF_OP_ADD:
4477 			regs[rd] = regs[r1] + regs[r2];
4478 			break;
4479 		case DIF_OP_MUL:
4480 			regs[rd] = regs[r1] * regs[r2];
4481 			break;
4482 		case DIF_OP_SDIV:
4483 			if (regs[r2] == 0) {
4484 				regs[rd] = 0;
4485 				*flags |= CPU_DTRACE_DIVZERO;
4486 			} else {
4487 				regs[rd] = (int64_t)regs[r1] /
4488 				    (int64_t)regs[r2];
4489 			}
4490 			break;
4491 
4492 		case DIF_OP_UDIV:
4493 			if (regs[r2] == 0) {
4494 				regs[rd] = 0;
4495 				*flags |= CPU_DTRACE_DIVZERO;
4496 			} else {
4497 				regs[rd] = regs[r1] / regs[r2];
4498 			}
4499 			break;
4500 
4501 		case DIF_OP_SREM:
4502 			if (regs[r2] == 0) {
4503 				regs[rd] = 0;
4504 				*flags |= CPU_DTRACE_DIVZERO;
4505 			} else {
4506 				regs[rd] = (int64_t)regs[r1] %
4507 				    (int64_t)regs[r2];
4508 			}
4509 			break;
4510 
4511 		case DIF_OP_UREM:
4512 			if (regs[r2] == 0) {
4513 				regs[rd] = 0;
4514 				*flags |= CPU_DTRACE_DIVZERO;
4515 			} else {
4516 				regs[rd] = regs[r1] % regs[r2];
4517 			}
4518 			break;
4519 
4520 		case DIF_OP_NOT:
4521 			regs[rd] = ~regs[r1];
4522 			break;
4523 		case DIF_OP_MOV:
4524 			regs[rd] = regs[r1];
4525 			break;
4526 		case DIF_OP_CMP:
4527 			cc_r = regs[r1] - regs[r2];
4528 			cc_n = cc_r < 0;
4529 			cc_z = cc_r == 0;
4530 			cc_v = 0;
4531 			cc_c = regs[r1] < regs[r2];
4532 			break;
4533 		case DIF_OP_TST:
4534 			cc_n = cc_v = cc_c = 0;
4535 			cc_z = regs[r1] == 0;
4536 			break;
4537 		case DIF_OP_BA:
4538 			pc = DIF_INSTR_LABEL(instr);
4539 			break;
4540 		case DIF_OP_BE:
4541 			if (cc_z)
4542 				pc = DIF_INSTR_LABEL(instr);
4543 			break;
4544 		case DIF_OP_BNE:
4545 			if (cc_z == 0)
4546 				pc = DIF_INSTR_LABEL(instr);
4547 			break;
4548 		case DIF_OP_BG:
4549 			if ((cc_z | (cc_n ^ cc_v)) == 0)
4550 				pc = DIF_INSTR_LABEL(instr);
4551 			break;
4552 		case DIF_OP_BGU:
4553 			if ((cc_c | cc_z) == 0)
4554 				pc = DIF_INSTR_LABEL(instr);
4555 			break;
4556 		case DIF_OP_BGE:
4557 			if ((cc_n ^ cc_v) == 0)
4558 				pc = DIF_INSTR_LABEL(instr);
4559 			break;
4560 		case DIF_OP_BGEU:
4561 			if (cc_c == 0)
4562 				pc = DIF_INSTR_LABEL(instr);
4563 			break;
4564 		case DIF_OP_BL:
4565 			if (cc_n ^ cc_v)
4566 				pc = DIF_INSTR_LABEL(instr);
4567 			break;
4568 		case DIF_OP_BLU:
4569 			if (cc_c)
4570 				pc = DIF_INSTR_LABEL(instr);
4571 			break;
4572 		case DIF_OP_BLE:
4573 			if (cc_z | (cc_n ^ cc_v))
4574 				pc = DIF_INSTR_LABEL(instr);
4575 			break;
4576 		case DIF_OP_BLEU:
4577 			if (cc_c | cc_z)
4578 				pc = DIF_INSTR_LABEL(instr);
4579 			break;
4580 		case DIF_OP_RLDSB:
4581 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4582 				*flags |= CPU_DTRACE_KPRIV;
4583 				*illval = regs[r1];
4584 				break;
4585 			}
4586 			/*FALLTHROUGH*/
4587 		case DIF_OP_LDSB:
4588 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
4589 			break;
4590 		case DIF_OP_RLDSH:
4591 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4592 				*flags |= CPU_DTRACE_KPRIV;
4593 				*illval = regs[r1];
4594 				break;
4595 			}
4596 			/*FALLTHROUGH*/
4597 		case DIF_OP_LDSH:
4598 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
4599 			break;
4600 		case DIF_OP_RLDSW:
4601 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4602 				*flags |= CPU_DTRACE_KPRIV;
4603 				*illval = regs[r1];
4604 				break;
4605 			}
4606 			/*FALLTHROUGH*/
4607 		case DIF_OP_LDSW:
4608 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
4609 			break;
4610 		case DIF_OP_RLDUB:
4611 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4612 				*flags |= CPU_DTRACE_KPRIV;
4613 				*illval = regs[r1];
4614 				break;
4615 			}
4616 			/*FALLTHROUGH*/
4617 		case DIF_OP_LDUB:
4618 			regs[rd] = dtrace_load8(regs[r1]);
4619 			break;
4620 		case DIF_OP_RLDUH:
4621 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4622 				*flags |= CPU_DTRACE_KPRIV;
4623 				*illval = regs[r1];
4624 				break;
4625 			}
4626 			/*FALLTHROUGH*/
4627 		case DIF_OP_LDUH:
4628 			regs[rd] = dtrace_load16(regs[r1]);
4629 			break;
4630 		case DIF_OP_RLDUW:
4631 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4632 				*flags |= CPU_DTRACE_KPRIV;
4633 				*illval = regs[r1];
4634 				break;
4635 			}
4636 			/*FALLTHROUGH*/
4637 		case DIF_OP_LDUW:
4638 			regs[rd] = dtrace_load32(regs[r1]);
4639 			break;
4640 		case DIF_OP_RLDX:
4641 			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
4642 				*flags |= CPU_DTRACE_KPRIV;
4643 				*illval = regs[r1];
4644 				break;
4645 			}
4646 			/*FALLTHROUGH*/
4647 		case DIF_OP_LDX:
4648 			regs[rd] = dtrace_load64(regs[r1]);
4649 			break;
4650 		case DIF_OP_ULDSB:
4651 			regs[rd] = (int8_t)
4652 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
4653 			break;
4654 		case DIF_OP_ULDSH:
4655 			regs[rd] = (int16_t)
4656 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
4657 			break;
4658 		case DIF_OP_ULDSW:
4659 			regs[rd] = (int32_t)
4660 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
4661 			break;
4662 		case DIF_OP_ULDUB:
4663 			regs[rd] =
4664 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
4665 			break;
4666 		case DIF_OP_ULDUH:
4667 			regs[rd] =
4668 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
4669 			break;
4670 		case DIF_OP_ULDUW:
4671 			regs[rd] =
4672 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
4673 			break;
4674 		case DIF_OP_ULDX:
4675 			regs[rd] =
4676 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
4677 			break;
4678 		case DIF_OP_RET:
4679 			rval = regs[rd];
4680 			pc = textlen;
4681 			break;
4682 		case DIF_OP_NOP:
4683 			break;
4684 		case DIF_OP_SETX:
4685 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
4686 			break;
4687 		case DIF_OP_SETS:
4688 			regs[rd] = (uint64_t)(uintptr_t)
4689 			    (strtab + DIF_INSTR_STRING(instr));
4690 			break;
4691 		case DIF_OP_SCMP: {
4692 			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
4693 			uintptr_t s1 = regs[r1];
4694 			uintptr_t s2 = regs[r2];
4695 
4696 			if (s1 != NULL &&
4697 			    !dtrace_strcanload(s1, sz, mstate, vstate))
4698 				break;
4699 			if (s2 != NULL &&
4700 			    !dtrace_strcanload(s2, sz, mstate, vstate))
4701 				break;
4702 
4703 			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
4704 
4705 			cc_n = cc_r < 0;
4706 			cc_z = cc_r == 0;
4707 			cc_v = cc_c = 0;
4708 			break;
4709 		}
4710 		case DIF_OP_LDGA:
4711 			regs[rd] = dtrace_dif_variable(mstate, state,
4712 			    r1, regs[r2]);
4713 			break;
4714 		case DIF_OP_LDGS:
4715 			id = DIF_INSTR_VAR(instr);
4716 
4717 			if (id >= DIF_VAR_OTHER_UBASE) {
4718 				uintptr_t a;
4719 
4720 				id -= DIF_VAR_OTHER_UBASE;
4721 				svar = vstate->dtvs_globals[id];
4722 				ASSERT(svar != NULL);
4723 				v = &svar->dtsv_var;
4724 
4725 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
4726 					regs[rd] = svar->dtsv_data;
4727 					break;
4728 				}
4729 
4730 				a = (uintptr_t)svar->dtsv_data;
4731 
4732 				if (*(uint8_t *)a == UINT8_MAX) {
4733 					/*
4734 					 * If the 0th byte is set to UINT8_MAX
4735 					 * then this is to be treated as a
4736 					 * reference to a NULL variable.
4737 					 */
4738 					regs[rd] = NULL;
4739 				} else {
4740 					regs[rd] = a + sizeof (uint64_t);
4741 				}
4742 
4743 				break;
4744 			}
4745 
4746 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
4747 			break;
4748 
4749 		case DIF_OP_STGS:
4750 			id = DIF_INSTR_VAR(instr);
4751 
4752 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4753 			id -= DIF_VAR_OTHER_UBASE;
4754 
4755 			svar = vstate->dtvs_globals[id];
4756 			ASSERT(svar != NULL);
4757 			v = &svar->dtsv_var;
4758 
4759 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4760 				uintptr_t a = (uintptr_t)svar->dtsv_data;
4761 
4762 				ASSERT(a != NULL);
4763 				ASSERT(svar->dtsv_size != 0);
4764 
4765 				if (regs[rd] == NULL) {
4766 					*(uint8_t *)a = UINT8_MAX;
4767 					break;
4768 				} else {
4769 					*(uint8_t *)a = 0;
4770 					a += sizeof (uint64_t);
4771 				}
4772 				if (!dtrace_vcanload(
4773 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
4774 				    mstate, vstate))
4775 					break;
4776 
4777 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
4778 				    (void *)a, &v->dtdv_type);
4779 				break;
4780 			}
4781 
4782 			svar->dtsv_data = regs[rd];
4783 			break;
4784 
4785 		case DIF_OP_LDTA:
4786 			/*
4787 			 * There are no DTrace built-in thread-local arrays at
4788 			 * present.  This opcode is saved for future work.
4789 			 */
4790 			*flags |= CPU_DTRACE_ILLOP;
4791 			regs[rd] = 0;
4792 			break;
4793 
4794 		case DIF_OP_LDLS:
4795 			id = DIF_INSTR_VAR(instr);
4796 
4797 			if (id < DIF_VAR_OTHER_UBASE) {
4798 				/*
4799 				 * For now, this has no meaning.
4800 				 */
4801 				regs[rd] = 0;
4802 				break;
4803 			}
4804 
4805 			id -= DIF_VAR_OTHER_UBASE;
4806 
4807 			ASSERT(id < vstate->dtvs_nlocals);
4808 			ASSERT(vstate->dtvs_locals != NULL);
4809 
4810 			svar = vstate->dtvs_locals[id];
4811 			ASSERT(svar != NULL);
4812 			v = &svar->dtsv_var;
4813 
4814 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4815 				uintptr_t a = (uintptr_t)svar->dtsv_data;
4816 				size_t sz = v->dtdv_type.dtdt_size;
4817 
4818 				sz += sizeof (uint64_t);
4819 				ASSERT(svar->dtsv_size == NCPU * sz);
4820 				a += CPU->cpu_id * sz;
4821 
4822 				if (*(uint8_t *)a == UINT8_MAX) {
4823 					/*
4824 					 * If the 0th byte is set to UINT8_MAX
4825 					 * then this is to be treated as a
4826 					 * reference to a NULL variable.
4827 					 */
4828 					regs[rd] = NULL;
4829 				} else {
4830 					regs[rd] = a + sizeof (uint64_t);
4831 				}
4832 
4833 				break;
4834 			}
4835 
4836 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
4837 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
4838 			regs[rd] = tmp[CPU->cpu_id];
4839 			break;
4840 
4841 		case DIF_OP_STLS:
4842 			id = DIF_INSTR_VAR(instr);
4843 
4844 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4845 			id -= DIF_VAR_OTHER_UBASE;
4846 			ASSERT(id < vstate->dtvs_nlocals);
4847 
4848 			ASSERT(vstate->dtvs_locals != NULL);
4849 			svar = vstate->dtvs_locals[id];
4850 			ASSERT(svar != NULL);
4851 			v = &svar->dtsv_var;
4852 
4853 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4854 				uintptr_t a = (uintptr_t)svar->dtsv_data;
4855 				size_t sz = v->dtdv_type.dtdt_size;
4856 
4857 				sz += sizeof (uint64_t);
4858 				ASSERT(svar->dtsv_size == NCPU * sz);
4859 				a += CPU->cpu_id * sz;
4860 
4861 				if (regs[rd] == NULL) {
4862 					*(uint8_t *)a = UINT8_MAX;
4863 					break;
4864 				} else {
4865 					*(uint8_t *)a = 0;
4866 					a += sizeof (uint64_t);
4867 				}
4868 
4869 				if (!dtrace_vcanload(
4870 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
4871 				    mstate, vstate))
4872 					break;
4873 
4874 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
4875 				    (void *)a, &v->dtdv_type);
4876 				break;
4877 			}
4878 
4879 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
4880 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
4881 			tmp[CPU->cpu_id] = regs[rd];
4882 			break;
4883 
4884 		case DIF_OP_LDTS: {
4885 			dtrace_dynvar_t *dvar;
4886 			dtrace_key_t *key;
4887 
4888 			id = DIF_INSTR_VAR(instr);
4889 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4890 			id -= DIF_VAR_OTHER_UBASE;
4891 			v = &vstate->dtvs_tlocals[id];
4892 
4893 			key = &tupregs[DIF_DTR_NREGS];
4894 			key[0].dttk_value = (uint64_t)id;
4895 			key[0].dttk_size = 0;
4896 			DTRACE_TLS_THRKEY(key[1].dttk_value);
4897 			key[1].dttk_size = 0;
4898 
4899 			dvar = dtrace_dynvar(dstate, 2, key,
4900 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
4901 			    mstate, vstate);
4902 
4903 			if (dvar == NULL) {
4904 				regs[rd] = 0;
4905 				break;
4906 			}
4907 
4908 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4909 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
4910 			} else {
4911 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
4912 			}
4913 
4914 			break;
4915 		}
4916 
4917 		case DIF_OP_STTS: {
4918 			dtrace_dynvar_t *dvar;
4919 			dtrace_key_t *key;
4920 
4921 			id = DIF_INSTR_VAR(instr);
4922 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4923 			id -= DIF_VAR_OTHER_UBASE;
4924 
4925 			key = &tupregs[DIF_DTR_NREGS];
4926 			key[0].dttk_value = (uint64_t)id;
4927 			key[0].dttk_size = 0;
4928 			DTRACE_TLS_THRKEY(key[1].dttk_value);
4929 			key[1].dttk_size = 0;
4930 			v = &vstate->dtvs_tlocals[id];
4931 
4932 			dvar = dtrace_dynvar(dstate, 2, key,
4933 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
4934 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
4935 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
4936 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
4937 
4938 			/*
4939 			 * Given that we're storing to thread-local data,
4940 			 * we need to flush our predicate cache.
4941 			 */
4942 			curthread->t_predcache = NULL;
4943 
4944 			if (dvar == NULL)
4945 				break;
4946 
4947 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4948 				if (!dtrace_vcanload(
4949 				    (void *)(uintptr_t)regs[rd],
4950 				    &v->dtdv_type, mstate, vstate))
4951 					break;
4952 
4953 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
4954 				    dvar->dtdv_data, &v->dtdv_type);
4955 			} else {
4956 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
4957 			}
4958 
4959 			break;
4960 		}
4961 
4962 		case DIF_OP_SRA:
4963 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
4964 			break;
4965 
4966 		case DIF_OP_CALL:
4967 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
4968 			    regs, tupregs, ttop, mstate, state);
4969 			break;
4970 
4971 		case DIF_OP_PUSHTR:
4972 			if (ttop == DIF_DTR_NREGS) {
4973 				*flags |= CPU_DTRACE_TUPOFLOW;
4974 				break;
4975 			}
4976 
4977 			if (r1 == DIF_TYPE_STRING) {
4978 				/*
4979 				 * If this is a string type and the size is 0,
4980 				 * we'll use the system-wide default string
4981 				 * size.  Note that we are _not_ looking at
4982 				 * the value of the DTRACEOPT_STRSIZE option;
4983 				 * had this been set, we would expect to have
4984 				 * a non-zero size value in the "pushtr".
4985 				 */
4986 				tupregs[ttop].dttk_size =
4987 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
4988 				    regs[r2] ? regs[r2] :
4989 				    dtrace_strsize_default) + 1;
4990 			} else {
4991 				tupregs[ttop].dttk_size = regs[r2];
4992 			}
4993 
4994 			tupregs[ttop++].dttk_value = regs[rd];
4995 			break;
4996 
4997 		case DIF_OP_PUSHTV:
4998 			if (ttop == DIF_DTR_NREGS) {
4999 				*flags |= CPU_DTRACE_TUPOFLOW;
5000 				break;
5001 			}
5002 
5003 			tupregs[ttop].dttk_value = regs[rd];
5004 			tupregs[ttop++].dttk_size = 0;
5005 			break;
5006 
5007 		case DIF_OP_POPTS:
5008 			if (ttop != 0)
5009 				ttop--;
5010 			break;
5011 
5012 		case DIF_OP_FLUSHTS:
5013 			ttop = 0;
5014 			break;
5015 
5016 		case DIF_OP_LDGAA:
5017 		case DIF_OP_LDTAA: {
5018 			dtrace_dynvar_t *dvar;
5019 			dtrace_key_t *key = tupregs;
5020 			uint_t nkeys = ttop;
5021 
5022 			id = DIF_INSTR_VAR(instr);
5023 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5024 			id -= DIF_VAR_OTHER_UBASE;
5025 
5026 			key[nkeys].dttk_value = (uint64_t)id;
5027 			key[nkeys++].dttk_size = 0;
5028 
5029 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5030 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5031 				key[nkeys++].dttk_size = 0;
5032 				v = &vstate->dtvs_tlocals[id];
5033 			} else {
5034 				v = &vstate->dtvs_globals[id]->dtsv_var;
5035 			}
5036 
5037 			dvar = dtrace_dynvar(dstate, nkeys, key,
5038 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5039 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5040 			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5041 
5042 			if (dvar == NULL) {
5043 				regs[rd] = 0;
5044 				break;
5045 			}
5046 
5047 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5048 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5049 			} else {
5050 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5051 			}
5052 
5053 			break;
5054 		}
5055 
5056 		case DIF_OP_STGAA:
5057 		case DIF_OP_STTAA: {
5058 			dtrace_dynvar_t *dvar;
5059 			dtrace_key_t *key = tupregs;
5060 			uint_t nkeys = ttop;
5061 
5062 			id = DIF_INSTR_VAR(instr);
5063 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5064 			id -= DIF_VAR_OTHER_UBASE;
5065 
5066 			key[nkeys].dttk_value = (uint64_t)id;
5067 			key[nkeys++].dttk_size = 0;
5068 
5069 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5070 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5071 				key[nkeys++].dttk_size = 0;
5072 				v = &vstate->dtvs_tlocals[id];
5073 			} else {
5074 				v = &vstate->dtvs_globals[id]->dtsv_var;
5075 			}
5076 
5077 			dvar = dtrace_dynvar(dstate, nkeys, key,
5078 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5079 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5080 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5081 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5082 
5083 			if (dvar == NULL)
5084 				break;
5085 
5086 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5087 				if (!dtrace_vcanload(
5088 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5089 				    mstate, vstate))
5090 					break;
5091 
5092 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5093 				    dvar->dtdv_data, &v->dtdv_type);
5094 			} else {
5095 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5096 			}
5097 
5098 			break;
5099 		}
5100 
5101 		case DIF_OP_ALLOCS: {
5102 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5103 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5104 
5105 			/*
5106 			 * Rounding up the user allocation size could have
5107 			 * overflowed large, bogus allocations (like -1ULL) to
5108 			 * 0.
5109 			 */
5110 			if (size < regs[r1] ||
5111 			    !DTRACE_INSCRATCH(mstate, size)) {
5112 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5113 				regs[rd] = NULL;
5114 				break;
5115 			}
5116 
5117 			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5118 			mstate->dtms_scratch_ptr += size;
5119 			regs[rd] = ptr;
5120 			break;
5121 		}
5122 
5123 		case DIF_OP_COPYS:
5124 			if (!dtrace_canstore(regs[rd], regs[r2],
5125 			    mstate, vstate)) {
5126 				*flags |= CPU_DTRACE_BADADDR;
5127 				*illval = regs[rd];
5128 				break;
5129 			}
5130 
5131 			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5132 				break;
5133 
5134 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
5135 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5136 			break;
5137 
5138 		case DIF_OP_STB:
5139 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5140 				*flags |= CPU_DTRACE_BADADDR;
5141 				*illval = regs[rd];
5142 				break;
5143 			}
5144 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5145 			break;
5146 
5147 		case DIF_OP_STH:
5148 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5149 				*flags |= CPU_DTRACE_BADADDR;
5150 				*illval = regs[rd];
5151 				break;
5152 			}
5153 			if (regs[rd] & 1) {
5154 				*flags |= CPU_DTRACE_BADALIGN;
5155 				*illval = regs[rd];
5156 				break;
5157 			}
5158 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5159 			break;
5160 
5161 		case DIF_OP_STW:
5162 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5163 				*flags |= CPU_DTRACE_BADADDR;
5164 				*illval = regs[rd];
5165 				break;
5166 			}
5167 			if (regs[rd] & 3) {
5168 				*flags |= CPU_DTRACE_BADALIGN;
5169 				*illval = regs[rd];
5170 				break;
5171 			}
5172 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5173 			break;
5174 
5175 		case DIF_OP_STX:
5176 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5177 				*flags |= CPU_DTRACE_BADADDR;
5178 				*illval = regs[rd];
5179 				break;
5180 			}
5181 			if (regs[rd] & 7) {
5182 				*flags |= CPU_DTRACE_BADALIGN;
5183 				*illval = regs[rd];
5184 				break;
5185 			}
5186 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5187 			break;
5188 		}
5189 	}
5190 
5191 	if (!(*flags & CPU_DTRACE_FAULT))
5192 		return (rval);
5193 
5194 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5195 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5196 
5197 	return (0);
5198 }
5199 
5200 static void
5201 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5202 {
5203 	dtrace_probe_t *probe = ecb->dte_probe;
5204 	dtrace_provider_t *prov = probe->dtpr_provider;
5205 	char c[DTRACE_FULLNAMELEN + 80], *str;
5206 	char *msg = "dtrace: breakpoint action at probe ";
5207 	char *ecbmsg = " (ecb ";
5208 	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5209 	uintptr_t val = (uintptr_t)ecb;
5210 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5211 
5212 	if (dtrace_destructive_disallow)
5213 		return;
5214 
5215 	/*
5216 	 * It's impossible to be taking action on the NULL probe.
5217 	 */
5218 	ASSERT(probe != NULL);
5219 
5220 	/*
5221 	 * This is a poor man's (destitute man's?) sprintf():  we want to
5222 	 * print the provider name, module name, function name and name of
5223 	 * the probe, along with the hex address of the ECB with the breakpoint
5224 	 * action -- all of which we must place in the character buffer by
5225 	 * hand.
5226 	 */
5227 	while (*msg != '\0')
5228 		c[i++] = *msg++;
5229 
5230 	for (str = prov->dtpv_name; *str != '\0'; str++)
5231 		c[i++] = *str;
5232 	c[i++] = ':';
5233 
5234 	for (str = probe->dtpr_mod; *str != '\0'; str++)
5235 		c[i++] = *str;
5236 	c[i++] = ':';
5237 
5238 	for (str = probe->dtpr_func; *str != '\0'; str++)
5239 		c[i++] = *str;
5240 	c[i++] = ':';
5241 
5242 	for (str = probe->dtpr_name; *str != '\0'; str++)
5243 		c[i++] = *str;
5244 
5245 	while (*ecbmsg != '\0')
5246 		c[i++] = *ecbmsg++;
5247 
5248 	while (shift >= 0) {
5249 		mask = (uintptr_t)0xf << shift;
5250 
5251 		if (val >= ((uintptr_t)1 << shift))
5252 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5253 		shift -= 4;
5254 	}
5255 
5256 	c[i++] = ')';
5257 	c[i] = '\0';
5258 
5259 	debug_enter(c);
5260 }
5261 
5262 static void
5263 dtrace_action_panic(dtrace_ecb_t *ecb)
5264 {
5265 	dtrace_probe_t *probe = ecb->dte_probe;
5266 
5267 	/*
5268 	 * It's impossible to be taking action on the NULL probe.
5269 	 */
5270 	ASSERT(probe != NULL);
5271 
5272 	if (dtrace_destructive_disallow)
5273 		return;
5274 
5275 	if (dtrace_panicked != NULL)
5276 		return;
5277 
5278 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5279 		return;
5280 
5281 	/*
5282 	 * We won the right to panic.  (We want to be sure that only one
5283 	 * thread calls panic() from dtrace_probe(), and that panic() is
5284 	 * called exactly once.)
5285 	 */
5286 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5287 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5288 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5289 }
5290 
5291 static void
5292 dtrace_action_raise(uint64_t sig)
5293 {
5294 	if (dtrace_destructive_disallow)
5295 		return;
5296 
5297 	if (sig >= NSIG) {
5298 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5299 		return;
5300 	}
5301 
5302 	/*
5303 	 * raise() has a queue depth of 1 -- we ignore all subsequent
5304 	 * invocations of the raise() action.
5305 	 */
5306 	if (curthread->t_dtrace_sig == 0)
5307 		curthread->t_dtrace_sig = (uint8_t)sig;
5308 
5309 	curthread->t_sig_check = 1;
5310 	aston(curthread);
5311 }
5312 
5313 static void
5314 dtrace_action_stop(void)
5315 {
5316 	if (dtrace_destructive_disallow)
5317 		return;
5318 
5319 	if (!curthread->t_dtrace_stop) {
5320 		curthread->t_dtrace_stop = 1;
5321 		curthread->t_sig_check = 1;
5322 		aston(curthread);
5323 	}
5324 }
5325 
5326 static void
5327 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5328 {
5329 	hrtime_t now;
5330 	volatile uint16_t *flags;
5331 	cpu_t *cpu = CPU;
5332 
5333 	if (dtrace_destructive_disallow)
5334 		return;
5335 
5336 	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5337 
5338 	now = dtrace_gethrtime();
5339 
5340 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5341 		/*
5342 		 * We need to advance the mark to the current time.
5343 		 */
5344 		cpu->cpu_dtrace_chillmark = now;
5345 		cpu->cpu_dtrace_chilled = 0;
5346 	}
5347 
5348 	/*
5349 	 * Now check to see if the requested chill time would take us over
5350 	 * the maximum amount of time allowed in the chill interval.  (Or
5351 	 * worse, if the calculation itself induces overflow.)
5352 	 */
5353 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5354 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5355 		*flags |= CPU_DTRACE_ILLOP;
5356 		return;
5357 	}
5358 
5359 	while (dtrace_gethrtime() - now < val)
5360 		continue;
5361 
5362 	/*
5363 	 * Normally, we assure that the value of the variable "timestamp" does
5364 	 * not change within an ECB.  The presence of chill() represents an
5365 	 * exception to this rule, however.
5366 	 */
5367 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5368 	cpu->cpu_dtrace_chilled += val;
5369 }
5370 
5371 static void
5372 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5373     uint64_t *buf, uint64_t arg)
5374 {
5375 	int nframes = DTRACE_USTACK_NFRAMES(arg);
5376 	int strsize = DTRACE_USTACK_STRSIZE(arg);
5377 	uint64_t *pcs = &buf[1], *fps;
5378 	char *str = (char *)&pcs[nframes];
5379 	int size, offs = 0, i, j;
5380 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
5381 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
5382 	char *sym;
5383 
5384 	/*
5385 	 * Should be taking a faster path if string space has not been
5386 	 * allocated.
5387 	 */
5388 	ASSERT(strsize != 0);
5389 
5390 	/*
5391 	 * We will first allocate some temporary space for the frame pointers.
5392 	 */
5393 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5394 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5395 	    (nframes * sizeof (uint64_t));
5396 
5397 	if (!DTRACE_INSCRATCH(mstate, size)) {
5398 		/*
5399 		 * Not enough room for our frame pointers -- need to indicate
5400 		 * that we ran out of scratch space.
5401 		 */
5402 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5403 		return;
5404 	}
5405 
5406 	mstate->dtms_scratch_ptr += size;
5407 	saved = mstate->dtms_scratch_ptr;
5408 
5409 	/*
5410 	 * Now get a stack with both program counters and frame pointers.
5411 	 */
5412 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5413 	dtrace_getufpstack(buf, fps, nframes + 1);
5414 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5415 
5416 	/*
5417 	 * If that faulted, we're cooked.
5418 	 */
5419 	if (*flags & CPU_DTRACE_FAULT)
5420 		goto out;
5421 
5422 	/*
5423 	 * Now we want to walk up the stack, calling the USTACK helper.  For
5424 	 * each iteration, we restore the scratch pointer.
5425 	 */
5426 	for (i = 0; i < nframes; i++) {
5427 		mstate->dtms_scratch_ptr = saved;
5428 
5429 		if (offs >= strsize)
5430 			break;
5431 
5432 		sym = (char *)(uintptr_t)dtrace_helper(
5433 		    DTRACE_HELPER_ACTION_USTACK,
5434 		    mstate, state, pcs[i], fps[i]);
5435 
5436 		/*
5437 		 * If we faulted while running the helper, we're going to
5438 		 * clear the fault and null out the corresponding string.
5439 		 */
5440 		if (*flags & CPU_DTRACE_FAULT) {
5441 			*flags &= ~CPU_DTRACE_FAULT;
5442 			str[offs++] = '\0';
5443 			continue;
5444 		}
5445 
5446 		if (sym == NULL) {
5447 			str[offs++] = '\0';
5448 			continue;
5449 		}
5450 
5451 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5452 
5453 		/*
5454 		 * Now copy in the string that the helper returned to us.
5455 		 */
5456 		for (j = 0; offs + j < strsize; j++) {
5457 			if ((str[offs + j] = sym[j]) == '\0')
5458 				break;
5459 		}
5460 
5461 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5462 
5463 		offs += j + 1;
5464 	}
5465 
5466 	if (offs >= strsize) {
5467 		/*
5468 		 * If we didn't have room for all of the strings, we don't
5469 		 * abort processing -- this needn't be a fatal error -- but we
5470 		 * still want to increment a counter (dts_stkstroverflows) to
5471 		 * allow this condition to be warned about.  (If this is from
5472 		 * a jstack() action, it is easily tuned via jstackstrsize.)
5473 		 */
5474 		dtrace_error(&state->dts_stkstroverflows);
5475 	}
5476 
5477 	while (offs < strsize)
5478 		str[offs++] = '\0';
5479 
5480 out:
5481 	mstate->dtms_scratch_ptr = old;
5482 }
5483 
5484 /*
5485  * If you're looking for the epicenter of DTrace, you just found it.  This
5486  * is the function called by the provider to fire a probe -- from which all
5487  * subsequent probe-context DTrace activity emanates.
5488  */
5489 void
5490 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
5491     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
5492 {
5493 	processorid_t cpuid;
5494 	dtrace_icookie_t cookie;
5495 	dtrace_probe_t *probe;
5496 	dtrace_mstate_t mstate;
5497 	dtrace_ecb_t *ecb;
5498 	dtrace_action_t *act;
5499 	intptr_t offs;
5500 	size_t size;
5501 	int vtime, onintr;
5502 	volatile uint16_t *flags;
5503 	hrtime_t now;
5504 
5505 	/*
5506 	 * Kick out immediately if this CPU is still being born (in which case
5507 	 * curthread will be set to -1) or the current thread can't allow
5508 	 * probes in its current context.
5509 	 */
5510 	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
5511 		return;
5512 
5513 	cookie = dtrace_interrupt_disable();
5514 	probe = dtrace_probes[id - 1];
5515 	cpuid = CPU->cpu_id;
5516 	onintr = CPU_ON_INTR(CPU);
5517 
5518 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
5519 	    probe->dtpr_predcache == curthread->t_predcache) {
5520 		/*
5521 		 * We have hit in the predicate cache; we know that
5522 		 * this predicate would evaluate to be false.
5523 		 */
5524 		dtrace_interrupt_enable(cookie);
5525 		return;
5526 	}
5527 
5528 	if (panic_quiesce) {
5529 		/*
5530 		 * We don't trace anything if we're panicking.
5531 		 */
5532 		dtrace_interrupt_enable(cookie);
5533 		return;
5534 	}
5535 
5536 	now = dtrace_gethrtime();
5537 	vtime = dtrace_vtime_references != 0;
5538 
5539 	if (vtime && curthread->t_dtrace_start)
5540 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
5541 
5542 	mstate.dtms_difo = NULL;
5543 	mstate.dtms_probe = probe;
5544 	mstate.dtms_strtok = NULL;
5545 	mstate.dtms_arg[0] = arg0;
5546 	mstate.dtms_arg[1] = arg1;
5547 	mstate.dtms_arg[2] = arg2;
5548 	mstate.dtms_arg[3] = arg3;
5549 	mstate.dtms_arg[4] = arg4;
5550 
5551 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
5552 
5553 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
5554 		dtrace_predicate_t *pred = ecb->dte_predicate;
5555 		dtrace_state_t *state = ecb->dte_state;
5556 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
5557 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
5558 		dtrace_vstate_t *vstate = &state->dts_vstate;
5559 		dtrace_provider_t *prov = probe->dtpr_provider;
5560 		int committed = 0;
5561 		caddr_t tomax;
5562 
5563 		/*
5564 		 * A little subtlety with the following (seemingly innocuous)
5565 		 * declaration of the automatic 'val':  by looking at the
5566 		 * code, you might think that it could be declared in the
5567 		 * action processing loop, below.  (That is, it's only used in
5568 		 * the action processing loop.)  However, it must be declared
5569 		 * out of that scope because in the case of DIF expression
5570 		 * arguments to aggregating actions, one iteration of the
5571 		 * action loop will use the last iteration's value.
5572 		 */
5573 #ifdef lint
5574 		uint64_t val = 0;
5575 #else
5576 		uint64_t val;
5577 #endif
5578 
5579 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
5580 		*flags &= ~CPU_DTRACE_ERROR;
5581 
5582 		if (prov == dtrace_provider) {
5583 			/*
5584 			 * If dtrace itself is the provider of this probe,
5585 			 * we're only going to continue processing the ECB if
5586 			 * arg0 (the dtrace_state_t) is equal to the ECB's
5587 			 * creating state.  (This prevents disjoint consumers
5588 			 * from seeing one another's metaprobes.)
5589 			 */
5590 			if (arg0 != (uint64_t)(uintptr_t)state)
5591 				continue;
5592 		}
5593 
5594 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
5595 			/*
5596 			 * We're not currently active.  If our provider isn't
5597 			 * the dtrace pseudo provider, we're not interested.
5598 			 */
5599 			if (prov != dtrace_provider)
5600 				continue;
5601 
5602 			/*
5603 			 * Now we must further check if we are in the BEGIN
5604 			 * probe.  If we are, we will only continue processing
5605 			 * if we're still in WARMUP -- if one BEGIN enabling
5606 			 * has invoked the exit() action, we don't want to
5607 			 * evaluate subsequent BEGIN enablings.
5608 			 */
5609 			if (probe->dtpr_id == dtrace_probeid_begin &&
5610 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
5611 				ASSERT(state->dts_activity ==
5612 				    DTRACE_ACTIVITY_DRAINING);
5613 				continue;
5614 			}
5615 		}
5616 
5617 		if (ecb->dte_cond) {
5618 			/*
5619 			 * If the dte_cond bits indicate that this
5620 			 * consumer is only allowed to see user-mode firings
5621 			 * of this probe, call the provider's dtps_usermode()
5622 			 * entry point to check that the probe was fired
5623 			 * while in a user context. Skip this ECB if that's
5624 			 * not the case.
5625 			 */
5626 			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
5627 			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
5628 			    probe->dtpr_id, probe->dtpr_arg) == 0)
5629 				continue;
5630 
5631 			/*
5632 			 * This is more subtle than it looks. We have to be
5633 			 * absolutely certain that CRED() isn't going to
5634 			 * change out from under us so it's only legit to
5635 			 * examine that structure if we're in constrained
5636 			 * situations. Currently, the only times we'll this
5637 			 * check is if a non-super-user has enabled the
5638 			 * profile or syscall providers -- providers that
5639 			 * allow visibility of all processes. For the
5640 			 * profile case, the check above will ensure that
5641 			 * we're examining a user context.
5642 			 */
5643 			if (ecb->dte_cond & DTRACE_COND_OWNER) {
5644 				cred_t *cr;
5645 				cred_t *s_cr =
5646 				    ecb->dte_state->dts_cred.dcr_cred;
5647 				proc_t *proc;
5648 
5649 				ASSERT(s_cr != NULL);
5650 
5651 				if ((cr = CRED()) == NULL ||
5652 				    s_cr->cr_uid != cr->cr_uid ||
5653 				    s_cr->cr_uid != cr->cr_ruid ||
5654 				    s_cr->cr_uid != cr->cr_suid ||
5655 				    s_cr->cr_gid != cr->cr_gid ||
5656 				    s_cr->cr_gid != cr->cr_rgid ||
5657 				    s_cr->cr_gid != cr->cr_sgid ||
5658 				    (proc = ttoproc(curthread)) == NULL ||
5659 				    (proc->p_flag & SNOCD))
5660 					continue;
5661 			}
5662 
5663 			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
5664 				cred_t *cr;
5665 				cred_t *s_cr =
5666 				    ecb->dte_state->dts_cred.dcr_cred;
5667 
5668 				ASSERT(s_cr != NULL);
5669 
5670 				if ((cr = CRED()) == NULL ||
5671 				    s_cr->cr_zone->zone_id !=
5672 				    cr->cr_zone->zone_id)
5673 					continue;
5674 			}
5675 		}
5676 
5677 		if (now - state->dts_alive > dtrace_deadman_timeout) {
5678 			/*
5679 			 * We seem to be dead.  Unless we (a) have kernel
5680 			 * destructive permissions (b) have expicitly enabled
5681 			 * destructive actions and (c) destructive actions have
5682 			 * not been disabled, we're going to transition into
5683 			 * the KILLED state, from which no further processing
5684 			 * on this state will be performed.
5685 			 */
5686 			if (!dtrace_priv_kernel_destructive(state) ||
5687 			    !state->dts_cred.dcr_destructive ||
5688 			    dtrace_destructive_disallow) {
5689 				void *activity = &state->dts_activity;
5690 				dtrace_activity_t current;
5691 
5692 				do {
5693 					current = state->dts_activity;
5694 				} while (dtrace_cas32(activity, current,
5695 				    DTRACE_ACTIVITY_KILLED) != current);
5696 
5697 				continue;
5698 			}
5699 		}
5700 
5701 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
5702 		    ecb->dte_alignment, state, &mstate)) < 0)
5703 			continue;
5704 
5705 		tomax = buf->dtb_tomax;
5706 		ASSERT(tomax != NULL);
5707 
5708 		if (ecb->dte_size != 0)
5709 			DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
5710 
5711 		mstate.dtms_epid = ecb->dte_epid;
5712 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
5713 
5714 		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
5715 			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
5716 		else
5717 			mstate.dtms_access = 0;
5718 
5719 		if (pred != NULL) {
5720 			dtrace_difo_t *dp = pred->dtp_difo;
5721 			int rval;
5722 
5723 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
5724 
5725 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
5726 				dtrace_cacheid_t cid = probe->dtpr_predcache;
5727 
5728 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
5729 					/*
5730 					 * Update the predicate cache...
5731 					 */
5732 					ASSERT(cid == pred->dtp_cacheid);
5733 					curthread->t_predcache = cid;
5734 				}
5735 
5736 				continue;
5737 			}
5738 		}
5739 
5740 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
5741 		    act != NULL; act = act->dta_next) {
5742 			size_t valoffs;
5743 			dtrace_difo_t *dp;
5744 			dtrace_recdesc_t *rec = &act->dta_rec;
5745 
5746 			size = rec->dtrd_size;
5747 			valoffs = offs + rec->dtrd_offset;
5748 
5749 			if (DTRACEACT_ISAGG(act->dta_kind)) {
5750 				uint64_t v = 0xbad;
5751 				dtrace_aggregation_t *agg;
5752 
5753 				agg = (dtrace_aggregation_t *)act;
5754 
5755 				if ((dp = act->dta_difo) != NULL)
5756 					v = dtrace_dif_emulate(dp,
5757 					    &mstate, vstate, state);
5758 
5759 				if (*flags & CPU_DTRACE_ERROR)
5760 					continue;
5761 
5762 				/*
5763 				 * Note that we always pass the expression
5764 				 * value from the previous iteration of the
5765 				 * action loop.  This value will only be used
5766 				 * if there is an expression argument to the
5767 				 * aggregating action, denoted by the
5768 				 * dtag_hasarg field.
5769 				 */
5770 				dtrace_aggregate(agg, buf,
5771 				    offs, aggbuf, v, val);
5772 				continue;
5773 			}
5774 
5775 			switch (act->dta_kind) {
5776 			case DTRACEACT_STOP:
5777 				if (dtrace_priv_proc_destructive(state))
5778 					dtrace_action_stop();
5779 				continue;
5780 
5781 			case DTRACEACT_BREAKPOINT:
5782 				if (dtrace_priv_kernel_destructive(state))
5783 					dtrace_action_breakpoint(ecb);
5784 				continue;
5785 
5786 			case DTRACEACT_PANIC:
5787 				if (dtrace_priv_kernel_destructive(state))
5788 					dtrace_action_panic(ecb);
5789 				continue;
5790 
5791 			case DTRACEACT_STACK:
5792 				if (!dtrace_priv_kernel(state))
5793 					continue;
5794 
5795 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
5796 				    size / sizeof (pc_t), probe->dtpr_aframes,
5797 				    DTRACE_ANCHORED(probe) ? NULL :
5798 				    (uint32_t *)arg0);
5799 
5800 				continue;
5801 
5802 			case DTRACEACT_JSTACK:
5803 			case DTRACEACT_USTACK:
5804 				if (!dtrace_priv_proc(state))
5805 					continue;
5806 
5807 				/*
5808 				 * See comment in DIF_VAR_PID.
5809 				 */
5810 				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
5811 				    CPU_ON_INTR(CPU)) {
5812 					int depth = DTRACE_USTACK_NFRAMES(
5813 					    rec->dtrd_arg) + 1;
5814 
5815 					dtrace_bzero((void *)(tomax + valoffs),
5816 					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
5817 					    + depth * sizeof (uint64_t));
5818 
5819 					continue;
5820 				}
5821 
5822 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
5823 				    curproc->p_dtrace_helpers != NULL) {
5824 					/*
5825 					 * This is the slow path -- we have
5826 					 * allocated string space, and we're
5827 					 * getting the stack of a process that
5828 					 * has helpers.  Call into a separate
5829 					 * routine to perform this processing.
5830 					 */
5831 					dtrace_action_ustack(&mstate, state,
5832 					    (uint64_t *)(tomax + valoffs),
5833 					    rec->dtrd_arg);
5834 					continue;
5835 				}
5836 
5837 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5838 				dtrace_getupcstack((uint64_t *)
5839 				    (tomax + valoffs),
5840 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
5841 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5842 				continue;
5843 
5844 			default:
5845 				break;
5846 			}
5847 
5848 			dp = act->dta_difo;
5849 			ASSERT(dp != NULL);
5850 
5851 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
5852 
5853 			if (*flags & CPU_DTRACE_ERROR)
5854 				continue;
5855 
5856 			switch (act->dta_kind) {
5857 			case DTRACEACT_SPECULATE:
5858 				ASSERT(buf == &state->dts_buffer[cpuid]);
5859 				buf = dtrace_speculation_buffer(state,
5860 				    cpuid, val);
5861 
5862 				if (buf == NULL) {
5863 					*flags |= CPU_DTRACE_DROP;
5864 					continue;
5865 				}
5866 
5867 				offs = dtrace_buffer_reserve(buf,
5868 				    ecb->dte_needed, ecb->dte_alignment,
5869 				    state, NULL);
5870 
5871 				if (offs < 0) {
5872 					*flags |= CPU_DTRACE_DROP;
5873 					continue;
5874 				}
5875 
5876 				tomax = buf->dtb_tomax;
5877 				ASSERT(tomax != NULL);
5878 
5879 				if (ecb->dte_size != 0)
5880 					DTRACE_STORE(uint32_t, tomax, offs,
5881 					    ecb->dte_epid);
5882 				continue;
5883 
5884 			case DTRACEACT_CHILL:
5885 				if (dtrace_priv_kernel_destructive(state))
5886 					dtrace_action_chill(&mstate, val);
5887 				continue;
5888 
5889 			case DTRACEACT_RAISE:
5890 				if (dtrace_priv_proc_destructive(state))
5891 					dtrace_action_raise(val);
5892 				continue;
5893 
5894 			case DTRACEACT_COMMIT:
5895 				ASSERT(!committed);
5896 
5897 				/*
5898 				 * We need to commit our buffer state.
5899 				 */
5900 				if (ecb->dte_size)
5901 					buf->dtb_offset = offs + ecb->dte_size;
5902 				buf = &state->dts_buffer[cpuid];
5903 				dtrace_speculation_commit(state, cpuid, val);
5904 				committed = 1;
5905 				continue;
5906 
5907 			case DTRACEACT_DISCARD:
5908 				dtrace_speculation_discard(state, cpuid, val);
5909 				continue;
5910 
5911 			case DTRACEACT_DIFEXPR:
5912 			case DTRACEACT_LIBACT:
5913 			case DTRACEACT_PRINTF:
5914 			case DTRACEACT_PRINTA:
5915 			case DTRACEACT_SYSTEM:
5916 			case DTRACEACT_FREOPEN:
5917 				break;
5918 
5919 			case DTRACEACT_SYM:
5920 			case DTRACEACT_MOD:
5921 				if (!dtrace_priv_kernel(state))
5922 					continue;
5923 				break;
5924 
5925 			case DTRACEACT_USYM:
5926 			case DTRACEACT_UMOD:
5927 			case DTRACEACT_UADDR: {
5928 				struct pid *pid = curthread->t_procp->p_pidp;
5929 
5930 				if (!dtrace_priv_proc(state))
5931 					continue;
5932 
5933 				DTRACE_STORE(uint64_t, tomax,
5934 				    valoffs, (uint64_t)pid->pid_id);
5935 				DTRACE_STORE(uint64_t, tomax,
5936 				    valoffs + sizeof (uint64_t), val);
5937 
5938 				continue;
5939 			}
5940 
5941 			case DTRACEACT_EXIT: {
5942 				/*
5943 				 * For the exit action, we are going to attempt
5944 				 * to atomically set our activity to be
5945 				 * draining.  If this fails (either because
5946 				 * another CPU has beat us to the exit action,
5947 				 * or because our current activity is something
5948 				 * other than ACTIVE or WARMUP), we will
5949 				 * continue.  This assures that the exit action
5950 				 * can be successfully recorded at most once
5951 				 * when we're in the ACTIVE state.  If we're
5952 				 * encountering the exit() action while in
5953 				 * COOLDOWN, however, we want to honor the new
5954 				 * status code.  (We know that we're the only
5955 				 * thread in COOLDOWN, so there is no race.)
5956 				 */
5957 				void *activity = &state->dts_activity;
5958 				dtrace_activity_t current = state->dts_activity;
5959 
5960 				if (current == DTRACE_ACTIVITY_COOLDOWN)
5961 					break;
5962 
5963 				if (current != DTRACE_ACTIVITY_WARMUP)
5964 					current = DTRACE_ACTIVITY_ACTIVE;
5965 
5966 				if (dtrace_cas32(activity, current,
5967 				    DTRACE_ACTIVITY_DRAINING) != current) {
5968 					*flags |= CPU_DTRACE_DROP;
5969 					continue;
5970 				}
5971 
5972 				break;
5973 			}
5974 
5975 			default:
5976 				ASSERT(0);
5977 			}
5978 
5979 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
5980 				uintptr_t end = valoffs + size;
5981 
5982 				if (!dtrace_vcanload((void *)(uintptr_t)val,
5983 				    &dp->dtdo_rtype, &mstate, vstate))
5984 					continue;
5985 
5986 				/*
5987 				 * If this is a string, we're going to only
5988 				 * load until we find the zero byte -- after
5989 				 * which we'll store zero bytes.
5990 				 */
5991 				if (dp->dtdo_rtype.dtdt_kind ==
5992 				    DIF_TYPE_STRING) {
5993 					char c = '\0' + 1;
5994 					int intuple = act->dta_intuple;
5995 					size_t s;
5996 
5997 					for (s = 0; s < size; s++) {
5998 						if (c != '\0')
5999 							c = dtrace_load8(val++);
6000 
6001 						DTRACE_STORE(uint8_t, tomax,
6002 						    valoffs++, c);
6003 
6004 						if (c == '\0' && intuple)
6005 							break;
6006 					}
6007 
6008 					continue;
6009 				}
6010 
6011 				while (valoffs < end) {
6012 					DTRACE_STORE(uint8_t, tomax, valoffs++,
6013 					    dtrace_load8(val++));
6014 				}
6015 
6016 				continue;
6017 			}
6018 
6019 			switch (size) {
6020 			case 0:
6021 				break;
6022 
6023 			case sizeof (uint8_t):
6024 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
6025 				break;
6026 			case sizeof (uint16_t):
6027 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
6028 				break;
6029 			case sizeof (uint32_t):
6030 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
6031 				break;
6032 			case sizeof (uint64_t):
6033 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
6034 				break;
6035 			default:
6036 				/*
6037 				 * Any other size should have been returned by
6038 				 * reference, not by value.
6039 				 */
6040 				ASSERT(0);
6041 				break;
6042 			}
6043 		}
6044 
6045 		if (*flags & CPU_DTRACE_DROP)
6046 			continue;
6047 
6048 		if (*flags & CPU_DTRACE_FAULT) {
6049 			int ndx;
6050 			dtrace_action_t *err;
6051 
6052 			buf->dtb_errors++;
6053 
6054 			if (probe->dtpr_id == dtrace_probeid_error) {
6055 				/*
6056 				 * There's nothing we can do -- we had an
6057 				 * error on the error probe.  We bump an
6058 				 * error counter to at least indicate that
6059 				 * this condition happened.
6060 				 */
6061 				dtrace_error(&state->dts_dblerrors);
6062 				continue;
6063 			}
6064 
6065 			if (vtime) {
6066 				/*
6067 				 * Before recursing on dtrace_probe(), we
6068 				 * need to explicitly clear out our start
6069 				 * time to prevent it from being accumulated
6070 				 * into t_dtrace_vtime.
6071 				 */
6072 				curthread->t_dtrace_start = 0;
6073 			}
6074 
6075 			/*
6076 			 * Iterate over the actions to figure out which action
6077 			 * we were processing when we experienced the error.
6078 			 * Note that act points _past_ the faulting action; if
6079 			 * act is ecb->dte_action, the fault was in the
6080 			 * predicate, if it's ecb->dte_action->dta_next it's
6081 			 * in action #1, and so on.
6082 			 */
6083 			for (err = ecb->dte_action, ndx = 0;
6084 			    err != act; err = err->dta_next, ndx++)
6085 				continue;
6086 
6087 			dtrace_probe_error(state, ecb->dte_epid, ndx,
6088 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6089 			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6090 			    cpu_core[cpuid].cpuc_dtrace_illval);
6091 
6092 			continue;
6093 		}
6094 
6095 		if (!committed)
6096 			buf->dtb_offset = offs + ecb->dte_size;
6097 	}
6098 
6099 	if (vtime)
6100 		curthread->t_dtrace_start = dtrace_gethrtime();
6101 
6102 	dtrace_interrupt_enable(cookie);
6103 }
6104 
6105 /*
6106  * DTrace Probe Hashing Functions
6107  *
6108  * The functions in this section (and indeed, the functions in remaining
6109  * sections) are not _called_ from probe context.  (Any exceptions to this are
6110  * marked with a "Note:".)  Rather, they are called from elsewhere in the
6111  * DTrace framework to look-up probes in, add probes to and remove probes from
6112  * the DTrace probe hashes.  (Each probe is hashed by each element of the
6113  * probe tuple -- allowing for fast lookups, regardless of what was
6114  * specified.)
6115  */
6116 static uint_t
6117 dtrace_hash_str(char *p)
6118 {
6119 	unsigned int g;
6120 	uint_t hval = 0;
6121 
6122 	while (*p) {
6123 		hval = (hval << 4) + *p++;
6124 		if ((g = (hval & 0xf0000000)) != 0)
6125 			hval ^= g >> 24;
6126 		hval &= ~g;
6127 	}
6128 	return (hval);
6129 }
6130 
6131 static dtrace_hash_t *
6132 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6133 {
6134 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6135 
6136 	hash->dth_stroffs = stroffs;
6137 	hash->dth_nextoffs = nextoffs;
6138 	hash->dth_prevoffs = prevoffs;
6139 
6140 	hash->dth_size = 1;
6141 	hash->dth_mask = hash->dth_size - 1;
6142 
6143 	hash->dth_tab = kmem_zalloc(hash->dth_size *
6144 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6145 
6146 	return (hash);
6147 }
6148 
6149 static void
6150 dtrace_hash_destroy(dtrace_hash_t *hash)
6151 {
6152 #ifdef DEBUG
6153 	int i;
6154 
6155 	for (i = 0; i < hash->dth_size; i++)
6156 		ASSERT(hash->dth_tab[i] == NULL);
6157 #endif
6158 
6159 	kmem_free(hash->dth_tab,
6160 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
6161 	kmem_free(hash, sizeof (dtrace_hash_t));
6162 }
6163 
6164 static void
6165 dtrace_hash_resize(dtrace_hash_t *hash)
6166 {
6167 	int size = hash->dth_size, i, ndx;
6168 	int new_size = hash->dth_size << 1;
6169 	int new_mask = new_size - 1;
6170 	dtrace_hashbucket_t **new_tab, *bucket, *next;
6171 
6172 	ASSERT((new_size & new_mask) == 0);
6173 
6174 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6175 
6176 	for (i = 0; i < size; i++) {
6177 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6178 			dtrace_probe_t *probe = bucket->dthb_chain;
6179 
6180 			ASSERT(probe != NULL);
6181 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6182 
6183 			next = bucket->dthb_next;
6184 			bucket->dthb_next = new_tab[ndx];
6185 			new_tab[ndx] = bucket;
6186 		}
6187 	}
6188 
6189 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6190 	hash->dth_tab = new_tab;
6191 	hash->dth_size = new_size;
6192 	hash->dth_mask = new_mask;
6193 }
6194 
6195 static void
6196 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6197 {
6198 	int hashval = DTRACE_HASHSTR(hash, new);
6199 	int ndx = hashval & hash->dth_mask;
6200 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6201 	dtrace_probe_t **nextp, **prevp;
6202 
6203 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6204 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6205 			goto add;
6206 	}
6207 
6208 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6209 		dtrace_hash_resize(hash);
6210 		dtrace_hash_add(hash, new);
6211 		return;
6212 	}
6213 
6214 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6215 	bucket->dthb_next = hash->dth_tab[ndx];
6216 	hash->dth_tab[ndx] = bucket;
6217 	hash->dth_nbuckets++;
6218 
6219 add:
6220 	nextp = DTRACE_HASHNEXT(hash, new);
6221 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6222 	*nextp = bucket->dthb_chain;
6223 
6224 	if (bucket->dthb_chain != NULL) {
6225 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6226 		ASSERT(*prevp == NULL);
6227 		*prevp = new;
6228 	}
6229 
6230 	bucket->dthb_chain = new;
6231 	bucket->dthb_len++;
6232 }
6233 
6234 static dtrace_probe_t *
6235 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6236 {
6237 	int hashval = DTRACE_HASHSTR(hash, template);
6238 	int ndx = hashval & hash->dth_mask;
6239 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6240 
6241 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6242 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6243 			return (bucket->dthb_chain);
6244 	}
6245 
6246 	return (NULL);
6247 }
6248 
6249 static int
6250 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6251 {
6252 	int hashval = DTRACE_HASHSTR(hash, template);
6253 	int ndx = hashval & hash->dth_mask;
6254 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6255 
6256 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6257 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6258 			return (bucket->dthb_len);
6259 	}
6260 
6261 	return (NULL);
6262 }
6263 
6264 static void
6265 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6266 {
6267 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6268 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6269 
6270 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6271 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6272 
6273 	/*
6274 	 * Find the bucket that we're removing this probe from.
6275 	 */
6276 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6277 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6278 			break;
6279 	}
6280 
6281 	ASSERT(bucket != NULL);
6282 
6283 	if (*prevp == NULL) {
6284 		if (*nextp == NULL) {
6285 			/*
6286 			 * The removed probe was the only probe on this
6287 			 * bucket; we need to remove the bucket.
6288 			 */
6289 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6290 
6291 			ASSERT(bucket->dthb_chain == probe);
6292 			ASSERT(b != NULL);
6293 
6294 			if (b == bucket) {
6295 				hash->dth_tab[ndx] = bucket->dthb_next;
6296 			} else {
6297 				while (b->dthb_next != bucket)
6298 					b = b->dthb_next;
6299 				b->dthb_next = bucket->dthb_next;
6300 			}
6301 
6302 			ASSERT(hash->dth_nbuckets > 0);
6303 			hash->dth_nbuckets--;
6304 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
6305 			return;
6306 		}
6307 
6308 		bucket->dthb_chain = *nextp;
6309 	} else {
6310 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
6311 	}
6312 
6313 	if (*nextp != NULL)
6314 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
6315 }
6316 
6317 /*
6318  * DTrace Utility Functions
6319  *
6320  * These are random utility functions that are _not_ called from probe context.
6321  */
6322 static int
6323 dtrace_badattr(const dtrace_attribute_t *a)
6324 {
6325 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
6326 	    a->dtat_data > DTRACE_STABILITY_MAX ||
6327 	    a->dtat_class > DTRACE_CLASS_MAX);
6328 }
6329 
6330 /*
6331  * Return a duplicate copy of a string.  If the specified string is NULL,
6332  * this function returns a zero-length string.
6333  */
6334 static char *
6335 dtrace_strdup(const char *str)
6336 {
6337 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
6338 
6339 	if (str != NULL)
6340 		(void) strcpy(new, str);
6341 
6342 	return (new);
6343 }
6344 
6345 #define	DTRACE_ISALPHA(c)	\
6346 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
6347 
6348 static int
6349 dtrace_badname(const char *s)
6350 {
6351 	char c;
6352 
6353 	if (s == NULL || (c = *s++) == '\0')
6354 		return (0);
6355 
6356 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
6357 		return (1);
6358 
6359 	while ((c = *s++) != '\0') {
6360 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
6361 		    c != '-' && c != '_' && c != '.' && c != '`')
6362 			return (1);
6363 	}
6364 
6365 	return (0);
6366 }
6367 
6368 static void
6369 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
6370 {
6371 	uint32_t priv;
6372 
6373 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
6374 		/*
6375 		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
6376 		 */
6377 		priv = DTRACE_PRIV_ALL;
6378 	} else {
6379 		*uidp = crgetuid(cr);
6380 		*zoneidp = crgetzoneid(cr);
6381 
6382 		priv = 0;
6383 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
6384 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
6385 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
6386 			priv |= DTRACE_PRIV_USER;
6387 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
6388 			priv |= DTRACE_PRIV_PROC;
6389 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
6390 			priv |= DTRACE_PRIV_OWNER;
6391 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
6392 			priv |= DTRACE_PRIV_ZONEOWNER;
6393 	}
6394 
6395 	*privp = priv;
6396 }
6397 
6398 #ifdef DTRACE_ERRDEBUG
6399 static void
6400 dtrace_errdebug(const char *str)
6401 {
6402 	int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ;
6403 	int occupied = 0;
6404 
6405 	mutex_enter(&dtrace_errlock);
6406 	dtrace_errlast = str;
6407 	dtrace_errthread = curthread;
6408 
6409 	while (occupied++ < DTRACE_ERRHASHSZ) {
6410 		if (dtrace_errhash[hval].dter_msg == str) {
6411 			dtrace_errhash[hval].dter_count++;
6412 			goto out;
6413 		}
6414 
6415 		if (dtrace_errhash[hval].dter_msg != NULL) {
6416 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
6417 			continue;
6418 		}
6419 
6420 		dtrace_errhash[hval].dter_msg = str;
6421 		dtrace_errhash[hval].dter_count = 1;
6422 		goto out;
6423 	}
6424 
6425 	panic("dtrace: undersized error hash");
6426 out:
6427 	mutex_exit(&dtrace_errlock);
6428 }
6429 #endif
6430 
6431 /*
6432  * DTrace Matching Functions
6433  *
6434  * These functions are used to match groups of probes, given some elements of
6435  * a probe tuple, or some globbed expressions for elements of a probe tuple.
6436  */
6437 static int
6438 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
6439     zoneid_t zoneid)
6440 {
6441 	if (priv != DTRACE_PRIV_ALL) {
6442 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
6443 		uint32_t match = priv & ppriv;
6444 
6445 		/*
6446 		 * No PRIV_DTRACE_* privileges...
6447 		 */
6448 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
6449 		    DTRACE_PRIV_KERNEL)) == 0)
6450 			return (0);
6451 
6452 		/*
6453 		 * No matching bits, but there were bits to match...
6454 		 */
6455 		if (match == 0 && ppriv != 0)
6456 			return (0);
6457 
6458 		/*
6459 		 * Need to have permissions to the process, but don't...
6460 		 */
6461 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
6462 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
6463 			return (0);
6464 		}
6465 
6466 		/*
6467 		 * Need to be in the same zone unless we possess the
6468 		 * privilege to examine all zones.
6469 		 */
6470 		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
6471 		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
6472 			return (0);
6473 		}
6474 	}
6475 
6476 	return (1);
6477 }
6478 
6479 /*
6480  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
6481  * consists of input pattern strings and an ops-vector to evaluate them.
6482  * This function returns >0 for match, 0 for no match, and <0 for error.
6483  */
6484 static int
6485 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
6486     uint32_t priv, uid_t uid, zoneid_t zoneid)
6487 {
6488 	dtrace_provider_t *pvp = prp->dtpr_provider;
6489 	int rv;
6490 
6491 	if (pvp->dtpv_defunct)
6492 		return (0);
6493 
6494 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
6495 		return (rv);
6496 
6497 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
6498 		return (rv);
6499 
6500 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
6501 		return (rv);
6502 
6503 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
6504 		return (rv);
6505 
6506 	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
6507 		return (0);
6508 
6509 	return (rv);
6510 }
6511 
6512 /*
6513  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
6514  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
6515  * libc's version, the kernel version only applies to 8-bit ASCII strings.
6516  * In addition, all of the recursion cases except for '*' matching have been
6517  * unwound.  For '*', we still implement recursive evaluation, but a depth
6518  * counter is maintained and matching is aborted if we recurse too deep.
6519  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
6520  */
6521 static int
6522 dtrace_match_glob(const char *s, const char *p, int depth)
6523 {
6524 	const char *olds;
6525 	char s1, c;
6526 	int gs;
6527 
6528 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
6529 		return (-1);
6530 
6531 	if (s == NULL)
6532 		s = ""; /* treat NULL as empty string */
6533 
6534 top:
6535 	olds = s;
6536 	s1 = *s++;
6537 
6538 	if (p == NULL)
6539 		return (0);
6540 
6541 	if ((c = *p++) == '\0')
6542 		return (s1 == '\0');
6543 
6544 	switch (c) {
6545 	case '[': {
6546 		int ok = 0, notflag = 0;
6547 		char lc = '\0';
6548 
6549 		if (s1 == '\0')
6550 			return (0);
6551 
6552 		if (*p == '!') {
6553 			notflag = 1;
6554 			p++;
6555 		}
6556 
6557 		if ((c = *p++) == '\0')
6558 			return (0);
6559 
6560 		do {
6561 			if (c == '-' && lc != '\0' && *p != ']') {
6562 				if ((c = *p++) == '\0')
6563 					return (0);
6564 				if (c == '\\' && (c = *p++) == '\0')
6565 					return (0);
6566 
6567 				if (notflag) {
6568 					if (s1 < lc || s1 > c)
6569 						ok++;
6570 					else
6571 						return (0);
6572 				} else if (lc <= s1 && s1 <= c)
6573 					ok++;
6574 
6575 			} else if (c == '\\' && (c = *p++) == '\0')
6576 				return (0);
6577 
6578 			lc = c; /* save left-hand 'c' for next iteration */
6579 
6580 			if (notflag) {
6581 				if (s1 != c)
6582 					ok++;
6583 				else
6584 					return (0);
6585 			} else if (s1 == c)
6586 				ok++;
6587 
6588 			if ((c = *p++) == '\0')
6589 				return (0);
6590 
6591 		} while (c != ']');
6592 
6593 		if (ok)
6594 			goto top;
6595 
6596 		return (0);
6597 	}
6598 
6599 	case '\\':
6600 		if ((c = *p++) == '\0')
6601 			return (0);
6602 		/*FALLTHRU*/
6603 
6604 	default:
6605 		if (c != s1)
6606 			return (0);
6607 		/*FALLTHRU*/
6608 
6609 	case '?':
6610 		if (s1 != '\0')
6611 			goto top;
6612 		return (0);
6613 
6614 	case '*':
6615 		while (*p == '*')
6616 			p++; /* consecutive *'s are identical to a single one */
6617 
6618 		if (*p == '\0')
6619 			return (1);
6620 
6621 		for (s = olds; *s != '\0'; s++) {
6622 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
6623 				return (gs);
6624 		}
6625 
6626 		return (0);
6627 	}
6628 }
6629 
6630 /*ARGSUSED*/
6631 static int
6632 dtrace_match_string(const char *s, const char *p, int depth)
6633 {
6634 	return (s != NULL && strcmp(s, p) == 0);
6635 }
6636 
6637 /*ARGSUSED*/
6638 static int
6639 dtrace_match_nul(const char *s, const char *p, int depth)
6640 {
6641 	return (1); /* always match the empty pattern */
6642 }
6643 
6644 /*ARGSUSED*/
6645 static int
6646 dtrace_match_nonzero(const char *s, const char *p, int depth)
6647 {
6648 	return (s != NULL && s[0] != '\0');
6649 }
6650 
6651 static int
6652 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
6653     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
6654 {
6655 	dtrace_probe_t template, *probe;
6656 	dtrace_hash_t *hash = NULL;
6657 	int len, best = INT_MAX, nmatched = 0;
6658 	dtrace_id_t i;
6659 
6660 	ASSERT(MUTEX_HELD(&dtrace_lock));
6661 
6662 	/*
6663 	 * If the probe ID is specified in the key, just lookup by ID and
6664 	 * invoke the match callback once if a matching probe is found.
6665 	 */
6666 	if (pkp->dtpk_id != DTRACE_IDNONE) {
6667 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
6668 		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
6669 			(void) (*matched)(probe, arg);
6670 			nmatched++;
6671 		}
6672 		return (nmatched);
6673 	}
6674 
6675 	template.dtpr_mod = (char *)pkp->dtpk_mod;
6676 	template.dtpr_func = (char *)pkp->dtpk_func;
6677 	template.dtpr_name = (char *)pkp->dtpk_name;
6678 
6679 	/*
6680 	 * We want to find the most distinct of the module name, function
6681 	 * name, and name.  So for each one that is not a glob pattern or
6682 	 * empty string, we perform a lookup in the corresponding hash and
6683 	 * use the hash table with the fewest collisions to do our search.
6684 	 */
6685 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
6686 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
6687 		best = len;
6688 		hash = dtrace_bymod;
6689 	}
6690 
6691 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
6692 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
6693 		best = len;
6694 		hash = dtrace_byfunc;
6695 	}
6696 
6697 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
6698 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
6699 		best = len;
6700 		hash = dtrace_byname;
6701 	}
6702 
6703 	/*
6704 	 * If we did not select a hash table, iterate over every probe and
6705 	 * invoke our callback for each one that matches our input probe key.
6706 	 */
6707 	if (hash == NULL) {
6708 		for (i = 0; i < dtrace_nprobes; i++) {
6709 			if ((probe = dtrace_probes[i]) == NULL ||
6710 			    dtrace_match_probe(probe, pkp, priv, uid,
6711 			    zoneid) <= 0)
6712 				continue;
6713 
6714 			nmatched++;
6715 
6716 			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
6717 				break;
6718 		}
6719 
6720 		return (nmatched);
6721 	}
6722 
6723 	/*
6724 	 * If we selected a hash table, iterate over each probe of the same key
6725 	 * name and invoke the callback for every probe that matches the other
6726 	 * attributes of our input probe key.
6727 	 */
6728 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
6729 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
6730 
6731 		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
6732 			continue;
6733 
6734 		nmatched++;
6735 
6736 		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
6737 			break;
6738 	}
6739 
6740 	return (nmatched);
6741 }
6742 
6743 /*
6744  * Return the function pointer dtrace_probecmp() should use to compare the
6745  * specified pattern with a string.  For NULL or empty patterns, we select
6746  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
6747  * For non-empty non-glob strings, we use dtrace_match_string().
6748  */
6749 static dtrace_probekey_f *
6750 dtrace_probekey_func(const char *p)
6751 {
6752 	char c;
6753 
6754 	if (p == NULL || *p == '\0')
6755 		return (&dtrace_match_nul);
6756 
6757 	while ((c = *p++) != '\0') {
6758 		if (c == '[' || c == '?' || c == '*' || c == '\\')
6759 			return (&dtrace_match_glob);
6760 	}
6761 
6762 	return (&dtrace_match_string);
6763 }
6764 
6765 /*
6766  * Build a probe comparison key for use with dtrace_match_probe() from the
6767  * given probe description.  By convention, a null key only matches anchored
6768  * probes: if each field is the empty string, reset dtpk_fmatch to
6769  * dtrace_match_nonzero().
6770  */
6771 static void
6772 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
6773 {
6774 	pkp->dtpk_prov = pdp->dtpd_provider;
6775 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
6776 
6777 	pkp->dtpk_mod = pdp->dtpd_mod;
6778 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
6779 
6780 	pkp->dtpk_func = pdp->dtpd_func;
6781 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
6782 
6783 	pkp->dtpk_name = pdp->dtpd_name;
6784 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
6785 
6786 	pkp->dtpk_id = pdp->dtpd_id;
6787 
6788 	if (pkp->dtpk_id == DTRACE_IDNONE &&
6789 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
6790 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
6791 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
6792 	    pkp->dtpk_nmatch == &dtrace_match_nul)
6793 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
6794 }
6795 
6796 /*
6797  * DTrace Provider-to-Framework API Functions
6798  *
6799  * These functions implement much of the Provider-to-Framework API, as
6800  * described in <sys/dtrace.h>.  The parts of the API not in this section are
6801  * the functions in the API for probe management (found below), and
6802  * dtrace_probe() itself (found above).
6803  */
6804 
6805 /*
6806  * Register the calling provider with the DTrace framework.  This should
6807  * generally be called by DTrace providers in their attach(9E) entry point.
6808  */
6809 int
6810 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
6811     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
6812 {
6813 	dtrace_provider_t *provider;
6814 
6815 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
6816 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6817 		    "arguments", name ? name : "<NULL>");
6818 		return (EINVAL);
6819 	}
6820 
6821 	if (name[0] == '\0' || dtrace_badname(name)) {
6822 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6823 		    "provider name", name);
6824 		return (EINVAL);
6825 	}
6826 
6827 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
6828 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
6829 	    pops->dtps_destroy == NULL ||
6830 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
6831 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6832 		    "provider ops", name);
6833 		return (EINVAL);
6834 	}
6835 
6836 	if (dtrace_badattr(&pap->dtpa_provider) ||
6837 	    dtrace_badattr(&pap->dtpa_mod) ||
6838 	    dtrace_badattr(&pap->dtpa_func) ||
6839 	    dtrace_badattr(&pap->dtpa_name) ||
6840 	    dtrace_badattr(&pap->dtpa_args)) {
6841 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6842 		    "provider attributes", name);
6843 		return (EINVAL);
6844 	}
6845 
6846 	if (priv & ~DTRACE_PRIV_ALL) {
6847 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6848 		    "privilege attributes", name);
6849 		return (EINVAL);
6850 	}
6851 
6852 	if ((priv & DTRACE_PRIV_KERNEL) &&
6853 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
6854 	    pops->dtps_usermode == NULL) {
6855 		cmn_err(CE_WARN, "failed to register provider '%s': need "
6856 		    "dtps_usermode() op for given privilege attributes", name);
6857 		return (EINVAL);
6858 	}
6859 
6860 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
6861 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
6862 	(void) strcpy(provider->dtpv_name, name);
6863 
6864 	provider->dtpv_attr = *pap;
6865 	provider->dtpv_priv.dtpp_flags = priv;
6866 	if (cr != NULL) {
6867 		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
6868 		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
6869 	}
6870 	provider->dtpv_pops = *pops;
6871 
6872 	if (pops->dtps_provide == NULL) {
6873 		ASSERT(pops->dtps_provide_module != NULL);
6874 		provider->dtpv_pops.dtps_provide =
6875 		    (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
6876 	}
6877 
6878 	if (pops->dtps_provide_module == NULL) {
6879 		ASSERT(pops->dtps_provide != NULL);
6880 		provider->dtpv_pops.dtps_provide_module =
6881 		    (void (*)(void *, struct modctl *))dtrace_nullop;
6882 	}
6883 
6884 	if (pops->dtps_suspend == NULL) {
6885 		ASSERT(pops->dtps_resume == NULL);
6886 		provider->dtpv_pops.dtps_suspend =
6887 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
6888 		provider->dtpv_pops.dtps_resume =
6889 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
6890 	}
6891 
6892 	provider->dtpv_arg = arg;
6893 	*idp = (dtrace_provider_id_t)provider;
6894 
6895 	if (pops == &dtrace_provider_ops) {
6896 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
6897 		ASSERT(MUTEX_HELD(&dtrace_lock));
6898 		ASSERT(dtrace_anon.dta_enabling == NULL);
6899 
6900 		/*
6901 		 * We make sure that the DTrace provider is at the head of
6902 		 * the provider chain.
6903 		 */
6904 		provider->dtpv_next = dtrace_provider;
6905 		dtrace_provider = provider;
6906 		return (0);
6907 	}
6908 
6909 	mutex_enter(&dtrace_provider_lock);
6910 	mutex_enter(&dtrace_lock);
6911 
6912 	/*
6913 	 * If there is at least one provider registered, we'll add this
6914 	 * provider after the first provider.
6915 	 */
6916 	if (dtrace_provider != NULL) {
6917 		provider->dtpv_next = dtrace_provider->dtpv_next;
6918 		dtrace_provider->dtpv_next = provider;
6919 	} else {
6920 		dtrace_provider = provider;
6921 	}
6922 
6923 	if (dtrace_retained != NULL) {
6924 		dtrace_enabling_provide(provider);
6925 
6926 		/*
6927 		 * Now we need to call dtrace_enabling_matchall() -- which
6928 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
6929 		 * to drop all of our locks before calling into it...
6930 		 */
6931 		mutex_exit(&dtrace_lock);
6932 		mutex_exit(&dtrace_provider_lock);
6933 		dtrace_enabling_matchall();
6934 
6935 		return (0);
6936 	}
6937 
6938 	mutex_exit(&dtrace_lock);
6939 	mutex_exit(&dtrace_provider_lock);
6940 
6941 	return (0);
6942 }
6943 
6944 /*
6945  * Unregister the specified provider from the DTrace framework.  This should
6946  * generally be called by DTrace providers in their detach(9E) entry point.
6947  */
6948 int
6949 dtrace_unregister(dtrace_provider_id_t id)
6950 {
6951 	dtrace_provider_t *old = (dtrace_provider_t *)id;
6952 	dtrace_provider_t *prev = NULL;
6953 	int i, self = 0;
6954 	dtrace_probe_t *probe, *first = NULL;
6955 
6956 	if (old->dtpv_pops.dtps_enable ==
6957 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
6958 		/*
6959 		 * If DTrace itself is the provider, we're called with locks
6960 		 * already held.
6961 		 */
6962 		ASSERT(old == dtrace_provider);
6963 		ASSERT(dtrace_devi != NULL);
6964 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
6965 		ASSERT(MUTEX_HELD(&dtrace_lock));
6966 		self = 1;
6967 
6968 		if (dtrace_provider->dtpv_next != NULL) {
6969 			/*
6970 			 * There's another provider here; return failure.
6971 			 */
6972 			return (EBUSY);
6973 		}
6974 	} else {
6975 		mutex_enter(&dtrace_provider_lock);
6976 		mutex_enter(&mod_lock);
6977 		mutex_enter(&dtrace_lock);
6978 	}
6979 
6980 	/*
6981 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
6982 	 * probes, we refuse to let providers slither away, unless this
6983 	 * provider has already been explicitly invalidated.
6984 	 */
6985 	if (!old->dtpv_defunct &&
6986 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
6987 	    dtrace_anon.dta_state->dts_necbs > 0))) {
6988 		if (!self) {
6989 			mutex_exit(&dtrace_lock);
6990 			mutex_exit(&mod_lock);
6991 			mutex_exit(&dtrace_provider_lock);
6992 		}
6993 		return (EBUSY);
6994 	}
6995 
6996 	/*
6997 	 * Attempt to destroy the probes associated with this provider.
6998 	 */
6999 	for (i = 0; i < dtrace_nprobes; i++) {
7000 		if ((probe = dtrace_probes[i]) == NULL)
7001 			continue;
7002 
7003 		if (probe->dtpr_provider != old)
7004 			continue;
7005 
7006 		if (probe->dtpr_ecb == NULL)
7007 			continue;
7008 
7009 		/*
7010 		 * We have at least one ECB; we can't remove this provider.
7011 		 */
7012 		if (!self) {
7013 			mutex_exit(&dtrace_lock);
7014 			mutex_exit(&mod_lock);
7015 			mutex_exit(&dtrace_provider_lock);
7016 		}
7017 		return (EBUSY);
7018 	}
7019 
7020 	/*
7021 	 * All of the probes for this provider are disabled; we can safely
7022 	 * remove all of them from their hash chains and from the probe array.
7023 	 */
7024 	for (i = 0; i < dtrace_nprobes; i++) {
7025 		if ((probe = dtrace_probes[i]) == NULL)
7026 			continue;
7027 
7028 		if (probe->dtpr_provider != old)
7029 			continue;
7030 
7031 		dtrace_probes[i] = NULL;
7032 
7033 		dtrace_hash_remove(dtrace_bymod, probe);
7034 		dtrace_hash_remove(dtrace_byfunc, probe);
7035 		dtrace_hash_remove(dtrace_byname, probe);
7036 
7037 		if (first == NULL) {
7038 			first = probe;
7039 			probe->dtpr_nextmod = NULL;
7040 		} else {
7041 			probe->dtpr_nextmod = first;
7042 			first = probe;
7043 		}
7044 	}
7045 
7046 	/*
7047 	 * The provider's probes have been removed from the hash chains and
7048 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
7049 	 * everyone has cleared out from any probe array processing.
7050 	 */
7051 	dtrace_sync();
7052 
7053 	for (probe = first; probe != NULL; probe = first) {
7054 		first = probe->dtpr_nextmod;
7055 
7056 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7057 		    probe->dtpr_arg);
7058 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7059 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7060 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7061 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7062 		kmem_free(probe, sizeof (dtrace_probe_t));
7063 	}
7064 
7065 	if ((prev = dtrace_provider) == old) {
7066 		ASSERT(self || dtrace_devi == NULL);
7067 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7068 		dtrace_provider = old->dtpv_next;
7069 	} else {
7070 		while (prev != NULL && prev->dtpv_next != old)
7071 			prev = prev->dtpv_next;
7072 
7073 		if (prev == NULL) {
7074 			panic("attempt to unregister non-existent "
7075 			    "dtrace provider %p\n", (void *)id);
7076 		}
7077 
7078 		prev->dtpv_next = old->dtpv_next;
7079 	}
7080 
7081 	if (!self) {
7082 		mutex_exit(&dtrace_lock);
7083 		mutex_exit(&mod_lock);
7084 		mutex_exit(&dtrace_provider_lock);
7085 	}
7086 
7087 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7088 	kmem_free(old, sizeof (dtrace_provider_t));
7089 
7090 	return (0);
7091 }
7092 
7093 /*
7094  * Invalidate the specified provider.  All subsequent probe lookups for the
7095  * specified provider will fail, but its probes will not be removed.
7096  */
7097 void
7098 dtrace_invalidate(dtrace_provider_id_t id)
7099 {
7100 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7101 
7102 	ASSERT(pvp->dtpv_pops.dtps_enable !=
7103 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7104 
7105 	mutex_enter(&dtrace_provider_lock);
7106 	mutex_enter(&dtrace_lock);
7107 
7108 	pvp->dtpv_defunct = 1;
7109 
7110 	mutex_exit(&dtrace_lock);
7111 	mutex_exit(&dtrace_provider_lock);
7112 }
7113 
7114 /*
7115  * Indicate whether or not DTrace has attached.
7116  */
7117 int
7118 dtrace_attached(void)
7119 {
7120 	/*
7121 	 * dtrace_provider will be non-NULL iff the DTrace driver has
7122 	 * attached.  (It's non-NULL because DTrace is always itself a
7123 	 * provider.)
7124 	 */
7125 	return (dtrace_provider != NULL);
7126 }
7127 
7128 /*
7129  * Remove all the unenabled probes for the given provider.  This function is
7130  * not unlike dtrace_unregister(), except that it doesn't remove the provider
7131  * -- just as many of its associated probes as it can.
7132  */
7133 int
7134 dtrace_condense(dtrace_provider_id_t id)
7135 {
7136 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
7137 	int i;
7138 	dtrace_probe_t *probe;
7139 
7140 	/*
7141 	 * Make sure this isn't the dtrace provider itself.
7142 	 */
7143 	ASSERT(prov->dtpv_pops.dtps_enable !=
7144 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7145 
7146 	mutex_enter(&dtrace_provider_lock);
7147 	mutex_enter(&dtrace_lock);
7148 
7149 	/*
7150 	 * Attempt to destroy the probes associated with this provider.
7151 	 */
7152 	for (i = 0; i < dtrace_nprobes; i++) {
7153 		if ((probe = dtrace_probes[i]) == NULL)
7154 			continue;
7155 
7156 		if (probe->dtpr_provider != prov)
7157 			continue;
7158 
7159 		if (probe->dtpr_ecb != NULL)
7160 			continue;
7161 
7162 		dtrace_probes[i] = NULL;
7163 
7164 		dtrace_hash_remove(dtrace_bymod, probe);
7165 		dtrace_hash_remove(dtrace_byfunc, probe);
7166 		dtrace_hash_remove(dtrace_byname, probe);
7167 
7168 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7169 		    probe->dtpr_arg);
7170 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7171 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7172 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7173 		kmem_free(probe, sizeof (dtrace_probe_t));
7174 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7175 	}
7176 
7177 	mutex_exit(&dtrace_lock);
7178 	mutex_exit(&dtrace_provider_lock);
7179 
7180 	return (0);
7181 }
7182 
7183 /*
7184  * DTrace Probe Management Functions
7185  *
7186  * The functions in this section perform the DTrace probe management,
7187  * including functions to create probes, look-up probes, and call into the
7188  * providers to request that probes be provided.  Some of these functions are
7189  * in the Provider-to-Framework API; these functions can be identified by the
7190  * fact that they are not declared "static".
7191  */
7192 
7193 /*
7194  * Create a probe with the specified module name, function name, and name.
7195  */
7196 dtrace_id_t
7197 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7198     const char *func, const char *name, int aframes, void *arg)
7199 {
7200 	dtrace_probe_t *probe, **probes;
7201 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7202 	dtrace_id_t id;
7203 
7204 	if (provider == dtrace_provider) {
7205 		ASSERT(MUTEX_HELD(&dtrace_lock));
7206 	} else {
7207 		mutex_enter(&dtrace_lock);
7208 	}
7209 
7210 	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7211 	    VM_BESTFIT | VM_SLEEP);
7212 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7213 
7214 	probe->dtpr_id = id;
7215 	probe->dtpr_gen = dtrace_probegen++;
7216 	probe->dtpr_mod = dtrace_strdup(mod);
7217 	probe->dtpr_func = dtrace_strdup(func);
7218 	probe->dtpr_name = dtrace_strdup(name);
7219 	probe->dtpr_arg = arg;
7220 	probe->dtpr_aframes = aframes;
7221 	probe->dtpr_provider = provider;
7222 
7223 	dtrace_hash_add(dtrace_bymod, probe);
7224 	dtrace_hash_add(dtrace_byfunc, probe);
7225 	dtrace_hash_add(dtrace_byname, probe);
7226 
7227 	if (id - 1 >= dtrace_nprobes) {
7228 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7229 		size_t nsize = osize << 1;
7230 
7231 		if (nsize == 0) {
7232 			ASSERT(osize == 0);
7233 			ASSERT(dtrace_probes == NULL);
7234 			nsize = sizeof (dtrace_probe_t *);
7235 		}
7236 
7237 		probes = kmem_zalloc(nsize, KM_SLEEP);
7238 
7239 		if (dtrace_probes == NULL) {
7240 			ASSERT(osize == 0);
7241 			dtrace_probes = probes;
7242 			dtrace_nprobes = 1;
7243 		} else {
7244 			dtrace_probe_t **oprobes = dtrace_probes;
7245 
7246 			bcopy(oprobes, probes, osize);
7247 			dtrace_membar_producer();
7248 			dtrace_probes = probes;
7249 
7250 			dtrace_sync();
7251 
7252 			/*
7253 			 * All CPUs are now seeing the new probes array; we can
7254 			 * safely free the old array.
7255 			 */
7256 			kmem_free(oprobes, osize);
7257 			dtrace_nprobes <<= 1;
7258 		}
7259 
7260 		ASSERT(id - 1 < dtrace_nprobes);
7261 	}
7262 
7263 	ASSERT(dtrace_probes[id - 1] == NULL);
7264 	dtrace_probes[id - 1] = probe;
7265 
7266 	if (provider != dtrace_provider)
7267 		mutex_exit(&dtrace_lock);
7268 
7269 	return (id);
7270 }
7271 
7272 static dtrace_probe_t *
7273 dtrace_probe_lookup_id(dtrace_id_t id)
7274 {
7275 	ASSERT(MUTEX_HELD(&dtrace_lock));
7276 
7277 	if (id == 0 || id > dtrace_nprobes)
7278 		return (NULL);
7279 
7280 	return (dtrace_probes[id - 1]);
7281 }
7282 
7283 static int
7284 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
7285 {
7286 	*((dtrace_id_t *)arg) = probe->dtpr_id;
7287 
7288 	return (DTRACE_MATCH_DONE);
7289 }
7290 
7291 /*
7292  * Look up a probe based on provider and one or more of module name, function
7293  * name and probe name.
7294  */
7295 dtrace_id_t
7296 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
7297     const char *func, const char *name)
7298 {
7299 	dtrace_probekey_t pkey;
7300 	dtrace_id_t id;
7301 	int match;
7302 
7303 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
7304 	pkey.dtpk_pmatch = &dtrace_match_string;
7305 	pkey.dtpk_mod = mod;
7306 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
7307 	pkey.dtpk_func = func;
7308 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
7309 	pkey.dtpk_name = name;
7310 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
7311 	pkey.dtpk_id = DTRACE_IDNONE;
7312 
7313 	mutex_enter(&dtrace_lock);
7314 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
7315 	    dtrace_probe_lookup_match, &id);
7316 	mutex_exit(&dtrace_lock);
7317 
7318 	ASSERT(match == 1 || match == 0);
7319 	return (match ? id : 0);
7320 }
7321 
7322 /*
7323  * Returns the probe argument associated with the specified probe.
7324  */
7325 void *
7326 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
7327 {
7328 	dtrace_probe_t *probe;
7329 	void *rval = NULL;
7330 
7331 	mutex_enter(&dtrace_lock);
7332 
7333 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
7334 	    probe->dtpr_provider == (dtrace_provider_t *)id)
7335 		rval = probe->dtpr_arg;
7336 
7337 	mutex_exit(&dtrace_lock);
7338 
7339 	return (rval);
7340 }
7341 
7342 /*
7343  * Copy a probe into a probe description.
7344  */
7345 static void
7346 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
7347 {
7348 	bzero(pdp, sizeof (dtrace_probedesc_t));
7349 	pdp->dtpd_id = prp->dtpr_id;
7350 
7351 	(void) strncpy(pdp->dtpd_provider,
7352 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
7353 
7354 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
7355 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
7356 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
7357 }
7358 
7359 /*
7360  * Called to indicate that a probe -- or probes -- should be provided by a
7361  * specfied provider.  If the specified description is NULL, the provider will
7362  * be told to provide all of its probes.  (This is done whenever a new
7363  * consumer comes along, or whenever a retained enabling is to be matched.) If
7364  * the specified description is non-NULL, the provider is given the
7365  * opportunity to dynamically provide the specified probe, allowing providers
7366  * to support the creation of probes on-the-fly.  (So-called _autocreated_
7367  * probes.)  If the provider is NULL, the operations will be applied to all
7368  * providers; if the provider is non-NULL the operations will only be applied
7369  * to the specified provider.  The dtrace_provider_lock must be held, and the
7370  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
7371  * will need to grab the dtrace_lock when it reenters the framework through
7372  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
7373  */
7374 static void
7375 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
7376 {
7377 	struct modctl *ctl;
7378 	int all = 0;
7379 
7380 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7381 
7382 	if (prv == NULL) {
7383 		all = 1;
7384 		prv = dtrace_provider;
7385 	}
7386 
7387 	do {
7388 		/*
7389 		 * First, call the blanket provide operation.
7390 		 */
7391 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
7392 
7393 		/*
7394 		 * Now call the per-module provide operation.  We will grab
7395 		 * mod_lock to prevent the list from being modified.  Note
7396 		 * that this also prevents the mod_busy bits from changing.
7397 		 * (mod_busy can only be changed with mod_lock held.)
7398 		 */
7399 		mutex_enter(&mod_lock);
7400 
7401 		ctl = &modules;
7402 		do {
7403 			if (ctl->mod_busy || ctl->mod_mp == NULL)
7404 				continue;
7405 
7406 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
7407 
7408 		} while ((ctl = ctl->mod_next) != &modules);
7409 
7410 		mutex_exit(&mod_lock);
7411 	} while (all && (prv = prv->dtpv_next) != NULL);
7412 }
7413 
7414 /*
7415  * Iterate over each probe, and call the Framework-to-Provider API function
7416  * denoted by offs.
7417  */
7418 static void
7419 dtrace_probe_foreach(uintptr_t offs)
7420 {
7421 	dtrace_provider_t *prov;
7422 	void (*func)(void *, dtrace_id_t, void *);
7423 	dtrace_probe_t *probe;
7424 	dtrace_icookie_t cookie;
7425 	int i;
7426 
7427 	/*
7428 	 * We disable interrupts to walk through the probe array.  This is
7429 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
7430 	 * won't see stale data.
7431 	 */
7432 	cookie = dtrace_interrupt_disable();
7433 
7434 	for (i = 0; i < dtrace_nprobes; i++) {
7435 		if ((probe = dtrace_probes[i]) == NULL)
7436 			continue;
7437 
7438 		if (probe->dtpr_ecb == NULL) {
7439 			/*
7440 			 * This probe isn't enabled -- don't call the function.
7441 			 */
7442 			continue;
7443 		}
7444 
7445 		prov = probe->dtpr_provider;
7446 		func = *((void(**)(void *, dtrace_id_t, void *))
7447 		    ((uintptr_t)&prov->dtpv_pops + offs));
7448 
7449 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
7450 	}
7451 
7452 	dtrace_interrupt_enable(cookie);
7453 }
7454 
7455 static int
7456 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
7457 {
7458 	dtrace_probekey_t pkey;
7459 	uint32_t priv;
7460 	uid_t uid;
7461 	zoneid_t zoneid;
7462 
7463 	ASSERT(MUTEX_HELD(&dtrace_lock));
7464 	dtrace_ecb_create_cache = NULL;
7465 
7466 	if (desc == NULL) {
7467 		/*
7468 		 * If we're passed a NULL description, we're being asked to
7469 		 * create an ECB with a NULL probe.
7470 		 */
7471 		(void) dtrace_ecb_create_enable(NULL, enab);
7472 		return (0);
7473 	}
7474 
7475 	dtrace_probekey(desc, &pkey);
7476 	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
7477 	    &priv, &uid, &zoneid);
7478 
7479 	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
7480 	    enab));
7481 }
7482 
7483 /*
7484  * DTrace Helper Provider Functions
7485  */
7486 static void
7487 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
7488 {
7489 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
7490 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
7491 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
7492 }
7493 
7494 static void
7495 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
7496     const dof_provider_t *dofprov, char *strtab)
7497 {
7498 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
7499 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
7500 	    dofprov->dofpv_provattr);
7501 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
7502 	    dofprov->dofpv_modattr);
7503 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
7504 	    dofprov->dofpv_funcattr);
7505 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
7506 	    dofprov->dofpv_nameattr);
7507 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
7508 	    dofprov->dofpv_argsattr);
7509 }
7510 
7511 static void
7512 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
7513 {
7514 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7515 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
7516 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
7517 	dof_provider_t *provider;
7518 	dof_probe_t *probe;
7519 	uint32_t *off, *enoff;
7520 	uint8_t *arg;
7521 	char *strtab;
7522 	uint_t i, nprobes;
7523 	dtrace_helper_provdesc_t dhpv;
7524 	dtrace_helper_probedesc_t dhpb;
7525 	dtrace_meta_t *meta = dtrace_meta_pid;
7526 	dtrace_mops_t *mops = &meta->dtm_mops;
7527 	void *parg;
7528 
7529 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
7530 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7531 	    provider->dofpv_strtab * dof->dofh_secsize);
7532 	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7533 	    provider->dofpv_probes * dof->dofh_secsize);
7534 	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7535 	    provider->dofpv_prargs * dof->dofh_secsize);
7536 	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7537 	    provider->dofpv_proffs * dof->dofh_secsize);
7538 
7539 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
7540 	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
7541 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
7542 	enoff = NULL;
7543 
7544 	/*
7545 	 * See dtrace_helper_provider_validate().
7546 	 */
7547 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
7548 	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
7549 		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7550 		    provider->dofpv_prenoffs * dof->dofh_secsize);
7551 		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
7552 	}
7553 
7554 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
7555 
7556 	/*
7557 	 * Create the provider.
7558 	 */
7559 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
7560 
7561 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
7562 		return;
7563 
7564 	meta->dtm_count++;
7565 
7566 	/*
7567 	 * Create the probes.
7568 	 */
7569 	for (i = 0; i < nprobes; i++) {
7570 		probe = (dof_probe_t *)(uintptr_t)(daddr +
7571 		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
7572 
7573 		dhpb.dthpb_mod = dhp->dofhp_mod;
7574 		dhpb.dthpb_func = strtab + probe->dofpr_func;
7575 		dhpb.dthpb_name = strtab + probe->dofpr_name;
7576 		dhpb.dthpb_base = probe->dofpr_addr;
7577 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
7578 		dhpb.dthpb_noffs = probe->dofpr_noffs;
7579 		if (enoff != NULL) {
7580 			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
7581 			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
7582 		} else {
7583 			dhpb.dthpb_enoffs = NULL;
7584 			dhpb.dthpb_nenoffs = 0;
7585 		}
7586 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
7587 		dhpb.dthpb_nargc = probe->dofpr_nargc;
7588 		dhpb.dthpb_xargc = probe->dofpr_xargc;
7589 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
7590 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
7591 
7592 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
7593 	}
7594 }
7595 
7596 static void
7597 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
7598 {
7599 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7600 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
7601 	int i;
7602 
7603 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
7604 
7605 	for (i = 0; i < dof->dofh_secnum; i++) {
7606 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
7607 		    dof->dofh_secoff + i * dof->dofh_secsize);
7608 
7609 		if (sec->dofs_type != DOF_SECT_PROVIDER)
7610 			continue;
7611 
7612 		dtrace_helper_provide_one(dhp, sec, pid);
7613 	}
7614 
7615 	/*
7616 	 * We may have just created probes, so we must now rematch against
7617 	 * any retained enablings.  Note that this call will acquire both
7618 	 * cpu_lock and dtrace_lock; the fact that we are holding
7619 	 * dtrace_meta_lock now is what defines the ordering with respect to
7620 	 * these three locks.
7621 	 */
7622 	dtrace_enabling_matchall();
7623 }
7624 
7625 static void
7626 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
7627 {
7628 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7629 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
7630 	dof_sec_t *str_sec;
7631 	dof_provider_t *provider;
7632 	char *strtab;
7633 	dtrace_helper_provdesc_t dhpv;
7634 	dtrace_meta_t *meta = dtrace_meta_pid;
7635 	dtrace_mops_t *mops = &meta->dtm_mops;
7636 
7637 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
7638 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
7639 	    provider->dofpv_strtab * dof->dofh_secsize);
7640 
7641 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
7642 
7643 	/*
7644 	 * Create the provider.
7645 	 */
7646 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
7647 
7648 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
7649 
7650 	meta->dtm_count--;
7651 }
7652 
7653 static void
7654 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
7655 {
7656 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
7657 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
7658 	int i;
7659 
7660 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
7661 
7662 	for (i = 0; i < dof->dofh_secnum; i++) {
7663 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
7664 		    dof->dofh_secoff + i * dof->dofh_secsize);
7665 
7666 		if (sec->dofs_type != DOF_SECT_PROVIDER)
7667 			continue;
7668 
7669 		dtrace_helper_provider_remove_one(dhp, sec, pid);
7670 	}
7671 }
7672 
7673 /*
7674  * DTrace Meta Provider-to-Framework API Functions
7675  *
7676  * These functions implement the Meta Provider-to-Framework API, as described
7677  * in <sys/dtrace.h>.
7678  */
7679 int
7680 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
7681     dtrace_meta_provider_id_t *idp)
7682 {
7683 	dtrace_meta_t *meta;
7684 	dtrace_helpers_t *help, *next;
7685 	int i;
7686 
7687 	*idp = DTRACE_METAPROVNONE;
7688 
7689 	/*
7690 	 * We strictly don't need the name, but we hold onto it for
7691 	 * debuggability. All hail error queues!
7692 	 */
7693 	if (name == NULL) {
7694 		cmn_err(CE_WARN, "failed to register meta-provider: "
7695 		    "invalid name");
7696 		return (EINVAL);
7697 	}
7698 
7699 	if (mops == NULL ||
7700 	    mops->dtms_create_probe == NULL ||
7701 	    mops->dtms_provide_pid == NULL ||
7702 	    mops->dtms_remove_pid == NULL) {
7703 		cmn_err(CE_WARN, "failed to register meta-register %s: "
7704 		    "invalid ops", name);
7705 		return (EINVAL);
7706 	}
7707 
7708 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
7709 	meta->dtm_mops = *mops;
7710 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7711 	(void) strcpy(meta->dtm_name, name);
7712 	meta->dtm_arg = arg;
7713 
7714 	mutex_enter(&dtrace_meta_lock);
7715 	mutex_enter(&dtrace_lock);
7716 
7717 	if (dtrace_meta_pid != NULL) {
7718 		mutex_exit(&dtrace_lock);
7719 		mutex_exit(&dtrace_meta_lock);
7720 		cmn_err(CE_WARN, "failed to register meta-register %s: "
7721 		    "user-land meta-provider exists", name);
7722 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
7723 		kmem_free(meta, sizeof (dtrace_meta_t));
7724 		return (EINVAL);
7725 	}
7726 
7727 	dtrace_meta_pid = meta;
7728 	*idp = (dtrace_meta_provider_id_t)meta;
7729 
7730 	/*
7731 	 * If there are providers and probes ready to go, pass them
7732 	 * off to the new meta provider now.
7733 	 */
7734 
7735 	help = dtrace_deferred_pid;
7736 	dtrace_deferred_pid = NULL;
7737 
7738 	mutex_exit(&dtrace_lock);
7739 
7740 	while (help != NULL) {
7741 		for (i = 0; i < help->dthps_nprovs; i++) {
7742 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
7743 			    help->dthps_pid);
7744 		}
7745 
7746 		next = help->dthps_next;
7747 		help->dthps_next = NULL;
7748 		help->dthps_prev = NULL;
7749 		help->dthps_deferred = 0;
7750 		help = next;
7751 	}
7752 
7753 	mutex_exit(&dtrace_meta_lock);
7754 
7755 	return (0);
7756 }
7757 
7758 int
7759 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
7760 {
7761 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
7762 
7763 	mutex_enter(&dtrace_meta_lock);
7764 	mutex_enter(&dtrace_lock);
7765 
7766 	if (old == dtrace_meta_pid) {
7767 		pp = &dtrace_meta_pid;
7768 	} else {
7769 		panic("attempt to unregister non-existent "
7770 		    "dtrace meta-provider %p\n", (void *)old);
7771 	}
7772 
7773 	if (old->dtm_count != 0) {
7774 		mutex_exit(&dtrace_lock);
7775 		mutex_exit(&dtrace_meta_lock);
7776 		return (EBUSY);
7777 	}
7778 
7779 	*pp = NULL;
7780 
7781 	mutex_exit(&dtrace_lock);
7782 	mutex_exit(&dtrace_meta_lock);
7783 
7784 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
7785 	kmem_free(old, sizeof (dtrace_meta_t));
7786 
7787 	return (0);
7788 }
7789 
7790 
7791 /*
7792  * DTrace DIF Object Functions
7793  */
7794 static int
7795 dtrace_difo_err(uint_t pc, const char *format, ...)
7796 {
7797 	if (dtrace_err_verbose) {
7798 		va_list alist;
7799 
7800 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
7801 		va_start(alist, format);
7802 		(void) vuprintf(format, alist);
7803 		va_end(alist);
7804 	}
7805 
7806 #ifdef DTRACE_ERRDEBUG
7807 	dtrace_errdebug(format);
7808 #endif
7809 	return (1);
7810 }
7811 
7812 /*
7813  * Validate a DTrace DIF object by checking the IR instructions.  The following
7814  * rules are currently enforced by dtrace_difo_validate():
7815  *
7816  * 1. Each instruction must have a valid opcode
7817  * 2. Each register, string, variable, or subroutine reference must be valid
7818  * 3. No instruction can modify register %r0 (must be zero)
7819  * 4. All instruction reserved bits must be set to zero
7820  * 5. The last instruction must be a "ret" instruction
7821  * 6. All branch targets must reference a valid instruction _after_ the branch
7822  */
7823 static int
7824 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
7825     cred_t *cr)
7826 {
7827 	int err = 0, i;
7828 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
7829 	int kcheckload;
7830 	uint_t pc;
7831 
7832 	kcheckload = cr == NULL ||
7833 	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
7834 
7835 	dp->dtdo_destructive = 0;
7836 
7837 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
7838 		dif_instr_t instr = dp->dtdo_buf[pc];
7839 
7840 		uint_t r1 = DIF_INSTR_R1(instr);
7841 		uint_t r2 = DIF_INSTR_R2(instr);
7842 		uint_t rd = DIF_INSTR_RD(instr);
7843 		uint_t rs = DIF_INSTR_RS(instr);
7844 		uint_t label = DIF_INSTR_LABEL(instr);
7845 		uint_t v = DIF_INSTR_VAR(instr);
7846 		uint_t subr = DIF_INSTR_SUBR(instr);
7847 		uint_t type = DIF_INSTR_TYPE(instr);
7848 		uint_t op = DIF_INSTR_OP(instr);
7849 
7850 		switch (op) {
7851 		case DIF_OP_OR:
7852 		case DIF_OP_XOR:
7853 		case DIF_OP_AND:
7854 		case DIF_OP_SLL:
7855 		case DIF_OP_SRL:
7856 		case DIF_OP_SRA:
7857 		case DIF_OP_SUB:
7858 		case DIF_OP_ADD:
7859 		case DIF_OP_MUL:
7860 		case DIF_OP_SDIV:
7861 		case DIF_OP_UDIV:
7862 		case DIF_OP_SREM:
7863 		case DIF_OP_UREM:
7864 		case DIF_OP_COPYS:
7865 			if (r1 >= nregs)
7866 				err += efunc(pc, "invalid register %u\n", r1);
7867 			if (r2 >= nregs)
7868 				err += efunc(pc, "invalid register %u\n", r2);
7869 			if (rd >= nregs)
7870 				err += efunc(pc, "invalid register %u\n", rd);
7871 			if (rd == 0)
7872 				err += efunc(pc, "cannot write to %r0\n");
7873 			break;
7874 		case DIF_OP_NOT:
7875 		case DIF_OP_MOV:
7876 		case DIF_OP_ALLOCS:
7877 			if (r1 >= nregs)
7878 				err += efunc(pc, "invalid register %u\n", r1);
7879 			if (r2 != 0)
7880 				err += efunc(pc, "non-zero reserved bits\n");
7881 			if (rd >= nregs)
7882 				err += efunc(pc, "invalid register %u\n", rd);
7883 			if (rd == 0)
7884 				err += efunc(pc, "cannot write to %r0\n");
7885 			break;
7886 		case DIF_OP_LDSB:
7887 		case DIF_OP_LDSH:
7888 		case DIF_OP_LDSW:
7889 		case DIF_OP_LDUB:
7890 		case DIF_OP_LDUH:
7891 		case DIF_OP_LDUW:
7892 		case DIF_OP_LDX:
7893 			if (r1 >= nregs)
7894 				err += efunc(pc, "invalid register %u\n", r1);
7895 			if (r2 != 0)
7896 				err += efunc(pc, "non-zero reserved bits\n");
7897 			if (rd >= nregs)
7898 				err += efunc(pc, "invalid register %u\n", rd);
7899 			if (rd == 0)
7900 				err += efunc(pc, "cannot write to %r0\n");
7901 			if (kcheckload)
7902 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
7903 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
7904 			break;
7905 		case DIF_OP_RLDSB:
7906 		case DIF_OP_RLDSH:
7907 		case DIF_OP_RLDSW:
7908 		case DIF_OP_RLDUB:
7909 		case DIF_OP_RLDUH:
7910 		case DIF_OP_RLDUW:
7911 		case DIF_OP_RLDX:
7912 			if (r1 >= nregs)
7913 				err += efunc(pc, "invalid register %u\n", r1);
7914 			if (r2 != 0)
7915 				err += efunc(pc, "non-zero reserved bits\n");
7916 			if (rd >= nregs)
7917 				err += efunc(pc, "invalid register %u\n", rd);
7918 			if (rd == 0)
7919 				err += efunc(pc, "cannot write to %r0\n");
7920 			break;
7921 		case DIF_OP_ULDSB:
7922 		case DIF_OP_ULDSH:
7923 		case DIF_OP_ULDSW:
7924 		case DIF_OP_ULDUB:
7925 		case DIF_OP_ULDUH:
7926 		case DIF_OP_ULDUW:
7927 		case DIF_OP_ULDX:
7928 			if (r1 >= nregs)
7929 				err += efunc(pc, "invalid register %u\n", r1);
7930 			if (r2 != 0)
7931 				err += efunc(pc, "non-zero reserved bits\n");
7932 			if (rd >= nregs)
7933 				err += efunc(pc, "invalid register %u\n", rd);
7934 			if (rd == 0)
7935 				err += efunc(pc, "cannot write to %r0\n");
7936 			break;
7937 		case DIF_OP_STB:
7938 		case DIF_OP_STH:
7939 		case DIF_OP_STW:
7940 		case DIF_OP_STX:
7941 			if (r1 >= nregs)
7942 				err += efunc(pc, "invalid register %u\n", r1);
7943 			if (r2 != 0)
7944 				err += efunc(pc, "non-zero reserved bits\n");
7945 			if (rd >= nregs)
7946 				err += efunc(pc, "invalid register %u\n", rd);
7947 			if (rd == 0)
7948 				err += efunc(pc, "cannot write to 0 address\n");
7949 			break;
7950 		case DIF_OP_CMP:
7951 		case DIF_OP_SCMP:
7952 			if (r1 >= nregs)
7953 				err += efunc(pc, "invalid register %u\n", r1);
7954 			if (r2 >= nregs)
7955 				err += efunc(pc, "invalid register %u\n", r2);
7956 			if (rd != 0)
7957 				err += efunc(pc, "non-zero reserved bits\n");
7958 			break;
7959 		case DIF_OP_TST:
7960 			if (r1 >= nregs)
7961 				err += efunc(pc, "invalid register %u\n", r1);
7962 			if (r2 != 0 || rd != 0)
7963 				err += efunc(pc, "non-zero reserved bits\n");
7964 			break;
7965 		case DIF_OP_BA:
7966 		case DIF_OP_BE:
7967 		case DIF_OP_BNE:
7968 		case DIF_OP_BG:
7969 		case DIF_OP_BGU:
7970 		case DIF_OP_BGE:
7971 		case DIF_OP_BGEU:
7972 		case DIF_OP_BL:
7973 		case DIF_OP_BLU:
7974 		case DIF_OP_BLE:
7975 		case DIF_OP_BLEU:
7976 			if (label >= dp->dtdo_len) {
7977 				err += efunc(pc, "invalid branch target %u\n",
7978 				    label);
7979 			}
7980 			if (label <= pc) {
7981 				err += efunc(pc, "backward branch to %u\n",
7982 				    label);
7983 			}
7984 			break;
7985 		case DIF_OP_RET:
7986 			if (r1 != 0 || r2 != 0)
7987 				err += efunc(pc, "non-zero reserved bits\n");
7988 			if (rd >= nregs)
7989 				err += efunc(pc, "invalid register %u\n", rd);
7990 			break;
7991 		case DIF_OP_NOP:
7992 		case DIF_OP_POPTS:
7993 		case DIF_OP_FLUSHTS:
7994 			if (r1 != 0 || r2 != 0 || rd != 0)
7995 				err += efunc(pc, "non-zero reserved bits\n");
7996 			break;
7997 		case DIF_OP_SETX:
7998 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
7999 				err += efunc(pc, "invalid integer ref %u\n",
8000 				    DIF_INSTR_INTEGER(instr));
8001 			}
8002 			if (rd >= nregs)
8003 				err += efunc(pc, "invalid register %u\n", rd);
8004 			if (rd == 0)
8005 				err += efunc(pc, "cannot write to %r0\n");
8006 			break;
8007 		case DIF_OP_SETS:
8008 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8009 				err += efunc(pc, "invalid string ref %u\n",
8010 				    DIF_INSTR_STRING(instr));
8011 			}
8012 			if (rd >= nregs)
8013 				err += efunc(pc, "invalid register %u\n", rd);
8014 			if (rd == 0)
8015 				err += efunc(pc, "cannot write to %r0\n");
8016 			break;
8017 		case DIF_OP_LDGA:
8018 		case DIF_OP_LDTA:
8019 			if (r1 > DIF_VAR_ARRAY_MAX)
8020 				err += efunc(pc, "invalid array %u\n", r1);
8021 			if (r2 >= nregs)
8022 				err += efunc(pc, "invalid register %u\n", r2);
8023 			if (rd >= nregs)
8024 				err += efunc(pc, "invalid register %u\n", rd);
8025 			if (rd == 0)
8026 				err += efunc(pc, "cannot write to %r0\n");
8027 			break;
8028 		case DIF_OP_LDGS:
8029 		case DIF_OP_LDTS:
8030 		case DIF_OP_LDLS:
8031 		case DIF_OP_LDGAA:
8032 		case DIF_OP_LDTAA:
8033 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8034 				err += efunc(pc, "invalid variable %u\n", v);
8035 			if (rd >= nregs)
8036 				err += efunc(pc, "invalid register %u\n", rd);
8037 			if (rd == 0)
8038 				err += efunc(pc, "cannot write to %r0\n");
8039 			break;
8040 		case DIF_OP_STGS:
8041 		case DIF_OP_STTS:
8042 		case DIF_OP_STLS:
8043 		case DIF_OP_STGAA:
8044 		case DIF_OP_STTAA:
8045 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8046 				err += efunc(pc, "invalid variable %u\n", v);
8047 			if (rs >= nregs)
8048 				err += efunc(pc, "invalid register %u\n", rd);
8049 			break;
8050 		case DIF_OP_CALL:
8051 			if (subr > DIF_SUBR_MAX)
8052 				err += efunc(pc, "invalid subr %u\n", subr);
8053 			if (rd >= nregs)
8054 				err += efunc(pc, "invalid register %u\n", rd);
8055 			if (rd == 0)
8056 				err += efunc(pc, "cannot write to %r0\n");
8057 
8058 			if (subr == DIF_SUBR_COPYOUT ||
8059 			    subr == DIF_SUBR_COPYOUTSTR) {
8060 				dp->dtdo_destructive = 1;
8061 			}
8062 			break;
8063 		case DIF_OP_PUSHTR:
8064 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8065 				err += efunc(pc, "invalid ref type %u\n", type);
8066 			if (r2 >= nregs)
8067 				err += efunc(pc, "invalid register %u\n", r2);
8068 			if (rs >= nregs)
8069 				err += efunc(pc, "invalid register %u\n", rs);
8070 			break;
8071 		case DIF_OP_PUSHTV:
8072 			if (type != DIF_TYPE_CTF)
8073 				err += efunc(pc, "invalid val type %u\n", type);
8074 			if (r2 >= nregs)
8075 				err += efunc(pc, "invalid register %u\n", r2);
8076 			if (rs >= nregs)
8077 				err += efunc(pc, "invalid register %u\n", rs);
8078 			break;
8079 		default:
8080 			err += efunc(pc, "invalid opcode %u\n",
8081 			    DIF_INSTR_OP(instr));
8082 		}
8083 	}
8084 
8085 	if (dp->dtdo_len != 0 &&
8086 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8087 		err += efunc(dp->dtdo_len - 1,
8088 		    "expected 'ret' as last DIF instruction\n");
8089 	}
8090 
8091 	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8092 		/*
8093 		 * If we're not returning by reference, the size must be either
8094 		 * 0 or the size of one of the base types.
8095 		 */
8096 		switch (dp->dtdo_rtype.dtdt_size) {
8097 		case 0:
8098 		case sizeof (uint8_t):
8099 		case sizeof (uint16_t):
8100 		case sizeof (uint32_t):
8101 		case sizeof (uint64_t):
8102 			break;
8103 
8104 		default:
8105 			err += efunc(dp->dtdo_len - 1, "bad return size");
8106 		}
8107 	}
8108 
8109 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8110 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8111 		dtrace_diftype_t *vt, *et;
8112 		uint_t id, ndx;
8113 
8114 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8115 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
8116 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8117 			err += efunc(i, "unrecognized variable scope %d\n",
8118 			    v->dtdv_scope);
8119 			break;
8120 		}
8121 
8122 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8123 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
8124 			err += efunc(i, "unrecognized variable type %d\n",
8125 			    v->dtdv_kind);
8126 			break;
8127 		}
8128 
8129 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8130 			err += efunc(i, "%d exceeds variable id limit\n", id);
8131 			break;
8132 		}
8133 
8134 		if (id < DIF_VAR_OTHER_UBASE)
8135 			continue;
8136 
8137 		/*
8138 		 * For user-defined variables, we need to check that this
8139 		 * definition is identical to any previous definition that we
8140 		 * encountered.
8141 		 */
8142 		ndx = id - DIF_VAR_OTHER_UBASE;
8143 
8144 		switch (v->dtdv_scope) {
8145 		case DIFV_SCOPE_GLOBAL:
8146 			if (ndx < vstate->dtvs_nglobals) {
8147 				dtrace_statvar_t *svar;
8148 
8149 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8150 					existing = &svar->dtsv_var;
8151 			}
8152 
8153 			break;
8154 
8155 		case DIFV_SCOPE_THREAD:
8156 			if (ndx < vstate->dtvs_ntlocals)
8157 				existing = &vstate->dtvs_tlocals[ndx];
8158 			break;
8159 
8160 		case DIFV_SCOPE_LOCAL:
8161 			if (ndx < vstate->dtvs_nlocals) {
8162 				dtrace_statvar_t *svar;
8163 
8164 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8165 					existing = &svar->dtsv_var;
8166 			}
8167 
8168 			break;
8169 		}
8170 
8171 		vt = &v->dtdv_type;
8172 
8173 		if (vt->dtdt_flags & DIF_TF_BYREF) {
8174 			if (vt->dtdt_size == 0) {
8175 				err += efunc(i, "zero-sized variable\n");
8176 				break;
8177 			}
8178 
8179 			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8180 			    vt->dtdt_size > dtrace_global_maxsize) {
8181 				err += efunc(i, "oversized by-ref global\n");
8182 				break;
8183 			}
8184 		}
8185 
8186 		if (existing == NULL || existing->dtdv_id == 0)
8187 			continue;
8188 
8189 		ASSERT(existing->dtdv_id == v->dtdv_id);
8190 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
8191 
8192 		if (existing->dtdv_kind != v->dtdv_kind)
8193 			err += efunc(i, "%d changed variable kind\n", id);
8194 
8195 		et = &existing->dtdv_type;
8196 
8197 		if (vt->dtdt_flags != et->dtdt_flags) {
8198 			err += efunc(i, "%d changed variable type flags\n", id);
8199 			break;
8200 		}
8201 
8202 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8203 			err += efunc(i, "%d changed variable type size\n", id);
8204 			break;
8205 		}
8206 	}
8207 
8208 	return (err);
8209 }
8210 
8211 /*
8212  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8213  * are much more constrained than normal DIFOs.  Specifically, they may
8214  * not:
8215  *
8216  * 1. Make calls to subroutines other than copyin(), copyinstr() or
8217  *    miscellaneous string routines
8218  * 2. Access DTrace variables other than the args[] array, and the
8219  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8220  * 3. Have thread-local variables.
8221  * 4. Have dynamic variables.
8222  */
8223 static int
8224 dtrace_difo_validate_helper(dtrace_difo_t *dp)
8225 {
8226 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8227 	int err = 0;
8228 	uint_t pc;
8229 
8230 	for (pc = 0; pc < dp->dtdo_len; pc++) {
8231 		dif_instr_t instr = dp->dtdo_buf[pc];
8232 
8233 		uint_t v = DIF_INSTR_VAR(instr);
8234 		uint_t subr = DIF_INSTR_SUBR(instr);
8235 		uint_t op = DIF_INSTR_OP(instr);
8236 
8237 		switch (op) {
8238 		case DIF_OP_OR:
8239 		case DIF_OP_XOR:
8240 		case DIF_OP_AND:
8241 		case DIF_OP_SLL:
8242 		case DIF_OP_SRL:
8243 		case DIF_OP_SRA:
8244 		case DIF_OP_SUB:
8245 		case DIF_OP_ADD:
8246 		case DIF_OP_MUL:
8247 		case DIF_OP_SDIV:
8248 		case DIF_OP_UDIV:
8249 		case DIF_OP_SREM:
8250 		case DIF_OP_UREM:
8251 		case DIF_OP_COPYS:
8252 		case DIF_OP_NOT:
8253 		case DIF_OP_MOV:
8254 		case DIF_OP_RLDSB:
8255 		case DIF_OP_RLDSH:
8256 		case DIF_OP_RLDSW:
8257 		case DIF_OP_RLDUB:
8258 		case DIF_OP_RLDUH:
8259 		case DIF_OP_RLDUW:
8260 		case DIF_OP_RLDX:
8261 		case DIF_OP_ULDSB:
8262 		case DIF_OP_ULDSH:
8263 		case DIF_OP_ULDSW:
8264 		case DIF_OP_ULDUB:
8265 		case DIF_OP_ULDUH:
8266 		case DIF_OP_ULDUW:
8267 		case DIF_OP_ULDX:
8268 		case DIF_OP_STB:
8269 		case DIF_OP_STH:
8270 		case DIF_OP_STW:
8271 		case DIF_OP_STX:
8272 		case DIF_OP_ALLOCS:
8273 		case DIF_OP_CMP:
8274 		case DIF_OP_SCMP:
8275 		case DIF_OP_TST:
8276 		case DIF_OP_BA:
8277 		case DIF_OP_BE:
8278 		case DIF_OP_BNE:
8279 		case DIF_OP_BG:
8280 		case DIF_OP_BGU:
8281 		case DIF_OP_BGE:
8282 		case DIF_OP_BGEU:
8283 		case DIF_OP_BL:
8284 		case DIF_OP_BLU:
8285 		case DIF_OP_BLE:
8286 		case DIF_OP_BLEU:
8287 		case DIF_OP_RET:
8288 		case DIF_OP_NOP:
8289 		case DIF_OP_POPTS:
8290 		case DIF_OP_FLUSHTS:
8291 		case DIF_OP_SETX:
8292 		case DIF_OP_SETS:
8293 		case DIF_OP_LDGA:
8294 		case DIF_OP_LDLS:
8295 		case DIF_OP_STGS:
8296 		case DIF_OP_STLS:
8297 		case DIF_OP_PUSHTR:
8298 		case DIF_OP_PUSHTV:
8299 			break;
8300 
8301 		case DIF_OP_LDGS:
8302 			if (v >= DIF_VAR_OTHER_UBASE)
8303 				break;
8304 
8305 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
8306 				break;
8307 
8308 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
8309 			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
8310 			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
8311 			    v == DIF_VAR_UID || v == DIF_VAR_GID)
8312 				break;
8313 
8314 			err += efunc(pc, "illegal variable %u\n", v);
8315 			break;
8316 
8317 		case DIF_OP_LDTA:
8318 		case DIF_OP_LDTS:
8319 		case DIF_OP_LDGAA:
8320 		case DIF_OP_LDTAA:
8321 			err += efunc(pc, "illegal dynamic variable load\n");
8322 			break;
8323 
8324 		case DIF_OP_STTS:
8325 		case DIF_OP_STGAA:
8326 		case DIF_OP_STTAA:
8327 			err += efunc(pc, "illegal dynamic variable store\n");
8328 			break;
8329 
8330 		case DIF_OP_CALL:
8331 			if (subr == DIF_SUBR_ALLOCA ||
8332 			    subr == DIF_SUBR_BCOPY ||
8333 			    subr == DIF_SUBR_COPYIN ||
8334 			    subr == DIF_SUBR_COPYINTO ||
8335 			    subr == DIF_SUBR_COPYINSTR ||
8336 			    subr == DIF_SUBR_INDEX ||
8337 			    subr == DIF_SUBR_INET_NTOA ||
8338 			    subr == DIF_SUBR_INET_NTOA6 ||
8339 			    subr == DIF_SUBR_INET_NTOP ||
8340 			    subr == DIF_SUBR_LLTOSTR ||
8341 			    subr == DIF_SUBR_RINDEX ||
8342 			    subr == DIF_SUBR_STRCHR ||
8343 			    subr == DIF_SUBR_STRJOIN ||
8344 			    subr == DIF_SUBR_STRRCHR ||
8345 			    subr == DIF_SUBR_STRSTR ||
8346 			    subr == DIF_SUBR_HTONS ||
8347 			    subr == DIF_SUBR_HTONL ||
8348 			    subr == DIF_SUBR_HTONLL ||
8349 			    subr == DIF_SUBR_NTOHS ||
8350 			    subr == DIF_SUBR_NTOHL ||
8351 			    subr == DIF_SUBR_NTOHLL)
8352 				break;
8353 
8354 			err += efunc(pc, "invalid subr %u\n", subr);
8355 			break;
8356 
8357 		default:
8358 			err += efunc(pc, "invalid opcode %u\n",
8359 			    DIF_INSTR_OP(instr));
8360 		}
8361 	}
8362 
8363 	return (err);
8364 }
8365 
8366 /*
8367  * Returns 1 if the expression in the DIF object can be cached on a per-thread
8368  * basis; 0 if not.
8369  */
8370 static int
8371 dtrace_difo_cacheable(dtrace_difo_t *dp)
8372 {
8373 	int i;
8374 
8375 	if (dp == NULL)
8376 		return (0);
8377 
8378 	for (i = 0; i < dp->dtdo_varlen; i++) {
8379 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8380 
8381 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
8382 			continue;
8383 
8384 		switch (v->dtdv_id) {
8385 		case DIF_VAR_CURTHREAD:
8386 		case DIF_VAR_PID:
8387 		case DIF_VAR_TID:
8388 		case DIF_VAR_EXECNAME:
8389 		case DIF_VAR_ZONENAME:
8390 			break;
8391 
8392 		default:
8393 			return (0);
8394 		}
8395 	}
8396 
8397 	/*
8398 	 * This DIF object may be cacheable.  Now we need to look for any
8399 	 * array loading instructions, any memory loading instructions, or
8400 	 * any stores to thread-local variables.
8401 	 */
8402 	for (i = 0; i < dp->dtdo_len; i++) {
8403 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
8404 
8405 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
8406 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
8407 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
8408 		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
8409 			return (0);
8410 	}
8411 
8412 	return (1);
8413 }
8414 
8415 static void
8416 dtrace_difo_hold(dtrace_difo_t *dp)
8417 {
8418 	int i;
8419 
8420 	ASSERT(MUTEX_HELD(&dtrace_lock));
8421 
8422 	dp->dtdo_refcnt++;
8423 	ASSERT(dp->dtdo_refcnt != 0);
8424 
8425 	/*
8426 	 * We need to check this DIF object for references to the variable
8427 	 * DIF_VAR_VTIMESTAMP.
8428 	 */
8429 	for (i = 0; i < dp->dtdo_varlen; i++) {
8430 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8431 
8432 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
8433 			continue;
8434 
8435 		if (dtrace_vtime_references++ == 0)
8436 			dtrace_vtime_enable();
8437 	}
8438 }
8439 
8440 /*
8441  * This routine calculates the dynamic variable chunksize for a given DIF
8442  * object.  The calculation is not fool-proof, and can probably be tricked by
8443  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
8444  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
8445  * if a dynamic variable size exceeds the chunksize.
8446  */
8447 static void
8448 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8449 {
8450 	uint64_t sval;
8451 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
8452 	const dif_instr_t *text = dp->dtdo_buf;
8453 	uint_t pc, srd = 0;
8454 	uint_t ttop = 0;
8455 	size_t size, ksize;
8456 	uint_t id, i;
8457 
8458 	for (pc = 0; pc < dp->dtdo_len; pc++) {
8459 		dif_instr_t instr = text[pc];
8460 		uint_t op = DIF_INSTR_OP(instr);
8461 		uint_t rd = DIF_INSTR_RD(instr);
8462 		uint_t r1 = DIF_INSTR_R1(instr);
8463 		uint_t nkeys = 0;
8464 		uchar_t scope;
8465 
8466 		dtrace_key_t *key = tupregs;
8467 
8468 		switch (op) {
8469 		case DIF_OP_SETX:
8470 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
8471 			srd = rd;
8472 			continue;
8473 
8474 		case DIF_OP_STTS:
8475 			key = &tupregs[DIF_DTR_NREGS];
8476 			key[0].dttk_size = 0;
8477 			key[1].dttk_size = 0;
8478 			nkeys = 2;
8479 			scope = DIFV_SCOPE_THREAD;
8480 			break;
8481 
8482 		case DIF_OP_STGAA:
8483 		case DIF_OP_STTAA:
8484 			nkeys = ttop;
8485 
8486 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
8487 				key[nkeys++].dttk_size = 0;
8488 
8489 			key[nkeys++].dttk_size = 0;
8490 
8491 			if (op == DIF_OP_STTAA) {
8492 				scope = DIFV_SCOPE_THREAD;
8493 			} else {
8494 				scope = DIFV_SCOPE_GLOBAL;
8495 			}
8496 
8497 			break;
8498 
8499 		case DIF_OP_PUSHTR:
8500 			if (ttop == DIF_DTR_NREGS)
8501 				return;
8502 
8503 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
8504 				/*
8505 				 * If the register for the size of the "pushtr"
8506 				 * is %r0 (or the value is 0) and the type is
8507 				 * a string, we'll use the system-wide default
8508 				 * string size.
8509 				 */
8510 				tupregs[ttop++].dttk_size =
8511 				    dtrace_strsize_default;
8512 			} else {
8513 				if (srd == 0)
8514 					return;
8515 
8516 				tupregs[ttop++].dttk_size = sval;
8517 			}
8518 
8519 			break;
8520 
8521 		case DIF_OP_PUSHTV:
8522 			if (ttop == DIF_DTR_NREGS)
8523 				return;
8524 
8525 			tupregs[ttop++].dttk_size = 0;
8526 			break;
8527 
8528 		case DIF_OP_FLUSHTS:
8529 			ttop = 0;
8530 			break;
8531 
8532 		case DIF_OP_POPTS:
8533 			if (ttop != 0)
8534 				ttop--;
8535 			break;
8536 		}
8537 
8538 		sval = 0;
8539 		srd = 0;
8540 
8541 		if (nkeys == 0)
8542 			continue;
8543 
8544 		/*
8545 		 * We have a dynamic variable allocation; calculate its size.
8546 		 */
8547 		for (ksize = 0, i = 0; i < nkeys; i++)
8548 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
8549 
8550 		size = sizeof (dtrace_dynvar_t);
8551 		size += sizeof (dtrace_key_t) * (nkeys - 1);
8552 		size += ksize;
8553 
8554 		/*
8555 		 * Now we need to determine the size of the stored data.
8556 		 */
8557 		id = DIF_INSTR_VAR(instr);
8558 
8559 		for (i = 0; i < dp->dtdo_varlen; i++) {
8560 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
8561 
8562 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
8563 				size += v->dtdv_type.dtdt_size;
8564 				break;
8565 			}
8566 		}
8567 
8568 		if (i == dp->dtdo_varlen)
8569 			return;
8570 
8571 		/*
8572 		 * We have the size.  If this is larger than the chunk size
8573 		 * for our dynamic variable state, reset the chunk size.
8574 		 */
8575 		size = P2ROUNDUP(size, sizeof (uint64_t));
8576 
8577 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
8578 			vstate->dtvs_dynvars.dtds_chunksize = size;
8579 	}
8580 }
8581 
8582 static void
8583 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8584 {
8585 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
8586 	uint_t id;
8587 
8588 	ASSERT(MUTEX_HELD(&dtrace_lock));
8589 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
8590 
8591 	for (i = 0; i < dp->dtdo_varlen; i++) {
8592 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8593 		dtrace_statvar_t *svar, ***svarp;
8594 		size_t dsize = 0;
8595 		uint8_t scope = v->dtdv_scope;
8596 		int *np;
8597 
8598 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
8599 			continue;
8600 
8601 		id -= DIF_VAR_OTHER_UBASE;
8602 
8603 		switch (scope) {
8604 		case DIFV_SCOPE_THREAD:
8605 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
8606 				dtrace_difv_t *tlocals;
8607 
8608 				if ((ntlocals = (otlocals << 1)) == 0)
8609 					ntlocals = 1;
8610 
8611 				osz = otlocals * sizeof (dtrace_difv_t);
8612 				nsz = ntlocals * sizeof (dtrace_difv_t);
8613 
8614 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
8615 
8616 				if (osz != 0) {
8617 					bcopy(vstate->dtvs_tlocals,
8618 					    tlocals, osz);
8619 					kmem_free(vstate->dtvs_tlocals, osz);
8620 				}
8621 
8622 				vstate->dtvs_tlocals = tlocals;
8623 				vstate->dtvs_ntlocals = ntlocals;
8624 			}
8625 
8626 			vstate->dtvs_tlocals[id] = *v;
8627 			continue;
8628 
8629 		case DIFV_SCOPE_LOCAL:
8630 			np = &vstate->dtvs_nlocals;
8631 			svarp = &vstate->dtvs_locals;
8632 
8633 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
8634 				dsize = NCPU * (v->dtdv_type.dtdt_size +
8635 				    sizeof (uint64_t));
8636 			else
8637 				dsize = NCPU * sizeof (uint64_t);
8638 
8639 			break;
8640 
8641 		case DIFV_SCOPE_GLOBAL:
8642 			np = &vstate->dtvs_nglobals;
8643 			svarp = &vstate->dtvs_globals;
8644 
8645 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
8646 				dsize = v->dtdv_type.dtdt_size +
8647 				    sizeof (uint64_t);
8648 
8649 			break;
8650 
8651 		default:
8652 			ASSERT(0);
8653 		}
8654 
8655 		while (id >= (oldsvars = *np)) {
8656 			dtrace_statvar_t **statics;
8657 			int newsvars, oldsize, newsize;
8658 
8659 			if ((newsvars = (oldsvars << 1)) == 0)
8660 				newsvars = 1;
8661 
8662 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
8663 			newsize = newsvars * sizeof (dtrace_statvar_t *);
8664 
8665 			statics = kmem_zalloc(newsize, KM_SLEEP);
8666 
8667 			if (oldsize != 0) {
8668 				bcopy(*svarp, statics, oldsize);
8669 				kmem_free(*svarp, oldsize);
8670 			}
8671 
8672 			*svarp = statics;
8673 			*np = newsvars;
8674 		}
8675 
8676 		if ((svar = (*svarp)[id]) == NULL) {
8677 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
8678 			svar->dtsv_var = *v;
8679 
8680 			if ((svar->dtsv_size = dsize) != 0) {
8681 				svar->dtsv_data = (uint64_t)(uintptr_t)
8682 				    kmem_zalloc(dsize, KM_SLEEP);
8683 			}
8684 
8685 			(*svarp)[id] = svar;
8686 		}
8687 
8688 		svar->dtsv_refcnt++;
8689 	}
8690 
8691 	dtrace_difo_chunksize(dp, vstate);
8692 	dtrace_difo_hold(dp);
8693 }
8694 
8695 static dtrace_difo_t *
8696 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8697 {
8698 	dtrace_difo_t *new;
8699 	size_t sz;
8700 
8701 	ASSERT(dp->dtdo_buf != NULL);
8702 	ASSERT(dp->dtdo_refcnt != 0);
8703 
8704 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
8705 
8706 	ASSERT(dp->dtdo_buf != NULL);
8707 	sz = dp->dtdo_len * sizeof (dif_instr_t);
8708 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
8709 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
8710 	new->dtdo_len = dp->dtdo_len;
8711 
8712 	if (dp->dtdo_strtab != NULL) {
8713 		ASSERT(dp->dtdo_strlen != 0);
8714 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
8715 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
8716 		new->dtdo_strlen = dp->dtdo_strlen;
8717 	}
8718 
8719 	if (dp->dtdo_inttab != NULL) {
8720 		ASSERT(dp->dtdo_intlen != 0);
8721 		sz = dp->dtdo_intlen * sizeof (uint64_t);
8722 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
8723 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
8724 		new->dtdo_intlen = dp->dtdo_intlen;
8725 	}
8726 
8727 	if (dp->dtdo_vartab != NULL) {
8728 		ASSERT(dp->dtdo_varlen != 0);
8729 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
8730 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
8731 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
8732 		new->dtdo_varlen = dp->dtdo_varlen;
8733 	}
8734 
8735 	dtrace_difo_init(new, vstate);
8736 	return (new);
8737 }
8738 
8739 static void
8740 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8741 {
8742 	int i;
8743 
8744 	ASSERT(dp->dtdo_refcnt == 0);
8745 
8746 	for (i = 0; i < dp->dtdo_varlen; i++) {
8747 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8748 		dtrace_statvar_t *svar, **svarp;
8749 		uint_t id;
8750 		uint8_t scope = v->dtdv_scope;
8751 		int *np;
8752 
8753 		switch (scope) {
8754 		case DIFV_SCOPE_THREAD:
8755 			continue;
8756 
8757 		case DIFV_SCOPE_LOCAL:
8758 			np = &vstate->dtvs_nlocals;
8759 			svarp = vstate->dtvs_locals;
8760 			break;
8761 
8762 		case DIFV_SCOPE_GLOBAL:
8763 			np = &vstate->dtvs_nglobals;
8764 			svarp = vstate->dtvs_globals;
8765 			break;
8766 
8767 		default:
8768 			ASSERT(0);
8769 		}
8770 
8771 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
8772 			continue;
8773 
8774 		id -= DIF_VAR_OTHER_UBASE;
8775 		ASSERT(id < *np);
8776 
8777 		svar = svarp[id];
8778 		ASSERT(svar != NULL);
8779 		ASSERT(svar->dtsv_refcnt > 0);
8780 
8781 		if (--svar->dtsv_refcnt > 0)
8782 			continue;
8783 
8784 		if (svar->dtsv_size != 0) {
8785 			ASSERT(svar->dtsv_data != NULL);
8786 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
8787 			    svar->dtsv_size);
8788 		}
8789 
8790 		kmem_free(svar, sizeof (dtrace_statvar_t));
8791 		svarp[id] = NULL;
8792 	}
8793 
8794 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
8795 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
8796 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
8797 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
8798 
8799 	kmem_free(dp, sizeof (dtrace_difo_t));
8800 }
8801 
8802 static void
8803 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8804 {
8805 	int i;
8806 
8807 	ASSERT(MUTEX_HELD(&dtrace_lock));
8808 	ASSERT(dp->dtdo_refcnt != 0);
8809 
8810 	for (i = 0; i < dp->dtdo_varlen; i++) {
8811 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8812 
8813 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
8814 			continue;
8815 
8816 		ASSERT(dtrace_vtime_references > 0);
8817 		if (--dtrace_vtime_references == 0)
8818 			dtrace_vtime_disable();
8819 	}
8820 
8821 	if (--dp->dtdo_refcnt == 0)
8822 		dtrace_difo_destroy(dp, vstate);
8823 }
8824 
8825 /*
8826  * DTrace Format Functions
8827  */
8828 static uint16_t
8829 dtrace_format_add(dtrace_state_t *state, char *str)
8830 {
8831 	char *fmt, **new;
8832 	uint16_t ndx, len = strlen(str) + 1;
8833 
8834 	fmt = kmem_zalloc(len, KM_SLEEP);
8835 	bcopy(str, fmt, len);
8836 
8837 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
8838 		if (state->dts_formats[ndx] == NULL) {
8839 			state->dts_formats[ndx] = fmt;
8840 			return (ndx + 1);
8841 		}
8842 	}
8843 
8844 	if (state->dts_nformats == USHRT_MAX) {
8845 		/*
8846 		 * This is only likely if a denial-of-service attack is being
8847 		 * attempted.  As such, it's okay to fail silently here.
8848 		 */
8849 		kmem_free(fmt, len);
8850 		return (0);
8851 	}
8852 
8853 	/*
8854 	 * For simplicity, we always resize the formats array to be exactly the
8855 	 * number of formats.
8856 	 */
8857 	ndx = state->dts_nformats++;
8858 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
8859 
8860 	if (state->dts_formats != NULL) {
8861 		ASSERT(ndx != 0);
8862 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
8863 		kmem_free(state->dts_formats, ndx * sizeof (char *));
8864 	}
8865 
8866 	state->dts_formats = new;
8867 	state->dts_formats[ndx] = fmt;
8868 
8869 	return (ndx + 1);
8870 }
8871 
8872 static void
8873 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
8874 {
8875 	char *fmt;
8876 
8877 	ASSERT(state->dts_formats != NULL);
8878 	ASSERT(format <= state->dts_nformats);
8879 	ASSERT(state->dts_formats[format - 1] != NULL);
8880 
8881 	fmt = state->dts_formats[format - 1];
8882 	kmem_free(fmt, strlen(fmt) + 1);
8883 	state->dts_formats[format - 1] = NULL;
8884 }
8885 
8886 static void
8887 dtrace_format_destroy(dtrace_state_t *state)
8888 {
8889 	int i;
8890 
8891 	if (state->dts_nformats == 0) {
8892 		ASSERT(state->dts_formats == NULL);
8893 		return;
8894 	}
8895 
8896 	ASSERT(state->dts_formats != NULL);
8897 
8898 	for (i = 0; i < state->dts_nformats; i++) {
8899 		char *fmt = state->dts_formats[i];
8900 
8901 		if (fmt == NULL)
8902 			continue;
8903 
8904 		kmem_free(fmt, strlen(fmt) + 1);
8905 	}
8906 
8907 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
8908 	state->dts_nformats = 0;
8909 	state->dts_formats = NULL;
8910 }
8911 
8912 /*
8913  * DTrace Predicate Functions
8914  */
8915 static dtrace_predicate_t *
8916 dtrace_predicate_create(dtrace_difo_t *dp)
8917 {
8918 	dtrace_predicate_t *pred;
8919 
8920 	ASSERT(MUTEX_HELD(&dtrace_lock));
8921 	ASSERT(dp->dtdo_refcnt != 0);
8922 
8923 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
8924 	pred->dtp_difo = dp;
8925 	pred->dtp_refcnt = 1;
8926 
8927 	if (!dtrace_difo_cacheable(dp))
8928 		return (pred);
8929 
8930 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
8931 		/*
8932 		 * This is only theoretically possible -- we have had 2^32
8933 		 * cacheable predicates on this machine.  We cannot allow any
8934 		 * more predicates to become cacheable:  as unlikely as it is,
8935 		 * there may be a thread caching a (now stale) predicate cache
8936 		 * ID. (N.B.: the temptation is being successfully resisted to
8937 		 * have this cmn_err() "Holy shit -- we executed this code!")
8938 		 */
8939 		return (pred);
8940 	}
8941 
8942 	pred->dtp_cacheid = dtrace_predcache_id++;
8943 
8944 	return (pred);
8945 }
8946 
8947 static void
8948 dtrace_predicate_hold(dtrace_predicate_t *pred)
8949 {
8950 	ASSERT(MUTEX_HELD(&dtrace_lock));
8951 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
8952 	ASSERT(pred->dtp_refcnt > 0);
8953 
8954 	pred->dtp_refcnt++;
8955 }
8956 
8957 static void
8958 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
8959 {
8960 	dtrace_difo_t *dp = pred->dtp_difo;
8961 
8962 	ASSERT(MUTEX_HELD(&dtrace_lock));
8963 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
8964 	ASSERT(pred->dtp_refcnt > 0);
8965 
8966 	if (--pred->dtp_refcnt == 0) {
8967 		dtrace_difo_release(pred->dtp_difo, vstate);
8968 		kmem_free(pred, sizeof (dtrace_predicate_t));
8969 	}
8970 }
8971 
8972 /*
8973  * DTrace Action Description Functions
8974  */
8975 static dtrace_actdesc_t *
8976 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
8977     uint64_t uarg, uint64_t arg)
8978 {
8979 	dtrace_actdesc_t *act;
8980 
8981 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
8982 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
8983 
8984 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
8985 	act->dtad_kind = kind;
8986 	act->dtad_ntuple = ntuple;
8987 	act->dtad_uarg = uarg;
8988 	act->dtad_arg = arg;
8989 	act->dtad_refcnt = 1;
8990 
8991 	return (act);
8992 }
8993 
8994 static void
8995 dtrace_actdesc_hold(dtrace_actdesc_t *act)
8996 {
8997 	ASSERT(act->dtad_refcnt >= 1);
8998 	act->dtad_refcnt++;
8999 }
9000 
9001 static void
9002 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9003 {
9004 	dtrace_actkind_t kind = act->dtad_kind;
9005 	dtrace_difo_t *dp;
9006 
9007 	ASSERT(act->dtad_refcnt >= 1);
9008 
9009 	if (--act->dtad_refcnt != 0)
9010 		return;
9011 
9012 	if ((dp = act->dtad_difo) != NULL)
9013 		dtrace_difo_release(dp, vstate);
9014 
9015 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
9016 		char *str = (char *)(uintptr_t)act->dtad_arg;
9017 
9018 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9019 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9020 
9021 		if (str != NULL)
9022 			kmem_free(str, strlen(str) + 1);
9023 	}
9024 
9025 	kmem_free(act, sizeof (dtrace_actdesc_t));
9026 }
9027 
9028 /*
9029  * DTrace ECB Functions
9030  */
9031 static dtrace_ecb_t *
9032 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9033 {
9034 	dtrace_ecb_t *ecb;
9035 	dtrace_epid_t epid;
9036 
9037 	ASSERT(MUTEX_HELD(&dtrace_lock));
9038 
9039 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9040 	ecb->dte_predicate = NULL;
9041 	ecb->dte_probe = probe;
9042 
9043 	/*
9044 	 * The default size is the size of the default action: recording
9045 	 * the epid.
9046 	 */
9047 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9048 	ecb->dte_alignment = sizeof (dtrace_epid_t);
9049 
9050 	epid = state->dts_epid++;
9051 
9052 	if (epid - 1 >= state->dts_necbs) {
9053 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9054 		int necbs = state->dts_necbs << 1;
9055 
9056 		ASSERT(epid == state->dts_necbs + 1);
9057 
9058 		if (necbs == 0) {
9059 			ASSERT(oecbs == NULL);
9060 			necbs = 1;
9061 		}
9062 
9063 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9064 
9065 		if (oecbs != NULL)
9066 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9067 
9068 		dtrace_membar_producer();
9069 		state->dts_ecbs = ecbs;
9070 
9071 		if (oecbs != NULL) {
9072 			/*
9073 			 * If this state is active, we must dtrace_sync()
9074 			 * before we can free the old dts_ecbs array:  we're
9075 			 * coming in hot, and there may be active ring
9076 			 * buffer processing (which indexes into the dts_ecbs
9077 			 * array) on another CPU.
9078 			 */
9079 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9080 				dtrace_sync();
9081 
9082 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9083 		}
9084 
9085 		dtrace_membar_producer();
9086 		state->dts_necbs = necbs;
9087 	}
9088 
9089 	ecb->dte_state = state;
9090 
9091 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
9092 	dtrace_membar_producer();
9093 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9094 
9095 	return (ecb);
9096 }
9097 
9098 static void
9099 dtrace_ecb_enable(dtrace_ecb_t *ecb)
9100 {
9101 	dtrace_probe_t *probe = ecb->dte_probe;
9102 
9103 	ASSERT(MUTEX_HELD(&cpu_lock));
9104 	ASSERT(MUTEX_HELD(&dtrace_lock));
9105 	ASSERT(ecb->dte_next == NULL);
9106 
9107 	if (probe == NULL) {
9108 		/*
9109 		 * This is the NULL probe -- there's nothing to do.
9110 		 */
9111 		return;
9112 	}
9113 
9114 	if (probe->dtpr_ecb == NULL) {
9115 		dtrace_provider_t *prov = probe->dtpr_provider;
9116 
9117 		/*
9118 		 * We're the first ECB on this probe.
9119 		 */
9120 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9121 
9122 		if (ecb->dte_predicate != NULL)
9123 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9124 
9125 		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9126 		    probe->dtpr_id, probe->dtpr_arg);
9127 	} else {
9128 		/*
9129 		 * This probe is already active.  Swing the last pointer to
9130 		 * point to the new ECB, and issue a dtrace_sync() to assure
9131 		 * that all CPUs have seen the change.
9132 		 */
9133 		ASSERT(probe->dtpr_ecb_last != NULL);
9134 		probe->dtpr_ecb_last->dte_next = ecb;
9135 		probe->dtpr_ecb_last = ecb;
9136 		probe->dtpr_predcache = 0;
9137 
9138 		dtrace_sync();
9139 	}
9140 }
9141 
9142 static void
9143 dtrace_ecb_resize(dtrace_ecb_t *ecb)
9144 {
9145 	uint32_t maxalign = sizeof (dtrace_epid_t);
9146 	uint32_t align = sizeof (uint8_t), offs, diff;
9147 	dtrace_action_t *act;
9148 	int wastuple = 0;
9149 	uint32_t aggbase = UINT32_MAX;
9150 	dtrace_state_t *state = ecb->dte_state;
9151 
9152 	/*
9153 	 * If we record anything, we always record the epid.  (And we always
9154 	 * record it first.)
9155 	 */
9156 	offs = sizeof (dtrace_epid_t);
9157 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9158 
9159 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9160 		dtrace_recdesc_t *rec = &act->dta_rec;
9161 
9162 		if ((align = rec->dtrd_alignment) > maxalign)
9163 			maxalign = align;
9164 
9165 		if (!wastuple && act->dta_intuple) {
9166 			/*
9167 			 * This is the first record in a tuple.  Align the
9168 			 * offset to be at offset 4 in an 8-byte aligned
9169 			 * block.
9170 			 */
9171 			diff = offs + sizeof (dtrace_aggid_t);
9172 
9173 			if (diff = (diff & (sizeof (uint64_t) - 1)))
9174 				offs += sizeof (uint64_t) - diff;
9175 
9176 			aggbase = offs - sizeof (dtrace_aggid_t);
9177 			ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
9178 		}
9179 
9180 		/*LINTED*/
9181 		if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
9182 			/*
9183 			 * The current offset is not properly aligned; align it.
9184 			 */
9185 			offs += align - diff;
9186 		}
9187 
9188 		rec->dtrd_offset = offs;
9189 
9190 		if (offs + rec->dtrd_size > ecb->dte_needed) {
9191 			ecb->dte_needed = offs + rec->dtrd_size;
9192 
9193 			if (ecb->dte_needed > state->dts_needed)
9194 				state->dts_needed = ecb->dte_needed;
9195 		}
9196 
9197 		if (DTRACEACT_ISAGG(act->dta_kind)) {
9198 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9199 			dtrace_action_t *first = agg->dtag_first, *prev;
9200 
9201 			ASSERT(rec->dtrd_size != 0 && first != NULL);
9202 			ASSERT(wastuple);
9203 			ASSERT(aggbase != UINT32_MAX);
9204 
9205 			agg->dtag_base = aggbase;
9206 
9207 			while ((prev = first->dta_prev) != NULL &&
9208 			    DTRACEACT_ISAGG(prev->dta_kind)) {
9209 				agg = (dtrace_aggregation_t *)prev;
9210 				first = agg->dtag_first;
9211 			}
9212 
9213 			if (prev != NULL) {
9214 				offs = prev->dta_rec.dtrd_offset +
9215 				    prev->dta_rec.dtrd_size;
9216 			} else {
9217 				offs = sizeof (dtrace_epid_t);
9218 			}
9219 			wastuple = 0;
9220 		} else {
9221 			if (!act->dta_intuple)
9222 				ecb->dte_size = offs + rec->dtrd_size;
9223 
9224 			offs += rec->dtrd_size;
9225 		}
9226 
9227 		wastuple = act->dta_intuple;
9228 	}
9229 
9230 	if ((act = ecb->dte_action) != NULL &&
9231 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9232 	    ecb->dte_size == sizeof (dtrace_epid_t)) {
9233 		/*
9234 		 * If the size is still sizeof (dtrace_epid_t), then all
9235 		 * actions store no data; set the size to 0.
9236 		 */
9237 		ecb->dte_alignment = maxalign;
9238 		ecb->dte_size = 0;
9239 
9240 		/*
9241 		 * If the needed space is still sizeof (dtrace_epid_t), then
9242 		 * all actions need no additional space; set the needed
9243 		 * size to 0.
9244 		 */
9245 		if (ecb->dte_needed == sizeof (dtrace_epid_t))
9246 			ecb->dte_needed = 0;
9247 
9248 		return;
9249 	}
9250 
9251 	/*
9252 	 * Set our alignment, and make sure that the dte_size and dte_needed
9253 	 * are aligned to the size of an EPID.
9254 	 */
9255 	ecb->dte_alignment = maxalign;
9256 	ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
9257 	    ~(sizeof (dtrace_epid_t) - 1);
9258 	ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
9259 	    ~(sizeof (dtrace_epid_t) - 1);
9260 	ASSERT(ecb->dte_size <= ecb->dte_needed);
9261 }
9262 
9263 static dtrace_action_t *
9264 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9265 {
9266 	dtrace_aggregation_t *agg;
9267 	size_t size = sizeof (uint64_t);
9268 	int ntuple = desc->dtad_ntuple;
9269 	dtrace_action_t *act;
9270 	dtrace_recdesc_t *frec;
9271 	dtrace_aggid_t aggid;
9272 	dtrace_state_t *state = ecb->dte_state;
9273 
9274 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
9275 	agg->dtag_ecb = ecb;
9276 
9277 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
9278 
9279 	switch (desc->dtad_kind) {
9280 	case DTRACEAGG_MIN:
9281 		agg->dtag_initial = INT64_MAX;
9282 		agg->dtag_aggregate = dtrace_aggregate_min;
9283 		break;
9284 
9285 	case DTRACEAGG_MAX:
9286 		agg->dtag_initial = INT64_MIN;
9287 		agg->dtag_aggregate = dtrace_aggregate_max;
9288 		break;
9289 
9290 	case DTRACEAGG_COUNT:
9291 		agg->dtag_aggregate = dtrace_aggregate_count;
9292 		break;
9293 
9294 	case DTRACEAGG_QUANTIZE:
9295 		agg->dtag_aggregate = dtrace_aggregate_quantize;
9296 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
9297 		    sizeof (uint64_t);
9298 		break;
9299 
9300 	case DTRACEAGG_LQUANTIZE: {
9301 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
9302 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
9303 
9304 		agg->dtag_initial = desc->dtad_arg;
9305 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
9306 
9307 		if (step == 0 || levels == 0)
9308 			goto err;
9309 
9310 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
9311 		break;
9312 	}
9313 
9314 	case DTRACEAGG_AVG:
9315 		agg->dtag_aggregate = dtrace_aggregate_avg;
9316 		size = sizeof (uint64_t) * 2;
9317 		break;
9318 
9319 	case DTRACEAGG_STDDEV:
9320 		agg->dtag_aggregate = dtrace_aggregate_stddev;
9321 		size = sizeof (uint64_t) * 4;
9322 		break;
9323 
9324 	case DTRACEAGG_SUM:
9325 		agg->dtag_aggregate = dtrace_aggregate_sum;
9326 		break;
9327 
9328 	default:
9329 		goto err;
9330 	}
9331 
9332 	agg->dtag_action.dta_rec.dtrd_size = size;
9333 
9334 	if (ntuple == 0)
9335 		goto err;
9336 
9337 	/*
9338 	 * We must make sure that we have enough actions for the n-tuple.
9339 	 */
9340 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
9341 		if (DTRACEACT_ISAGG(act->dta_kind))
9342 			break;
9343 
9344 		if (--ntuple == 0) {
9345 			/*
9346 			 * This is the action with which our n-tuple begins.
9347 			 */
9348 			agg->dtag_first = act;
9349 			goto success;
9350 		}
9351 	}
9352 
9353 	/*
9354 	 * This n-tuple is short by ntuple elements.  Return failure.
9355 	 */
9356 	ASSERT(ntuple != 0);
9357 err:
9358 	kmem_free(agg, sizeof (dtrace_aggregation_t));
9359 	return (NULL);
9360 
9361 success:
9362 	/*
9363 	 * If the last action in the tuple has a size of zero, it's actually
9364 	 * an expression argument for the aggregating action.
9365 	 */
9366 	ASSERT(ecb->dte_action_last != NULL);
9367 	act = ecb->dte_action_last;
9368 
9369 	if (act->dta_kind == DTRACEACT_DIFEXPR) {
9370 		ASSERT(act->dta_difo != NULL);
9371 
9372 		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
9373 			agg->dtag_hasarg = 1;
9374 	}
9375 
9376 	/*
9377 	 * We need to allocate an id for this aggregation.
9378 	 */
9379 	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
9380 	    VM_BESTFIT | VM_SLEEP);
9381 
9382 	if (aggid - 1 >= state->dts_naggregations) {
9383 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
9384 		dtrace_aggregation_t **aggs;
9385 		int naggs = state->dts_naggregations << 1;
9386 		int onaggs = state->dts_naggregations;
9387 
9388 		ASSERT(aggid == state->dts_naggregations + 1);
9389 
9390 		if (naggs == 0) {
9391 			ASSERT(oaggs == NULL);
9392 			naggs = 1;
9393 		}
9394 
9395 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
9396 
9397 		if (oaggs != NULL) {
9398 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
9399 			kmem_free(oaggs, onaggs * sizeof (*aggs));
9400 		}
9401 
9402 		state->dts_aggregations = aggs;
9403 		state->dts_naggregations = naggs;
9404 	}
9405 
9406 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
9407 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
9408 
9409 	frec = &agg->dtag_first->dta_rec;
9410 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
9411 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
9412 
9413 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
9414 		ASSERT(!act->dta_intuple);
9415 		act->dta_intuple = 1;
9416 	}
9417 
9418 	return (&agg->dtag_action);
9419 }
9420 
9421 static void
9422 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
9423 {
9424 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9425 	dtrace_state_t *state = ecb->dte_state;
9426 	dtrace_aggid_t aggid = agg->dtag_id;
9427 
9428 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
9429 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
9430 
9431 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
9432 	state->dts_aggregations[aggid - 1] = NULL;
9433 
9434 	kmem_free(agg, sizeof (dtrace_aggregation_t));
9435 }
9436 
9437 static int
9438 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9439 {
9440 	dtrace_action_t *action, *last;
9441 	dtrace_difo_t *dp = desc->dtad_difo;
9442 	uint32_t size = 0, align = sizeof (uint8_t), mask;
9443 	uint16_t format = 0;
9444 	dtrace_recdesc_t *rec;
9445 	dtrace_state_t *state = ecb->dte_state;
9446 	dtrace_optval_t *opt = state->dts_options, nframes, strsize;
9447 	uint64_t arg = desc->dtad_arg;
9448 
9449 	ASSERT(MUTEX_HELD(&dtrace_lock));
9450 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
9451 
9452 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
9453 		/*
9454 		 * If this is an aggregating action, there must be neither
9455 		 * a speculate nor a commit on the action chain.
9456 		 */
9457 		dtrace_action_t *act;
9458 
9459 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9460 			if (act->dta_kind == DTRACEACT_COMMIT)
9461 				return (EINVAL);
9462 
9463 			if (act->dta_kind == DTRACEACT_SPECULATE)
9464 				return (EINVAL);
9465 		}
9466 
9467 		action = dtrace_ecb_aggregation_create(ecb, desc);
9468 
9469 		if (action == NULL)
9470 			return (EINVAL);
9471 	} else {
9472 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
9473 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
9474 		    dp != NULL && dp->dtdo_destructive)) {
9475 			state->dts_destructive = 1;
9476 		}
9477 
9478 		switch (desc->dtad_kind) {
9479 		case DTRACEACT_PRINTF:
9480 		case DTRACEACT_PRINTA:
9481 		case DTRACEACT_SYSTEM:
9482 		case DTRACEACT_FREOPEN:
9483 			/*
9484 			 * We know that our arg is a string -- turn it into a
9485 			 * format.
9486 			 */
9487 			if (arg == NULL) {
9488 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA);
9489 				format = 0;
9490 			} else {
9491 				ASSERT(arg != NULL);
9492 				ASSERT(arg > KERNELBASE);
9493 				format = dtrace_format_add(state,
9494 				    (char *)(uintptr_t)arg);
9495 			}
9496 
9497 			/*FALLTHROUGH*/
9498 		case DTRACEACT_LIBACT:
9499 		case DTRACEACT_DIFEXPR:
9500 			if (dp == NULL)
9501 				return (EINVAL);
9502 
9503 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
9504 				break;
9505 
9506 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
9507 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9508 					return (EINVAL);
9509 
9510 				size = opt[DTRACEOPT_STRSIZE];
9511 			}
9512 
9513 			break;
9514 
9515 		case DTRACEACT_STACK:
9516 			if ((nframes = arg) == 0) {
9517 				nframes = opt[DTRACEOPT_STACKFRAMES];
9518 				ASSERT(nframes > 0);
9519 				arg = nframes;
9520 			}
9521 
9522 			size = nframes * sizeof (pc_t);
9523 			break;
9524 
9525 		case DTRACEACT_JSTACK:
9526 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
9527 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
9528 
9529 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
9530 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
9531 
9532 			arg = DTRACE_USTACK_ARG(nframes, strsize);
9533 
9534 			/*FALLTHROUGH*/
9535 		case DTRACEACT_USTACK:
9536 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
9537 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
9538 				strsize = DTRACE_USTACK_STRSIZE(arg);
9539 				nframes = opt[DTRACEOPT_USTACKFRAMES];
9540 				ASSERT(nframes > 0);
9541 				arg = DTRACE_USTACK_ARG(nframes, strsize);
9542 			}
9543 
9544 			/*
9545 			 * Save a slot for the pid.
9546 			 */
9547 			size = (nframes + 1) * sizeof (uint64_t);
9548 			size += DTRACE_USTACK_STRSIZE(arg);
9549 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
9550 
9551 			break;
9552 
9553 		case DTRACEACT_SYM:
9554 		case DTRACEACT_MOD:
9555 			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
9556 			    sizeof (uint64_t)) ||
9557 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9558 				return (EINVAL);
9559 			break;
9560 
9561 		case DTRACEACT_USYM:
9562 		case DTRACEACT_UMOD:
9563 		case DTRACEACT_UADDR:
9564 			if (dp == NULL ||
9565 			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
9566 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9567 				return (EINVAL);
9568 
9569 			/*
9570 			 * We have a slot for the pid, plus a slot for the
9571 			 * argument.  To keep things simple (aligned with
9572 			 * bitness-neutral sizing), we store each as a 64-bit
9573 			 * quantity.
9574 			 */
9575 			size = 2 * sizeof (uint64_t);
9576 			break;
9577 
9578 		case DTRACEACT_STOP:
9579 		case DTRACEACT_BREAKPOINT:
9580 		case DTRACEACT_PANIC:
9581 			break;
9582 
9583 		case DTRACEACT_CHILL:
9584 		case DTRACEACT_DISCARD:
9585 		case DTRACEACT_RAISE:
9586 			if (dp == NULL)
9587 				return (EINVAL);
9588 			break;
9589 
9590 		case DTRACEACT_EXIT:
9591 			if (dp == NULL ||
9592 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
9593 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
9594 				return (EINVAL);
9595 			break;
9596 
9597 		case DTRACEACT_SPECULATE:
9598 			if (ecb->dte_size > sizeof (dtrace_epid_t))
9599 				return (EINVAL);
9600 
9601 			if (dp == NULL)
9602 				return (EINVAL);
9603 
9604 			state->dts_speculates = 1;
9605 			break;
9606 
9607 		case DTRACEACT_COMMIT: {
9608 			dtrace_action_t *act = ecb->dte_action;
9609 
9610 			for (; act != NULL; act = act->dta_next) {
9611 				if (act->dta_kind == DTRACEACT_COMMIT)
9612 					return (EINVAL);
9613 			}
9614 
9615 			if (dp == NULL)
9616 				return (EINVAL);
9617 			break;
9618 		}
9619 
9620 		default:
9621 			return (EINVAL);
9622 		}
9623 
9624 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
9625 			/*
9626 			 * If this is a data-storing action or a speculate,
9627 			 * we must be sure that there isn't a commit on the
9628 			 * action chain.
9629 			 */
9630 			dtrace_action_t *act = ecb->dte_action;
9631 
9632 			for (; act != NULL; act = act->dta_next) {
9633 				if (act->dta_kind == DTRACEACT_COMMIT)
9634 					return (EINVAL);
9635 			}
9636 		}
9637 
9638 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
9639 		action->dta_rec.dtrd_size = size;
9640 	}
9641 
9642 	action->dta_refcnt = 1;
9643 	rec = &action->dta_rec;
9644 	size = rec->dtrd_size;
9645 
9646 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
9647 		if (!(size & mask)) {
9648 			align = mask + 1;
9649 			break;
9650 		}
9651 	}
9652 
9653 	action->dta_kind = desc->dtad_kind;
9654 
9655 	if ((action->dta_difo = dp) != NULL)
9656 		dtrace_difo_hold(dp);
9657 
9658 	rec->dtrd_action = action->dta_kind;
9659 	rec->dtrd_arg = arg;
9660 	rec->dtrd_uarg = desc->dtad_uarg;
9661 	rec->dtrd_alignment = (uint16_t)align;
9662 	rec->dtrd_format = format;
9663 
9664 	if ((last = ecb->dte_action_last) != NULL) {
9665 		ASSERT(ecb->dte_action != NULL);
9666 		action->dta_prev = last;
9667 		last->dta_next = action;
9668 	} else {
9669 		ASSERT(ecb->dte_action == NULL);
9670 		ecb->dte_action = action;
9671 	}
9672 
9673 	ecb->dte_action_last = action;
9674 
9675 	return (0);
9676 }
9677 
9678 static void
9679 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
9680 {
9681 	dtrace_action_t *act = ecb->dte_action, *next;
9682 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
9683 	dtrace_difo_t *dp;
9684 	uint16_t format;
9685 
9686 	if (act != NULL && act->dta_refcnt > 1) {
9687 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
9688 		act->dta_refcnt--;
9689 	} else {
9690 		for (; act != NULL; act = next) {
9691 			next = act->dta_next;
9692 			ASSERT(next != NULL || act == ecb->dte_action_last);
9693 			ASSERT(act->dta_refcnt == 1);
9694 
9695 			if ((format = act->dta_rec.dtrd_format) != 0)
9696 				dtrace_format_remove(ecb->dte_state, format);
9697 
9698 			if ((dp = act->dta_difo) != NULL)
9699 				dtrace_difo_release(dp, vstate);
9700 
9701 			if (DTRACEACT_ISAGG(act->dta_kind)) {
9702 				dtrace_ecb_aggregation_destroy(ecb, act);
9703 			} else {
9704 				kmem_free(act, sizeof (dtrace_action_t));
9705 			}
9706 		}
9707 	}
9708 
9709 	ecb->dte_action = NULL;
9710 	ecb->dte_action_last = NULL;
9711 	ecb->dte_size = sizeof (dtrace_epid_t);
9712 }
9713 
9714 static void
9715 dtrace_ecb_disable(dtrace_ecb_t *ecb)
9716 {
9717 	/*
9718 	 * We disable the ECB by removing it from its probe.
9719 	 */
9720 	dtrace_ecb_t *pecb, *prev = NULL;
9721 	dtrace_probe_t *probe = ecb->dte_probe;
9722 
9723 	ASSERT(MUTEX_HELD(&dtrace_lock));
9724 
9725 	if (probe == NULL) {
9726 		/*
9727 		 * This is the NULL probe; there is nothing to disable.
9728 		 */
9729 		return;
9730 	}
9731 
9732 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
9733 		if (pecb == ecb)
9734 			break;
9735 		prev = pecb;
9736 	}
9737 
9738 	ASSERT(pecb != NULL);
9739 
9740 	if (prev == NULL) {
9741 		probe->dtpr_ecb = ecb->dte_next;
9742 	} else {
9743 		prev->dte_next = ecb->dte_next;
9744 	}
9745 
9746 	if (ecb == probe->dtpr_ecb_last) {
9747 		ASSERT(ecb->dte_next == NULL);
9748 		probe->dtpr_ecb_last = prev;
9749 	}
9750 
9751 	/*
9752 	 * The ECB has been disconnected from the probe; now sync to assure
9753 	 * that all CPUs have seen the change before returning.
9754 	 */
9755 	dtrace_sync();
9756 
9757 	if (probe->dtpr_ecb == NULL) {
9758 		/*
9759 		 * That was the last ECB on the probe; clear the predicate
9760 		 * cache ID for the probe, disable it and sync one more time
9761 		 * to assure that we'll never hit it again.
9762 		 */
9763 		dtrace_provider_t *prov = probe->dtpr_provider;
9764 
9765 		ASSERT(ecb->dte_next == NULL);
9766 		ASSERT(probe->dtpr_ecb_last == NULL);
9767 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
9768 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
9769 		    probe->dtpr_id, probe->dtpr_arg);
9770 		dtrace_sync();
9771 	} else {
9772 		/*
9773 		 * There is at least one ECB remaining on the probe.  If there
9774 		 * is _exactly_ one, set the probe's predicate cache ID to be
9775 		 * the predicate cache ID of the remaining ECB.
9776 		 */
9777 		ASSERT(probe->dtpr_ecb_last != NULL);
9778 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
9779 
9780 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
9781 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
9782 
9783 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
9784 
9785 			if (p != NULL)
9786 				probe->dtpr_predcache = p->dtp_cacheid;
9787 		}
9788 
9789 		ecb->dte_next = NULL;
9790 	}
9791 }
9792 
9793 static void
9794 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
9795 {
9796 	dtrace_state_t *state = ecb->dte_state;
9797 	dtrace_vstate_t *vstate = &state->dts_vstate;
9798 	dtrace_predicate_t *pred;
9799 	dtrace_epid_t epid = ecb->dte_epid;
9800 
9801 	ASSERT(MUTEX_HELD(&dtrace_lock));
9802 	ASSERT(ecb->dte_next == NULL);
9803 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
9804 
9805 	if ((pred = ecb->dte_predicate) != NULL)
9806 		dtrace_predicate_release(pred, vstate);
9807 
9808 	dtrace_ecb_action_remove(ecb);
9809 
9810 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
9811 	state->dts_ecbs[epid - 1] = NULL;
9812 
9813 	kmem_free(ecb, sizeof (dtrace_ecb_t));
9814 }
9815 
9816 static dtrace_ecb_t *
9817 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
9818     dtrace_enabling_t *enab)
9819 {
9820 	dtrace_ecb_t *ecb;
9821 	dtrace_predicate_t *pred;
9822 	dtrace_actdesc_t *act;
9823 	dtrace_provider_t *prov;
9824 	dtrace_ecbdesc_t *desc = enab->dten_current;
9825 
9826 	ASSERT(MUTEX_HELD(&dtrace_lock));
9827 	ASSERT(state != NULL);
9828 
9829 	ecb = dtrace_ecb_add(state, probe);
9830 	ecb->dte_uarg = desc->dted_uarg;
9831 
9832 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
9833 		dtrace_predicate_hold(pred);
9834 		ecb->dte_predicate = pred;
9835 	}
9836 
9837 	if (probe != NULL) {
9838 		/*
9839 		 * If the provider shows more leg than the consumer is old
9840 		 * enough to see, we need to enable the appropriate implicit
9841 		 * predicate bits to prevent the ecb from activating at
9842 		 * revealing times.
9843 		 *
9844 		 * Providers specifying DTRACE_PRIV_USER at register time
9845 		 * are stating that they need the /proc-style privilege
9846 		 * model to be enforced, and this is what DTRACE_COND_OWNER
9847 		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
9848 		 */
9849 		prov = probe->dtpr_provider;
9850 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
9851 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
9852 			ecb->dte_cond |= DTRACE_COND_OWNER;
9853 
9854 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
9855 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
9856 			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
9857 
9858 		/*
9859 		 * If the provider shows us kernel innards and the user
9860 		 * is lacking sufficient privilege, enable the
9861 		 * DTRACE_COND_USERMODE implicit predicate.
9862 		 */
9863 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
9864 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
9865 			ecb->dte_cond |= DTRACE_COND_USERMODE;
9866 	}
9867 
9868 	if (dtrace_ecb_create_cache != NULL) {
9869 		/*
9870 		 * If we have a cached ecb, we'll use its action list instead
9871 		 * of creating our own (saving both time and space).
9872 		 */
9873 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
9874 		dtrace_action_t *act = cached->dte_action;
9875 
9876 		if (act != NULL) {
9877 			ASSERT(act->dta_refcnt > 0);
9878 			act->dta_refcnt++;
9879 			ecb->dte_action = act;
9880 			ecb->dte_action_last = cached->dte_action_last;
9881 			ecb->dte_needed = cached->dte_needed;
9882 			ecb->dte_size = cached->dte_size;
9883 			ecb->dte_alignment = cached->dte_alignment;
9884 		}
9885 
9886 		return (ecb);
9887 	}
9888 
9889 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
9890 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
9891 			dtrace_ecb_destroy(ecb);
9892 			return (NULL);
9893 		}
9894 	}
9895 
9896 	dtrace_ecb_resize(ecb);
9897 
9898 	return (dtrace_ecb_create_cache = ecb);
9899 }
9900 
9901 static int
9902 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
9903 {
9904 	dtrace_ecb_t *ecb;
9905 	dtrace_enabling_t *enab = arg;
9906 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
9907 
9908 	ASSERT(state != NULL);
9909 
9910 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
9911 		/*
9912 		 * This probe was created in a generation for which this
9913 		 * enabling has previously created ECBs; we don't want to
9914 		 * enable it again, so just kick out.
9915 		 */
9916 		return (DTRACE_MATCH_NEXT);
9917 	}
9918 
9919 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
9920 		return (DTRACE_MATCH_DONE);
9921 
9922 	dtrace_ecb_enable(ecb);
9923 	return (DTRACE_MATCH_NEXT);
9924 }
9925 
9926 static dtrace_ecb_t *
9927 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
9928 {
9929 	dtrace_ecb_t *ecb;
9930 
9931 	ASSERT(MUTEX_HELD(&dtrace_lock));
9932 
9933 	if (id == 0 || id > state->dts_necbs)
9934 		return (NULL);
9935 
9936 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
9937 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
9938 
9939 	return (state->dts_ecbs[id - 1]);
9940 }
9941 
9942 static dtrace_aggregation_t *
9943 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
9944 {
9945 	dtrace_aggregation_t *agg;
9946 
9947 	ASSERT(MUTEX_HELD(&dtrace_lock));
9948 
9949 	if (id == 0 || id > state->dts_naggregations)
9950 		return (NULL);
9951 
9952 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
9953 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
9954 	    agg->dtag_id == id);
9955 
9956 	return (state->dts_aggregations[id - 1]);
9957 }
9958 
9959 /*
9960  * DTrace Buffer Functions
9961  *
9962  * The following functions manipulate DTrace buffers.  Most of these functions
9963  * are called in the context of establishing or processing consumer state;
9964  * exceptions are explicitly noted.
9965  */
9966 
9967 /*
9968  * Note:  called from cross call context.  This function switches the two
9969  * buffers on a given CPU.  The atomicity of this operation is assured by
9970  * disabling interrupts while the actual switch takes place; the disabling of
9971  * interrupts serializes the execution with any execution of dtrace_probe() on
9972  * the same CPU.
9973  */
9974 static void
9975 dtrace_buffer_switch(dtrace_buffer_t *buf)
9976 {
9977 	caddr_t tomax = buf->dtb_tomax;
9978 	caddr_t xamot = buf->dtb_xamot;
9979 	dtrace_icookie_t cookie;
9980 
9981 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
9982 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
9983 
9984 	cookie = dtrace_interrupt_disable();
9985 	buf->dtb_tomax = xamot;
9986 	buf->dtb_xamot = tomax;
9987 	buf->dtb_xamot_drops = buf->dtb_drops;
9988 	buf->dtb_xamot_offset = buf->dtb_offset;
9989 	buf->dtb_xamot_errors = buf->dtb_errors;
9990 	buf->dtb_xamot_flags = buf->dtb_flags;
9991 	buf->dtb_offset = 0;
9992 	buf->dtb_drops = 0;
9993 	buf->dtb_errors = 0;
9994 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
9995 	dtrace_interrupt_enable(cookie);
9996 }
9997 
9998 /*
9999  * Note:  called from cross call context.  This function activates a buffer
10000  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10001  * is guaranteed by the disabling of interrupts.
10002  */
10003 static void
10004 dtrace_buffer_activate(dtrace_state_t *state)
10005 {
10006 	dtrace_buffer_t *buf;
10007 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
10008 
10009 	buf = &state->dts_buffer[CPU->cpu_id];
10010 
10011 	if (buf->dtb_tomax != NULL) {
10012 		/*
10013 		 * We might like to assert that the buffer is marked inactive,
10014 		 * but this isn't necessarily true:  the buffer for the CPU
10015 		 * that processes the BEGIN probe has its buffer activated
10016 		 * manually.  In this case, we take the (harmless) action
10017 		 * re-clearing the bit INACTIVE bit.
10018 		 */
10019 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10020 	}
10021 
10022 	dtrace_interrupt_enable(cookie);
10023 }
10024 
10025 static int
10026 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10027     processorid_t cpu)
10028 {
10029 	cpu_t *cp;
10030 	dtrace_buffer_t *buf;
10031 
10032 	ASSERT(MUTEX_HELD(&cpu_lock));
10033 	ASSERT(MUTEX_HELD(&dtrace_lock));
10034 
10035 	if (size > dtrace_nonroot_maxsize &&
10036 	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10037 		return (EFBIG);
10038 
10039 	cp = cpu_list;
10040 
10041 	do {
10042 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10043 			continue;
10044 
10045 		buf = &bufs[cp->cpu_id];
10046 
10047 		/*
10048 		 * If there is already a buffer allocated for this CPU, it
10049 		 * is only possible that this is a DR event.  In this case,
10050 		 * the buffer size must match our specified size.
10051 		 */
10052 		if (buf->dtb_tomax != NULL) {
10053 			ASSERT(buf->dtb_size == size);
10054 			continue;
10055 		}
10056 
10057 		ASSERT(buf->dtb_xamot == NULL);
10058 
10059 		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10060 			goto err;
10061 
10062 		buf->dtb_size = size;
10063 		buf->dtb_flags = flags;
10064 		buf->dtb_offset = 0;
10065 		buf->dtb_drops = 0;
10066 
10067 		if (flags & DTRACEBUF_NOSWITCH)
10068 			continue;
10069 
10070 		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10071 			goto err;
10072 	} while ((cp = cp->cpu_next) != cpu_list);
10073 
10074 	return (0);
10075 
10076 err:
10077 	cp = cpu_list;
10078 
10079 	do {
10080 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10081 			continue;
10082 
10083 		buf = &bufs[cp->cpu_id];
10084 
10085 		if (buf->dtb_xamot != NULL) {
10086 			ASSERT(buf->dtb_tomax != NULL);
10087 			ASSERT(buf->dtb_size == size);
10088 			kmem_free(buf->dtb_xamot, size);
10089 		}
10090 
10091 		if (buf->dtb_tomax != NULL) {
10092 			ASSERT(buf->dtb_size == size);
10093 			kmem_free(buf->dtb_tomax, size);
10094 		}
10095 
10096 		buf->dtb_tomax = NULL;
10097 		buf->dtb_xamot = NULL;
10098 		buf->dtb_size = 0;
10099 	} while ((cp = cp->cpu_next) != cpu_list);
10100 
10101 	return (ENOMEM);
10102 }
10103 
10104 /*
10105  * Note:  called from probe context.  This function just increments the drop
10106  * count on a buffer.  It has been made a function to allow for the
10107  * possibility of understanding the source of mysterious drop counts.  (A
10108  * problem for which one may be particularly disappointed that DTrace cannot
10109  * be used to understand DTrace.)
10110  */
10111 static void
10112 dtrace_buffer_drop(dtrace_buffer_t *buf)
10113 {
10114 	buf->dtb_drops++;
10115 }
10116 
10117 /*
10118  * Note:  called from probe context.  This function is called to reserve space
10119  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10120  * mstate.  Returns the new offset in the buffer, or a negative value if an
10121  * error has occurred.
10122  */
10123 static intptr_t
10124 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10125     dtrace_state_t *state, dtrace_mstate_t *mstate)
10126 {
10127 	intptr_t offs = buf->dtb_offset, soffs;
10128 	intptr_t woffs;
10129 	caddr_t tomax;
10130 	size_t total;
10131 
10132 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
10133 		return (-1);
10134 
10135 	if ((tomax = buf->dtb_tomax) == NULL) {
10136 		dtrace_buffer_drop(buf);
10137 		return (-1);
10138 	}
10139 
10140 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
10141 		while (offs & (align - 1)) {
10142 			/*
10143 			 * Assert that our alignment is off by a number which
10144 			 * is itself sizeof (uint32_t) aligned.
10145 			 */
10146 			ASSERT(!((align - (offs & (align - 1))) &
10147 			    (sizeof (uint32_t) - 1)));
10148 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10149 			offs += sizeof (uint32_t);
10150 		}
10151 
10152 		if ((soffs = offs + needed) > buf->dtb_size) {
10153 			dtrace_buffer_drop(buf);
10154 			return (-1);
10155 		}
10156 
10157 		if (mstate == NULL)
10158 			return (offs);
10159 
10160 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
10161 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
10162 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10163 
10164 		return (offs);
10165 	}
10166 
10167 	if (buf->dtb_flags & DTRACEBUF_FILL) {
10168 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
10169 		    (buf->dtb_flags & DTRACEBUF_FULL))
10170 			return (-1);
10171 		goto out;
10172 	}
10173 
10174 	total = needed + (offs & (align - 1));
10175 
10176 	/*
10177 	 * For a ring buffer, life is quite a bit more complicated.  Before
10178 	 * we can store any padding, we need to adjust our wrapping offset.
10179 	 * (If we've never before wrapped or we're not about to, no adjustment
10180 	 * is required.)
10181 	 */
10182 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
10183 	    offs + total > buf->dtb_size) {
10184 		woffs = buf->dtb_xamot_offset;
10185 
10186 		if (offs + total > buf->dtb_size) {
10187 			/*
10188 			 * We can't fit in the end of the buffer.  First, a
10189 			 * sanity check that we can fit in the buffer at all.
10190 			 */
10191 			if (total > buf->dtb_size) {
10192 				dtrace_buffer_drop(buf);
10193 				return (-1);
10194 			}
10195 
10196 			/*
10197 			 * We're going to be storing at the top of the buffer,
10198 			 * so now we need to deal with the wrapped offset.  We
10199 			 * only reset our wrapped offset to 0 if it is
10200 			 * currently greater than the current offset.  If it
10201 			 * is less than the current offset, it is because a
10202 			 * previous allocation induced a wrap -- but the
10203 			 * allocation didn't subsequently take the space due
10204 			 * to an error or false predicate evaluation.  In this
10205 			 * case, we'll just leave the wrapped offset alone: if
10206 			 * the wrapped offset hasn't been advanced far enough
10207 			 * for this allocation, it will be adjusted in the
10208 			 * lower loop.
10209 			 */
10210 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
10211 				if (woffs >= offs)
10212 					woffs = 0;
10213 			} else {
10214 				woffs = 0;
10215 			}
10216 
10217 			/*
10218 			 * Now we know that we're going to be storing to the
10219 			 * top of the buffer and that there is room for us
10220 			 * there.  We need to clear the buffer from the current
10221 			 * offset to the end (there may be old gunk there).
10222 			 */
10223 			while (offs < buf->dtb_size)
10224 				tomax[offs++] = 0;
10225 
10226 			/*
10227 			 * We need to set our offset to zero.  And because we
10228 			 * are wrapping, we need to set the bit indicating as
10229 			 * much.  We can also adjust our needed space back
10230 			 * down to the space required by the ECB -- we know
10231 			 * that the top of the buffer is aligned.
10232 			 */
10233 			offs = 0;
10234 			total = needed;
10235 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
10236 		} else {
10237 			/*
10238 			 * There is room for us in the buffer, so we simply
10239 			 * need to check the wrapped offset.
10240 			 */
10241 			if (woffs < offs) {
10242 				/*
10243 				 * The wrapped offset is less than the offset.
10244 				 * This can happen if we allocated buffer space
10245 				 * that induced a wrap, but then we didn't
10246 				 * subsequently take the space due to an error
10247 				 * or false predicate evaluation.  This is
10248 				 * okay; we know that _this_ allocation isn't
10249 				 * going to induce a wrap.  We still can't
10250 				 * reset the wrapped offset to be zero,
10251 				 * however: the space may have been trashed in
10252 				 * the previous failed probe attempt.  But at
10253 				 * least the wrapped offset doesn't need to
10254 				 * be adjusted at all...
10255 				 */
10256 				goto out;
10257 			}
10258 		}
10259 
10260 		while (offs + total > woffs) {
10261 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
10262 			size_t size;
10263 
10264 			if (epid == DTRACE_EPIDNONE) {
10265 				size = sizeof (uint32_t);
10266 			} else {
10267 				ASSERT(epid <= state->dts_necbs);
10268 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
10269 
10270 				size = state->dts_ecbs[epid - 1]->dte_size;
10271 			}
10272 
10273 			ASSERT(woffs + size <= buf->dtb_size);
10274 			ASSERT(size != 0);
10275 
10276 			if (woffs + size == buf->dtb_size) {
10277 				/*
10278 				 * We've reached the end of the buffer; we want
10279 				 * to set the wrapped offset to 0 and break
10280 				 * out.  However, if the offs is 0, then we're
10281 				 * in a strange edge-condition:  the amount of
10282 				 * space that we want to reserve plus the size
10283 				 * of the record that we're overwriting is
10284 				 * greater than the size of the buffer.  This
10285 				 * is problematic because if we reserve the
10286 				 * space but subsequently don't consume it (due
10287 				 * to a failed predicate or error) the wrapped
10288 				 * offset will be 0 -- yet the EPID at offset 0
10289 				 * will not be committed.  This situation is
10290 				 * relatively easy to deal with:  if we're in
10291 				 * this case, the buffer is indistinguishable
10292 				 * from one that hasn't wrapped; we need only
10293 				 * finish the job by clearing the wrapped bit,
10294 				 * explicitly setting the offset to be 0, and
10295 				 * zero'ing out the old data in the buffer.
10296 				 */
10297 				if (offs == 0) {
10298 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
10299 					buf->dtb_offset = 0;
10300 					woffs = total;
10301 
10302 					while (woffs < buf->dtb_size)
10303 						tomax[woffs++] = 0;
10304 				}
10305 
10306 				woffs = 0;
10307 				break;
10308 			}
10309 
10310 			woffs += size;
10311 		}
10312 
10313 		/*
10314 		 * We have a wrapped offset.  It may be that the wrapped offset
10315 		 * has become zero -- that's okay.
10316 		 */
10317 		buf->dtb_xamot_offset = woffs;
10318 	}
10319 
10320 out:
10321 	/*
10322 	 * Now we can plow the buffer with any necessary padding.
10323 	 */
10324 	while (offs & (align - 1)) {
10325 		/*
10326 		 * Assert that our alignment is off by a number which
10327 		 * is itself sizeof (uint32_t) aligned.
10328 		 */
10329 		ASSERT(!((align - (offs & (align - 1))) &
10330 		    (sizeof (uint32_t) - 1)));
10331 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10332 		offs += sizeof (uint32_t);
10333 	}
10334 
10335 	if (buf->dtb_flags & DTRACEBUF_FILL) {
10336 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
10337 			buf->dtb_flags |= DTRACEBUF_FULL;
10338 			return (-1);
10339 		}
10340 	}
10341 
10342 	if (mstate == NULL)
10343 		return (offs);
10344 
10345 	/*
10346 	 * For ring buffers and fill buffers, the scratch space is always
10347 	 * the inactive buffer.
10348 	 */
10349 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
10350 	mstate->dtms_scratch_size = buf->dtb_size;
10351 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10352 
10353 	return (offs);
10354 }
10355 
10356 static void
10357 dtrace_buffer_polish(dtrace_buffer_t *buf)
10358 {
10359 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
10360 	ASSERT(MUTEX_HELD(&dtrace_lock));
10361 
10362 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
10363 		return;
10364 
10365 	/*
10366 	 * We need to polish the ring buffer.  There are three cases:
10367 	 *
10368 	 * - The first (and presumably most common) is that there is no gap
10369 	 *   between the buffer offset and the wrapped offset.  In this case,
10370 	 *   there is nothing in the buffer that isn't valid data; we can
10371 	 *   mark the buffer as polished and return.
10372 	 *
10373 	 * - The second (less common than the first but still more common
10374 	 *   than the third) is that there is a gap between the buffer offset
10375 	 *   and the wrapped offset, and the wrapped offset is larger than the
10376 	 *   buffer offset.  This can happen because of an alignment issue, or
10377 	 *   can happen because of a call to dtrace_buffer_reserve() that
10378 	 *   didn't subsequently consume the buffer space.  In this case,
10379 	 *   we need to zero the data from the buffer offset to the wrapped
10380 	 *   offset.
10381 	 *
10382 	 * - The third (and least common) is that there is a gap between the
10383 	 *   buffer offset and the wrapped offset, but the wrapped offset is
10384 	 *   _less_ than the buffer offset.  This can only happen because a
10385 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
10386 	 *   was not subsequently consumed.  In this case, we need to zero the
10387 	 *   space from the offset to the end of the buffer _and_ from the
10388 	 *   top of the buffer to the wrapped offset.
10389 	 */
10390 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
10391 		bzero(buf->dtb_tomax + buf->dtb_offset,
10392 		    buf->dtb_xamot_offset - buf->dtb_offset);
10393 	}
10394 
10395 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
10396 		bzero(buf->dtb_tomax + buf->dtb_offset,
10397 		    buf->dtb_size - buf->dtb_offset);
10398 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
10399 	}
10400 }
10401 
10402 static void
10403 dtrace_buffer_free(dtrace_buffer_t *bufs)
10404 {
10405 	int i;
10406 
10407 	for (i = 0; i < NCPU; i++) {
10408 		dtrace_buffer_t *buf = &bufs[i];
10409 
10410 		if (buf->dtb_tomax == NULL) {
10411 			ASSERT(buf->dtb_xamot == NULL);
10412 			ASSERT(buf->dtb_size == 0);
10413 			continue;
10414 		}
10415 
10416 		if (buf->dtb_xamot != NULL) {
10417 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10418 			kmem_free(buf->dtb_xamot, buf->dtb_size);
10419 		}
10420 
10421 		kmem_free(buf->dtb_tomax, buf->dtb_size);
10422 		buf->dtb_size = 0;
10423 		buf->dtb_tomax = NULL;
10424 		buf->dtb_xamot = NULL;
10425 	}
10426 }
10427 
10428 /*
10429  * DTrace Enabling Functions
10430  */
10431 static dtrace_enabling_t *
10432 dtrace_enabling_create(dtrace_vstate_t *vstate)
10433 {
10434 	dtrace_enabling_t *enab;
10435 
10436 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
10437 	enab->dten_vstate = vstate;
10438 
10439 	return (enab);
10440 }
10441 
10442 static void
10443 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
10444 {
10445 	dtrace_ecbdesc_t **ndesc;
10446 	size_t osize, nsize;
10447 
10448 	/*
10449 	 * We can't add to enablings after we've enabled them, or after we've
10450 	 * retained them.
10451 	 */
10452 	ASSERT(enab->dten_probegen == 0);
10453 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
10454 
10455 	if (enab->dten_ndesc < enab->dten_maxdesc) {
10456 		enab->dten_desc[enab->dten_ndesc++] = ecb;
10457 		return;
10458 	}
10459 
10460 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
10461 
10462 	if (enab->dten_maxdesc == 0) {
10463 		enab->dten_maxdesc = 1;
10464 	} else {
10465 		enab->dten_maxdesc <<= 1;
10466 	}
10467 
10468 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
10469 
10470 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
10471 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
10472 	bcopy(enab->dten_desc, ndesc, osize);
10473 	kmem_free(enab->dten_desc, osize);
10474 
10475 	enab->dten_desc = ndesc;
10476 	enab->dten_desc[enab->dten_ndesc++] = ecb;
10477 }
10478 
10479 static void
10480 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
10481     dtrace_probedesc_t *pd)
10482 {
10483 	dtrace_ecbdesc_t *new;
10484 	dtrace_predicate_t *pred;
10485 	dtrace_actdesc_t *act;
10486 
10487 	/*
10488 	 * We're going to create a new ECB description that matches the
10489 	 * specified ECB in every way, but has the specified probe description.
10490 	 */
10491 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
10492 
10493 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
10494 		dtrace_predicate_hold(pred);
10495 
10496 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
10497 		dtrace_actdesc_hold(act);
10498 
10499 	new->dted_action = ecb->dted_action;
10500 	new->dted_pred = ecb->dted_pred;
10501 	new->dted_probe = *pd;
10502 	new->dted_uarg = ecb->dted_uarg;
10503 
10504 	dtrace_enabling_add(enab, new);
10505 }
10506 
10507 static void
10508 dtrace_enabling_dump(dtrace_enabling_t *enab)
10509 {
10510 	int i;
10511 
10512 	for (i = 0; i < enab->dten_ndesc; i++) {
10513 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
10514 
10515 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
10516 		    desc->dtpd_provider, desc->dtpd_mod,
10517 		    desc->dtpd_func, desc->dtpd_name);
10518 	}
10519 }
10520 
10521 static void
10522 dtrace_enabling_destroy(dtrace_enabling_t *enab)
10523 {
10524 	int i;
10525 	dtrace_ecbdesc_t *ep;
10526 	dtrace_vstate_t *vstate = enab->dten_vstate;
10527 
10528 	ASSERT(MUTEX_HELD(&dtrace_lock));
10529 
10530 	for (i = 0; i < enab->dten_ndesc; i++) {
10531 		dtrace_actdesc_t *act, *next;
10532 		dtrace_predicate_t *pred;
10533 
10534 		ep = enab->dten_desc[i];
10535 
10536 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
10537 			dtrace_predicate_release(pred, vstate);
10538 
10539 		for (act = ep->dted_action; act != NULL; act = next) {
10540 			next = act->dtad_next;
10541 			dtrace_actdesc_release(act, vstate);
10542 		}
10543 
10544 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
10545 	}
10546 
10547 	kmem_free(enab->dten_desc,
10548 	    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
10549 
10550 	/*
10551 	 * If this was a retained enabling, decrement the dts_nretained count
10552 	 * and take it off of the dtrace_retained list.
10553 	 */
10554 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
10555 	    dtrace_retained == enab) {
10556 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
10557 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
10558 		enab->dten_vstate->dtvs_state->dts_nretained--;
10559 		dtrace_retained_gen++;
10560 	}
10561 
10562 	if (enab->dten_prev == NULL) {
10563 		if (dtrace_retained == enab) {
10564 			dtrace_retained = enab->dten_next;
10565 
10566 			if (dtrace_retained != NULL)
10567 				dtrace_retained->dten_prev = NULL;
10568 		}
10569 	} else {
10570 		ASSERT(enab != dtrace_retained);
10571 		ASSERT(dtrace_retained != NULL);
10572 		enab->dten_prev->dten_next = enab->dten_next;
10573 	}
10574 
10575 	if (enab->dten_next != NULL) {
10576 		ASSERT(dtrace_retained != NULL);
10577 		enab->dten_next->dten_prev = enab->dten_prev;
10578 	}
10579 
10580 	kmem_free(enab, sizeof (dtrace_enabling_t));
10581 }
10582 
10583 static int
10584 dtrace_enabling_retain(dtrace_enabling_t *enab)
10585 {
10586 	dtrace_state_t *state;
10587 
10588 	ASSERT(MUTEX_HELD(&dtrace_lock));
10589 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
10590 	ASSERT(enab->dten_vstate != NULL);
10591 
10592 	state = enab->dten_vstate->dtvs_state;
10593 	ASSERT(state != NULL);
10594 
10595 	/*
10596 	 * We only allow each state to retain dtrace_retain_max enablings.
10597 	 */
10598 	if (state->dts_nretained >= dtrace_retain_max)
10599 		return (ENOSPC);
10600 
10601 	state->dts_nretained++;
10602 	dtrace_retained_gen++;
10603 
10604 	if (dtrace_retained == NULL) {
10605 		dtrace_retained = enab;
10606 		return (0);
10607 	}
10608 
10609 	enab->dten_next = dtrace_retained;
10610 	dtrace_retained->dten_prev = enab;
10611 	dtrace_retained = enab;
10612 
10613 	return (0);
10614 }
10615 
10616 static int
10617 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
10618     dtrace_probedesc_t *create)
10619 {
10620 	dtrace_enabling_t *new, *enab;
10621 	int found = 0, err = ENOENT;
10622 
10623 	ASSERT(MUTEX_HELD(&dtrace_lock));
10624 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
10625 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
10626 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
10627 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
10628 
10629 	new = dtrace_enabling_create(&state->dts_vstate);
10630 
10631 	/*
10632 	 * Iterate over all retained enablings, looking for enablings that
10633 	 * match the specified state.
10634 	 */
10635 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
10636 		int i;
10637 
10638 		/*
10639 		 * dtvs_state can only be NULL for helper enablings -- and
10640 		 * helper enablings can't be retained.
10641 		 */
10642 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
10643 
10644 		if (enab->dten_vstate->dtvs_state != state)
10645 			continue;
10646 
10647 		/*
10648 		 * Now iterate over each probe description; we're looking for
10649 		 * an exact match to the specified probe description.
10650 		 */
10651 		for (i = 0; i < enab->dten_ndesc; i++) {
10652 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
10653 			dtrace_probedesc_t *pd = &ep->dted_probe;
10654 
10655 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
10656 				continue;
10657 
10658 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
10659 				continue;
10660 
10661 			if (strcmp(pd->dtpd_func, match->dtpd_func))
10662 				continue;
10663 
10664 			if (strcmp(pd->dtpd_name, match->dtpd_name))
10665 				continue;
10666 
10667 			/*
10668 			 * We have a winning probe!  Add it to our growing
10669 			 * enabling.
10670 			 */
10671 			found = 1;
10672 			dtrace_enabling_addlike(new, ep, create);
10673 		}
10674 	}
10675 
10676 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
10677 		dtrace_enabling_destroy(new);
10678 		return (err);
10679 	}
10680 
10681 	return (0);
10682 }
10683 
10684 static void
10685 dtrace_enabling_retract(dtrace_state_t *state)
10686 {
10687 	dtrace_enabling_t *enab, *next;
10688 
10689 	ASSERT(MUTEX_HELD(&dtrace_lock));
10690 
10691 	/*
10692 	 * Iterate over all retained enablings, destroy the enablings retained
10693 	 * for the specified state.
10694 	 */
10695 	for (enab = dtrace_retained; enab != NULL; enab = next) {
10696 		next = enab->dten_next;
10697 
10698 		/*
10699 		 * dtvs_state can only be NULL for helper enablings -- and
10700 		 * helper enablings can't be retained.
10701 		 */
10702 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
10703 
10704 		if (enab->dten_vstate->dtvs_state == state) {
10705 			ASSERT(state->dts_nretained > 0);
10706 			dtrace_enabling_destroy(enab);
10707 		}
10708 	}
10709 
10710 	ASSERT(state->dts_nretained == 0);
10711 }
10712 
10713 static int
10714 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
10715 {
10716 	int i = 0;
10717 	int matched = 0;
10718 
10719 	ASSERT(MUTEX_HELD(&cpu_lock));
10720 	ASSERT(MUTEX_HELD(&dtrace_lock));
10721 
10722 	for (i = 0; i < enab->dten_ndesc; i++) {
10723 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
10724 
10725 		enab->dten_current = ep;
10726 		enab->dten_error = 0;
10727 
10728 		matched += dtrace_probe_enable(&ep->dted_probe, enab);
10729 
10730 		if (enab->dten_error != 0) {
10731 			/*
10732 			 * If we get an error half-way through enabling the
10733 			 * probes, we kick out -- perhaps with some number of
10734 			 * them enabled.  Leaving enabled probes enabled may
10735 			 * be slightly confusing for user-level, but we expect
10736 			 * that no one will attempt to actually drive on in
10737 			 * the face of such errors.  If this is an anonymous
10738 			 * enabling (indicated with a NULL nmatched pointer),
10739 			 * we cmn_err() a message.  We aren't expecting to
10740 			 * get such an error -- such as it can exist at all,
10741 			 * it would be a result of corrupted DOF in the driver
10742 			 * properties.
10743 			 */
10744 			if (nmatched == NULL) {
10745 				cmn_err(CE_WARN, "dtrace_enabling_match() "
10746 				    "error on %p: %d", (void *)ep,
10747 				    enab->dten_error);
10748 			}
10749 
10750 			return (enab->dten_error);
10751 		}
10752 	}
10753 
10754 	enab->dten_probegen = dtrace_probegen;
10755 	if (nmatched != NULL)
10756 		*nmatched = matched;
10757 
10758 	return (0);
10759 }
10760 
10761 static void
10762 dtrace_enabling_matchall(void)
10763 {
10764 	dtrace_enabling_t *enab;
10765 
10766 	mutex_enter(&cpu_lock);
10767 	mutex_enter(&dtrace_lock);
10768 
10769 	/*
10770 	 * Iterate over all retained enablings to see if any probes match
10771 	 * against them.  We only perform this operation on enablings for which
10772 	 * we have sufficient permissions by virtue of being in the global zone
10773 	 * or in the same zone as the DTrace client.  Because we can be called
10774 	 * after dtrace_detach() has been called, we cannot assert that there
10775 	 * are retained enablings.  We can safely load from dtrace_retained,
10776 	 * however:  the taskq_destroy() at the end of dtrace_detach() will
10777 	 * block pending our completion.
10778 	 */
10779 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
10780 		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
10781 
10782 		if (INGLOBALZONE(curproc) ||
10783 		    cr != NULL && getzoneid() == crgetzoneid(cr))
10784 			(void) dtrace_enabling_match(enab, NULL);
10785 	}
10786 
10787 	mutex_exit(&dtrace_lock);
10788 	mutex_exit(&cpu_lock);
10789 }
10790 
10791 /*
10792  * If an enabling is to be enabled without having matched probes (that is, if
10793  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
10794  * enabling must be _primed_ by creating an ECB for every ECB description.
10795  * This must be done to assure that we know the number of speculations, the
10796  * number of aggregations, the minimum buffer size needed, etc. before we
10797  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
10798  * enabling any probes, we create ECBs for every ECB decription, but with a
10799  * NULL probe -- which is exactly what this function does.
10800  */
10801 static void
10802 dtrace_enabling_prime(dtrace_state_t *state)
10803 {
10804 	dtrace_enabling_t *enab;
10805 	int i;
10806 
10807 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
10808 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
10809 
10810 		if (enab->dten_vstate->dtvs_state != state)
10811 			continue;
10812 
10813 		/*
10814 		 * We don't want to prime an enabling more than once, lest
10815 		 * we allow a malicious user to induce resource exhaustion.
10816 		 * (The ECBs that result from priming an enabling aren't
10817 		 * leaked -- but they also aren't deallocated until the
10818 		 * consumer state is destroyed.)
10819 		 */
10820 		if (enab->dten_primed)
10821 			continue;
10822 
10823 		for (i = 0; i < enab->dten_ndesc; i++) {
10824 			enab->dten_current = enab->dten_desc[i];
10825 			(void) dtrace_probe_enable(NULL, enab);
10826 		}
10827 
10828 		enab->dten_primed = 1;
10829 	}
10830 }
10831 
10832 /*
10833  * Called to indicate that probes should be provided due to retained
10834  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
10835  * must take an initial lap through the enabling calling the dtps_provide()
10836  * entry point explicitly to allow for autocreated probes.
10837  */
10838 static void
10839 dtrace_enabling_provide(dtrace_provider_t *prv)
10840 {
10841 	int i, all = 0;
10842 	dtrace_probedesc_t desc;
10843 	dtrace_genid_t gen;
10844 
10845 	ASSERT(MUTEX_HELD(&dtrace_lock));
10846 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
10847 
10848 	if (prv == NULL) {
10849 		all = 1;
10850 		prv = dtrace_provider;
10851 	}
10852 
10853 	do {
10854 		dtrace_enabling_t *enab;
10855 		void *parg = prv->dtpv_arg;
10856 
10857 retry:
10858 		gen = dtrace_retained_gen;
10859 		for (enab = dtrace_retained; enab != NULL;
10860 		    enab = enab->dten_next) {
10861 			for (i = 0; i < enab->dten_ndesc; i++) {
10862 				desc = enab->dten_desc[i]->dted_probe;
10863 				mutex_exit(&dtrace_lock);
10864 				prv->dtpv_pops.dtps_provide(parg, &desc);
10865 				mutex_enter(&dtrace_lock);
10866 				/*
10867 				 * Process the retained enablings again if
10868 				 * they have changed while we weren't holding
10869 				 * dtrace_lock.
10870 				 */
10871 				if (gen != dtrace_retained_gen)
10872 					goto retry;
10873 			}
10874 		}
10875 	} while (all && (prv = prv->dtpv_next) != NULL);
10876 
10877 	mutex_exit(&dtrace_lock);
10878 	dtrace_probe_provide(NULL, all ? NULL : prv);
10879 	mutex_enter(&dtrace_lock);
10880 }
10881 
10882 /*
10883  * DTrace DOF Functions
10884  */
10885 /*ARGSUSED*/
10886 static void
10887 dtrace_dof_error(dof_hdr_t *dof, const char *str)
10888 {
10889 	if (dtrace_err_verbose)
10890 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
10891 
10892 #ifdef DTRACE_ERRDEBUG
10893 	dtrace_errdebug(str);
10894 #endif
10895 }
10896 
10897 /*
10898  * Create DOF out of a currently enabled state.  Right now, we only create
10899  * DOF containing the run-time options -- but this could be expanded to create
10900  * complete DOF representing the enabled state.
10901  */
10902 static dof_hdr_t *
10903 dtrace_dof_create(dtrace_state_t *state)
10904 {
10905 	dof_hdr_t *dof;
10906 	dof_sec_t *sec;
10907 	dof_optdesc_t *opt;
10908 	int i, len = sizeof (dof_hdr_t) +
10909 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
10910 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
10911 
10912 	ASSERT(MUTEX_HELD(&dtrace_lock));
10913 
10914 	dof = kmem_zalloc(len, KM_SLEEP);
10915 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
10916 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
10917 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
10918 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
10919 
10920 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
10921 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
10922 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
10923 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
10924 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
10925 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
10926 
10927 	dof->dofh_flags = 0;
10928 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
10929 	dof->dofh_secsize = sizeof (dof_sec_t);
10930 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
10931 	dof->dofh_secoff = sizeof (dof_hdr_t);
10932 	dof->dofh_loadsz = len;
10933 	dof->dofh_filesz = len;
10934 	dof->dofh_pad = 0;
10935 
10936 	/*
10937 	 * Fill in the option section header...
10938 	 */
10939 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
10940 	sec->dofs_type = DOF_SECT_OPTDESC;
10941 	sec->dofs_align = sizeof (uint64_t);
10942 	sec->dofs_flags = DOF_SECF_LOAD;
10943 	sec->dofs_entsize = sizeof (dof_optdesc_t);
10944 
10945 	opt = (dof_optdesc_t *)((uintptr_t)sec +
10946 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
10947 
10948 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
10949 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
10950 
10951 	for (i = 0; i < DTRACEOPT_MAX; i++) {
10952 		opt[i].dofo_option = i;
10953 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
10954 		opt[i].dofo_value = state->dts_options[i];
10955 	}
10956 
10957 	return (dof);
10958 }
10959 
10960 static dof_hdr_t *
10961 dtrace_dof_copyin(uintptr_t uarg, int *errp)
10962 {
10963 	dof_hdr_t hdr, *dof;
10964 
10965 	ASSERT(!MUTEX_HELD(&dtrace_lock));
10966 
10967 	/*
10968 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
10969 	 */
10970 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
10971 		dtrace_dof_error(NULL, "failed to copyin DOF header");
10972 		*errp = EFAULT;
10973 		return (NULL);
10974 	}
10975 
10976 	/*
10977 	 * Now we'll allocate the entire DOF and copy it in -- provided
10978 	 * that the length isn't outrageous.
10979 	 */
10980 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
10981 		dtrace_dof_error(&hdr, "load size exceeds maximum");
10982 		*errp = E2BIG;
10983 		return (NULL);
10984 	}
10985 
10986 	if (hdr.dofh_loadsz < sizeof (hdr)) {
10987 		dtrace_dof_error(&hdr, "invalid load size");
10988 		*errp = EINVAL;
10989 		return (NULL);
10990 	}
10991 
10992 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
10993 
10994 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
10995 		kmem_free(dof, hdr.dofh_loadsz);
10996 		*errp = EFAULT;
10997 		return (NULL);
10998 	}
10999 
11000 	return (dof);
11001 }
11002 
11003 static dof_hdr_t *
11004 dtrace_dof_property(const char *name)
11005 {
11006 	uchar_t *buf;
11007 	uint64_t loadsz;
11008 	unsigned int len, i;
11009 	dof_hdr_t *dof;
11010 
11011 	/*
11012 	 * Unfortunately, array of values in .conf files are always (and
11013 	 * only) interpreted to be integer arrays.  We must read our DOF
11014 	 * as an integer array, and then squeeze it into a byte array.
11015 	 */
11016 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
11017 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
11018 		return (NULL);
11019 
11020 	for (i = 0; i < len; i++)
11021 		buf[i] = (uchar_t)(((int *)buf)[i]);
11022 
11023 	if (len < sizeof (dof_hdr_t)) {
11024 		ddi_prop_free(buf);
11025 		dtrace_dof_error(NULL, "truncated header");
11026 		return (NULL);
11027 	}
11028 
11029 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
11030 		ddi_prop_free(buf);
11031 		dtrace_dof_error(NULL, "truncated DOF");
11032 		return (NULL);
11033 	}
11034 
11035 	if (loadsz >= dtrace_dof_maxsize) {
11036 		ddi_prop_free(buf);
11037 		dtrace_dof_error(NULL, "oversized DOF");
11038 		return (NULL);
11039 	}
11040 
11041 	dof = kmem_alloc(loadsz, KM_SLEEP);
11042 	bcopy(buf, dof, loadsz);
11043 	ddi_prop_free(buf);
11044 
11045 	return (dof);
11046 }
11047 
11048 static void
11049 dtrace_dof_destroy(dof_hdr_t *dof)
11050 {
11051 	kmem_free(dof, dof->dofh_loadsz);
11052 }
11053 
11054 /*
11055  * Return the dof_sec_t pointer corresponding to a given section index.  If the
11056  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
11057  * a type other than DOF_SECT_NONE is specified, the header is checked against
11058  * this type and NULL is returned if the types do not match.
11059  */
11060 static dof_sec_t *
11061 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
11062 {
11063 	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
11064 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
11065 
11066 	if (i >= dof->dofh_secnum) {
11067 		dtrace_dof_error(dof, "referenced section index is invalid");
11068 		return (NULL);
11069 	}
11070 
11071 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
11072 		dtrace_dof_error(dof, "referenced section is not loadable");
11073 		return (NULL);
11074 	}
11075 
11076 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
11077 		dtrace_dof_error(dof, "referenced section is the wrong type");
11078 		return (NULL);
11079 	}
11080 
11081 	return (sec);
11082 }
11083 
11084 static dtrace_probedesc_t *
11085 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
11086 {
11087 	dof_probedesc_t *probe;
11088 	dof_sec_t *strtab;
11089 	uintptr_t daddr = (uintptr_t)dof;
11090 	uintptr_t str;
11091 	size_t size;
11092 
11093 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
11094 		dtrace_dof_error(dof, "invalid probe section");
11095 		return (NULL);
11096 	}
11097 
11098 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11099 		dtrace_dof_error(dof, "bad alignment in probe description");
11100 		return (NULL);
11101 	}
11102 
11103 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
11104 		dtrace_dof_error(dof, "truncated probe description");
11105 		return (NULL);
11106 	}
11107 
11108 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
11109 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
11110 
11111 	if (strtab == NULL)
11112 		return (NULL);
11113 
11114 	str = daddr + strtab->dofs_offset;
11115 	size = strtab->dofs_size;
11116 
11117 	if (probe->dofp_provider >= strtab->dofs_size) {
11118 		dtrace_dof_error(dof, "corrupt probe provider");
11119 		return (NULL);
11120 	}
11121 
11122 	(void) strncpy(desc->dtpd_provider,
11123 	    (char *)(str + probe->dofp_provider),
11124 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
11125 
11126 	if (probe->dofp_mod >= strtab->dofs_size) {
11127 		dtrace_dof_error(dof, "corrupt probe module");
11128 		return (NULL);
11129 	}
11130 
11131 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
11132 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
11133 
11134 	if (probe->dofp_func >= strtab->dofs_size) {
11135 		dtrace_dof_error(dof, "corrupt probe function");
11136 		return (NULL);
11137 	}
11138 
11139 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
11140 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
11141 
11142 	if (probe->dofp_name >= strtab->dofs_size) {
11143 		dtrace_dof_error(dof, "corrupt probe name");
11144 		return (NULL);
11145 	}
11146 
11147 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
11148 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
11149 
11150 	return (desc);
11151 }
11152 
11153 static dtrace_difo_t *
11154 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11155     cred_t *cr)
11156 {
11157 	dtrace_difo_t *dp;
11158 	size_t ttl = 0;
11159 	dof_difohdr_t *dofd;
11160 	uintptr_t daddr = (uintptr_t)dof;
11161 	size_t max = dtrace_difo_maxsize;
11162 	int i, l, n;
11163 
11164 	static const struct {
11165 		int section;
11166 		int bufoffs;
11167 		int lenoffs;
11168 		int entsize;
11169 		int align;
11170 		const char *msg;
11171 	} difo[] = {
11172 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
11173 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
11174 		sizeof (dif_instr_t), "multiple DIF sections" },
11175 
11176 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
11177 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
11178 		sizeof (uint64_t), "multiple integer tables" },
11179 
11180 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
11181 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
11182 		sizeof (char), "multiple string tables" },
11183 
11184 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
11185 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
11186 		sizeof (uint_t), "multiple variable tables" },
11187 
11188 		{ DOF_SECT_NONE, 0, 0, 0, NULL }
11189 	};
11190 
11191 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
11192 		dtrace_dof_error(dof, "invalid DIFO header section");
11193 		return (NULL);
11194 	}
11195 
11196 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11197 		dtrace_dof_error(dof, "bad alignment in DIFO header");
11198 		return (NULL);
11199 	}
11200 
11201 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
11202 	    sec->dofs_size % sizeof (dof_secidx_t)) {
11203 		dtrace_dof_error(dof, "bad size in DIFO header");
11204 		return (NULL);
11205 	}
11206 
11207 	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
11208 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
11209 
11210 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
11211 	dp->dtdo_rtype = dofd->dofd_rtype;
11212 
11213 	for (l = 0; l < n; l++) {
11214 		dof_sec_t *subsec;
11215 		void **bufp;
11216 		uint32_t *lenp;
11217 
11218 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
11219 		    dofd->dofd_links[l])) == NULL)
11220 			goto err; /* invalid section link */
11221 
11222 		if (ttl + subsec->dofs_size > max) {
11223 			dtrace_dof_error(dof, "exceeds maximum size");
11224 			goto err;
11225 		}
11226 
11227 		ttl += subsec->dofs_size;
11228 
11229 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
11230 			if (subsec->dofs_type != difo[i].section)
11231 				continue;
11232 
11233 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
11234 				dtrace_dof_error(dof, "section not loaded");
11235 				goto err;
11236 			}
11237 
11238 			if (subsec->dofs_align != difo[i].align) {
11239 				dtrace_dof_error(dof, "bad alignment");
11240 				goto err;
11241 			}
11242 
11243 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
11244 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
11245 
11246 			if (*bufp != NULL) {
11247 				dtrace_dof_error(dof, difo[i].msg);
11248 				goto err;
11249 			}
11250 
11251 			if (difo[i].entsize != subsec->dofs_entsize) {
11252 				dtrace_dof_error(dof, "entry size mismatch");
11253 				goto err;
11254 			}
11255 
11256 			if (subsec->dofs_entsize != 0 &&
11257 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
11258 				dtrace_dof_error(dof, "corrupt entry size");
11259 				goto err;
11260 			}
11261 
11262 			*lenp = subsec->dofs_size;
11263 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
11264 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
11265 			    *bufp, subsec->dofs_size);
11266 
11267 			if (subsec->dofs_entsize != 0)
11268 				*lenp /= subsec->dofs_entsize;
11269 
11270 			break;
11271 		}
11272 
11273 		/*
11274 		 * If we encounter a loadable DIFO sub-section that is not
11275 		 * known to us, assume this is a broken program and fail.
11276 		 */
11277 		if (difo[i].section == DOF_SECT_NONE &&
11278 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
11279 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
11280 			goto err;
11281 		}
11282 	}
11283 
11284 	if (dp->dtdo_buf == NULL) {
11285 		/*
11286 		 * We can't have a DIF object without DIF text.
11287 		 */
11288 		dtrace_dof_error(dof, "missing DIF text");
11289 		goto err;
11290 	}
11291 
11292 	/*
11293 	 * Before we validate the DIF object, run through the variable table
11294 	 * looking for the strings -- if any of their size are under, we'll set
11295 	 * their size to be the system-wide default string size.  Note that
11296 	 * this should _not_ happen if the "strsize" option has been set --
11297 	 * in this case, the compiler should have set the size to reflect the
11298 	 * setting of the option.
11299 	 */
11300 	for (i = 0; i < dp->dtdo_varlen; i++) {
11301 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
11302 		dtrace_diftype_t *t = &v->dtdv_type;
11303 
11304 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
11305 			continue;
11306 
11307 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
11308 			t->dtdt_size = dtrace_strsize_default;
11309 	}
11310 
11311 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
11312 		goto err;
11313 
11314 	dtrace_difo_init(dp, vstate);
11315 	return (dp);
11316 
11317 err:
11318 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
11319 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
11320 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
11321 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
11322 
11323 	kmem_free(dp, sizeof (dtrace_difo_t));
11324 	return (NULL);
11325 }
11326 
11327 static dtrace_predicate_t *
11328 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11329     cred_t *cr)
11330 {
11331 	dtrace_difo_t *dp;
11332 
11333 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
11334 		return (NULL);
11335 
11336 	return (dtrace_predicate_create(dp));
11337 }
11338 
11339 static dtrace_actdesc_t *
11340 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11341     cred_t *cr)
11342 {
11343 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
11344 	dof_actdesc_t *desc;
11345 	dof_sec_t *difosec;
11346 	size_t offs;
11347 	uintptr_t daddr = (uintptr_t)dof;
11348 	uint64_t arg;
11349 	dtrace_actkind_t kind;
11350 
11351 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
11352 		dtrace_dof_error(dof, "invalid action section");
11353 		return (NULL);
11354 	}
11355 
11356 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
11357 		dtrace_dof_error(dof, "truncated action description");
11358 		return (NULL);
11359 	}
11360 
11361 	if (sec->dofs_align != sizeof (uint64_t)) {
11362 		dtrace_dof_error(dof, "bad alignment in action description");
11363 		return (NULL);
11364 	}
11365 
11366 	if (sec->dofs_size < sec->dofs_entsize) {
11367 		dtrace_dof_error(dof, "section entry size exceeds total size");
11368 		return (NULL);
11369 	}
11370 
11371 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
11372 		dtrace_dof_error(dof, "bad entry size in action description");
11373 		return (NULL);
11374 	}
11375 
11376 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
11377 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
11378 		return (NULL);
11379 	}
11380 
11381 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
11382 		desc = (dof_actdesc_t *)(daddr +
11383 		    (uintptr_t)sec->dofs_offset + offs);
11384 		kind = (dtrace_actkind_t)desc->dofa_kind;
11385 
11386 		if (DTRACEACT_ISPRINTFLIKE(kind) &&
11387 		    (kind != DTRACEACT_PRINTA ||
11388 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
11389 			dof_sec_t *strtab;
11390 			char *str, *fmt;
11391 			uint64_t i;
11392 
11393 			/*
11394 			 * printf()-like actions must have a format string.
11395 			 */
11396 			if ((strtab = dtrace_dof_sect(dof,
11397 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
11398 				goto err;
11399 
11400 			str = (char *)((uintptr_t)dof +
11401 			    (uintptr_t)strtab->dofs_offset);
11402 
11403 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
11404 				if (str[i] == '\0')
11405 					break;
11406 			}
11407 
11408 			if (i >= strtab->dofs_size) {
11409 				dtrace_dof_error(dof, "bogus format string");
11410 				goto err;
11411 			}
11412 
11413 			if (i == desc->dofa_arg) {
11414 				dtrace_dof_error(dof, "empty format string");
11415 				goto err;
11416 			}
11417 
11418 			i -= desc->dofa_arg;
11419 			fmt = kmem_alloc(i + 1, KM_SLEEP);
11420 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
11421 			arg = (uint64_t)(uintptr_t)fmt;
11422 		} else {
11423 			if (kind == DTRACEACT_PRINTA) {
11424 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
11425 				arg = 0;
11426 			} else {
11427 				arg = desc->dofa_arg;
11428 			}
11429 		}
11430 
11431 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
11432 		    desc->dofa_uarg, arg);
11433 
11434 		if (last != NULL) {
11435 			last->dtad_next = act;
11436 		} else {
11437 			first = act;
11438 		}
11439 
11440 		last = act;
11441 
11442 		if (desc->dofa_difo == DOF_SECIDX_NONE)
11443 			continue;
11444 
11445 		if ((difosec = dtrace_dof_sect(dof,
11446 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
11447 			goto err;
11448 
11449 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
11450 
11451 		if (act->dtad_difo == NULL)
11452 			goto err;
11453 	}
11454 
11455 	ASSERT(first != NULL);
11456 	return (first);
11457 
11458 err:
11459 	for (act = first; act != NULL; act = next) {
11460 		next = act->dtad_next;
11461 		dtrace_actdesc_release(act, vstate);
11462 	}
11463 
11464 	return (NULL);
11465 }
11466 
11467 static dtrace_ecbdesc_t *
11468 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11469     cred_t *cr)
11470 {
11471 	dtrace_ecbdesc_t *ep;
11472 	dof_ecbdesc_t *ecb;
11473 	dtrace_probedesc_t *desc;
11474 	dtrace_predicate_t *pred = NULL;
11475 
11476 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
11477 		dtrace_dof_error(dof, "truncated ECB description");
11478 		return (NULL);
11479 	}
11480 
11481 	if (sec->dofs_align != sizeof (uint64_t)) {
11482 		dtrace_dof_error(dof, "bad alignment in ECB description");
11483 		return (NULL);
11484 	}
11485 
11486 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
11487 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
11488 
11489 	if (sec == NULL)
11490 		return (NULL);
11491 
11492 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11493 	ep->dted_uarg = ecb->dofe_uarg;
11494 	desc = &ep->dted_probe;
11495 
11496 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
11497 		goto err;
11498 
11499 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
11500 		if ((sec = dtrace_dof_sect(dof,
11501 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
11502 			goto err;
11503 
11504 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
11505 			goto err;
11506 
11507 		ep->dted_pred.dtpdd_predicate = pred;
11508 	}
11509 
11510 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
11511 		if ((sec = dtrace_dof_sect(dof,
11512 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
11513 			goto err;
11514 
11515 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
11516 
11517 		if (ep->dted_action == NULL)
11518 			goto err;
11519 	}
11520 
11521 	return (ep);
11522 
11523 err:
11524 	if (pred != NULL)
11525 		dtrace_predicate_release(pred, vstate);
11526 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11527 	return (NULL);
11528 }
11529 
11530 /*
11531  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
11532  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
11533  * site of any user SETX relocations to account for load object base address.
11534  * In the future, if we need other relocations, this function can be extended.
11535  */
11536 static int
11537 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
11538 {
11539 	uintptr_t daddr = (uintptr_t)dof;
11540 	dof_relohdr_t *dofr =
11541 	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
11542 	dof_sec_t *ss, *rs, *ts;
11543 	dof_relodesc_t *r;
11544 	uint_t i, n;
11545 
11546 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
11547 	    sec->dofs_align != sizeof (dof_secidx_t)) {
11548 		dtrace_dof_error(dof, "invalid relocation header");
11549 		return (-1);
11550 	}
11551 
11552 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
11553 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
11554 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
11555 
11556 	if (ss == NULL || rs == NULL || ts == NULL)
11557 		return (-1); /* dtrace_dof_error() has been called already */
11558 
11559 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
11560 	    rs->dofs_align != sizeof (uint64_t)) {
11561 		dtrace_dof_error(dof, "invalid relocation section");
11562 		return (-1);
11563 	}
11564 
11565 	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
11566 	n = rs->dofs_size / rs->dofs_entsize;
11567 
11568 	for (i = 0; i < n; i++) {
11569 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
11570 
11571 		switch (r->dofr_type) {
11572 		case DOF_RELO_NONE:
11573 			break;
11574 		case DOF_RELO_SETX:
11575 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
11576 			    sizeof (uint64_t) > ts->dofs_size) {
11577 				dtrace_dof_error(dof, "bad relocation offset");
11578 				return (-1);
11579 			}
11580 
11581 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
11582 				dtrace_dof_error(dof, "misaligned setx relo");
11583 				return (-1);
11584 			}
11585 
11586 			*(uint64_t *)taddr += ubase;
11587 			break;
11588 		default:
11589 			dtrace_dof_error(dof, "invalid relocation type");
11590 			return (-1);
11591 		}
11592 
11593 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
11594 	}
11595 
11596 	return (0);
11597 }
11598 
11599 /*
11600  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
11601  * header:  it should be at the front of a memory region that is at least
11602  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
11603  * size.  It need not be validated in any other way.
11604  */
11605 static int
11606 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
11607     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
11608 {
11609 	uint64_t len = dof->dofh_loadsz, seclen;
11610 	uintptr_t daddr = (uintptr_t)dof;
11611 	dtrace_ecbdesc_t *ep;
11612 	dtrace_enabling_t *enab;
11613 	uint_t i;
11614 
11615 	ASSERT(MUTEX_HELD(&dtrace_lock));
11616 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
11617 
11618 	/*
11619 	 * Check the DOF header identification bytes.  In addition to checking
11620 	 * valid settings, we also verify that unused bits/bytes are zeroed so
11621 	 * we can use them later without fear of regressing existing binaries.
11622 	 */
11623 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
11624 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
11625 		dtrace_dof_error(dof, "DOF magic string mismatch");
11626 		return (-1);
11627 	}
11628 
11629 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
11630 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
11631 		dtrace_dof_error(dof, "DOF has invalid data model");
11632 		return (-1);
11633 	}
11634 
11635 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
11636 		dtrace_dof_error(dof, "DOF encoding mismatch");
11637 		return (-1);
11638 	}
11639 
11640 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
11641 	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
11642 		dtrace_dof_error(dof, "DOF version mismatch");
11643 		return (-1);
11644 	}
11645 
11646 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
11647 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
11648 		return (-1);
11649 	}
11650 
11651 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
11652 		dtrace_dof_error(dof, "DOF uses too many integer registers");
11653 		return (-1);
11654 	}
11655 
11656 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
11657 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
11658 		return (-1);
11659 	}
11660 
11661 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
11662 		if (dof->dofh_ident[i] != 0) {
11663 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
11664 			return (-1);
11665 		}
11666 	}
11667 
11668 	if (dof->dofh_flags & ~DOF_FL_VALID) {
11669 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
11670 		return (-1);
11671 	}
11672 
11673 	if (dof->dofh_secsize == 0) {
11674 		dtrace_dof_error(dof, "zero section header size");
11675 		return (-1);
11676 	}
11677 
11678 	/*
11679 	 * Check that the section headers don't exceed the amount of DOF
11680 	 * data.  Note that we cast the section size and number of sections
11681 	 * to uint64_t's to prevent possible overflow in the multiplication.
11682 	 */
11683 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
11684 
11685 	if (dof->dofh_secoff > len || seclen > len ||
11686 	    dof->dofh_secoff + seclen > len) {
11687 		dtrace_dof_error(dof, "truncated section headers");
11688 		return (-1);
11689 	}
11690 
11691 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
11692 		dtrace_dof_error(dof, "misaligned section headers");
11693 		return (-1);
11694 	}
11695 
11696 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
11697 		dtrace_dof_error(dof, "misaligned section size");
11698 		return (-1);
11699 	}
11700 
11701 	/*
11702 	 * Take an initial pass through the section headers to be sure that
11703 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
11704 	 * set, do not permit sections relating to providers, probes, or args.
11705 	 */
11706 	for (i = 0; i < dof->dofh_secnum; i++) {
11707 		dof_sec_t *sec = (dof_sec_t *)(daddr +
11708 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
11709 
11710 		if (noprobes) {
11711 			switch (sec->dofs_type) {
11712 			case DOF_SECT_PROVIDER:
11713 			case DOF_SECT_PROBES:
11714 			case DOF_SECT_PRARGS:
11715 			case DOF_SECT_PROFFS:
11716 				dtrace_dof_error(dof, "illegal sections "
11717 				    "for enabling");
11718 				return (-1);
11719 			}
11720 		}
11721 
11722 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
11723 			continue; /* just ignore non-loadable sections */
11724 
11725 		if (sec->dofs_align & (sec->dofs_align - 1)) {
11726 			dtrace_dof_error(dof, "bad section alignment");
11727 			return (-1);
11728 		}
11729 
11730 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
11731 			dtrace_dof_error(dof, "misaligned section");
11732 			return (-1);
11733 		}
11734 
11735 		if (sec->dofs_offset > len || sec->dofs_size > len ||
11736 		    sec->dofs_offset + sec->dofs_size > len) {
11737 			dtrace_dof_error(dof, "corrupt section header");
11738 			return (-1);
11739 		}
11740 
11741 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
11742 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
11743 			dtrace_dof_error(dof, "non-terminating string table");
11744 			return (-1);
11745 		}
11746 	}
11747 
11748 	/*
11749 	 * Take a second pass through the sections and locate and perform any
11750 	 * relocations that are present.  We do this after the first pass to
11751 	 * be sure that all sections have had their headers validated.
11752 	 */
11753 	for (i = 0; i < dof->dofh_secnum; i++) {
11754 		dof_sec_t *sec = (dof_sec_t *)(daddr +
11755 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
11756 
11757 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
11758 			continue; /* skip sections that are not loadable */
11759 
11760 		switch (sec->dofs_type) {
11761 		case DOF_SECT_URELHDR:
11762 			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
11763 				return (-1);
11764 			break;
11765 		}
11766 	}
11767 
11768 	if ((enab = *enabp) == NULL)
11769 		enab = *enabp = dtrace_enabling_create(vstate);
11770 
11771 	for (i = 0; i < dof->dofh_secnum; i++) {
11772 		dof_sec_t *sec = (dof_sec_t *)(daddr +
11773 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
11774 
11775 		if (sec->dofs_type != DOF_SECT_ECBDESC)
11776 			continue;
11777 
11778 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
11779 			dtrace_enabling_destroy(enab);
11780 			*enabp = NULL;
11781 			return (-1);
11782 		}
11783 
11784 		dtrace_enabling_add(enab, ep);
11785 	}
11786 
11787 	return (0);
11788 }
11789 
11790 /*
11791  * Process DOF for any options.  This routine assumes that the DOF has been
11792  * at least processed by dtrace_dof_slurp().
11793  */
11794 static int
11795 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
11796 {
11797 	int i, rval;
11798 	uint32_t entsize;
11799 	size_t offs;
11800 	dof_optdesc_t *desc;
11801 
11802 	for (i = 0; i < dof->dofh_secnum; i++) {
11803 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
11804 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
11805 
11806 		if (sec->dofs_type != DOF_SECT_OPTDESC)
11807 			continue;
11808 
11809 		if (sec->dofs_align != sizeof (uint64_t)) {
11810 			dtrace_dof_error(dof, "bad alignment in "
11811 			    "option description");
11812 			return (EINVAL);
11813 		}
11814 
11815 		if ((entsize = sec->dofs_entsize) == 0) {
11816 			dtrace_dof_error(dof, "zeroed option entry size");
11817 			return (EINVAL);
11818 		}
11819 
11820 		if (entsize < sizeof (dof_optdesc_t)) {
11821 			dtrace_dof_error(dof, "bad option entry size");
11822 			return (EINVAL);
11823 		}
11824 
11825 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
11826 			desc = (dof_optdesc_t *)((uintptr_t)dof +
11827 			    (uintptr_t)sec->dofs_offset + offs);
11828 
11829 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
11830 				dtrace_dof_error(dof, "non-zero option string");
11831 				return (EINVAL);
11832 			}
11833 
11834 			if (desc->dofo_value == DTRACEOPT_UNSET) {
11835 				dtrace_dof_error(dof, "unset option");
11836 				return (EINVAL);
11837 			}
11838 
11839 			if ((rval = dtrace_state_option(state,
11840 			    desc->dofo_option, desc->dofo_value)) != 0) {
11841 				dtrace_dof_error(dof, "rejected option");
11842 				return (rval);
11843 			}
11844 		}
11845 	}
11846 
11847 	return (0);
11848 }
11849 
11850 /*
11851  * DTrace Consumer State Functions
11852  */
11853 int
11854 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
11855 {
11856 	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
11857 	void *base;
11858 	uintptr_t limit;
11859 	dtrace_dynvar_t *dvar, *next, *start;
11860 	int i;
11861 
11862 	ASSERT(MUTEX_HELD(&dtrace_lock));
11863 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
11864 
11865 	bzero(dstate, sizeof (dtrace_dstate_t));
11866 
11867 	if ((dstate->dtds_chunksize = chunksize) == 0)
11868 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
11869 
11870 	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
11871 		size = min;
11872 
11873 	if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
11874 		return (ENOMEM);
11875 
11876 	dstate->dtds_size = size;
11877 	dstate->dtds_base = base;
11878 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
11879 	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
11880 
11881 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
11882 
11883 	if (hashsize != 1 && (hashsize & 1))
11884 		hashsize--;
11885 
11886 	dstate->dtds_hashsize = hashsize;
11887 	dstate->dtds_hash = dstate->dtds_base;
11888 
11889 	/*
11890 	 * Set all of our hash buckets to point to the single sink, and (if
11891 	 * it hasn't already been set), set the sink's hash value to be the
11892 	 * sink sentinel value.  The sink is needed for dynamic variable
11893 	 * lookups to know that they have iterated over an entire, valid hash
11894 	 * chain.
11895 	 */
11896 	for (i = 0; i < hashsize; i++)
11897 		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
11898 
11899 	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
11900 		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
11901 
11902 	/*
11903 	 * Determine number of active CPUs.  Divide free list evenly among
11904 	 * active CPUs.
11905 	 */
11906 	start = (dtrace_dynvar_t *)
11907 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
11908 	limit = (uintptr_t)base + size;
11909 
11910 	maxper = (limit - (uintptr_t)start) / NCPU;
11911 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
11912 
11913 	for (i = 0; i < NCPU; i++) {
11914 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
11915 
11916 		/*
11917 		 * If we don't even have enough chunks to make it once through
11918 		 * NCPUs, we're just going to allocate everything to the first
11919 		 * CPU.  And if we're on the last CPU, we're going to allocate
11920 		 * whatever is left over.  In either case, we set the limit to
11921 		 * be the limit of the dynamic variable space.
11922 		 */
11923 		if (maxper == 0 || i == NCPU - 1) {
11924 			limit = (uintptr_t)base + size;
11925 			start = NULL;
11926 		} else {
11927 			limit = (uintptr_t)start + maxper;
11928 			start = (dtrace_dynvar_t *)limit;
11929 		}
11930 
11931 		ASSERT(limit <= (uintptr_t)base + size);
11932 
11933 		for (;;) {
11934 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
11935 			    dstate->dtds_chunksize);
11936 
11937 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
11938 				break;
11939 
11940 			dvar->dtdv_next = next;
11941 			dvar = next;
11942 		}
11943 
11944 		if (maxper == 0)
11945 			break;
11946 	}
11947 
11948 	return (0);
11949 }
11950 
11951 void
11952 dtrace_dstate_fini(dtrace_dstate_t *dstate)
11953 {
11954 	ASSERT(MUTEX_HELD(&cpu_lock));
11955 
11956 	if (dstate->dtds_base == NULL)
11957 		return;
11958 
11959 	kmem_free(dstate->dtds_base, dstate->dtds_size);
11960 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
11961 }
11962 
11963 static void
11964 dtrace_vstate_fini(dtrace_vstate_t *vstate)
11965 {
11966 	/*
11967 	 * Logical XOR, where are you?
11968 	 */
11969 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
11970 
11971 	if (vstate->dtvs_nglobals > 0) {
11972 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
11973 		    sizeof (dtrace_statvar_t *));
11974 	}
11975 
11976 	if (vstate->dtvs_ntlocals > 0) {
11977 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
11978 		    sizeof (dtrace_difv_t));
11979 	}
11980 
11981 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
11982 
11983 	if (vstate->dtvs_nlocals > 0) {
11984 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
11985 		    sizeof (dtrace_statvar_t *));
11986 	}
11987 }
11988 
11989 static void
11990 dtrace_state_clean(dtrace_state_t *state)
11991 {
11992 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
11993 		return;
11994 
11995 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
11996 	dtrace_speculation_clean(state);
11997 }
11998 
11999 static void
12000 dtrace_state_deadman(dtrace_state_t *state)
12001 {
12002 	hrtime_t now;
12003 
12004 	dtrace_sync();
12005 
12006 	now = dtrace_gethrtime();
12007 
12008 	if (state != dtrace_anon.dta_state &&
12009 	    now - state->dts_laststatus >= dtrace_deadman_user)
12010 		return;
12011 
12012 	/*
12013 	 * We must be sure that dts_alive never appears to be less than the
12014 	 * value upon entry to dtrace_state_deadman(), and because we lack a
12015 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12016 	 * store INT64_MAX to it, followed by a memory barrier, followed by
12017 	 * the new value.  This assures that dts_alive never appears to be
12018 	 * less than its true value, regardless of the order in which the
12019 	 * stores to the underlying storage are issued.
12020 	 */
12021 	state->dts_alive = INT64_MAX;
12022 	dtrace_membar_producer();
12023 	state->dts_alive = now;
12024 }
12025 
12026 dtrace_state_t *
12027 dtrace_state_create(dev_t *devp, cred_t *cr)
12028 {
12029 	minor_t minor;
12030 	major_t major;
12031 	char c[30];
12032 	dtrace_state_t *state;
12033 	dtrace_optval_t *opt;
12034 	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
12035 
12036 	ASSERT(MUTEX_HELD(&dtrace_lock));
12037 	ASSERT(MUTEX_HELD(&cpu_lock));
12038 
12039 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
12040 	    VM_BESTFIT | VM_SLEEP);
12041 
12042 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
12043 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12044 		return (NULL);
12045 	}
12046 
12047 	state = ddi_get_soft_state(dtrace_softstate, minor);
12048 	state->dts_epid = DTRACE_EPIDNONE + 1;
12049 
12050 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
12051 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
12052 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
12053 
12054 	if (devp != NULL) {
12055 		major = getemajor(*devp);
12056 	} else {
12057 		major = ddi_driver_major(dtrace_devi);
12058 	}
12059 
12060 	state->dts_dev = makedevice(major, minor);
12061 
12062 	if (devp != NULL)
12063 		*devp = state->dts_dev;
12064 
12065 	/*
12066 	 * We allocate NCPU buffers.  On the one hand, this can be quite
12067 	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
12068 	 * other hand, it saves an additional memory reference in the probe
12069 	 * path.
12070 	 */
12071 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
12072 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
12073 	state->dts_cleaner = CYCLIC_NONE;
12074 	state->dts_deadman = CYCLIC_NONE;
12075 	state->dts_vstate.dtvs_state = state;
12076 
12077 	for (i = 0; i < DTRACEOPT_MAX; i++)
12078 		state->dts_options[i] = DTRACEOPT_UNSET;
12079 
12080 	/*
12081 	 * Set the default options.
12082 	 */
12083 	opt = state->dts_options;
12084 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
12085 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
12086 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
12087 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
12088 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
12089 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
12090 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
12091 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
12092 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
12093 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
12094 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
12095 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
12096 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
12097 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
12098 
12099 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
12100 
12101 	/*
12102 	 * Depending on the user credentials, we set flag bits which alter probe
12103 	 * visibility or the amount of destructiveness allowed.  In the case of
12104 	 * actual anonymous tracing, or the possession of all privileges, all of
12105 	 * the normal checks are bypassed.
12106 	 */
12107 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
12108 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
12109 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
12110 	} else {
12111 		/*
12112 		 * Set up the credentials for this instantiation.  We take a
12113 		 * hold on the credential to prevent it from disappearing on
12114 		 * us; this in turn prevents the zone_t referenced by this
12115 		 * credential from disappearing.  This means that we can
12116 		 * examine the credential and the zone from probe context.
12117 		 */
12118 		crhold(cr);
12119 		state->dts_cred.dcr_cred = cr;
12120 
12121 		/*
12122 		 * CRA_PROC means "we have *some* privilege for dtrace" and
12123 		 * unlocks the use of variables like pid, zonename, etc.
12124 		 */
12125 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
12126 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12127 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
12128 		}
12129 
12130 		/*
12131 		 * dtrace_user allows use of syscall and profile providers.
12132 		 * If the user also has proc_owner and/or proc_zone, we
12133 		 * extend the scope to include additional visibility and
12134 		 * destructive power.
12135 		 */
12136 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
12137 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
12138 				state->dts_cred.dcr_visible |=
12139 				    DTRACE_CRV_ALLPROC;
12140 
12141 				state->dts_cred.dcr_action |=
12142 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12143 			}
12144 
12145 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
12146 				state->dts_cred.dcr_visible |=
12147 				    DTRACE_CRV_ALLZONE;
12148 
12149 				state->dts_cred.dcr_action |=
12150 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12151 			}
12152 
12153 			/*
12154 			 * If we have all privs in whatever zone this is,
12155 			 * we can do destructive things to processes which
12156 			 * have altered credentials.
12157 			 */
12158 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12159 			    cr->cr_zone->zone_privset)) {
12160 				state->dts_cred.dcr_action |=
12161 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12162 			}
12163 		}
12164 
12165 		/*
12166 		 * Holding the dtrace_kernel privilege also implies that
12167 		 * the user has the dtrace_user privilege from a visibility
12168 		 * perspective.  But without further privileges, some
12169 		 * destructive actions are not available.
12170 		 */
12171 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
12172 			/*
12173 			 * Make all probes in all zones visible.  However,
12174 			 * this doesn't mean that all actions become available
12175 			 * to all zones.
12176 			 */
12177 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
12178 			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
12179 
12180 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
12181 			    DTRACE_CRA_PROC;
12182 			/*
12183 			 * Holding proc_owner means that destructive actions
12184 			 * for *this* zone are allowed.
12185 			 */
12186 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12187 				state->dts_cred.dcr_action |=
12188 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12189 
12190 			/*
12191 			 * Holding proc_zone means that destructive actions
12192 			 * for this user/group ID in all zones is allowed.
12193 			 */
12194 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12195 				state->dts_cred.dcr_action |=
12196 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12197 
12198 			/*
12199 			 * If we have all privs in whatever zone this is,
12200 			 * we can do destructive things to processes which
12201 			 * have altered credentials.
12202 			 */
12203 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12204 			    cr->cr_zone->zone_privset)) {
12205 				state->dts_cred.dcr_action |=
12206 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12207 			}
12208 		}
12209 
12210 		/*
12211 		 * Holding the dtrace_proc privilege gives control over fasttrap
12212 		 * and pid providers.  We need to grant wider destructive
12213 		 * privileges in the event that the user has proc_owner and/or
12214 		 * proc_zone.
12215 		 */
12216 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12217 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12218 				state->dts_cred.dcr_action |=
12219 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12220 
12221 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12222 				state->dts_cred.dcr_action |=
12223 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12224 		}
12225 	}
12226 
12227 	return (state);
12228 }
12229 
12230 static int
12231 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
12232 {
12233 	dtrace_optval_t *opt = state->dts_options, size;
12234 	processorid_t cpu;
12235 	int flags = 0, rval;
12236 
12237 	ASSERT(MUTEX_HELD(&dtrace_lock));
12238 	ASSERT(MUTEX_HELD(&cpu_lock));
12239 	ASSERT(which < DTRACEOPT_MAX);
12240 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
12241 	    (state == dtrace_anon.dta_state &&
12242 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
12243 
12244 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
12245 		return (0);
12246 
12247 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
12248 		cpu = opt[DTRACEOPT_CPU];
12249 
12250 	if (which == DTRACEOPT_SPECSIZE)
12251 		flags |= DTRACEBUF_NOSWITCH;
12252 
12253 	if (which == DTRACEOPT_BUFSIZE) {
12254 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
12255 			flags |= DTRACEBUF_RING;
12256 
12257 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
12258 			flags |= DTRACEBUF_FILL;
12259 
12260 		if (state != dtrace_anon.dta_state ||
12261 		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
12262 			flags |= DTRACEBUF_INACTIVE;
12263 	}
12264 
12265 	for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
12266 		/*
12267 		 * The size must be 8-byte aligned.  If the size is not 8-byte
12268 		 * aligned, drop it down by the difference.
12269 		 */
12270 		if (size & (sizeof (uint64_t) - 1))
12271 			size -= size & (sizeof (uint64_t) - 1);
12272 
12273 		if (size < state->dts_reserve) {
12274 			/*
12275 			 * Buffers always must be large enough to accommodate
12276 			 * their prereserved space.  We return E2BIG instead
12277 			 * of ENOMEM in this case to allow for user-level
12278 			 * software to differentiate the cases.
12279 			 */
12280 			return (E2BIG);
12281 		}
12282 
12283 		rval = dtrace_buffer_alloc(buf, size, flags, cpu);
12284 
12285 		if (rval != ENOMEM) {
12286 			opt[which] = size;
12287 			return (rval);
12288 		}
12289 
12290 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
12291 			return (rval);
12292 	}
12293 
12294 	return (ENOMEM);
12295 }
12296 
12297 static int
12298 dtrace_state_buffers(dtrace_state_t *state)
12299 {
12300 	dtrace_speculation_t *spec = state->dts_speculations;
12301 	int rval, i;
12302 
12303 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
12304 	    DTRACEOPT_BUFSIZE)) != 0)
12305 		return (rval);
12306 
12307 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
12308 	    DTRACEOPT_AGGSIZE)) != 0)
12309 		return (rval);
12310 
12311 	for (i = 0; i < state->dts_nspeculations; i++) {
12312 		if ((rval = dtrace_state_buffer(state,
12313 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
12314 			return (rval);
12315 	}
12316 
12317 	return (0);
12318 }
12319 
12320 static void
12321 dtrace_state_prereserve(dtrace_state_t *state)
12322 {
12323 	dtrace_ecb_t *ecb;
12324 	dtrace_probe_t *probe;
12325 
12326 	state->dts_reserve = 0;
12327 
12328 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
12329 		return;
12330 
12331 	/*
12332 	 * If our buffer policy is a "fill" buffer policy, we need to set the
12333 	 * prereserved space to be the space required by the END probes.
12334 	 */
12335 	probe = dtrace_probes[dtrace_probeid_end - 1];
12336 	ASSERT(probe != NULL);
12337 
12338 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
12339 		if (ecb->dte_state != state)
12340 			continue;
12341 
12342 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
12343 	}
12344 }
12345 
12346 static int
12347 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
12348 {
12349 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
12350 	dtrace_speculation_t *spec;
12351 	dtrace_buffer_t *buf;
12352 	cyc_handler_t hdlr;
12353 	cyc_time_t when;
12354 	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
12355 	dtrace_icookie_t cookie;
12356 
12357 	mutex_enter(&cpu_lock);
12358 	mutex_enter(&dtrace_lock);
12359 
12360 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
12361 		rval = EBUSY;
12362 		goto out;
12363 	}
12364 
12365 	/*
12366 	 * Before we can perform any checks, we must prime all of the
12367 	 * retained enablings that correspond to this state.
12368 	 */
12369 	dtrace_enabling_prime(state);
12370 
12371 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
12372 		rval = EACCES;
12373 		goto out;
12374 	}
12375 
12376 	dtrace_state_prereserve(state);
12377 
12378 	/*
12379 	 * Now we want to do is try to allocate our speculations.
12380 	 * We do not automatically resize the number of speculations; if
12381 	 * this fails, we will fail the operation.
12382 	 */
12383 	nspec = opt[DTRACEOPT_NSPEC];
12384 	ASSERT(nspec != DTRACEOPT_UNSET);
12385 
12386 	if (nspec > INT_MAX) {
12387 		rval = ENOMEM;
12388 		goto out;
12389 	}
12390 
12391 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
12392 
12393 	if (spec == NULL) {
12394 		rval = ENOMEM;
12395 		goto out;
12396 	}
12397 
12398 	state->dts_speculations = spec;
12399 	state->dts_nspeculations = (int)nspec;
12400 
12401 	for (i = 0; i < nspec; i++) {
12402 		if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
12403 			rval = ENOMEM;
12404 			goto err;
12405 		}
12406 
12407 		spec[i].dtsp_buffer = buf;
12408 	}
12409 
12410 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
12411 		if (dtrace_anon.dta_state == NULL) {
12412 			rval = ENOENT;
12413 			goto out;
12414 		}
12415 
12416 		if (state->dts_necbs != 0) {
12417 			rval = EALREADY;
12418 			goto out;
12419 		}
12420 
12421 		state->dts_anon = dtrace_anon_grab();
12422 		ASSERT(state->dts_anon != NULL);
12423 		state = state->dts_anon;
12424 
12425 		/*
12426 		 * We want "grabanon" to be set in the grabbed state, so we'll
12427 		 * copy that option value from the grabbing state into the
12428 		 * grabbed state.
12429 		 */
12430 		state->dts_options[DTRACEOPT_GRABANON] =
12431 		    opt[DTRACEOPT_GRABANON];
12432 
12433 		*cpu = dtrace_anon.dta_beganon;
12434 
12435 		/*
12436 		 * If the anonymous state is active (as it almost certainly
12437 		 * is if the anonymous enabling ultimately matched anything),
12438 		 * we don't allow any further option processing -- but we
12439 		 * don't return failure.
12440 		 */
12441 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
12442 			goto out;
12443 	}
12444 
12445 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
12446 	    opt[DTRACEOPT_AGGSIZE] != 0) {
12447 		if (state->dts_aggregations == NULL) {
12448 			/*
12449 			 * We're not going to create an aggregation buffer
12450 			 * because we don't have any ECBs that contain
12451 			 * aggregations -- set this option to 0.
12452 			 */
12453 			opt[DTRACEOPT_AGGSIZE] = 0;
12454 		} else {
12455 			/*
12456 			 * If we have an aggregation buffer, we must also have
12457 			 * a buffer to use as scratch.
12458 			 */
12459 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
12460 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
12461 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
12462 			}
12463 		}
12464 	}
12465 
12466 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
12467 	    opt[DTRACEOPT_SPECSIZE] != 0) {
12468 		if (!state->dts_speculates) {
12469 			/*
12470 			 * We're not going to create speculation buffers
12471 			 * because we don't have any ECBs that actually
12472 			 * speculate -- set the speculation size to 0.
12473 			 */
12474 			opt[DTRACEOPT_SPECSIZE] = 0;
12475 		}
12476 	}
12477 
12478 	/*
12479 	 * The bare minimum size for any buffer that we're actually going to
12480 	 * do anything to is sizeof (uint64_t).
12481 	 */
12482 	sz = sizeof (uint64_t);
12483 
12484 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
12485 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
12486 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
12487 		/*
12488 		 * A buffer size has been explicitly set to 0 (or to a size
12489 		 * that will be adjusted to 0) and we need the space -- we
12490 		 * need to return failure.  We return ENOSPC to differentiate
12491 		 * it from failing to allocate a buffer due to failure to meet
12492 		 * the reserve (for which we return E2BIG).
12493 		 */
12494 		rval = ENOSPC;
12495 		goto out;
12496 	}
12497 
12498 	if ((rval = dtrace_state_buffers(state)) != 0)
12499 		goto err;
12500 
12501 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
12502 		sz = dtrace_dstate_defsize;
12503 
12504 	do {
12505 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
12506 
12507 		if (rval == 0)
12508 			break;
12509 
12510 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
12511 			goto err;
12512 	} while (sz >>= 1);
12513 
12514 	opt[DTRACEOPT_DYNVARSIZE] = sz;
12515 
12516 	if (rval != 0)
12517 		goto err;
12518 
12519 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
12520 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
12521 
12522 	if (opt[DTRACEOPT_CLEANRATE] == 0)
12523 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
12524 
12525 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
12526 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
12527 
12528 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
12529 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
12530 
12531 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
12532 	hdlr.cyh_arg = state;
12533 	hdlr.cyh_level = CY_LOW_LEVEL;
12534 
12535 	when.cyt_when = 0;
12536 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
12537 
12538 	state->dts_cleaner = cyclic_add(&hdlr, &when);
12539 
12540 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
12541 	hdlr.cyh_arg = state;
12542 	hdlr.cyh_level = CY_LOW_LEVEL;
12543 
12544 	when.cyt_when = 0;
12545 	when.cyt_interval = dtrace_deadman_interval;
12546 
12547 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
12548 	state->dts_deadman = cyclic_add(&hdlr, &when);
12549 
12550 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
12551 
12552 	/*
12553 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
12554 	 * interrupts here both to record the CPU on which we fired the BEGIN
12555 	 * probe (the data from this CPU will be processed first at user
12556 	 * level) and to manually activate the buffer for this CPU.
12557 	 */
12558 	cookie = dtrace_interrupt_disable();
12559 	*cpu = CPU->cpu_id;
12560 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
12561 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
12562 
12563 	dtrace_probe(dtrace_probeid_begin,
12564 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
12565 	dtrace_interrupt_enable(cookie);
12566 	/*
12567 	 * We may have had an exit action from a BEGIN probe; only change our
12568 	 * state to ACTIVE if we're still in WARMUP.
12569 	 */
12570 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
12571 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
12572 
12573 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
12574 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
12575 
12576 	/*
12577 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
12578 	 * want each CPU to transition its principal buffer out of the
12579 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
12580 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
12581 	 * atomically transition from processing none of a state's ECBs to
12582 	 * processing all of them.
12583 	 */
12584 	dtrace_xcall(DTRACE_CPUALL,
12585 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
12586 	goto out;
12587 
12588 err:
12589 	dtrace_buffer_free(state->dts_buffer);
12590 	dtrace_buffer_free(state->dts_aggbuffer);
12591 
12592 	if ((nspec = state->dts_nspeculations) == 0) {
12593 		ASSERT(state->dts_speculations == NULL);
12594 		goto out;
12595 	}
12596 
12597 	spec = state->dts_speculations;
12598 	ASSERT(spec != NULL);
12599 
12600 	for (i = 0; i < state->dts_nspeculations; i++) {
12601 		if ((buf = spec[i].dtsp_buffer) == NULL)
12602 			break;
12603 
12604 		dtrace_buffer_free(buf);
12605 		kmem_free(buf, bufsize);
12606 	}
12607 
12608 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
12609 	state->dts_nspeculations = 0;
12610 	state->dts_speculations = NULL;
12611 
12612 out:
12613 	mutex_exit(&dtrace_lock);
12614 	mutex_exit(&cpu_lock);
12615 
12616 	return (rval);
12617 }
12618 
12619 static int
12620 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
12621 {
12622 	dtrace_icookie_t cookie;
12623 
12624 	ASSERT(MUTEX_HELD(&dtrace_lock));
12625 
12626 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
12627 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
12628 		return (EINVAL);
12629 
12630 	/*
12631 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
12632 	 * to be sure that every CPU has seen it.  See below for the details
12633 	 * on why this is done.
12634 	 */
12635 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
12636 	dtrace_sync();
12637 
12638 	/*
12639 	 * By this point, it is impossible for any CPU to be still processing
12640 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
12641 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
12642 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
12643 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
12644 	 * iff we're in the END probe.
12645 	 */
12646 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
12647 	dtrace_sync();
12648 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
12649 
12650 	/*
12651 	 * Finally, we can release the reserve and call the END probe.  We
12652 	 * disable interrupts across calling the END probe to allow us to
12653 	 * return the CPU on which we actually called the END probe.  This
12654 	 * allows user-land to be sure that this CPU's principal buffer is
12655 	 * processed last.
12656 	 */
12657 	state->dts_reserve = 0;
12658 
12659 	cookie = dtrace_interrupt_disable();
12660 	*cpu = CPU->cpu_id;
12661 	dtrace_probe(dtrace_probeid_end,
12662 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
12663 	dtrace_interrupt_enable(cookie);
12664 
12665 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
12666 	dtrace_sync();
12667 
12668 	return (0);
12669 }
12670 
12671 static int
12672 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
12673     dtrace_optval_t val)
12674 {
12675 	ASSERT(MUTEX_HELD(&dtrace_lock));
12676 
12677 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
12678 		return (EBUSY);
12679 
12680 	if (option >= DTRACEOPT_MAX)
12681 		return (EINVAL);
12682 
12683 	if (option != DTRACEOPT_CPU && val < 0)
12684 		return (EINVAL);
12685 
12686 	switch (option) {
12687 	case DTRACEOPT_DESTRUCTIVE:
12688 		if (dtrace_destructive_disallow)
12689 			return (EACCES);
12690 
12691 		state->dts_cred.dcr_destructive = 1;
12692 		break;
12693 
12694 	case DTRACEOPT_BUFSIZE:
12695 	case DTRACEOPT_DYNVARSIZE:
12696 	case DTRACEOPT_AGGSIZE:
12697 	case DTRACEOPT_SPECSIZE:
12698 	case DTRACEOPT_STRSIZE:
12699 		if (val < 0)
12700 			return (EINVAL);
12701 
12702 		if (val >= LONG_MAX) {
12703 			/*
12704 			 * If this is an otherwise negative value, set it to
12705 			 * the highest multiple of 128m less than LONG_MAX.
12706 			 * Technically, we're adjusting the size without
12707 			 * regard to the buffer resizing policy, but in fact,
12708 			 * this has no effect -- if we set the buffer size to
12709 			 * ~LONG_MAX and the buffer policy is ultimately set to
12710 			 * be "manual", the buffer allocation is guaranteed to
12711 			 * fail, if only because the allocation requires two
12712 			 * buffers.  (We set the the size to the highest
12713 			 * multiple of 128m because it ensures that the size
12714 			 * will remain a multiple of a megabyte when
12715 			 * repeatedly halved -- all the way down to 15m.)
12716 			 */
12717 			val = LONG_MAX - (1 << 27) + 1;
12718 		}
12719 	}
12720 
12721 	state->dts_options[option] = val;
12722 
12723 	return (0);
12724 }
12725 
12726 static void
12727 dtrace_state_destroy(dtrace_state_t *state)
12728 {
12729 	dtrace_ecb_t *ecb;
12730 	dtrace_vstate_t *vstate = &state->dts_vstate;
12731 	minor_t minor = getminor(state->dts_dev);
12732 	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
12733 	dtrace_speculation_t *spec = state->dts_speculations;
12734 	int nspec = state->dts_nspeculations;
12735 	uint32_t match;
12736 
12737 	ASSERT(MUTEX_HELD(&dtrace_lock));
12738 	ASSERT(MUTEX_HELD(&cpu_lock));
12739 
12740 	/*
12741 	 * First, retract any retained enablings for this state.
12742 	 */
12743 	dtrace_enabling_retract(state);
12744 	ASSERT(state->dts_nretained == 0);
12745 
12746 	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
12747 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
12748 		/*
12749 		 * We have managed to come into dtrace_state_destroy() on a
12750 		 * hot enabling -- almost certainly because of a disorderly
12751 		 * shutdown of a consumer.  (That is, a consumer that is
12752 		 * exiting without having called dtrace_stop().) In this case,
12753 		 * we're going to set our activity to be KILLED, and then
12754 		 * issue a sync to be sure that everyone is out of probe
12755 		 * context before we start blowing away ECBs.
12756 		 */
12757 		state->dts_activity = DTRACE_ACTIVITY_KILLED;
12758 		dtrace_sync();
12759 	}
12760 
12761 	/*
12762 	 * Release the credential hold we took in dtrace_state_create().
12763 	 */
12764 	if (state->dts_cred.dcr_cred != NULL)
12765 		crfree(state->dts_cred.dcr_cred);
12766 
12767 	/*
12768 	 * Now we can safely disable and destroy any enabled probes.  Because
12769 	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
12770 	 * (especially if they're all enabled), we take two passes through the
12771 	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
12772 	 * in the second we disable whatever is left over.
12773 	 */
12774 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
12775 		for (i = 0; i < state->dts_necbs; i++) {
12776 			if ((ecb = state->dts_ecbs[i]) == NULL)
12777 				continue;
12778 
12779 			if (match && ecb->dte_probe != NULL) {
12780 				dtrace_probe_t *probe = ecb->dte_probe;
12781 				dtrace_provider_t *prov = probe->dtpr_provider;
12782 
12783 				if (!(prov->dtpv_priv.dtpp_flags & match))
12784 					continue;
12785 			}
12786 
12787 			dtrace_ecb_disable(ecb);
12788 			dtrace_ecb_destroy(ecb);
12789 		}
12790 
12791 		if (!match)
12792 			break;
12793 	}
12794 
12795 	/*
12796 	 * Before we free the buffers, perform one more sync to assure that
12797 	 * every CPU is out of probe context.
12798 	 */
12799 	dtrace_sync();
12800 
12801 	dtrace_buffer_free(state->dts_buffer);
12802 	dtrace_buffer_free(state->dts_aggbuffer);
12803 
12804 	for (i = 0; i < nspec; i++)
12805 		dtrace_buffer_free(spec[i].dtsp_buffer);
12806 
12807 	if (state->dts_cleaner != CYCLIC_NONE)
12808 		cyclic_remove(state->dts_cleaner);
12809 
12810 	if (state->dts_deadman != CYCLIC_NONE)
12811 		cyclic_remove(state->dts_deadman);
12812 
12813 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
12814 	dtrace_vstate_fini(vstate);
12815 	kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
12816 
12817 	if (state->dts_aggregations != NULL) {
12818 #ifdef DEBUG
12819 		for (i = 0; i < state->dts_naggregations; i++)
12820 			ASSERT(state->dts_aggregations[i] == NULL);
12821 #endif
12822 		ASSERT(state->dts_naggregations > 0);
12823 		kmem_free(state->dts_aggregations,
12824 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
12825 	}
12826 
12827 	kmem_free(state->dts_buffer, bufsize);
12828 	kmem_free(state->dts_aggbuffer, bufsize);
12829 
12830 	for (i = 0; i < nspec; i++)
12831 		kmem_free(spec[i].dtsp_buffer, bufsize);
12832 
12833 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
12834 
12835 	dtrace_format_destroy(state);
12836 
12837 	vmem_destroy(state->dts_aggid_arena);
12838 	ddi_soft_state_free(dtrace_softstate, minor);
12839 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12840 }
12841 
12842 /*
12843  * DTrace Anonymous Enabling Functions
12844  */
12845 static dtrace_state_t *
12846 dtrace_anon_grab(void)
12847 {
12848 	dtrace_state_t *state;
12849 
12850 	ASSERT(MUTEX_HELD(&dtrace_lock));
12851 
12852 	if ((state = dtrace_anon.dta_state) == NULL) {
12853 		ASSERT(dtrace_anon.dta_enabling == NULL);
12854 		return (NULL);
12855 	}
12856 
12857 	ASSERT(dtrace_anon.dta_enabling != NULL);
12858 	ASSERT(dtrace_retained != NULL);
12859 
12860 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
12861 	dtrace_anon.dta_enabling = NULL;
12862 	dtrace_anon.dta_state = NULL;
12863 
12864 	return (state);
12865 }
12866 
12867 static void
12868 dtrace_anon_property(void)
12869 {
12870 	int i, rv;
12871 	dtrace_state_t *state;
12872 	dof_hdr_t *dof;
12873 	char c[32];		/* enough for "dof-data-" + digits */
12874 
12875 	ASSERT(MUTEX_HELD(&dtrace_lock));
12876 	ASSERT(MUTEX_HELD(&cpu_lock));
12877 
12878 	for (i = 0; ; i++) {
12879 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
12880 
12881 		dtrace_err_verbose = 1;
12882 
12883 		if ((dof = dtrace_dof_property(c)) == NULL) {
12884 			dtrace_err_verbose = 0;
12885 			break;
12886 		}
12887 
12888 		/*
12889 		 * We want to create anonymous state, so we need to transition
12890 		 * the kernel debugger to indicate that DTrace is active.  If
12891 		 * this fails (e.g. because the debugger has modified text in
12892 		 * some way), we won't continue with the processing.
12893 		 */
12894 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
12895 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
12896 			    "enabling ignored.");
12897 			dtrace_dof_destroy(dof);
12898 			break;
12899 		}
12900 
12901 		/*
12902 		 * If we haven't allocated an anonymous state, we'll do so now.
12903 		 */
12904 		if ((state = dtrace_anon.dta_state) == NULL) {
12905 			state = dtrace_state_create(NULL, NULL);
12906 			dtrace_anon.dta_state = state;
12907 
12908 			if (state == NULL) {
12909 				/*
12910 				 * This basically shouldn't happen:  the only
12911 				 * failure mode from dtrace_state_create() is a
12912 				 * failure of ddi_soft_state_zalloc() that
12913 				 * itself should never happen.  Still, the
12914 				 * interface allows for a failure mode, and
12915 				 * we want to fail as gracefully as possible:
12916 				 * we'll emit an error message and cease
12917 				 * processing anonymous state in this case.
12918 				 */
12919 				cmn_err(CE_WARN, "failed to create "
12920 				    "anonymous state");
12921 				dtrace_dof_destroy(dof);
12922 				break;
12923 			}
12924 		}
12925 
12926 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
12927 		    &dtrace_anon.dta_enabling, 0, B_TRUE);
12928 
12929 		if (rv == 0)
12930 			rv = dtrace_dof_options(dof, state);
12931 
12932 		dtrace_err_verbose = 0;
12933 		dtrace_dof_destroy(dof);
12934 
12935 		if (rv != 0) {
12936 			/*
12937 			 * This is malformed DOF; chuck any anonymous state
12938 			 * that we created.
12939 			 */
12940 			ASSERT(dtrace_anon.dta_enabling == NULL);
12941 			dtrace_state_destroy(state);
12942 			dtrace_anon.dta_state = NULL;
12943 			break;
12944 		}
12945 
12946 		ASSERT(dtrace_anon.dta_enabling != NULL);
12947 	}
12948 
12949 	if (dtrace_anon.dta_enabling != NULL) {
12950 		int rval;
12951 
12952 		/*
12953 		 * dtrace_enabling_retain() can only fail because we are
12954 		 * trying to retain more enablings than are allowed -- but
12955 		 * we only have one anonymous enabling, and we are guaranteed
12956 		 * to be allowed at least one retained enabling; we assert
12957 		 * that dtrace_enabling_retain() returns success.
12958 		 */
12959 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
12960 		ASSERT(rval == 0);
12961 
12962 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
12963 	}
12964 }
12965 
12966 /*
12967  * DTrace Helper Functions
12968  */
12969 static void
12970 dtrace_helper_trace(dtrace_helper_action_t *helper,
12971     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
12972 {
12973 	uint32_t size, next, nnext, i;
12974 	dtrace_helptrace_t *ent;
12975 	uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
12976 
12977 	if (!dtrace_helptrace_enabled)
12978 		return;
12979 
12980 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
12981 
12982 	/*
12983 	 * What would a tracing framework be without its own tracing
12984 	 * framework?  (Well, a hell of a lot simpler, for starters...)
12985 	 */
12986 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
12987 	    sizeof (uint64_t) - sizeof (uint64_t);
12988 
12989 	/*
12990 	 * Iterate until we can allocate a slot in the trace buffer.
12991 	 */
12992 	do {
12993 		next = dtrace_helptrace_next;
12994 
12995 		if (next + size < dtrace_helptrace_bufsize) {
12996 			nnext = next + size;
12997 		} else {
12998 			nnext = size;
12999 		}
13000 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
13001 
13002 	/*
13003 	 * We have our slot; fill it in.
13004 	 */
13005 	if (nnext == size)
13006 		next = 0;
13007 
13008 	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
13009 	ent->dtht_helper = helper;
13010 	ent->dtht_where = where;
13011 	ent->dtht_nlocals = vstate->dtvs_nlocals;
13012 
13013 	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
13014 	    mstate->dtms_fltoffs : -1;
13015 	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
13016 	ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
13017 
13018 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
13019 		dtrace_statvar_t *svar;
13020 
13021 		if ((svar = vstate->dtvs_locals[i]) == NULL)
13022 			continue;
13023 
13024 		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
13025 		ent->dtht_locals[i] =
13026 		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
13027 	}
13028 }
13029 
13030 static uint64_t
13031 dtrace_helper(int which, dtrace_mstate_t *mstate,
13032     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
13033 {
13034 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
13035 	uint64_t sarg0 = mstate->dtms_arg[0];
13036 	uint64_t sarg1 = mstate->dtms_arg[1];
13037 	uint64_t rval;
13038 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
13039 	dtrace_helper_action_t *helper;
13040 	dtrace_vstate_t *vstate;
13041 	dtrace_difo_t *pred;
13042 	int i, trace = dtrace_helptrace_enabled;
13043 
13044 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
13045 
13046 	if (helpers == NULL)
13047 		return (0);
13048 
13049 	if ((helper = helpers->dthps_actions[which]) == NULL)
13050 		return (0);
13051 
13052 	vstate = &helpers->dthps_vstate;
13053 	mstate->dtms_arg[0] = arg0;
13054 	mstate->dtms_arg[1] = arg1;
13055 
13056 	/*
13057 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
13058 	 * we'll call the corresponding actions.  Note that the below calls
13059 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
13060 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
13061 	 * the stored DIF offset with its own (which is the desired behavior).
13062 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
13063 	 * from machine state; this is okay, too.
13064 	 */
13065 	for (; helper != NULL; helper = helper->dtha_next) {
13066 		if ((pred = helper->dtha_predicate) != NULL) {
13067 			if (trace)
13068 				dtrace_helper_trace(helper, mstate, vstate, 0);
13069 
13070 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
13071 				goto next;
13072 
13073 			if (*flags & CPU_DTRACE_FAULT)
13074 				goto err;
13075 		}
13076 
13077 		for (i = 0; i < helper->dtha_nactions; i++) {
13078 			if (trace)
13079 				dtrace_helper_trace(helper,
13080 				    mstate, vstate, i + 1);
13081 
13082 			rval = dtrace_dif_emulate(helper->dtha_actions[i],
13083 			    mstate, vstate, state);
13084 
13085 			if (*flags & CPU_DTRACE_FAULT)
13086 				goto err;
13087 		}
13088 
13089 next:
13090 		if (trace)
13091 			dtrace_helper_trace(helper, mstate, vstate,
13092 			    DTRACE_HELPTRACE_NEXT);
13093 	}
13094 
13095 	if (trace)
13096 		dtrace_helper_trace(helper, mstate, vstate,
13097 		    DTRACE_HELPTRACE_DONE);
13098 
13099 	/*
13100 	 * Restore the arg0 that we saved upon entry.
13101 	 */
13102 	mstate->dtms_arg[0] = sarg0;
13103 	mstate->dtms_arg[1] = sarg1;
13104 
13105 	return (rval);
13106 
13107 err:
13108 	if (trace)
13109 		dtrace_helper_trace(helper, mstate, vstate,
13110 		    DTRACE_HELPTRACE_ERR);
13111 
13112 	/*
13113 	 * Restore the arg0 that we saved upon entry.
13114 	 */
13115 	mstate->dtms_arg[0] = sarg0;
13116 	mstate->dtms_arg[1] = sarg1;
13117 
13118 	return (NULL);
13119 }
13120 
13121 static void
13122 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
13123     dtrace_vstate_t *vstate)
13124 {
13125 	int i;
13126 
13127 	if (helper->dtha_predicate != NULL)
13128 		dtrace_difo_release(helper->dtha_predicate, vstate);
13129 
13130 	for (i = 0; i < helper->dtha_nactions; i++) {
13131 		ASSERT(helper->dtha_actions[i] != NULL);
13132 		dtrace_difo_release(helper->dtha_actions[i], vstate);
13133 	}
13134 
13135 	kmem_free(helper->dtha_actions,
13136 	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
13137 	kmem_free(helper, sizeof (dtrace_helper_action_t));
13138 }
13139 
13140 static int
13141 dtrace_helper_destroygen(int gen)
13142 {
13143 	proc_t *p = curproc;
13144 	dtrace_helpers_t *help = p->p_dtrace_helpers;
13145 	dtrace_vstate_t *vstate;
13146 	int i;
13147 
13148 	ASSERT(MUTEX_HELD(&dtrace_lock));
13149 
13150 	if (help == NULL || gen > help->dthps_generation)
13151 		return (EINVAL);
13152 
13153 	vstate = &help->dthps_vstate;
13154 
13155 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
13156 		dtrace_helper_action_t *last = NULL, *h, *next;
13157 
13158 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
13159 			next = h->dtha_next;
13160 
13161 			if (h->dtha_generation == gen) {
13162 				if (last != NULL) {
13163 					last->dtha_next = next;
13164 				} else {
13165 					help->dthps_actions[i] = next;
13166 				}
13167 
13168 				dtrace_helper_action_destroy(h, vstate);
13169 			} else {
13170 				last = h;
13171 			}
13172 		}
13173 	}
13174 
13175 	/*
13176 	 * Interate until we've cleared out all helper providers with the
13177 	 * given generation number.
13178 	 */
13179 	for (;;) {
13180 		dtrace_helper_provider_t *prov;
13181 
13182 		/*
13183 		 * Look for a helper provider with the right generation. We
13184 		 * have to start back at the beginning of the list each time
13185 		 * because we drop dtrace_lock. It's unlikely that we'll make
13186 		 * more than two passes.
13187 		 */
13188 		for (i = 0; i < help->dthps_nprovs; i++) {
13189 			prov = help->dthps_provs[i];
13190 
13191 			if (prov->dthp_generation == gen)
13192 				break;
13193 		}
13194 
13195 		/*
13196 		 * If there were no matches, we're done.
13197 		 */
13198 		if (i == help->dthps_nprovs)
13199 			break;
13200 
13201 		/*
13202 		 * Move the last helper provider into this slot.
13203 		 */
13204 		help->dthps_nprovs--;
13205 		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
13206 		help->dthps_provs[help->dthps_nprovs] = NULL;
13207 
13208 		mutex_exit(&dtrace_lock);
13209 
13210 		/*
13211 		 * If we have a meta provider, remove this helper provider.
13212 		 */
13213 		mutex_enter(&dtrace_meta_lock);
13214 		if (dtrace_meta_pid != NULL) {
13215 			ASSERT(dtrace_deferred_pid == NULL);
13216 			dtrace_helper_provider_remove(&prov->dthp_prov,
13217 			    p->p_pid);
13218 		}
13219 		mutex_exit(&dtrace_meta_lock);
13220 
13221 		dtrace_helper_provider_destroy(prov);
13222 
13223 		mutex_enter(&dtrace_lock);
13224 	}
13225 
13226 	return (0);
13227 }
13228 
13229 static int
13230 dtrace_helper_validate(dtrace_helper_action_t *helper)
13231 {
13232 	int err = 0, i;
13233 	dtrace_difo_t *dp;
13234 
13235 	if ((dp = helper->dtha_predicate) != NULL)
13236 		err += dtrace_difo_validate_helper(dp);
13237 
13238 	for (i = 0; i < helper->dtha_nactions; i++)
13239 		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
13240 
13241 	return (err == 0);
13242 }
13243 
13244 static int
13245 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
13246 {
13247 	dtrace_helpers_t *help;
13248 	dtrace_helper_action_t *helper, *last;
13249 	dtrace_actdesc_t *act;
13250 	dtrace_vstate_t *vstate;
13251 	dtrace_predicate_t *pred;
13252 	int count = 0, nactions = 0, i;
13253 
13254 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
13255 		return (EINVAL);
13256 
13257 	help = curproc->p_dtrace_helpers;
13258 	last = help->dthps_actions[which];
13259 	vstate = &help->dthps_vstate;
13260 
13261 	for (count = 0; last != NULL; last = last->dtha_next) {
13262 		count++;
13263 		if (last->dtha_next == NULL)
13264 			break;
13265 	}
13266 
13267 	/*
13268 	 * If we already have dtrace_helper_actions_max helper actions for this
13269 	 * helper action type, we'll refuse to add a new one.
13270 	 */
13271 	if (count >= dtrace_helper_actions_max)
13272 		return (ENOSPC);
13273 
13274 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
13275 	helper->dtha_generation = help->dthps_generation;
13276 
13277 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
13278 		ASSERT(pred->dtp_difo != NULL);
13279 		dtrace_difo_hold(pred->dtp_difo);
13280 		helper->dtha_predicate = pred->dtp_difo;
13281 	}
13282 
13283 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
13284 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
13285 			goto err;
13286 
13287 		if (act->dtad_difo == NULL)
13288 			goto err;
13289 
13290 		nactions++;
13291 	}
13292 
13293 	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
13294 	    (helper->dtha_nactions = nactions), KM_SLEEP);
13295 
13296 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
13297 		dtrace_difo_hold(act->dtad_difo);
13298 		helper->dtha_actions[i++] = act->dtad_difo;
13299 	}
13300 
13301 	if (!dtrace_helper_validate(helper))
13302 		goto err;
13303 
13304 	if (last == NULL) {
13305 		help->dthps_actions[which] = helper;
13306 	} else {
13307 		last->dtha_next = helper;
13308 	}
13309 
13310 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
13311 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
13312 		dtrace_helptrace_next = 0;
13313 	}
13314 
13315 	return (0);
13316 err:
13317 	dtrace_helper_action_destroy(helper, vstate);
13318 	return (EINVAL);
13319 }
13320 
13321 static void
13322 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
13323     dof_helper_t *dofhp)
13324 {
13325 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
13326 
13327 	mutex_enter(&dtrace_meta_lock);
13328 	mutex_enter(&dtrace_lock);
13329 
13330 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
13331 		/*
13332 		 * If the dtrace module is loaded but not attached, or if
13333 		 * there aren't isn't a meta provider registered to deal with
13334 		 * these provider descriptions, we need to postpone creating
13335 		 * the actual providers until later.
13336 		 */
13337 
13338 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
13339 		    dtrace_deferred_pid != help) {
13340 			help->dthps_deferred = 1;
13341 			help->dthps_pid = p->p_pid;
13342 			help->dthps_next = dtrace_deferred_pid;
13343 			help->dthps_prev = NULL;
13344 			if (dtrace_deferred_pid != NULL)
13345 				dtrace_deferred_pid->dthps_prev = help;
13346 			dtrace_deferred_pid = help;
13347 		}
13348 
13349 		mutex_exit(&dtrace_lock);
13350 
13351 	} else if (dofhp != NULL) {
13352 		/*
13353 		 * If the dtrace module is loaded and we have a particular
13354 		 * helper provider description, pass that off to the
13355 		 * meta provider.
13356 		 */
13357 
13358 		mutex_exit(&dtrace_lock);
13359 
13360 		dtrace_helper_provide(dofhp, p->p_pid);
13361 
13362 	} else {
13363 		/*
13364 		 * Otherwise, just pass all the helper provider descriptions
13365 		 * off to the meta provider.
13366 		 */
13367 
13368 		int i;
13369 		mutex_exit(&dtrace_lock);
13370 
13371 		for (i = 0; i < help->dthps_nprovs; i++) {
13372 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
13373 			    p->p_pid);
13374 		}
13375 	}
13376 
13377 	mutex_exit(&dtrace_meta_lock);
13378 }
13379 
13380 static int
13381 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
13382 {
13383 	dtrace_helpers_t *help;
13384 	dtrace_helper_provider_t *hprov, **tmp_provs;
13385 	uint_t tmp_maxprovs, i;
13386 
13387 	ASSERT(MUTEX_HELD(&dtrace_lock));
13388 
13389 	help = curproc->p_dtrace_helpers;
13390 	ASSERT(help != NULL);
13391 
13392 	/*
13393 	 * If we already have dtrace_helper_providers_max helper providers,
13394 	 * we're refuse to add a new one.
13395 	 */
13396 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
13397 		return (ENOSPC);
13398 
13399 	/*
13400 	 * Check to make sure this isn't a duplicate.
13401 	 */
13402 	for (i = 0; i < help->dthps_nprovs; i++) {
13403 		if (dofhp->dofhp_addr ==
13404 		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
13405 			return (EALREADY);
13406 	}
13407 
13408 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
13409 	hprov->dthp_prov = *dofhp;
13410 	hprov->dthp_ref = 1;
13411 	hprov->dthp_generation = gen;
13412 
13413 	/*
13414 	 * Allocate a bigger table for helper providers if it's already full.
13415 	 */
13416 	if (help->dthps_maxprovs == help->dthps_nprovs) {
13417 		tmp_maxprovs = help->dthps_maxprovs;
13418 		tmp_provs = help->dthps_provs;
13419 
13420 		if (help->dthps_maxprovs == 0)
13421 			help->dthps_maxprovs = 2;
13422 		else
13423 			help->dthps_maxprovs *= 2;
13424 		if (help->dthps_maxprovs > dtrace_helper_providers_max)
13425 			help->dthps_maxprovs = dtrace_helper_providers_max;
13426 
13427 		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
13428 
13429 		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
13430 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
13431 
13432 		if (tmp_provs != NULL) {
13433 			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
13434 			    sizeof (dtrace_helper_provider_t *));
13435 			kmem_free(tmp_provs, tmp_maxprovs *
13436 			    sizeof (dtrace_helper_provider_t *));
13437 		}
13438 	}
13439 
13440 	help->dthps_provs[help->dthps_nprovs] = hprov;
13441 	help->dthps_nprovs++;
13442 
13443 	return (0);
13444 }
13445 
13446 static void
13447 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
13448 {
13449 	mutex_enter(&dtrace_lock);
13450 
13451 	if (--hprov->dthp_ref == 0) {
13452 		dof_hdr_t *dof;
13453 		mutex_exit(&dtrace_lock);
13454 		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
13455 		dtrace_dof_destroy(dof);
13456 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
13457 	} else {
13458 		mutex_exit(&dtrace_lock);
13459 	}
13460 }
13461 
13462 static int
13463 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
13464 {
13465 	uintptr_t daddr = (uintptr_t)dof;
13466 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
13467 	dof_provider_t *provider;
13468 	dof_probe_t *probe;
13469 	uint8_t *arg;
13470 	char *strtab, *typestr;
13471 	dof_stridx_t typeidx;
13472 	size_t typesz;
13473 	uint_t nprobes, j, k;
13474 
13475 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
13476 
13477 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
13478 		dtrace_dof_error(dof, "misaligned section offset");
13479 		return (-1);
13480 	}
13481 
13482 	/*
13483 	 * The section needs to be large enough to contain the DOF provider
13484 	 * structure appropriate for the given version.
13485 	 */
13486 	if (sec->dofs_size <
13487 	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
13488 	    offsetof(dof_provider_t, dofpv_prenoffs) :
13489 	    sizeof (dof_provider_t))) {
13490 		dtrace_dof_error(dof, "provider section too small");
13491 		return (-1);
13492 	}
13493 
13494 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
13495 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
13496 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
13497 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
13498 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
13499 
13500 	if (str_sec == NULL || prb_sec == NULL ||
13501 	    arg_sec == NULL || off_sec == NULL)
13502 		return (-1);
13503 
13504 	enoff_sec = NULL;
13505 
13506 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
13507 	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
13508 	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
13509 	    provider->dofpv_prenoffs)) == NULL)
13510 		return (-1);
13511 
13512 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
13513 
13514 	if (provider->dofpv_name >= str_sec->dofs_size ||
13515 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
13516 		dtrace_dof_error(dof, "invalid provider name");
13517 		return (-1);
13518 	}
13519 
13520 	if (prb_sec->dofs_entsize == 0 ||
13521 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
13522 		dtrace_dof_error(dof, "invalid entry size");
13523 		return (-1);
13524 	}
13525 
13526 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
13527 		dtrace_dof_error(dof, "misaligned entry size");
13528 		return (-1);
13529 	}
13530 
13531 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
13532 		dtrace_dof_error(dof, "invalid entry size");
13533 		return (-1);
13534 	}
13535 
13536 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
13537 		dtrace_dof_error(dof, "misaligned section offset");
13538 		return (-1);
13539 	}
13540 
13541 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
13542 		dtrace_dof_error(dof, "invalid entry size");
13543 		return (-1);
13544 	}
13545 
13546 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
13547 
13548 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
13549 
13550 	/*
13551 	 * Take a pass through the probes to check for errors.
13552 	 */
13553 	for (j = 0; j < nprobes; j++) {
13554 		probe = (dof_probe_t *)(uintptr_t)(daddr +
13555 		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
13556 
13557 		if (probe->dofpr_func >= str_sec->dofs_size) {
13558 			dtrace_dof_error(dof, "invalid function name");
13559 			return (-1);
13560 		}
13561 
13562 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
13563 			dtrace_dof_error(dof, "function name too long");
13564 			return (-1);
13565 		}
13566 
13567 		if (probe->dofpr_name >= str_sec->dofs_size ||
13568 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
13569 			dtrace_dof_error(dof, "invalid probe name");
13570 			return (-1);
13571 		}
13572 
13573 		/*
13574 		 * The offset count must not wrap the index, and the offsets
13575 		 * must also not overflow the section's data.
13576 		 */
13577 		if (probe->dofpr_offidx + probe->dofpr_noffs <
13578 		    probe->dofpr_offidx ||
13579 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
13580 		    off_sec->dofs_entsize > off_sec->dofs_size) {
13581 			dtrace_dof_error(dof, "invalid probe offset");
13582 			return (-1);
13583 		}
13584 
13585 		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
13586 			/*
13587 			 * If there's no is-enabled offset section, make sure
13588 			 * there aren't any is-enabled offsets. Otherwise
13589 			 * perform the same checks as for probe offsets
13590 			 * (immediately above).
13591 			 */
13592 			if (enoff_sec == NULL) {
13593 				if (probe->dofpr_enoffidx != 0 ||
13594 				    probe->dofpr_nenoffs != 0) {
13595 					dtrace_dof_error(dof, "is-enabled "
13596 					    "offsets with null section");
13597 					return (-1);
13598 				}
13599 			} else if (probe->dofpr_enoffidx +
13600 			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
13601 			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
13602 			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
13603 				dtrace_dof_error(dof, "invalid is-enabled "
13604 				    "offset");
13605 				return (-1);
13606 			}
13607 
13608 			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
13609 				dtrace_dof_error(dof, "zero probe and "
13610 				    "is-enabled offsets");
13611 				return (-1);
13612 			}
13613 		} else if (probe->dofpr_noffs == 0) {
13614 			dtrace_dof_error(dof, "zero probe offsets");
13615 			return (-1);
13616 		}
13617 
13618 		if (probe->dofpr_argidx + probe->dofpr_xargc <
13619 		    probe->dofpr_argidx ||
13620 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
13621 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
13622 			dtrace_dof_error(dof, "invalid args");
13623 			return (-1);
13624 		}
13625 
13626 		typeidx = probe->dofpr_nargv;
13627 		typestr = strtab + probe->dofpr_nargv;
13628 		for (k = 0; k < probe->dofpr_nargc; k++) {
13629 			if (typeidx >= str_sec->dofs_size) {
13630 				dtrace_dof_error(dof, "bad "
13631 				    "native argument type");
13632 				return (-1);
13633 			}
13634 
13635 			typesz = strlen(typestr) + 1;
13636 			if (typesz > DTRACE_ARGTYPELEN) {
13637 				dtrace_dof_error(dof, "native "
13638 				    "argument type too long");
13639 				return (-1);
13640 			}
13641 			typeidx += typesz;
13642 			typestr += typesz;
13643 		}
13644 
13645 		typeidx = probe->dofpr_xargv;
13646 		typestr = strtab + probe->dofpr_xargv;
13647 		for (k = 0; k < probe->dofpr_xargc; k++) {
13648 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
13649 				dtrace_dof_error(dof, "bad "
13650 				    "native argument index");
13651 				return (-1);
13652 			}
13653 
13654 			if (typeidx >= str_sec->dofs_size) {
13655 				dtrace_dof_error(dof, "bad "
13656 				    "translated argument type");
13657 				return (-1);
13658 			}
13659 
13660 			typesz = strlen(typestr) + 1;
13661 			if (typesz > DTRACE_ARGTYPELEN) {
13662 				dtrace_dof_error(dof, "translated argument "
13663 				    "type too long");
13664 				return (-1);
13665 			}
13666 
13667 			typeidx += typesz;
13668 			typestr += typesz;
13669 		}
13670 	}
13671 
13672 	return (0);
13673 }
13674 
13675 static int
13676 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
13677 {
13678 	dtrace_helpers_t *help;
13679 	dtrace_vstate_t *vstate;
13680 	dtrace_enabling_t *enab = NULL;
13681 	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
13682 	uintptr_t daddr = (uintptr_t)dof;
13683 
13684 	ASSERT(MUTEX_HELD(&dtrace_lock));
13685 
13686 	if ((help = curproc->p_dtrace_helpers) == NULL)
13687 		help = dtrace_helpers_create(curproc);
13688 
13689 	vstate = &help->dthps_vstate;
13690 
13691 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
13692 	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
13693 		dtrace_dof_destroy(dof);
13694 		return (rv);
13695 	}
13696 
13697 	/*
13698 	 * Look for helper providers and validate their descriptions.
13699 	 */
13700 	if (dhp != NULL) {
13701 		for (i = 0; i < dof->dofh_secnum; i++) {
13702 			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
13703 			    dof->dofh_secoff + i * dof->dofh_secsize);
13704 
13705 			if (sec->dofs_type != DOF_SECT_PROVIDER)
13706 				continue;
13707 
13708 			if (dtrace_helper_provider_validate(dof, sec) != 0) {
13709 				dtrace_enabling_destroy(enab);
13710 				dtrace_dof_destroy(dof);
13711 				return (-1);
13712 			}
13713 
13714 			nprovs++;
13715 		}
13716 	}
13717 
13718 	/*
13719 	 * Now we need to walk through the ECB descriptions in the enabling.
13720 	 */
13721 	for (i = 0; i < enab->dten_ndesc; i++) {
13722 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
13723 		dtrace_probedesc_t *desc = &ep->dted_probe;
13724 
13725 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
13726 			continue;
13727 
13728 		if (strcmp(desc->dtpd_mod, "helper") != 0)
13729 			continue;
13730 
13731 		if (strcmp(desc->dtpd_func, "ustack") != 0)
13732 			continue;
13733 
13734 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
13735 		    ep)) != 0) {
13736 			/*
13737 			 * Adding this helper action failed -- we are now going
13738 			 * to rip out the entire generation and return failure.
13739 			 */
13740 			(void) dtrace_helper_destroygen(help->dthps_generation);
13741 			dtrace_enabling_destroy(enab);
13742 			dtrace_dof_destroy(dof);
13743 			return (-1);
13744 		}
13745 
13746 		nhelpers++;
13747 	}
13748 
13749 	if (nhelpers < enab->dten_ndesc)
13750 		dtrace_dof_error(dof, "unmatched helpers");
13751 
13752 	gen = help->dthps_generation++;
13753 	dtrace_enabling_destroy(enab);
13754 
13755 	if (dhp != NULL && nprovs > 0) {
13756 		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
13757 		if (dtrace_helper_provider_add(dhp, gen) == 0) {
13758 			mutex_exit(&dtrace_lock);
13759 			dtrace_helper_provider_register(curproc, help, dhp);
13760 			mutex_enter(&dtrace_lock);
13761 
13762 			destroy = 0;
13763 		}
13764 	}
13765 
13766 	if (destroy)
13767 		dtrace_dof_destroy(dof);
13768 
13769 	return (gen);
13770 }
13771 
13772 static dtrace_helpers_t *
13773 dtrace_helpers_create(proc_t *p)
13774 {
13775 	dtrace_helpers_t *help;
13776 
13777 	ASSERT(MUTEX_HELD(&dtrace_lock));
13778 	ASSERT(p->p_dtrace_helpers == NULL);
13779 
13780 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
13781 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
13782 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
13783 
13784 	p->p_dtrace_helpers = help;
13785 	dtrace_helpers++;
13786 
13787 	return (help);
13788 }
13789 
13790 static void
13791 dtrace_helpers_destroy(void)
13792 {
13793 	dtrace_helpers_t *help;
13794 	dtrace_vstate_t *vstate;
13795 	proc_t *p = curproc;
13796 	int i;
13797 
13798 	mutex_enter(&dtrace_lock);
13799 
13800 	ASSERT(p->p_dtrace_helpers != NULL);
13801 	ASSERT(dtrace_helpers > 0);
13802 
13803 	help = p->p_dtrace_helpers;
13804 	vstate = &help->dthps_vstate;
13805 
13806 	/*
13807 	 * We're now going to lose the help from this process.
13808 	 */
13809 	p->p_dtrace_helpers = NULL;
13810 	dtrace_sync();
13811 
13812 	/*
13813 	 * Destory the helper actions.
13814 	 */
13815 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
13816 		dtrace_helper_action_t *h, *next;
13817 
13818 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
13819 			next = h->dtha_next;
13820 			dtrace_helper_action_destroy(h, vstate);
13821 			h = next;
13822 		}
13823 	}
13824 
13825 	mutex_exit(&dtrace_lock);
13826 
13827 	/*
13828 	 * Destroy the helper providers.
13829 	 */
13830 	if (help->dthps_maxprovs > 0) {
13831 		mutex_enter(&dtrace_meta_lock);
13832 		if (dtrace_meta_pid != NULL) {
13833 			ASSERT(dtrace_deferred_pid == NULL);
13834 
13835 			for (i = 0; i < help->dthps_nprovs; i++) {
13836 				dtrace_helper_provider_remove(
13837 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
13838 			}
13839 		} else {
13840 			mutex_enter(&dtrace_lock);
13841 			ASSERT(help->dthps_deferred == 0 ||
13842 			    help->dthps_next != NULL ||
13843 			    help->dthps_prev != NULL ||
13844 			    help == dtrace_deferred_pid);
13845 
13846 			/*
13847 			 * Remove the helper from the deferred list.
13848 			 */
13849 			if (help->dthps_next != NULL)
13850 				help->dthps_next->dthps_prev = help->dthps_prev;
13851 			if (help->dthps_prev != NULL)
13852 				help->dthps_prev->dthps_next = help->dthps_next;
13853 			if (dtrace_deferred_pid == help) {
13854 				dtrace_deferred_pid = help->dthps_next;
13855 				ASSERT(help->dthps_prev == NULL);
13856 			}
13857 
13858 			mutex_exit(&dtrace_lock);
13859 		}
13860 
13861 		mutex_exit(&dtrace_meta_lock);
13862 
13863 		for (i = 0; i < help->dthps_nprovs; i++) {
13864 			dtrace_helper_provider_destroy(help->dthps_provs[i]);
13865 		}
13866 
13867 		kmem_free(help->dthps_provs, help->dthps_maxprovs *
13868 		    sizeof (dtrace_helper_provider_t *));
13869 	}
13870 
13871 	mutex_enter(&dtrace_lock);
13872 
13873 	dtrace_vstate_fini(&help->dthps_vstate);
13874 	kmem_free(help->dthps_actions,
13875 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
13876 	kmem_free(help, sizeof (dtrace_helpers_t));
13877 
13878 	--dtrace_helpers;
13879 	mutex_exit(&dtrace_lock);
13880 }
13881 
13882 static void
13883 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
13884 {
13885 	dtrace_helpers_t *help, *newhelp;
13886 	dtrace_helper_action_t *helper, *new, *last;
13887 	dtrace_difo_t *dp;
13888 	dtrace_vstate_t *vstate;
13889 	int i, j, sz, hasprovs = 0;
13890 
13891 	mutex_enter(&dtrace_lock);
13892 	ASSERT(from->p_dtrace_helpers != NULL);
13893 	ASSERT(dtrace_helpers > 0);
13894 
13895 	help = from->p_dtrace_helpers;
13896 	newhelp = dtrace_helpers_create(to);
13897 	ASSERT(to->p_dtrace_helpers != NULL);
13898 
13899 	newhelp->dthps_generation = help->dthps_generation;
13900 	vstate = &newhelp->dthps_vstate;
13901 
13902 	/*
13903 	 * Duplicate the helper actions.
13904 	 */
13905 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
13906 		if ((helper = help->dthps_actions[i]) == NULL)
13907 			continue;
13908 
13909 		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
13910 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
13911 			    KM_SLEEP);
13912 			new->dtha_generation = helper->dtha_generation;
13913 
13914 			if ((dp = helper->dtha_predicate) != NULL) {
13915 				dp = dtrace_difo_duplicate(dp, vstate);
13916 				new->dtha_predicate = dp;
13917 			}
13918 
13919 			new->dtha_nactions = helper->dtha_nactions;
13920 			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
13921 			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
13922 
13923 			for (j = 0; j < new->dtha_nactions; j++) {
13924 				dtrace_difo_t *dp = helper->dtha_actions[j];
13925 
13926 				ASSERT(dp != NULL);
13927 				dp = dtrace_difo_duplicate(dp, vstate);
13928 				new->dtha_actions[j] = dp;
13929 			}
13930 
13931 			if (last != NULL) {
13932 				last->dtha_next = new;
13933 			} else {
13934 				newhelp->dthps_actions[i] = new;
13935 			}
13936 
13937 			last = new;
13938 		}
13939 	}
13940 
13941 	/*
13942 	 * Duplicate the helper providers and register them with the
13943 	 * DTrace framework.
13944 	 */
13945 	if (help->dthps_nprovs > 0) {
13946 		newhelp->dthps_nprovs = help->dthps_nprovs;
13947 		newhelp->dthps_maxprovs = help->dthps_nprovs;
13948 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
13949 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
13950 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
13951 			newhelp->dthps_provs[i] = help->dthps_provs[i];
13952 			newhelp->dthps_provs[i]->dthp_ref++;
13953 		}
13954 
13955 		hasprovs = 1;
13956 	}
13957 
13958 	mutex_exit(&dtrace_lock);
13959 
13960 	if (hasprovs)
13961 		dtrace_helper_provider_register(to, newhelp, NULL);
13962 }
13963 
13964 /*
13965  * DTrace Hook Functions
13966  */
13967 static void
13968 dtrace_module_loaded(struct modctl *ctl)
13969 {
13970 	dtrace_provider_t *prv;
13971 
13972 	mutex_enter(&dtrace_provider_lock);
13973 	mutex_enter(&mod_lock);
13974 
13975 	ASSERT(ctl->mod_busy);
13976 
13977 	/*
13978 	 * We're going to call each providers per-module provide operation
13979 	 * specifying only this module.
13980 	 */
13981 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
13982 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
13983 
13984 	mutex_exit(&mod_lock);
13985 	mutex_exit(&dtrace_provider_lock);
13986 
13987 	/*
13988 	 * If we have any retained enablings, we need to match against them.
13989 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
13990 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
13991 	 * module.  (In particular, this happens when loading scheduling
13992 	 * classes.)  So if we have any retained enablings, we need to dispatch
13993 	 * our task queue to do the match for us.
13994 	 */
13995 	mutex_enter(&dtrace_lock);
13996 
13997 	if (dtrace_retained == NULL) {
13998 		mutex_exit(&dtrace_lock);
13999 		return;
14000 	}
14001 
14002 	(void) taskq_dispatch(dtrace_taskq,
14003 	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
14004 
14005 	mutex_exit(&dtrace_lock);
14006 
14007 	/*
14008 	 * And now, for a little heuristic sleaze:  in general, we want to
14009 	 * match modules as soon as they load.  However, we cannot guarantee
14010 	 * this, because it would lead us to the lock ordering violation
14011 	 * outlined above.  The common case, of course, is that cpu_lock is
14012 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
14013 	 * long enough for the task queue to do its work.  If it's not, it's
14014 	 * not a serious problem -- it just means that the module that we
14015 	 * just loaded may not be immediately instrumentable.
14016 	 */
14017 	delay(1);
14018 }
14019 
14020 static void
14021 dtrace_module_unloaded(struct modctl *ctl)
14022 {
14023 	dtrace_probe_t template, *probe, *first, *next;
14024 	dtrace_provider_t *prov;
14025 
14026 	template.dtpr_mod = ctl->mod_modname;
14027 
14028 	mutex_enter(&dtrace_provider_lock);
14029 	mutex_enter(&mod_lock);
14030 	mutex_enter(&dtrace_lock);
14031 
14032 	if (dtrace_bymod == NULL) {
14033 		/*
14034 		 * The DTrace module is loaded (obviously) but not attached;
14035 		 * we don't have any work to do.
14036 		 */
14037 		mutex_exit(&dtrace_provider_lock);
14038 		mutex_exit(&mod_lock);
14039 		mutex_exit(&dtrace_lock);
14040 		return;
14041 	}
14042 
14043 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
14044 	    probe != NULL; probe = probe->dtpr_nextmod) {
14045 		if (probe->dtpr_ecb != NULL) {
14046 			mutex_exit(&dtrace_provider_lock);
14047 			mutex_exit(&mod_lock);
14048 			mutex_exit(&dtrace_lock);
14049 
14050 			/*
14051 			 * This shouldn't _actually_ be possible -- we're
14052 			 * unloading a module that has an enabled probe in it.
14053 			 * (It's normally up to the provider to make sure that
14054 			 * this can't happen.)  However, because dtps_enable()
14055 			 * doesn't have a failure mode, there can be an
14056 			 * enable/unload race.  Upshot:  we don't want to
14057 			 * assert, but we're not going to disable the
14058 			 * probe, either.
14059 			 */
14060 			if (dtrace_err_verbose) {
14061 				cmn_err(CE_WARN, "unloaded module '%s' had "
14062 				    "enabled probes", ctl->mod_modname);
14063 			}
14064 
14065 			return;
14066 		}
14067 	}
14068 
14069 	probe = first;
14070 
14071 	for (first = NULL; probe != NULL; probe = next) {
14072 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
14073 
14074 		dtrace_probes[probe->dtpr_id - 1] = NULL;
14075 
14076 		next = probe->dtpr_nextmod;
14077 		dtrace_hash_remove(dtrace_bymod, probe);
14078 		dtrace_hash_remove(dtrace_byfunc, probe);
14079 		dtrace_hash_remove(dtrace_byname, probe);
14080 
14081 		if (first == NULL) {
14082 			first = probe;
14083 			probe->dtpr_nextmod = NULL;
14084 		} else {
14085 			probe->dtpr_nextmod = first;
14086 			first = probe;
14087 		}
14088 	}
14089 
14090 	/*
14091 	 * We've removed all of the module's probes from the hash chains and
14092 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
14093 	 * everyone has cleared out from any probe array processing.
14094 	 */
14095 	dtrace_sync();
14096 
14097 	for (probe = first; probe != NULL; probe = first) {
14098 		first = probe->dtpr_nextmod;
14099 		prov = probe->dtpr_provider;
14100 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
14101 		    probe->dtpr_arg);
14102 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
14103 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
14104 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
14105 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
14106 		kmem_free(probe, sizeof (dtrace_probe_t));
14107 	}
14108 
14109 	mutex_exit(&dtrace_lock);
14110 	mutex_exit(&mod_lock);
14111 	mutex_exit(&dtrace_provider_lock);
14112 }
14113 
14114 void
14115 dtrace_suspend(void)
14116 {
14117 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
14118 }
14119 
14120 void
14121 dtrace_resume(void)
14122 {
14123 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
14124 }
14125 
14126 static int
14127 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
14128 {
14129 	ASSERT(MUTEX_HELD(&cpu_lock));
14130 	mutex_enter(&dtrace_lock);
14131 
14132 	switch (what) {
14133 	case CPU_CONFIG: {
14134 		dtrace_state_t *state;
14135 		dtrace_optval_t *opt, rs, c;
14136 
14137 		/*
14138 		 * For now, we only allocate a new buffer for anonymous state.
14139 		 */
14140 		if ((state = dtrace_anon.dta_state) == NULL)
14141 			break;
14142 
14143 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14144 			break;
14145 
14146 		opt = state->dts_options;
14147 		c = opt[DTRACEOPT_CPU];
14148 
14149 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
14150 			break;
14151 
14152 		/*
14153 		 * Regardless of what the actual policy is, we're going to
14154 		 * temporarily set our resize policy to be manual.  We're
14155 		 * also going to temporarily set our CPU option to denote
14156 		 * the newly configured CPU.
14157 		 */
14158 		rs = opt[DTRACEOPT_BUFRESIZE];
14159 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
14160 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
14161 
14162 		(void) dtrace_state_buffers(state);
14163 
14164 		opt[DTRACEOPT_BUFRESIZE] = rs;
14165 		opt[DTRACEOPT_CPU] = c;
14166 
14167 		break;
14168 	}
14169 
14170 	case CPU_UNCONFIG:
14171 		/*
14172 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
14173 		 * buffer will be freed when the consumer exits.)
14174 		 */
14175 		break;
14176 
14177 	default:
14178 		break;
14179 	}
14180 
14181 	mutex_exit(&dtrace_lock);
14182 	return (0);
14183 }
14184 
14185 static void
14186 dtrace_cpu_setup_initial(processorid_t cpu)
14187 {
14188 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
14189 }
14190 
14191 static void
14192 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
14193 {
14194 	if (dtrace_toxranges >= dtrace_toxranges_max) {
14195 		int osize, nsize;
14196 		dtrace_toxrange_t *range;
14197 
14198 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
14199 
14200 		if (osize == 0) {
14201 			ASSERT(dtrace_toxrange == NULL);
14202 			ASSERT(dtrace_toxranges_max == 0);
14203 			dtrace_toxranges_max = 1;
14204 		} else {
14205 			dtrace_toxranges_max <<= 1;
14206 		}
14207 
14208 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
14209 		range = kmem_zalloc(nsize, KM_SLEEP);
14210 
14211 		if (dtrace_toxrange != NULL) {
14212 			ASSERT(osize != 0);
14213 			bcopy(dtrace_toxrange, range, osize);
14214 			kmem_free(dtrace_toxrange, osize);
14215 		}
14216 
14217 		dtrace_toxrange = range;
14218 	}
14219 
14220 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL);
14221 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL);
14222 
14223 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
14224 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
14225 	dtrace_toxranges++;
14226 }
14227 
14228 /*
14229  * DTrace Driver Cookbook Functions
14230  */
14231 /*ARGSUSED*/
14232 static int
14233 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
14234 {
14235 	dtrace_provider_id_t id;
14236 	dtrace_state_t *state = NULL;
14237 	dtrace_enabling_t *enab;
14238 
14239 	mutex_enter(&cpu_lock);
14240 	mutex_enter(&dtrace_provider_lock);
14241 	mutex_enter(&dtrace_lock);
14242 
14243 	if (ddi_soft_state_init(&dtrace_softstate,
14244 	    sizeof (dtrace_state_t), 0) != 0) {
14245 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
14246 		mutex_exit(&cpu_lock);
14247 		mutex_exit(&dtrace_provider_lock);
14248 		mutex_exit(&dtrace_lock);
14249 		return (DDI_FAILURE);
14250 	}
14251 
14252 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
14253 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
14254 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
14255 	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
14256 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
14257 		ddi_remove_minor_node(devi, NULL);
14258 		ddi_soft_state_fini(&dtrace_softstate);
14259 		mutex_exit(&cpu_lock);
14260 		mutex_exit(&dtrace_provider_lock);
14261 		mutex_exit(&dtrace_lock);
14262 		return (DDI_FAILURE);
14263 	}
14264 
14265 	ddi_report_dev(devi);
14266 	dtrace_devi = devi;
14267 
14268 	dtrace_modload = dtrace_module_loaded;
14269 	dtrace_modunload = dtrace_module_unloaded;
14270 	dtrace_cpu_init = dtrace_cpu_setup_initial;
14271 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
14272 	dtrace_helpers_fork = dtrace_helpers_duplicate;
14273 	dtrace_cpustart_init = dtrace_suspend;
14274 	dtrace_cpustart_fini = dtrace_resume;
14275 	dtrace_debugger_init = dtrace_suspend;
14276 	dtrace_debugger_fini = dtrace_resume;
14277 
14278 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
14279 
14280 	ASSERT(MUTEX_HELD(&cpu_lock));
14281 
14282 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
14283 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
14284 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
14285 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
14286 	    VM_SLEEP | VMC_IDENTIFIER);
14287 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
14288 	    1, INT_MAX, 0);
14289 
14290 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
14291 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
14292 	    NULL, NULL, NULL, NULL, NULL, 0);
14293 
14294 	ASSERT(MUTEX_HELD(&cpu_lock));
14295 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
14296 	    offsetof(dtrace_probe_t, dtpr_nextmod),
14297 	    offsetof(dtrace_probe_t, dtpr_prevmod));
14298 
14299 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
14300 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
14301 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
14302 
14303 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
14304 	    offsetof(dtrace_probe_t, dtpr_nextname),
14305 	    offsetof(dtrace_probe_t, dtpr_prevname));
14306 
14307 	if (dtrace_retain_max < 1) {
14308 		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
14309 		    "setting to 1", dtrace_retain_max);
14310 		dtrace_retain_max = 1;
14311 	}
14312 
14313 	/*
14314 	 * Now discover our toxic ranges.
14315 	 */
14316 	dtrace_toxic_ranges(dtrace_toxrange_add);
14317 
14318 	/*
14319 	 * Before we register ourselves as a provider to our own framework,
14320 	 * we would like to assert that dtrace_provider is NULL -- but that's
14321 	 * not true if we were loaded as a dependency of a DTrace provider.
14322 	 * Once we've registered, we can assert that dtrace_provider is our
14323 	 * pseudo provider.
14324 	 */
14325 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
14326 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
14327 
14328 	ASSERT(dtrace_provider != NULL);
14329 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
14330 
14331 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
14332 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
14333 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
14334 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
14335 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
14336 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
14337 
14338 	dtrace_anon_property();
14339 	mutex_exit(&cpu_lock);
14340 
14341 	/*
14342 	 * If DTrace helper tracing is enabled, we need to allocate the
14343 	 * trace buffer and initialize the values.
14344 	 */
14345 	if (dtrace_helptrace_enabled) {
14346 		ASSERT(dtrace_helptrace_buffer == NULL);
14347 		dtrace_helptrace_buffer =
14348 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
14349 		dtrace_helptrace_next = 0;
14350 	}
14351 
14352 	/*
14353 	 * If there are already providers, we must ask them to provide their
14354 	 * probes, and then match any anonymous enabling against them.  Note
14355 	 * that there should be no other retained enablings at this time:
14356 	 * the only retained enablings at this time should be the anonymous
14357 	 * enabling.
14358 	 */
14359 	if (dtrace_anon.dta_enabling != NULL) {
14360 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
14361 
14362 		dtrace_enabling_provide(NULL);
14363 		state = dtrace_anon.dta_state;
14364 
14365 		/*
14366 		 * We couldn't hold cpu_lock across the above call to
14367 		 * dtrace_enabling_provide(), but we must hold it to actually
14368 		 * enable the probes.  We have to drop all of our locks, pick
14369 		 * up cpu_lock, and regain our locks before matching the
14370 		 * retained anonymous enabling.
14371 		 */
14372 		mutex_exit(&dtrace_lock);
14373 		mutex_exit(&dtrace_provider_lock);
14374 
14375 		mutex_enter(&cpu_lock);
14376 		mutex_enter(&dtrace_provider_lock);
14377 		mutex_enter(&dtrace_lock);
14378 
14379 		if ((enab = dtrace_anon.dta_enabling) != NULL)
14380 			(void) dtrace_enabling_match(enab, NULL);
14381 
14382 		mutex_exit(&cpu_lock);
14383 	}
14384 
14385 	mutex_exit(&dtrace_lock);
14386 	mutex_exit(&dtrace_provider_lock);
14387 
14388 	if (state != NULL) {
14389 		/*
14390 		 * If we created any anonymous state, set it going now.
14391 		 */
14392 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
14393 	}
14394 
14395 	return (DDI_SUCCESS);
14396 }
14397 
14398 /*ARGSUSED*/
14399 static int
14400 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
14401 {
14402 	dtrace_state_t *state;
14403 	uint32_t priv;
14404 	uid_t uid;
14405 	zoneid_t zoneid;
14406 
14407 	if (getminor(*devp) == DTRACEMNRN_HELPER)
14408 		return (0);
14409 
14410 	/*
14411 	 * If this wasn't an open with the "helper" minor, then it must be
14412 	 * the "dtrace" minor.
14413 	 */
14414 	if (getminor(*devp) != DTRACEMNRN_DTRACE)
14415 		return (ENXIO);
14416 
14417 	/*
14418 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
14419 	 * caller lacks sufficient permission to do anything with DTrace.
14420 	 */
14421 	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
14422 	if (priv == DTRACE_PRIV_NONE)
14423 		return (EACCES);
14424 
14425 	/*
14426 	 * Ask all providers to provide all their probes.
14427 	 */
14428 	mutex_enter(&dtrace_provider_lock);
14429 	dtrace_probe_provide(NULL, NULL);
14430 	mutex_exit(&dtrace_provider_lock);
14431 
14432 	mutex_enter(&cpu_lock);
14433 	mutex_enter(&dtrace_lock);
14434 	dtrace_opens++;
14435 	dtrace_membar_producer();
14436 
14437 	/*
14438 	 * If the kernel debugger is active (that is, if the kernel debugger
14439 	 * modified text in some way), we won't allow the open.
14440 	 */
14441 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
14442 		dtrace_opens--;
14443 		mutex_exit(&cpu_lock);
14444 		mutex_exit(&dtrace_lock);
14445 		return (EBUSY);
14446 	}
14447 
14448 	state = dtrace_state_create(devp, cred_p);
14449 	mutex_exit(&cpu_lock);
14450 
14451 	if (state == NULL) {
14452 		if (--dtrace_opens == 0)
14453 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
14454 		mutex_exit(&dtrace_lock);
14455 		return (EAGAIN);
14456 	}
14457 
14458 	mutex_exit(&dtrace_lock);
14459 
14460 	return (0);
14461 }
14462 
14463 /*ARGSUSED*/
14464 static int
14465 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
14466 {
14467 	minor_t minor = getminor(dev);
14468 	dtrace_state_t *state;
14469 
14470 	if (minor == DTRACEMNRN_HELPER)
14471 		return (0);
14472 
14473 	state = ddi_get_soft_state(dtrace_softstate, minor);
14474 
14475 	mutex_enter(&cpu_lock);
14476 	mutex_enter(&dtrace_lock);
14477 
14478 	if (state->dts_anon) {
14479 		/*
14480 		 * There is anonymous state. Destroy that first.
14481 		 */
14482 		ASSERT(dtrace_anon.dta_state == NULL);
14483 		dtrace_state_destroy(state->dts_anon);
14484 	}
14485 
14486 	dtrace_state_destroy(state);
14487 	ASSERT(dtrace_opens > 0);
14488 	if (--dtrace_opens == 0)
14489 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
14490 
14491 	mutex_exit(&dtrace_lock);
14492 	mutex_exit(&cpu_lock);
14493 
14494 	return (0);
14495 }
14496 
14497 /*ARGSUSED*/
14498 static int
14499 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
14500 {
14501 	int rval;
14502 	dof_helper_t help, *dhp = NULL;
14503 
14504 	switch (cmd) {
14505 	case DTRACEHIOC_ADDDOF:
14506 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
14507 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
14508 			return (EFAULT);
14509 		}
14510 
14511 		dhp = &help;
14512 		arg = (intptr_t)help.dofhp_dof;
14513 		/*FALLTHROUGH*/
14514 
14515 	case DTRACEHIOC_ADD: {
14516 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
14517 
14518 		if (dof == NULL)
14519 			return (rval);
14520 
14521 		mutex_enter(&dtrace_lock);
14522 
14523 		/*
14524 		 * dtrace_helper_slurp() takes responsibility for the dof --
14525 		 * it may free it now or it may save it and free it later.
14526 		 */
14527 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
14528 			*rv = rval;
14529 			rval = 0;
14530 		} else {
14531 			rval = EINVAL;
14532 		}
14533 
14534 		mutex_exit(&dtrace_lock);
14535 		return (rval);
14536 	}
14537 
14538 	case DTRACEHIOC_REMOVE: {
14539 		mutex_enter(&dtrace_lock);
14540 		rval = dtrace_helper_destroygen(arg);
14541 		mutex_exit(&dtrace_lock);
14542 
14543 		return (rval);
14544 	}
14545 
14546 	default:
14547 		break;
14548 	}
14549 
14550 	return (ENOTTY);
14551 }
14552 
14553 /*ARGSUSED*/
14554 static int
14555 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
14556 {
14557 	minor_t minor = getminor(dev);
14558 	dtrace_state_t *state;
14559 	int rval;
14560 
14561 	if (minor == DTRACEMNRN_HELPER)
14562 		return (dtrace_ioctl_helper(cmd, arg, rv));
14563 
14564 	state = ddi_get_soft_state(dtrace_softstate, minor);
14565 
14566 	if (state->dts_anon) {
14567 		ASSERT(dtrace_anon.dta_state == NULL);
14568 		state = state->dts_anon;
14569 	}
14570 
14571 	switch (cmd) {
14572 	case DTRACEIOC_PROVIDER: {
14573 		dtrace_providerdesc_t pvd;
14574 		dtrace_provider_t *pvp;
14575 
14576 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
14577 			return (EFAULT);
14578 
14579 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
14580 		mutex_enter(&dtrace_provider_lock);
14581 
14582 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
14583 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
14584 				break;
14585 		}
14586 
14587 		mutex_exit(&dtrace_provider_lock);
14588 
14589 		if (pvp == NULL)
14590 			return (ESRCH);
14591 
14592 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
14593 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
14594 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
14595 			return (EFAULT);
14596 
14597 		return (0);
14598 	}
14599 
14600 	case DTRACEIOC_EPROBE: {
14601 		dtrace_eprobedesc_t epdesc;
14602 		dtrace_ecb_t *ecb;
14603 		dtrace_action_t *act;
14604 		void *buf;
14605 		size_t size;
14606 		uintptr_t dest;
14607 		int nrecs;
14608 
14609 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
14610 			return (EFAULT);
14611 
14612 		mutex_enter(&dtrace_lock);
14613 
14614 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
14615 			mutex_exit(&dtrace_lock);
14616 			return (EINVAL);
14617 		}
14618 
14619 		if (ecb->dte_probe == NULL) {
14620 			mutex_exit(&dtrace_lock);
14621 			return (EINVAL);
14622 		}
14623 
14624 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
14625 		epdesc.dtepd_uarg = ecb->dte_uarg;
14626 		epdesc.dtepd_size = ecb->dte_size;
14627 
14628 		nrecs = epdesc.dtepd_nrecs;
14629 		epdesc.dtepd_nrecs = 0;
14630 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
14631 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
14632 				continue;
14633 
14634 			epdesc.dtepd_nrecs++;
14635 		}
14636 
14637 		/*
14638 		 * Now that we have the size, we need to allocate a temporary
14639 		 * buffer in which to store the complete description.  We need
14640 		 * the temporary buffer to be able to drop dtrace_lock()
14641 		 * across the copyout(), below.
14642 		 */
14643 		size = sizeof (dtrace_eprobedesc_t) +
14644 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
14645 
14646 		buf = kmem_alloc(size, KM_SLEEP);
14647 		dest = (uintptr_t)buf;
14648 
14649 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
14650 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
14651 
14652 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
14653 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
14654 				continue;
14655 
14656 			if (nrecs-- == 0)
14657 				break;
14658 
14659 			bcopy(&act->dta_rec, (void *)dest,
14660 			    sizeof (dtrace_recdesc_t));
14661 			dest += sizeof (dtrace_recdesc_t);
14662 		}
14663 
14664 		mutex_exit(&dtrace_lock);
14665 
14666 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
14667 			kmem_free(buf, size);
14668 			return (EFAULT);
14669 		}
14670 
14671 		kmem_free(buf, size);
14672 		return (0);
14673 	}
14674 
14675 	case DTRACEIOC_AGGDESC: {
14676 		dtrace_aggdesc_t aggdesc;
14677 		dtrace_action_t *act;
14678 		dtrace_aggregation_t *agg;
14679 		int nrecs;
14680 		uint32_t offs;
14681 		dtrace_recdesc_t *lrec;
14682 		void *buf;
14683 		size_t size;
14684 		uintptr_t dest;
14685 
14686 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
14687 			return (EFAULT);
14688 
14689 		mutex_enter(&dtrace_lock);
14690 
14691 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
14692 			mutex_exit(&dtrace_lock);
14693 			return (EINVAL);
14694 		}
14695 
14696 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
14697 
14698 		nrecs = aggdesc.dtagd_nrecs;
14699 		aggdesc.dtagd_nrecs = 0;
14700 
14701 		offs = agg->dtag_base;
14702 		lrec = &agg->dtag_action.dta_rec;
14703 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
14704 
14705 		for (act = agg->dtag_first; ; act = act->dta_next) {
14706 			ASSERT(act->dta_intuple ||
14707 			    DTRACEACT_ISAGG(act->dta_kind));
14708 
14709 			/*
14710 			 * If this action has a record size of zero, it
14711 			 * denotes an argument to the aggregating action.
14712 			 * Because the presence of this record doesn't (or
14713 			 * shouldn't) affect the way the data is interpreted,
14714 			 * we don't copy it out to save user-level the
14715 			 * confusion of dealing with a zero-length record.
14716 			 */
14717 			if (act->dta_rec.dtrd_size == 0) {
14718 				ASSERT(agg->dtag_hasarg);
14719 				continue;
14720 			}
14721 
14722 			aggdesc.dtagd_nrecs++;
14723 
14724 			if (act == &agg->dtag_action)
14725 				break;
14726 		}
14727 
14728 		/*
14729 		 * Now that we have the size, we need to allocate a temporary
14730 		 * buffer in which to store the complete description.  We need
14731 		 * the temporary buffer to be able to drop dtrace_lock()
14732 		 * across the copyout(), below.
14733 		 */
14734 		size = sizeof (dtrace_aggdesc_t) +
14735 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
14736 
14737 		buf = kmem_alloc(size, KM_SLEEP);
14738 		dest = (uintptr_t)buf;
14739 
14740 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
14741 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
14742 
14743 		for (act = agg->dtag_first; ; act = act->dta_next) {
14744 			dtrace_recdesc_t rec = act->dta_rec;
14745 
14746 			/*
14747 			 * See the comment in the above loop for why we pass
14748 			 * over zero-length records.
14749 			 */
14750 			if (rec.dtrd_size == 0) {
14751 				ASSERT(agg->dtag_hasarg);
14752 				continue;
14753 			}
14754 
14755 			if (nrecs-- == 0)
14756 				break;
14757 
14758 			rec.dtrd_offset -= offs;
14759 			bcopy(&rec, (void *)dest, sizeof (rec));
14760 			dest += sizeof (dtrace_recdesc_t);
14761 
14762 			if (act == &agg->dtag_action)
14763 				break;
14764 		}
14765 
14766 		mutex_exit(&dtrace_lock);
14767 
14768 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
14769 			kmem_free(buf, size);
14770 			return (EFAULT);
14771 		}
14772 
14773 		kmem_free(buf, size);
14774 		return (0);
14775 	}
14776 
14777 	case DTRACEIOC_ENABLE: {
14778 		dof_hdr_t *dof;
14779 		dtrace_enabling_t *enab = NULL;
14780 		dtrace_vstate_t *vstate;
14781 		int err = 0;
14782 
14783 		*rv = 0;
14784 
14785 		/*
14786 		 * If a NULL argument has been passed, we take this as our
14787 		 * cue to reevaluate our enablings.
14788 		 */
14789 		if (arg == NULL) {
14790 			dtrace_enabling_matchall();
14791 
14792 			return (0);
14793 		}
14794 
14795 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
14796 			return (rval);
14797 
14798 		mutex_enter(&cpu_lock);
14799 		mutex_enter(&dtrace_lock);
14800 		vstate = &state->dts_vstate;
14801 
14802 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
14803 			mutex_exit(&dtrace_lock);
14804 			mutex_exit(&cpu_lock);
14805 			dtrace_dof_destroy(dof);
14806 			return (EBUSY);
14807 		}
14808 
14809 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
14810 			mutex_exit(&dtrace_lock);
14811 			mutex_exit(&cpu_lock);
14812 			dtrace_dof_destroy(dof);
14813 			return (EINVAL);
14814 		}
14815 
14816 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
14817 			dtrace_enabling_destroy(enab);
14818 			mutex_exit(&dtrace_lock);
14819 			mutex_exit(&cpu_lock);
14820 			dtrace_dof_destroy(dof);
14821 			return (rval);
14822 		}
14823 
14824 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
14825 			err = dtrace_enabling_retain(enab);
14826 		} else {
14827 			dtrace_enabling_destroy(enab);
14828 		}
14829 
14830 		mutex_exit(&cpu_lock);
14831 		mutex_exit(&dtrace_lock);
14832 		dtrace_dof_destroy(dof);
14833 
14834 		return (err);
14835 	}
14836 
14837 	case DTRACEIOC_REPLICATE: {
14838 		dtrace_repldesc_t desc;
14839 		dtrace_probedesc_t *match = &desc.dtrpd_match;
14840 		dtrace_probedesc_t *create = &desc.dtrpd_create;
14841 		int err;
14842 
14843 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
14844 			return (EFAULT);
14845 
14846 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
14847 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
14848 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
14849 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
14850 
14851 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
14852 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
14853 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
14854 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
14855 
14856 		mutex_enter(&dtrace_lock);
14857 		err = dtrace_enabling_replicate(state, match, create);
14858 		mutex_exit(&dtrace_lock);
14859 
14860 		return (err);
14861 	}
14862 
14863 	case DTRACEIOC_PROBEMATCH:
14864 	case DTRACEIOC_PROBES: {
14865 		dtrace_probe_t *probe = NULL;
14866 		dtrace_probedesc_t desc;
14867 		dtrace_probekey_t pkey;
14868 		dtrace_id_t i;
14869 		int m = 0;
14870 		uint32_t priv;
14871 		uid_t uid;
14872 		zoneid_t zoneid;
14873 
14874 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
14875 			return (EFAULT);
14876 
14877 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
14878 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
14879 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
14880 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
14881 
14882 		/*
14883 		 * Before we attempt to match this probe, we want to give
14884 		 * all providers the opportunity to provide it.
14885 		 */
14886 		if (desc.dtpd_id == DTRACE_IDNONE) {
14887 			mutex_enter(&dtrace_provider_lock);
14888 			dtrace_probe_provide(&desc, NULL);
14889 			mutex_exit(&dtrace_provider_lock);
14890 			desc.dtpd_id++;
14891 		}
14892 
14893 		if (cmd == DTRACEIOC_PROBEMATCH)  {
14894 			dtrace_probekey(&desc, &pkey);
14895 			pkey.dtpk_id = DTRACE_IDNONE;
14896 		}
14897 
14898 		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
14899 
14900 		mutex_enter(&dtrace_lock);
14901 
14902 		if (cmd == DTRACEIOC_PROBEMATCH) {
14903 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
14904 				if ((probe = dtrace_probes[i - 1]) != NULL &&
14905 				    (m = dtrace_match_probe(probe, &pkey,
14906 				    priv, uid, zoneid)) != 0)
14907 					break;
14908 			}
14909 
14910 			if (m < 0) {
14911 				mutex_exit(&dtrace_lock);
14912 				return (EINVAL);
14913 			}
14914 
14915 		} else {
14916 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
14917 				if ((probe = dtrace_probes[i - 1]) != NULL &&
14918 				    dtrace_match_priv(probe, priv, uid, zoneid))
14919 					break;
14920 			}
14921 		}
14922 
14923 		if (probe == NULL) {
14924 			mutex_exit(&dtrace_lock);
14925 			return (ESRCH);
14926 		}
14927 
14928 		dtrace_probe_description(probe, &desc);
14929 		mutex_exit(&dtrace_lock);
14930 
14931 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
14932 			return (EFAULT);
14933 
14934 		return (0);
14935 	}
14936 
14937 	case DTRACEIOC_PROBEARG: {
14938 		dtrace_argdesc_t desc;
14939 		dtrace_probe_t *probe;
14940 		dtrace_provider_t *prov;
14941 
14942 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
14943 			return (EFAULT);
14944 
14945 		if (desc.dtargd_id == DTRACE_IDNONE)
14946 			return (EINVAL);
14947 
14948 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
14949 			return (EINVAL);
14950 
14951 		mutex_enter(&dtrace_provider_lock);
14952 		mutex_enter(&mod_lock);
14953 		mutex_enter(&dtrace_lock);
14954 
14955 		if (desc.dtargd_id > dtrace_nprobes) {
14956 			mutex_exit(&dtrace_lock);
14957 			mutex_exit(&mod_lock);
14958 			mutex_exit(&dtrace_provider_lock);
14959 			return (EINVAL);
14960 		}
14961 
14962 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
14963 			mutex_exit(&dtrace_lock);
14964 			mutex_exit(&mod_lock);
14965 			mutex_exit(&dtrace_provider_lock);
14966 			return (EINVAL);
14967 		}
14968 
14969 		mutex_exit(&dtrace_lock);
14970 
14971 		prov = probe->dtpr_provider;
14972 
14973 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
14974 			/*
14975 			 * There isn't any typed information for this probe.
14976 			 * Set the argument number to DTRACE_ARGNONE.
14977 			 */
14978 			desc.dtargd_ndx = DTRACE_ARGNONE;
14979 		} else {
14980 			desc.dtargd_native[0] = '\0';
14981 			desc.dtargd_xlate[0] = '\0';
14982 			desc.dtargd_mapping = desc.dtargd_ndx;
14983 
14984 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
14985 			    probe->dtpr_id, probe->dtpr_arg, &desc);
14986 		}
14987 
14988 		mutex_exit(&mod_lock);
14989 		mutex_exit(&dtrace_provider_lock);
14990 
14991 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
14992 			return (EFAULT);
14993 
14994 		return (0);
14995 	}
14996 
14997 	case DTRACEIOC_GO: {
14998 		processorid_t cpuid;
14999 		rval = dtrace_state_go(state, &cpuid);
15000 
15001 		if (rval != 0)
15002 			return (rval);
15003 
15004 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15005 			return (EFAULT);
15006 
15007 		return (0);
15008 	}
15009 
15010 	case DTRACEIOC_STOP: {
15011 		processorid_t cpuid;
15012 
15013 		mutex_enter(&dtrace_lock);
15014 		rval = dtrace_state_stop(state, &cpuid);
15015 		mutex_exit(&dtrace_lock);
15016 
15017 		if (rval != 0)
15018 			return (rval);
15019 
15020 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15021 			return (EFAULT);
15022 
15023 		return (0);
15024 	}
15025 
15026 	case DTRACEIOC_DOFGET: {
15027 		dof_hdr_t hdr, *dof;
15028 		uint64_t len;
15029 
15030 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
15031 			return (EFAULT);
15032 
15033 		mutex_enter(&dtrace_lock);
15034 		dof = dtrace_dof_create(state);
15035 		mutex_exit(&dtrace_lock);
15036 
15037 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
15038 		rval = copyout(dof, (void *)arg, len);
15039 		dtrace_dof_destroy(dof);
15040 
15041 		return (rval == 0 ? 0 : EFAULT);
15042 	}
15043 
15044 	case DTRACEIOC_AGGSNAP:
15045 	case DTRACEIOC_BUFSNAP: {
15046 		dtrace_bufdesc_t desc;
15047 		caddr_t cached;
15048 		dtrace_buffer_t *buf;
15049 
15050 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15051 			return (EFAULT);
15052 
15053 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
15054 			return (EINVAL);
15055 
15056 		mutex_enter(&dtrace_lock);
15057 
15058 		if (cmd == DTRACEIOC_BUFSNAP) {
15059 			buf = &state->dts_buffer[desc.dtbd_cpu];
15060 		} else {
15061 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
15062 		}
15063 
15064 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
15065 			size_t sz = buf->dtb_offset;
15066 
15067 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
15068 				mutex_exit(&dtrace_lock);
15069 				return (EBUSY);
15070 			}
15071 
15072 			/*
15073 			 * If this buffer has already been consumed, we're
15074 			 * going to indicate that there's nothing left here
15075 			 * to consume.
15076 			 */
15077 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
15078 				mutex_exit(&dtrace_lock);
15079 
15080 				desc.dtbd_size = 0;
15081 				desc.dtbd_drops = 0;
15082 				desc.dtbd_errors = 0;
15083 				desc.dtbd_oldest = 0;
15084 				sz = sizeof (desc);
15085 
15086 				if (copyout(&desc, (void *)arg, sz) != 0)
15087 					return (EFAULT);
15088 
15089 				return (0);
15090 			}
15091 
15092 			/*
15093 			 * If this is a ring buffer that has wrapped, we want
15094 			 * to copy the whole thing out.
15095 			 */
15096 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
15097 				dtrace_buffer_polish(buf);
15098 				sz = buf->dtb_size;
15099 			}
15100 
15101 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
15102 				mutex_exit(&dtrace_lock);
15103 				return (EFAULT);
15104 			}
15105 
15106 			desc.dtbd_size = sz;
15107 			desc.dtbd_drops = buf->dtb_drops;
15108 			desc.dtbd_errors = buf->dtb_errors;
15109 			desc.dtbd_oldest = buf->dtb_xamot_offset;
15110 
15111 			mutex_exit(&dtrace_lock);
15112 
15113 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15114 				return (EFAULT);
15115 
15116 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
15117 
15118 			return (0);
15119 		}
15120 
15121 		if (buf->dtb_tomax == NULL) {
15122 			ASSERT(buf->dtb_xamot == NULL);
15123 			mutex_exit(&dtrace_lock);
15124 			return (ENOENT);
15125 		}
15126 
15127 		cached = buf->dtb_tomax;
15128 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
15129 
15130 		dtrace_xcall(desc.dtbd_cpu,
15131 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
15132 
15133 		state->dts_errors += buf->dtb_xamot_errors;
15134 
15135 		/*
15136 		 * If the buffers did not actually switch, then the cross call
15137 		 * did not take place -- presumably because the given CPU is
15138 		 * not in the ready set.  If this is the case, we'll return
15139 		 * ENOENT.
15140 		 */
15141 		if (buf->dtb_tomax == cached) {
15142 			ASSERT(buf->dtb_xamot != cached);
15143 			mutex_exit(&dtrace_lock);
15144 			return (ENOENT);
15145 		}
15146 
15147 		ASSERT(cached == buf->dtb_xamot);
15148 
15149 		/*
15150 		 * We have our snapshot; now copy it out.
15151 		 */
15152 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
15153 		    buf->dtb_xamot_offset) != 0) {
15154 			mutex_exit(&dtrace_lock);
15155 			return (EFAULT);
15156 		}
15157 
15158 		desc.dtbd_size = buf->dtb_xamot_offset;
15159 		desc.dtbd_drops = buf->dtb_xamot_drops;
15160 		desc.dtbd_errors = buf->dtb_xamot_errors;
15161 		desc.dtbd_oldest = 0;
15162 
15163 		mutex_exit(&dtrace_lock);
15164 
15165 		/*
15166 		 * Finally, copy out the buffer description.
15167 		 */
15168 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15169 			return (EFAULT);
15170 
15171 		return (0);
15172 	}
15173 
15174 	case DTRACEIOC_CONF: {
15175 		dtrace_conf_t conf;
15176 
15177 		bzero(&conf, sizeof (conf));
15178 		conf.dtc_difversion = DIF_VERSION;
15179 		conf.dtc_difintregs = DIF_DIR_NREGS;
15180 		conf.dtc_diftupregs = DIF_DTR_NREGS;
15181 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
15182 
15183 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
15184 			return (EFAULT);
15185 
15186 		return (0);
15187 	}
15188 
15189 	case DTRACEIOC_STATUS: {
15190 		dtrace_status_t stat;
15191 		dtrace_dstate_t *dstate;
15192 		int i, j;
15193 		uint64_t nerrs;
15194 
15195 		/*
15196 		 * See the comment in dtrace_state_deadman() for the reason
15197 		 * for setting dts_laststatus to INT64_MAX before setting
15198 		 * it to the correct value.
15199 		 */
15200 		state->dts_laststatus = INT64_MAX;
15201 		dtrace_membar_producer();
15202 		state->dts_laststatus = dtrace_gethrtime();
15203 
15204 		bzero(&stat, sizeof (stat));
15205 
15206 		mutex_enter(&dtrace_lock);
15207 
15208 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
15209 			mutex_exit(&dtrace_lock);
15210 			return (ENOENT);
15211 		}
15212 
15213 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
15214 			stat.dtst_exiting = 1;
15215 
15216 		nerrs = state->dts_errors;
15217 		dstate = &state->dts_vstate.dtvs_dynvars;
15218 
15219 		for (i = 0; i < NCPU; i++) {
15220 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
15221 
15222 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
15223 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
15224 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
15225 
15226 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
15227 				stat.dtst_filled++;
15228 
15229 			nerrs += state->dts_buffer[i].dtb_errors;
15230 
15231 			for (j = 0; j < state->dts_nspeculations; j++) {
15232 				dtrace_speculation_t *spec;
15233 				dtrace_buffer_t *buf;
15234 
15235 				spec = &state->dts_speculations[j];
15236 				buf = &spec->dtsp_buffer[i];
15237 				stat.dtst_specdrops += buf->dtb_xamot_drops;
15238 			}
15239 		}
15240 
15241 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
15242 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
15243 		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
15244 		stat.dtst_dblerrors = state->dts_dblerrors;
15245 		stat.dtst_killed =
15246 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
15247 		stat.dtst_errors = nerrs;
15248 
15249 		mutex_exit(&dtrace_lock);
15250 
15251 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
15252 			return (EFAULT);
15253 
15254 		return (0);
15255 	}
15256 
15257 	case DTRACEIOC_FORMAT: {
15258 		dtrace_fmtdesc_t fmt;
15259 		char *str;
15260 		int len;
15261 
15262 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
15263 			return (EFAULT);
15264 
15265 		mutex_enter(&dtrace_lock);
15266 
15267 		if (fmt.dtfd_format == 0 ||
15268 		    fmt.dtfd_format > state->dts_nformats) {
15269 			mutex_exit(&dtrace_lock);
15270 			return (EINVAL);
15271 		}
15272 
15273 		/*
15274 		 * Format strings are allocated contiguously and they are
15275 		 * never freed; if a format index is less than the number
15276 		 * of formats, we can assert that the format map is non-NULL
15277 		 * and that the format for the specified index is non-NULL.
15278 		 */
15279 		ASSERT(state->dts_formats != NULL);
15280 		str = state->dts_formats[fmt.dtfd_format - 1];
15281 		ASSERT(str != NULL);
15282 
15283 		len = strlen(str) + 1;
15284 
15285 		if (len > fmt.dtfd_length) {
15286 			fmt.dtfd_length = len;
15287 
15288 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
15289 				mutex_exit(&dtrace_lock);
15290 				return (EINVAL);
15291 			}
15292 		} else {
15293 			if (copyout(str, fmt.dtfd_string, len) != 0) {
15294 				mutex_exit(&dtrace_lock);
15295 				return (EINVAL);
15296 			}
15297 		}
15298 
15299 		mutex_exit(&dtrace_lock);
15300 		return (0);
15301 	}
15302 
15303 	default:
15304 		break;
15305 	}
15306 
15307 	return (ENOTTY);
15308 }
15309 
15310 /*ARGSUSED*/
15311 static int
15312 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
15313 {
15314 	dtrace_state_t *state;
15315 
15316 	switch (cmd) {
15317 	case DDI_DETACH:
15318 		break;
15319 
15320 	case DDI_SUSPEND:
15321 		return (DDI_SUCCESS);
15322 
15323 	default:
15324 		return (DDI_FAILURE);
15325 	}
15326 
15327 	mutex_enter(&cpu_lock);
15328 	mutex_enter(&dtrace_provider_lock);
15329 	mutex_enter(&dtrace_lock);
15330 
15331 	ASSERT(dtrace_opens == 0);
15332 
15333 	if (dtrace_helpers > 0) {
15334 		mutex_exit(&dtrace_provider_lock);
15335 		mutex_exit(&dtrace_lock);
15336 		mutex_exit(&cpu_lock);
15337 		return (DDI_FAILURE);
15338 	}
15339 
15340 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
15341 		mutex_exit(&dtrace_provider_lock);
15342 		mutex_exit(&dtrace_lock);
15343 		mutex_exit(&cpu_lock);
15344 		return (DDI_FAILURE);
15345 	}
15346 
15347 	dtrace_provider = NULL;
15348 
15349 	if ((state = dtrace_anon_grab()) != NULL) {
15350 		/*
15351 		 * If there were ECBs on this state, the provider should
15352 		 * have not been allowed to detach; assert that there is
15353 		 * none.
15354 		 */
15355 		ASSERT(state->dts_necbs == 0);
15356 		dtrace_state_destroy(state);
15357 
15358 		/*
15359 		 * If we're being detached with anonymous state, we need to
15360 		 * indicate to the kernel debugger that DTrace is now inactive.
15361 		 */
15362 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15363 	}
15364 
15365 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
15366 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15367 	dtrace_cpu_init = NULL;
15368 	dtrace_helpers_cleanup = NULL;
15369 	dtrace_helpers_fork = NULL;
15370 	dtrace_cpustart_init = NULL;
15371 	dtrace_cpustart_fini = NULL;
15372 	dtrace_debugger_init = NULL;
15373 	dtrace_debugger_fini = NULL;
15374 	dtrace_modload = NULL;
15375 	dtrace_modunload = NULL;
15376 
15377 	mutex_exit(&cpu_lock);
15378 
15379 	if (dtrace_helptrace_enabled) {
15380 		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
15381 		dtrace_helptrace_buffer = NULL;
15382 	}
15383 
15384 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
15385 	dtrace_probes = NULL;
15386 	dtrace_nprobes = 0;
15387 
15388 	dtrace_hash_destroy(dtrace_bymod);
15389 	dtrace_hash_destroy(dtrace_byfunc);
15390 	dtrace_hash_destroy(dtrace_byname);
15391 	dtrace_bymod = NULL;
15392 	dtrace_byfunc = NULL;
15393 	dtrace_byname = NULL;
15394 
15395 	kmem_cache_destroy(dtrace_state_cache);
15396 	vmem_destroy(dtrace_minor);
15397 	vmem_destroy(dtrace_arena);
15398 
15399 	if (dtrace_toxrange != NULL) {
15400 		kmem_free(dtrace_toxrange,
15401 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
15402 		dtrace_toxrange = NULL;
15403 		dtrace_toxranges = 0;
15404 		dtrace_toxranges_max = 0;
15405 	}
15406 
15407 	ddi_remove_minor_node(dtrace_devi, NULL);
15408 	dtrace_devi = NULL;
15409 
15410 	ddi_soft_state_fini(&dtrace_softstate);
15411 
15412 	ASSERT(dtrace_vtime_references == 0);
15413 	ASSERT(dtrace_opens == 0);
15414 	ASSERT(dtrace_retained == NULL);
15415 
15416 	mutex_exit(&dtrace_lock);
15417 	mutex_exit(&dtrace_provider_lock);
15418 
15419 	/*
15420 	 * We don't destroy the task queue until after we have dropped our
15421 	 * locks (taskq_destroy() may block on running tasks).  To prevent
15422 	 * attempting to do work after we have effectively detached but before
15423 	 * the task queue has been destroyed, all tasks dispatched via the
15424 	 * task queue must check that DTrace is still attached before
15425 	 * performing any operation.
15426 	 */
15427 	taskq_destroy(dtrace_taskq);
15428 	dtrace_taskq = NULL;
15429 
15430 	return (DDI_SUCCESS);
15431 }
15432 
15433 /*ARGSUSED*/
15434 static int
15435 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
15436 {
15437 	int error;
15438 
15439 	switch (infocmd) {
15440 	case DDI_INFO_DEVT2DEVINFO:
15441 		*result = (void *)dtrace_devi;
15442 		error = DDI_SUCCESS;
15443 		break;
15444 	case DDI_INFO_DEVT2INSTANCE:
15445 		*result = (void *)0;
15446 		error = DDI_SUCCESS;
15447 		break;
15448 	default:
15449 		error = DDI_FAILURE;
15450 	}
15451 	return (error);
15452 }
15453 
15454 static struct cb_ops dtrace_cb_ops = {
15455 	dtrace_open,		/* open */
15456 	dtrace_close,		/* close */
15457 	nulldev,		/* strategy */
15458 	nulldev,		/* print */
15459 	nodev,			/* dump */
15460 	nodev,			/* read */
15461 	nodev,			/* write */
15462 	dtrace_ioctl,		/* ioctl */
15463 	nodev,			/* devmap */
15464 	nodev,			/* mmap */
15465 	nodev,			/* segmap */
15466 	nochpoll,		/* poll */
15467 	ddi_prop_op,		/* cb_prop_op */
15468 	0,			/* streamtab  */
15469 	D_NEW | D_MP		/* Driver compatibility flag */
15470 };
15471 
15472 static struct dev_ops dtrace_ops = {
15473 	DEVO_REV,		/* devo_rev */
15474 	0,			/* refcnt */
15475 	dtrace_info,		/* get_dev_info */
15476 	nulldev,		/* identify */
15477 	nulldev,		/* probe */
15478 	dtrace_attach,		/* attach */
15479 	dtrace_detach,		/* detach */
15480 	nodev,			/* reset */
15481 	&dtrace_cb_ops,		/* driver operations */
15482 	NULL,			/* bus operations */
15483 	nodev,			/* dev power */
15484 	ddi_quiesce_not_needed,		/* quiesce */
15485 };
15486 
15487 static struct modldrv modldrv = {
15488 	&mod_driverops,		/* module type (this is a pseudo driver) */
15489 	"Dynamic Tracing",	/* name of module */
15490 	&dtrace_ops,		/* driver ops */
15491 };
15492 
15493 static struct modlinkage modlinkage = {
15494 	MODREV_1,
15495 	(void *)&modldrv,
15496 	NULL
15497 };
15498 
15499 int
15500 _init(void)
15501 {
15502 	return (mod_install(&modlinkage));
15503 }
15504 
15505 int
15506 _info(struct modinfo *modinfop)
15507 {
15508 	return (mod_info(&modlinkage, modinfop));
15509 }
15510 
15511 int
15512 _fini(void)
15513 {
15514 	return (mod_remove(&modlinkage));
15515 }
15516