xref: /titanic_41/usr/src/uts/common/dtrace/dtrace.c (revision 0b6016e6ff70af39f99c9cc28e0c2207c8f5413c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * DTrace - Dynamic Tracing for Solaris
31  *
32  * This is the implementation of the Solaris Dynamic Tracing framework
33  * (DTrace).  The user-visible interface to DTrace is described at length in
34  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
35  * library, the in-kernel DTrace framework, and the DTrace providers are
36  * described in the block comments in the <sys/dtrace.h> header file.  The
37  * internal architecture of DTrace is described in the block comments in the
38  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
39  * implementation very much assume mastery of all of these sources; if one has
40  * an unanswered question about the implementation, one should consult them
41  * first.
42  *
43  * The functions here are ordered roughly as follows:
44  *
45  *   - Probe context functions
46  *   - Probe hashing functions
47  *   - Non-probe context utility functions
48  *   - Matching functions
49  *   - Provider-to-Framework API functions
50  *   - Probe management functions
51  *   - DIF object functions
52  *   - Format functions
53  *   - Predicate functions
54  *   - ECB functions
55  *   - Buffer functions
56  *   - Enabling functions
57  *   - DOF functions
58  *   - Anonymous enabling functions
59  *   - Consumer state functions
60  *   - Helper functions
61  *   - Hook functions
62  *   - Driver cookbook functions
63  *
64  * Each group of functions begins with a block comment labelled the "DTrace
65  * [Group] Functions", allowing one to find each block by searching forward
66  * on capital-f functions.
67  */
68 #include <sys/errno.h>
69 #include <sys/stat.h>
70 #include <sys/modctl.h>
71 #include <sys/conf.h>
72 #include <sys/systm.h>
73 #include <sys/ddi.h>
74 #include <sys/sunddi.h>
75 #include <sys/cpuvar.h>
76 #include <sys/kmem.h>
77 #include <sys/strsubr.h>
78 #include <sys/sysmacros.h>
79 #include <sys/dtrace_impl.h>
80 #include <sys/atomic.h>
81 #include <sys/cmn_err.h>
82 #include <sys/mutex_impl.h>
83 #include <sys/rwlock_impl.h>
84 #include <sys/ctf_api.h>
85 #include <sys/panic.h>
86 #include <sys/priv_impl.h>
87 #include <sys/policy.h>
88 #include <sys/cred_impl.h>
89 #include <sys/procfs_isa.h>
90 #include <sys/taskq.h>
91 #include <sys/mkdev.h>
92 #include <sys/kdi.h>
93 #include <sys/zone.h>
94 
95 /*
96  * DTrace Tunable Variables
97  *
98  * The following variables may be tuned by adding a line to /etc/system that
99  * includes both the name of the DTrace module ("dtrace") and the name of the
100  * variable.  For example:
101  *
102  *   set dtrace:dtrace_destructive_disallow = 1
103  *
104  * In general, the only variables that one should be tuning this way are those
105  * that affect system-wide DTrace behavior, and for which the default behavior
106  * is undesirable.  Most of these variables are tunable on a per-consumer
107  * basis using DTrace options, and need not be tuned on a system-wide basis.
108  * When tuning these variables, avoid pathological values; while some attempt
109  * is made to verify the integrity of these variables, they are not considered
110  * part of the supported interface to DTrace, and they are therefore not
111  * checked comprehensively.  Further, these variables should not be tuned
112  * dynamically via "mdb -kw" or other means; they should only be tuned via
113  * /etc/system.
114  */
115 int		dtrace_destructive_disallow = 0;
116 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
117 size_t		dtrace_difo_maxsize = (256 * 1024);
118 dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
119 size_t		dtrace_global_maxsize = (16 * 1024);
120 size_t		dtrace_actions_max = (16 * 1024);
121 size_t		dtrace_retain_max = 1024;
122 dtrace_optval_t	dtrace_helper_actions_max = 32;
123 dtrace_optval_t	dtrace_helper_providers_max = 32;
124 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
125 size_t		dtrace_strsize_default = 256;
126 dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
127 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
128 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
129 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
130 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
131 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
132 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
133 dtrace_optval_t	dtrace_nspec_default = 1;
134 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
135 dtrace_optval_t dtrace_stackframes_default = 20;
136 dtrace_optval_t dtrace_ustackframes_default = 20;
137 dtrace_optval_t dtrace_jstackframes_default = 50;
138 dtrace_optval_t dtrace_jstackstrsize_default = 512;
139 int		dtrace_msgdsize_max = 128;
140 hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
141 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
142 int		dtrace_devdepth_max = 32;
143 int		dtrace_err_verbose;
144 hrtime_t	dtrace_deadman_interval = NANOSEC;
145 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
146 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
147 
148 /*
149  * DTrace External Variables
150  *
151  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
152  * available to DTrace consumers via the backtick (`) syntax.  One of these,
153  * dtrace_zero, is made deliberately so:  it is provided as a source of
154  * well-known, zero-filled memory.  While this variable is not documented,
155  * it is used by some translators as an implementation detail.
156  */
157 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
158 
159 /*
160  * DTrace Internal Variables
161  */
162 static dev_info_t	*dtrace_devi;		/* device info */
163 static vmem_t		*dtrace_arena;		/* probe ID arena */
164 static vmem_t		*dtrace_minor;		/* minor number arena */
165 static taskq_t		*dtrace_taskq;		/* task queue */
166 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
167 static int		dtrace_nprobes;		/* number of probes */
168 static dtrace_provider_t *dtrace_provider;	/* provider list */
169 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
170 static int		dtrace_opens;		/* number of opens */
171 static int		dtrace_helpers;		/* number of helpers */
172 static void		*dtrace_softstate;	/* softstate pointer */
173 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
174 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
175 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
176 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
177 static int		dtrace_toxranges;	/* number of toxic ranges */
178 static int		dtrace_toxranges_max;	/* size of toxic range array */
179 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
180 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
181 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
182 static kthread_t	*dtrace_panicked;	/* panicking thread */
183 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
184 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
185 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
186 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
187 static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
188 
189 /*
190  * DTrace Locking
191  * DTrace is protected by three (relatively coarse-grained) locks:
192  *
193  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
194  *     including enabling state, probes, ECBs, consumer state, helper state,
195  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
196  *     probe context is lock-free -- synchronization is handled via the
197  *     dtrace_sync() cross call mechanism.
198  *
199  * (2) dtrace_provider_lock is required when manipulating provider state, or
200  *     when provider state must be held constant.
201  *
202  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
203  *     when meta provider state must be held constant.
204  *
205  * The lock ordering between these three locks is dtrace_meta_lock before
206  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
207  * several places where dtrace_provider_lock is held by the framework as it
208  * calls into the providers -- which then call back into the framework,
209  * grabbing dtrace_lock.)
210  *
211  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
212  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
213  * role as a coarse-grained lock; it is acquired before both of these locks.
214  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
215  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
216  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
217  * acquired _between_ dtrace_provider_lock and dtrace_lock.
218  */
219 static kmutex_t		dtrace_lock;		/* probe state lock */
220 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
221 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
222 
223 /*
224  * DTrace Provider Variables
225  *
226  * These are the variables relating to DTrace as a provider (that is, the
227  * provider of the BEGIN, END, and ERROR probes).
228  */
229 static dtrace_pattr_t	dtrace_provider_attr = {
230 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
231 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
232 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
233 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
234 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
235 };
236 
237 static void
238 dtrace_nullop(void)
239 {}
240 
241 static dtrace_pops_t	dtrace_provider_ops = {
242 	(void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
243 	(void (*)(void *, struct modctl *))dtrace_nullop,
244 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
245 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
246 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
247 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
248 	NULL,
249 	NULL,
250 	NULL,
251 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
252 };
253 
254 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
255 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
256 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
257 
258 /*
259  * DTrace Helper Tracing Variables
260  */
261 uint32_t dtrace_helptrace_next = 0;
262 uint32_t dtrace_helptrace_nlocals;
263 char	*dtrace_helptrace_buffer;
264 int	dtrace_helptrace_bufsize = 512 * 1024;
265 
266 #ifdef DEBUG
267 int	dtrace_helptrace_enabled = 1;
268 #else
269 int	dtrace_helptrace_enabled = 0;
270 #endif
271 
272 /*
273  * DTrace Error Hashing
274  *
275  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
276  * table.  This is very useful for checking coverage of tests that are
277  * expected to induce DIF or DOF processing errors, and may be useful for
278  * debugging problems in the DIF code generator or in DOF generation .  The
279  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
280  */
281 #ifdef DEBUG
282 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
283 static const char *dtrace_errlast;
284 static kthread_t *dtrace_errthread;
285 static kmutex_t dtrace_errlock;
286 #endif
287 
288 /*
289  * DTrace Macros and Constants
290  *
291  * These are various macros that are useful in various spots in the
292  * implementation, along with a few random constants that have no meaning
293  * outside of the implementation.  There is no real structure to this cpp
294  * mishmash -- but is there ever?
295  */
296 #define	DTRACE_HASHSTR(hash, probe)	\
297 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
298 
299 #define	DTRACE_HASHNEXT(hash, probe)	\
300 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
301 
302 #define	DTRACE_HASHPREV(hash, probe)	\
303 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
304 
305 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
306 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
307 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
308 
309 #define	DTRACE_AGGHASHSIZE_SLEW		17
310 
311 /*
312  * The key for a thread-local variable consists of the lower 61 bits of the
313  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
314  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
315  * equal to a variable identifier.  This is necessary (but not sufficient) to
316  * assure that global associative arrays never collide with thread-local
317  * variables.  To guarantee that they cannot collide, we must also define the
318  * order for keying dynamic variables.  That order is:
319  *
320  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
321  *
322  * Because the variable-key and the tls-key are in orthogonal spaces, there is
323  * no way for a global variable key signature to match a thread-local key
324  * signature.
325  */
326 #define	DTRACE_TLS_THRKEY(where) { \
327 	uint_t intr = 0; \
328 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
329 	for (; actv; actv >>= 1) \
330 		intr++; \
331 	ASSERT(intr < (1 << 3)); \
332 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
333 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
334 }
335 
336 #define	DTRACE_STORE(type, tomax, offset, what) \
337 	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
338 
339 #ifndef __i386
340 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
341 	if (addr & (size - 1)) {					\
342 		*flags |= CPU_DTRACE_BADALIGN;				\
343 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
344 		return (0);						\
345 	}
346 #else
347 #define	DTRACE_ALIGNCHECK(addr, size, flags)
348 #endif
349 
350 #define	DTRACE_LOADFUNC(bits)						\
351 /*CSTYLED*/								\
352 uint##bits##_t								\
353 dtrace_load##bits(uintptr_t addr)					\
354 {									\
355 	size_t size = bits / NBBY;					\
356 	/*CSTYLED*/							\
357 	uint##bits##_t rval;						\
358 	int i;								\
359 	volatile uint16_t *flags = (volatile uint16_t *)		\
360 	    &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;			\
361 									\
362 	DTRACE_ALIGNCHECK(addr, size, flags);				\
363 									\
364 	for (i = 0; i < dtrace_toxranges; i++) {			\
365 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
366 			continue;					\
367 									\
368 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
369 			continue;					\
370 									\
371 		/*							\
372 		 * This address falls within a toxic region; return 0.	\
373 		 */							\
374 		*flags |= CPU_DTRACE_BADADDR;				\
375 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
376 		return (0);						\
377 	}								\
378 									\
379 	*flags |= CPU_DTRACE_NOFAULT;					\
380 	/*CSTYLED*/							\
381 	rval = *((volatile uint##bits##_t *)addr);			\
382 	*flags &= ~CPU_DTRACE_NOFAULT;					\
383 									\
384 	return (rval);							\
385 }
386 
387 #ifdef _LP64
388 #define	dtrace_loadptr	dtrace_load64
389 #else
390 #define	dtrace_loadptr	dtrace_load32
391 #endif
392 
393 #define	DTRACE_DYNHASH_FREE	0
394 #define	DTRACE_DYNHASH_SINK	1
395 #define	DTRACE_DYNHASH_VALID	2
396 
397 #define	DTRACE_MATCH_NEXT	0
398 #define	DTRACE_MATCH_DONE	1
399 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
400 #define	DTRACE_STATE_ALIGN	64
401 
402 #define	DTRACE_FLAGS2FLT(flags)						\
403 	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
404 	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
405 	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
406 	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
407 	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
408 	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
409 	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
410 	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
411 	DTRACEFLT_UNKNOWN)
412 
413 #define	DTRACEACT_ISSTRING(act)						\
414 	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
415 	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
416 
417 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
418 static void dtrace_enabling_provide(dtrace_provider_t *);
419 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
420 static void dtrace_enabling_matchall(void);
421 static dtrace_state_t *dtrace_anon_grab(void);
422 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
423     dtrace_state_t *, uint64_t, uint64_t);
424 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
425 static void dtrace_buffer_drop(dtrace_buffer_t *);
426 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
427     dtrace_state_t *, dtrace_mstate_t *);
428 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
429     dtrace_optval_t);
430 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
431 
432 /*
433  * DTrace Probe Context Functions
434  *
435  * These functions are called from probe context.  Because probe context is
436  * any context in which C may be called, arbitrarily locks may be held,
437  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
438  * As a result, functions called from probe context may only call other DTrace
439  * support functions -- they may not interact at all with the system at large.
440  * (Note that the ASSERT macro is made probe-context safe by redefining it in
441  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
442  * loads are to be performed from probe context, they _must_ be in terms of
443  * the safe dtrace_load*() variants.
444  *
445  * Some functions in this block are not actually called from probe context;
446  * for these functions, there will be a comment above the function reading
447  * "Note:  not called from probe context."
448  */
449 void
450 dtrace_panic(const char *format, ...)
451 {
452 	va_list alist;
453 
454 	va_start(alist, format);
455 	dtrace_vpanic(format, alist);
456 	va_end(alist);
457 }
458 
459 int
460 dtrace_assfail(const char *a, const char *f, int l)
461 {
462 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
463 
464 	/*
465 	 * We just need something here that even the most clever compiler
466 	 * cannot optimize away.
467 	 */
468 	return (a[(uintptr_t)f]);
469 }
470 
471 /*
472  * Atomically increment a specified error counter from probe context.
473  */
474 static void
475 dtrace_error(uint32_t *counter)
476 {
477 	/*
478 	 * Most counters stored to in probe context are per-CPU counters.
479 	 * However, there are some error conditions that are sufficiently
480 	 * arcane that they don't merit per-CPU storage.  If these counters
481 	 * are incremented concurrently on different CPUs, scalability will be
482 	 * adversely affected -- but we don't expect them to be white-hot in a
483 	 * correctly constructed enabling...
484 	 */
485 	uint32_t oval, nval;
486 
487 	do {
488 		oval = *counter;
489 
490 		if ((nval = oval + 1) == 0) {
491 			/*
492 			 * If the counter would wrap, set it to 1 -- assuring
493 			 * that the counter is never zero when we have seen
494 			 * errors.  (The counter must be 32-bits because we
495 			 * aren't guaranteed a 64-bit compare&swap operation.)
496 			 * To save this code both the infamy of being fingered
497 			 * by a priggish news story and the indignity of being
498 			 * the target of a neo-puritan witch trial, we're
499 			 * carefully avoiding any colorful description of the
500 			 * likelihood of this condition -- but suffice it to
501 			 * say that it is only slightly more likely than the
502 			 * overflow of predicate cache IDs, as discussed in
503 			 * dtrace_predicate_create().
504 			 */
505 			nval = 1;
506 		}
507 	} while (dtrace_cas32(counter, oval, nval) != oval);
508 }
509 
510 /*
511  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
512  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
513  */
514 DTRACE_LOADFUNC(8)
515 DTRACE_LOADFUNC(16)
516 DTRACE_LOADFUNC(32)
517 DTRACE_LOADFUNC(64)
518 
519 static int
520 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
521 {
522 	if (dest < mstate->dtms_scratch_base)
523 		return (0);
524 
525 	if (dest + size < dest)
526 		return (0);
527 
528 	if (dest + size > mstate->dtms_scratch_ptr)
529 		return (0);
530 
531 	return (1);
532 }
533 
534 static int
535 dtrace_canstore_statvar(uint64_t addr, size_t sz,
536     dtrace_statvar_t **svars, int nsvars)
537 {
538 	int i;
539 
540 	for (i = 0; i < nsvars; i++) {
541 		dtrace_statvar_t *svar = svars[i];
542 
543 		if (svar == NULL || svar->dtsv_size == 0)
544 			continue;
545 
546 		if (addr - svar->dtsv_data < svar->dtsv_size &&
547 		    addr + sz <= svar->dtsv_data + svar->dtsv_size)
548 			return (1);
549 	}
550 
551 	return (0);
552 }
553 
554 /*
555  * Check to see if the address is within a memory region to which a store may
556  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
557  * region.  The caller of dtrace_canstore() is responsible for performing any
558  * alignment checks that are needed before stores are actually executed.
559  */
560 static int
561 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
562     dtrace_vstate_t *vstate)
563 {
564 	uintptr_t a;
565 	size_t s;
566 
567 	/*
568 	 * First, check to see if the address is in scratch space...
569 	 */
570 	a = mstate->dtms_scratch_base;
571 	s = mstate->dtms_scratch_size;
572 
573 	if (addr - a < s && addr + sz <= a + s)
574 		return (1);
575 
576 	/*
577 	 * Now check to see if it's a dynamic variable.  This check will pick
578 	 * up both thread-local variables and any global dynamically-allocated
579 	 * variables.
580 	 */
581 	a = (uintptr_t)vstate->dtvs_dynvars.dtds_base;
582 	s = vstate->dtvs_dynvars.dtds_size;
583 	if (addr - a < s && addr + sz <= a + s)
584 		return (1);
585 
586 	/*
587 	 * Finally, check the static local and global variables.  These checks
588 	 * take the longest, so we perform them last.
589 	 */
590 	if (dtrace_canstore_statvar(addr, sz,
591 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
592 		return (1);
593 
594 	if (dtrace_canstore_statvar(addr, sz,
595 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
596 		return (1);
597 
598 	return (0);
599 }
600 
601 /*
602  * Compare two strings using safe loads.
603  */
604 static int
605 dtrace_strncmp(char *s1, char *s2, size_t limit)
606 {
607 	uint8_t c1, c2;
608 	volatile uint16_t *flags;
609 
610 	if (s1 == s2 || limit == 0)
611 		return (0);
612 
613 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
614 
615 	do {
616 		if (s1 == NULL) {
617 			c1 = '\0';
618 		} else {
619 			c1 = dtrace_load8((uintptr_t)s1++);
620 		}
621 
622 		if (s2 == NULL) {
623 			c2 = '\0';
624 		} else {
625 			c2 = dtrace_load8((uintptr_t)s2++);
626 		}
627 
628 		if (c1 != c2)
629 			return (c1 - c2);
630 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
631 
632 	return (0);
633 }
634 
635 /*
636  * Compute strlen(s) for a string using safe memory accesses.  The additional
637  * len parameter is used to specify a maximum length to ensure completion.
638  */
639 static size_t
640 dtrace_strlen(const char *s, size_t lim)
641 {
642 	uint_t len;
643 
644 	for (len = 0; len != lim; len++) {
645 		if (dtrace_load8((uintptr_t)s++) == '\0')
646 			break;
647 	}
648 
649 	return (len);
650 }
651 
652 /*
653  * Check if an address falls within a toxic region.
654  */
655 static int
656 dtrace_istoxic(uintptr_t kaddr, size_t size)
657 {
658 	uintptr_t taddr, tsize;
659 	int i;
660 
661 	for (i = 0; i < dtrace_toxranges; i++) {
662 		taddr = dtrace_toxrange[i].dtt_base;
663 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
664 
665 		if (kaddr - taddr < tsize) {
666 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
667 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
668 			return (1);
669 		}
670 
671 		if (taddr - kaddr < size) {
672 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
673 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
674 			return (1);
675 		}
676 	}
677 
678 	return (0);
679 }
680 
681 /*
682  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
683  * memory specified by the DIF program.  The dst is assumed to be safe memory
684  * that we can store to directly because it is managed by DTrace.  As with
685  * standard bcopy, overlapping copies are handled properly.
686  */
687 static void
688 dtrace_bcopy(const void *src, void *dst, size_t len)
689 {
690 	if (len != 0) {
691 		uint8_t *s1 = dst;
692 		const uint8_t *s2 = src;
693 
694 		if (s1 <= s2) {
695 			do {
696 				*s1++ = dtrace_load8((uintptr_t)s2++);
697 			} while (--len != 0);
698 		} else {
699 			s2 += len;
700 			s1 += len;
701 
702 			do {
703 				*--s1 = dtrace_load8((uintptr_t)--s2);
704 			} while (--len != 0);
705 		}
706 	}
707 }
708 
709 /*
710  * Copy src to dst using safe memory accesses, up to either the specified
711  * length, or the point that a nul byte is encountered.  The src is assumed to
712  * be unsafe memory specified by the DIF program.  The dst is assumed to be
713  * safe memory that we can store to directly because it is managed by DTrace.
714  * Unlike dtrace_bcopy(), overlapping regions are not handled.
715  */
716 static void
717 dtrace_strcpy(const void *src, void *dst, size_t len)
718 {
719 	if (len != 0) {
720 		uint8_t *s1 = dst, c;
721 		const uint8_t *s2 = src;
722 
723 		do {
724 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
725 		} while (--len != 0 && c != '\0');
726 	}
727 }
728 
729 /*
730  * Copy src to dst, deriving the size and type from the specified (BYREF)
731  * variable type.  The src is assumed to be unsafe memory specified by the DIF
732  * program.  The dst is assumed to be DTrace variable memory that is of the
733  * specified type; we assume that we can store to directly.
734  */
735 static void
736 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
737 {
738 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
739 
740 	if (type->dtdt_kind == DIF_TYPE_STRING) {
741 		dtrace_strcpy(src, dst, type->dtdt_size);
742 	} else {
743 		dtrace_bcopy(src, dst, type->dtdt_size);
744 	}
745 }
746 
747 /*
748  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
749  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
750  * safe memory that we can access directly because it is managed by DTrace.
751  */
752 static int
753 dtrace_bcmp(const void *s1, const void *s2, size_t len)
754 {
755 	volatile uint16_t *flags;
756 
757 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
758 
759 	if (s1 == s2)
760 		return (0);
761 
762 	if (s1 == NULL || s2 == NULL)
763 		return (1);
764 
765 	if (s1 != s2 && len != 0) {
766 		const uint8_t *ps1 = s1;
767 		const uint8_t *ps2 = s2;
768 
769 		do {
770 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
771 				return (1);
772 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
773 	}
774 	return (0);
775 }
776 
777 /*
778  * Zero the specified region using a simple byte-by-byte loop.  Note that this
779  * is for safe DTrace-managed memory only.
780  */
781 static void
782 dtrace_bzero(void *dst, size_t len)
783 {
784 	uchar_t *cp;
785 
786 	for (cp = dst; len != 0; len--)
787 		*cp++ = 0;
788 }
789 
790 /*
791  * This privilege check should be used by actions and subroutines to
792  * verify that the user credentials of the process that enabled the
793  * invoking ECB match the target credentials
794  */
795 static int
796 dtrace_priv_proc_common_user(dtrace_state_t *state)
797 {
798 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
799 
800 	/*
801 	 * We should always have a non-NULL state cred here, since if cred
802 	 * is null (anonymous tracing), we fast-path bypass this routine.
803 	 */
804 	ASSERT(s_cr != NULL);
805 
806 	if ((cr = CRED()) != NULL &&
807 	    s_cr->cr_uid == cr->cr_uid &&
808 	    s_cr->cr_uid == cr->cr_ruid &&
809 	    s_cr->cr_uid == cr->cr_suid &&
810 	    s_cr->cr_gid == cr->cr_gid &&
811 	    s_cr->cr_gid == cr->cr_rgid &&
812 	    s_cr->cr_gid == cr->cr_sgid)
813 		return (1);
814 
815 	return (0);
816 }
817 
818 /*
819  * This privilege check should be used by actions and subroutines to
820  * verify that the zone of the process that enabled the invoking ECB
821  * matches the target credentials
822  */
823 static int
824 dtrace_priv_proc_common_zone(dtrace_state_t *state)
825 {
826 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
827 
828 	/*
829 	 * We should always have a non-NULL state cred here, since if cred
830 	 * is null (anonymous tracing), we fast-path bypass this routine.
831 	 */
832 	ASSERT(s_cr != NULL);
833 
834 	if ((cr = CRED()) != NULL &&
835 	    s_cr->cr_zone == cr->cr_zone)
836 		return (1);
837 
838 	return (0);
839 }
840 
841 /*
842  * This privilege check should be used by actions and subroutines to
843  * verify that the process has not setuid or changed credentials.
844  */
845 static int
846 dtrace_priv_proc_common_nocd()
847 {
848 	proc_t *proc;
849 
850 	if ((proc = ttoproc(curthread)) != NULL &&
851 	    !(proc->p_flag & SNOCD))
852 		return (1);
853 
854 	return (0);
855 }
856 
857 static int
858 dtrace_priv_proc_destructive(dtrace_state_t *state)
859 {
860 	int action = state->dts_cred.dcr_action;
861 
862 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
863 	    dtrace_priv_proc_common_zone(state) == 0)
864 		goto bad;
865 
866 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
867 	    dtrace_priv_proc_common_user(state) == 0)
868 		goto bad;
869 
870 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
871 	    dtrace_priv_proc_common_nocd() == 0)
872 		goto bad;
873 
874 	return (1);
875 
876 bad:
877 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
878 
879 	return (0);
880 }
881 
882 static int
883 dtrace_priv_proc_control(dtrace_state_t *state)
884 {
885 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
886 		return (1);
887 
888 	if (dtrace_priv_proc_common_zone(state) &&
889 	    dtrace_priv_proc_common_user(state) &&
890 	    dtrace_priv_proc_common_nocd())
891 		return (1);
892 
893 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
894 
895 	return (0);
896 }
897 
898 static int
899 dtrace_priv_proc(dtrace_state_t *state)
900 {
901 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
902 		return (1);
903 
904 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
905 
906 	return (0);
907 }
908 
909 static int
910 dtrace_priv_kernel(dtrace_state_t *state)
911 {
912 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
913 		return (1);
914 
915 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
916 
917 	return (0);
918 }
919 
920 static int
921 dtrace_priv_kernel_destructive(dtrace_state_t *state)
922 {
923 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
924 		return (1);
925 
926 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
927 
928 	return (0);
929 }
930 
931 /*
932  * Note:  not called from probe context.  This function is called
933  * asynchronously (and at a regular interval) from outside of probe context to
934  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
935  * cleaning is explained in detail in <sys/dtrace_impl.h>.
936  */
937 void
938 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
939 {
940 	dtrace_dynvar_t *dirty;
941 	dtrace_dstate_percpu_t *dcpu;
942 	int i, work = 0;
943 
944 	for (i = 0; i < NCPU; i++) {
945 		dcpu = &dstate->dtds_percpu[i];
946 
947 		ASSERT(dcpu->dtdsc_rinsing == NULL);
948 
949 		/*
950 		 * If the dirty list is NULL, there is no dirty work to do.
951 		 */
952 		if (dcpu->dtdsc_dirty == NULL)
953 			continue;
954 
955 		/*
956 		 * If the clean list is non-NULL, then we're not going to do
957 		 * any work for this CPU -- it means that there has not been
958 		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
959 		 * since the last time we cleaned house.
960 		 */
961 		if (dcpu->dtdsc_clean != NULL)
962 			continue;
963 
964 		work = 1;
965 
966 		/*
967 		 * Atomically move the dirty list aside.
968 		 */
969 		do {
970 			dirty = dcpu->dtdsc_dirty;
971 
972 			/*
973 			 * Before we zap the dirty list, set the rinsing list.
974 			 * (This allows for a potential assertion in
975 			 * dtrace_dynvar():  if a free dynamic variable appears
976 			 * on a hash chain, either the dirty list or the
977 			 * rinsing list for some CPU must be non-NULL.)
978 			 */
979 			dcpu->dtdsc_rinsing = dirty;
980 			dtrace_membar_producer();
981 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
982 		    dirty, NULL) != dirty);
983 	}
984 
985 	if (!work) {
986 		/*
987 		 * We have no work to do; we can simply return.
988 		 */
989 		return;
990 	}
991 
992 	dtrace_sync();
993 
994 	for (i = 0; i < NCPU; i++) {
995 		dcpu = &dstate->dtds_percpu[i];
996 
997 		if (dcpu->dtdsc_rinsing == NULL)
998 			continue;
999 
1000 		/*
1001 		 * We are now guaranteed that no hash chain contains a pointer
1002 		 * into this dirty list; we can make it clean.
1003 		 */
1004 		ASSERT(dcpu->dtdsc_clean == NULL);
1005 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1006 		dcpu->dtdsc_rinsing = NULL;
1007 	}
1008 
1009 	/*
1010 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1011 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1012 	 * This prevents a race whereby a CPU incorrectly decides that
1013 	 * the state should be something other than DTRACE_DSTATE_CLEAN
1014 	 * after dtrace_dynvar_clean() has completed.
1015 	 */
1016 	dtrace_sync();
1017 
1018 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1019 }
1020 
1021 /*
1022  * Depending on the value of the op parameter, this function looks-up,
1023  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1024  * allocation is requested, this function will return a pointer to a
1025  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1026  * variable can be allocated.  If NULL is returned, the appropriate counter
1027  * will be incremented.
1028  */
1029 dtrace_dynvar_t *
1030 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1031     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op)
1032 {
1033 	uint64_t hashval = DTRACE_DYNHASH_VALID;
1034 	dtrace_dynhash_t *hash = dstate->dtds_hash;
1035 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1036 	processorid_t me = CPU->cpu_id, cpu = me;
1037 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1038 	size_t bucket, ksize;
1039 	size_t chunksize = dstate->dtds_chunksize;
1040 	uintptr_t kdata, lock, nstate;
1041 	uint_t i;
1042 
1043 	ASSERT(nkeys != 0);
1044 
1045 	/*
1046 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1047 	 * algorithm.  For the by-value portions, we perform the algorithm in
1048 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1049 	 * bit, and seems to have only a minute effect on distribution.  For
1050 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1051 	 * over each referenced byte.  It's painful to do this, but it's much
1052 	 * better than pathological hash distribution.  The efficacy of the
1053 	 * hashing algorithm (and a comparison with other algorithms) may be
1054 	 * found by running the ::dtrace_dynstat MDB dcmd.
1055 	 */
1056 	for (i = 0; i < nkeys; i++) {
1057 		if (key[i].dttk_size == 0) {
1058 			uint64_t val = key[i].dttk_value;
1059 
1060 			hashval += (val >> 48) & 0xffff;
1061 			hashval += (hashval << 10);
1062 			hashval ^= (hashval >> 6);
1063 
1064 			hashval += (val >> 32) & 0xffff;
1065 			hashval += (hashval << 10);
1066 			hashval ^= (hashval >> 6);
1067 
1068 			hashval += (val >> 16) & 0xffff;
1069 			hashval += (hashval << 10);
1070 			hashval ^= (hashval >> 6);
1071 
1072 			hashval += val & 0xffff;
1073 			hashval += (hashval << 10);
1074 			hashval ^= (hashval >> 6);
1075 		} else {
1076 			/*
1077 			 * This is incredibly painful, but it beats the hell
1078 			 * out of the alternative.
1079 			 */
1080 			uint64_t j, size = key[i].dttk_size;
1081 			uintptr_t base = (uintptr_t)key[i].dttk_value;
1082 
1083 			for (j = 0; j < size; j++) {
1084 				hashval += dtrace_load8(base + j);
1085 				hashval += (hashval << 10);
1086 				hashval ^= (hashval >> 6);
1087 			}
1088 		}
1089 	}
1090 
1091 	hashval += (hashval << 3);
1092 	hashval ^= (hashval >> 11);
1093 	hashval += (hashval << 15);
1094 
1095 	/*
1096 	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1097 	 * comes out to be one of our two sentinel hash values.  If this
1098 	 * actually happens, we set the hashval to be a value known to be a
1099 	 * non-sentinel value.
1100 	 */
1101 	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1102 		hashval = DTRACE_DYNHASH_VALID;
1103 
1104 	/*
1105 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1106 	 * important here, tricks can be pulled to reduce it.  (However, it's
1107 	 * critical that hash collisions be kept to an absolute minimum;
1108 	 * they're much more painful than a divide.)  It's better to have a
1109 	 * solution that generates few collisions and still keeps things
1110 	 * relatively simple.
1111 	 */
1112 	bucket = hashval % dstate->dtds_hashsize;
1113 
1114 	if (op == DTRACE_DYNVAR_DEALLOC) {
1115 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1116 
1117 		for (;;) {
1118 			while ((lock = *lockp) & 1)
1119 				continue;
1120 
1121 			if (dtrace_casptr((void *)lockp,
1122 			    (void *)lock, (void *)(lock + 1)) == (void *)lock)
1123 				break;
1124 		}
1125 
1126 		dtrace_membar_producer();
1127 	}
1128 
1129 top:
1130 	prev = NULL;
1131 	lock = hash[bucket].dtdh_lock;
1132 
1133 	dtrace_membar_consumer();
1134 
1135 	start = hash[bucket].dtdh_chain;
1136 	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1137 	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1138 	    op != DTRACE_DYNVAR_DEALLOC));
1139 
1140 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1141 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1142 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1143 
1144 		if (dvar->dtdv_hashval != hashval) {
1145 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1146 				/*
1147 				 * We've reached the sink, and therefore the
1148 				 * end of the hash chain; we can kick out of
1149 				 * the loop knowing that we have seen a valid
1150 				 * snapshot of state.
1151 				 */
1152 				ASSERT(dvar->dtdv_next == NULL);
1153 				ASSERT(dvar == &dtrace_dynhash_sink);
1154 				break;
1155 			}
1156 
1157 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1158 				/*
1159 				 * We've gone off the rails:  somewhere along
1160 				 * the line, one of the members of this hash
1161 				 * chain was deleted.  Note that we could also
1162 				 * detect this by simply letting this loop run
1163 				 * to completion, as we would eventually hit
1164 				 * the end of the dirty list.  However, we
1165 				 * want to avoid running the length of the
1166 				 * dirty list unnecessarily (it might be quite
1167 				 * long), so we catch this as early as
1168 				 * possible by detecting the hash marker.  In
1169 				 * this case, we simply set dvar to NULL and
1170 				 * break; the conditional after the loop will
1171 				 * send us back to top.
1172 				 */
1173 				dvar = NULL;
1174 				break;
1175 			}
1176 
1177 			goto next;
1178 		}
1179 
1180 		if (dtuple->dtt_nkeys != nkeys)
1181 			goto next;
1182 
1183 		for (i = 0; i < nkeys; i++, dkey++) {
1184 			if (dkey->dttk_size != key[i].dttk_size)
1185 				goto next; /* size or type mismatch */
1186 
1187 			if (dkey->dttk_size != 0) {
1188 				if (dtrace_bcmp(
1189 				    (void *)(uintptr_t)key[i].dttk_value,
1190 				    (void *)(uintptr_t)dkey->dttk_value,
1191 				    dkey->dttk_size))
1192 					goto next;
1193 			} else {
1194 				if (dkey->dttk_value != key[i].dttk_value)
1195 					goto next;
1196 			}
1197 		}
1198 
1199 		if (op != DTRACE_DYNVAR_DEALLOC)
1200 			return (dvar);
1201 
1202 		ASSERT(dvar->dtdv_next == NULL ||
1203 		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1204 
1205 		if (prev != NULL) {
1206 			ASSERT(hash[bucket].dtdh_chain != dvar);
1207 			ASSERT(start != dvar);
1208 			ASSERT(prev->dtdv_next == dvar);
1209 			prev->dtdv_next = dvar->dtdv_next;
1210 		} else {
1211 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1212 			    start, dvar->dtdv_next) != start) {
1213 				/*
1214 				 * We have failed to atomically swing the
1215 				 * hash table head pointer, presumably because
1216 				 * of a conflicting allocation on another CPU.
1217 				 * We need to reread the hash chain and try
1218 				 * again.
1219 				 */
1220 				goto top;
1221 			}
1222 		}
1223 
1224 		dtrace_membar_producer();
1225 
1226 		/*
1227 		 * Now set the hash value to indicate that it's free.
1228 		 */
1229 		ASSERT(hash[bucket].dtdh_chain != dvar);
1230 		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1231 
1232 		dtrace_membar_producer();
1233 
1234 		/*
1235 		 * Set the next pointer to point at the dirty list, and
1236 		 * atomically swing the dirty pointer to the newly freed dvar.
1237 		 */
1238 		do {
1239 			next = dcpu->dtdsc_dirty;
1240 			dvar->dtdv_next = next;
1241 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1242 
1243 		/*
1244 		 * Finally, unlock this hash bucket.
1245 		 */
1246 		ASSERT(hash[bucket].dtdh_lock == lock);
1247 		ASSERT(lock & 1);
1248 		hash[bucket].dtdh_lock++;
1249 
1250 		return (NULL);
1251 next:
1252 		prev = dvar;
1253 		continue;
1254 	}
1255 
1256 	if (dvar == NULL) {
1257 		/*
1258 		 * If dvar is NULL, it is because we went off the rails:
1259 		 * one of the elements that we traversed in the hash chain
1260 		 * was deleted while we were traversing it.  In this case,
1261 		 * we assert that we aren't doing a dealloc (deallocs lock
1262 		 * the hash bucket to prevent themselves from racing with
1263 		 * one another), and retry the hash chain traversal.
1264 		 */
1265 		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1266 		goto top;
1267 	}
1268 
1269 	if (op != DTRACE_DYNVAR_ALLOC) {
1270 		/*
1271 		 * If we are not to allocate a new variable, we want to
1272 		 * return NULL now.  Before we return, check that the value
1273 		 * of the lock word hasn't changed.  If it has, we may have
1274 		 * seen an inconsistent snapshot.
1275 		 */
1276 		if (op == DTRACE_DYNVAR_NOALLOC) {
1277 			if (hash[bucket].dtdh_lock != lock)
1278 				goto top;
1279 		} else {
1280 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1281 			ASSERT(hash[bucket].dtdh_lock == lock);
1282 			ASSERT(lock & 1);
1283 			hash[bucket].dtdh_lock++;
1284 		}
1285 
1286 		return (NULL);
1287 	}
1288 
1289 	/*
1290 	 * We need to allocate a new dynamic variable.  The size we need is the
1291 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1292 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1293 	 * the size of any referred-to data (dsize).  We then round the final
1294 	 * size up to the chunksize for allocation.
1295 	 */
1296 	for (ksize = 0, i = 0; i < nkeys; i++)
1297 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1298 
1299 	/*
1300 	 * This should be pretty much impossible, but could happen if, say,
1301 	 * strange DIF specified the tuple.  Ideally, this should be an
1302 	 * assertion and not an error condition -- but that requires that the
1303 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1304 	 * bullet-proof.  (That is, it must not be able to be fooled by
1305 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1306 	 * solving this would presumably not amount to solving the Halting
1307 	 * Problem -- but it still seems awfully hard.
1308 	 */
1309 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1310 	    ksize + dsize > chunksize) {
1311 		dcpu->dtdsc_drops++;
1312 		return (NULL);
1313 	}
1314 
1315 	nstate = DTRACE_DSTATE_EMPTY;
1316 
1317 	do {
1318 retry:
1319 		free = dcpu->dtdsc_free;
1320 
1321 		if (free == NULL) {
1322 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1323 			void *rval;
1324 
1325 			if (clean == NULL) {
1326 				/*
1327 				 * We're out of dynamic variable space on
1328 				 * this CPU.  Unless we have tried all CPUs,
1329 				 * we'll try to allocate from a different
1330 				 * CPU.
1331 				 */
1332 				switch (dstate->dtds_state) {
1333 				case DTRACE_DSTATE_CLEAN: {
1334 					void *sp = &dstate->dtds_state;
1335 
1336 					if (++cpu >= NCPU)
1337 						cpu = 0;
1338 
1339 					if (dcpu->dtdsc_dirty != NULL &&
1340 					    nstate == DTRACE_DSTATE_EMPTY)
1341 						nstate = DTRACE_DSTATE_DIRTY;
1342 
1343 					if (dcpu->dtdsc_rinsing != NULL)
1344 						nstate = DTRACE_DSTATE_RINSING;
1345 
1346 					dcpu = &dstate->dtds_percpu[cpu];
1347 
1348 					if (cpu != me)
1349 						goto retry;
1350 
1351 					(void) dtrace_cas32(sp,
1352 					    DTRACE_DSTATE_CLEAN, nstate);
1353 
1354 					/*
1355 					 * To increment the correct bean
1356 					 * counter, take another lap.
1357 					 */
1358 					goto retry;
1359 				}
1360 
1361 				case DTRACE_DSTATE_DIRTY:
1362 					dcpu->dtdsc_dirty_drops++;
1363 					break;
1364 
1365 				case DTRACE_DSTATE_RINSING:
1366 					dcpu->dtdsc_rinsing_drops++;
1367 					break;
1368 
1369 				case DTRACE_DSTATE_EMPTY:
1370 					dcpu->dtdsc_drops++;
1371 					break;
1372 				}
1373 
1374 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1375 				return (NULL);
1376 			}
1377 
1378 			/*
1379 			 * The clean list appears to be non-empty.  We want to
1380 			 * move the clean list to the free list; we start by
1381 			 * moving the clean pointer aside.
1382 			 */
1383 			if (dtrace_casptr(&dcpu->dtdsc_clean,
1384 			    clean, NULL) != clean) {
1385 				/*
1386 				 * We are in one of two situations:
1387 				 *
1388 				 *  (a)	The clean list was switched to the
1389 				 *	free list by another CPU.
1390 				 *
1391 				 *  (b)	The clean list was added to by the
1392 				 *	cleansing cyclic.
1393 				 *
1394 				 * In either of these situations, we can
1395 				 * just reattempt the free list allocation.
1396 				 */
1397 				goto retry;
1398 			}
1399 
1400 			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1401 
1402 			/*
1403 			 * Now we'll move the clean list to the free list.
1404 			 * It's impossible for this to fail:  the only way
1405 			 * the free list can be updated is through this
1406 			 * code path, and only one CPU can own the clean list.
1407 			 * Thus, it would only be possible for this to fail if
1408 			 * this code were racing with dtrace_dynvar_clean().
1409 			 * (That is, if dtrace_dynvar_clean() updated the clean
1410 			 * list, and we ended up racing to update the free
1411 			 * list.)  This race is prevented by the dtrace_sync()
1412 			 * in dtrace_dynvar_clean() -- which flushes the
1413 			 * owners of the clean lists out before resetting
1414 			 * the clean lists.
1415 			 */
1416 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1417 			ASSERT(rval == NULL);
1418 			goto retry;
1419 		}
1420 
1421 		dvar = free;
1422 		new_free = dvar->dtdv_next;
1423 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1424 
1425 	/*
1426 	 * We have now allocated a new chunk.  We copy the tuple keys into the
1427 	 * tuple array and copy any referenced key data into the data space
1428 	 * following the tuple array.  As we do this, we relocate dttk_value
1429 	 * in the final tuple to point to the key data address in the chunk.
1430 	 */
1431 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1432 	dvar->dtdv_data = (void *)(kdata + ksize);
1433 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1434 
1435 	for (i = 0; i < nkeys; i++) {
1436 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1437 		size_t kesize = key[i].dttk_size;
1438 
1439 		if (kesize != 0) {
1440 			dtrace_bcopy(
1441 			    (const void *)(uintptr_t)key[i].dttk_value,
1442 			    (void *)kdata, kesize);
1443 			dkey->dttk_value = kdata;
1444 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1445 		} else {
1446 			dkey->dttk_value = key[i].dttk_value;
1447 		}
1448 
1449 		dkey->dttk_size = kesize;
1450 	}
1451 
1452 	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1453 	dvar->dtdv_hashval = hashval;
1454 	dvar->dtdv_next = start;
1455 
1456 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1457 		return (dvar);
1458 
1459 	/*
1460 	 * The cas has failed.  Either another CPU is adding an element to
1461 	 * this hash chain, or another CPU is deleting an element from this
1462 	 * hash chain.  The simplest way to deal with both of these cases
1463 	 * (though not necessarily the most efficient) is to free our
1464 	 * allocated block and tail-call ourselves.  Note that the free is
1465 	 * to the dirty list and _not_ to the free list.  This is to prevent
1466 	 * races with allocators, above.
1467 	 */
1468 	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1469 
1470 	dtrace_membar_producer();
1471 
1472 	do {
1473 		free = dcpu->dtdsc_dirty;
1474 		dvar->dtdv_next = free;
1475 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1476 
1477 	return (dtrace_dynvar(dstate, nkeys, key, dsize, op));
1478 }
1479 
1480 /*ARGSUSED*/
1481 static void
1482 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1483 {
1484 	if (nval < *oval)
1485 		*oval = nval;
1486 }
1487 
1488 /*ARGSUSED*/
1489 static void
1490 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1491 {
1492 	if (nval > *oval)
1493 		*oval = nval;
1494 }
1495 
1496 static void
1497 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1498 {
1499 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1500 	int64_t val = (int64_t)nval;
1501 
1502 	if (val < 0) {
1503 		for (i = 0; i < zero; i++) {
1504 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1505 				quanta[i] += incr;
1506 				return;
1507 			}
1508 		}
1509 	} else {
1510 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1511 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1512 				quanta[i - 1] += incr;
1513 				return;
1514 			}
1515 		}
1516 
1517 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1518 		return;
1519 	}
1520 
1521 	ASSERT(0);
1522 }
1523 
1524 static void
1525 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1526 {
1527 	uint64_t arg = *lquanta++;
1528 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1529 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1530 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1531 	int32_t val = (int32_t)nval, level;
1532 
1533 	ASSERT(step != 0);
1534 	ASSERT(levels != 0);
1535 
1536 	if (val < base) {
1537 		/*
1538 		 * This is an underflow.
1539 		 */
1540 		lquanta[0] += incr;
1541 		return;
1542 	}
1543 
1544 	level = (val - base) / step;
1545 
1546 	if (level < levels) {
1547 		lquanta[level + 1] += incr;
1548 		return;
1549 	}
1550 
1551 	/*
1552 	 * This is an overflow.
1553 	 */
1554 	lquanta[levels + 1] += incr;
1555 }
1556 
1557 /*ARGSUSED*/
1558 static void
1559 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1560 {
1561 	data[0]++;
1562 	data[1] += nval;
1563 }
1564 
1565 /*ARGSUSED*/
1566 static void
1567 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
1568 {
1569 	*oval = *oval + 1;
1570 }
1571 
1572 /*ARGSUSED*/
1573 static void
1574 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
1575 {
1576 	*oval += nval;
1577 }
1578 
1579 /*
1580  * Aggregate given the tuple in the principal data buffer, and the aggregating
1581  * action denoted by the specified dtrace_aggregation_t.  The aggregation
1582  * buffer is specified as the buf parameter.  This routine does not return
1583  * failure; if there is no space in the aggregation buffer, the data will be
1584  * dropped, and a corresponding counter incremented.
1585  */
1586 static void
1587 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
1588     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
1589 {
1590 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
1591 	uint32_t i, ndx, size, fsize;
1592 	uint32_t align = sizeof (uint64_t) - 1;
1593 	dtrace_aggbuffer_t *agb;
1594 	dtrace_aggkey_t *key;
1595 	uint32_t hashval = 0, limit, isstr;
1596 	caddr_t tomax, data, kdata;
1597 	dtrace_actkind_t action;
1598 	dtrace_action_t *act;
1599 	uintptr_t offs;
1600 
1601 	if (buf == NULL)
1602 		return;
1603 
1604 	if (!agg->dtag_hasarg) {
1605 		/*
1606 		 * Currently, only quantize() and lquantize() take additional
1607 		 * arguments, and they have the same semantics:  an increment
1608 		 * value that defaults to 1 when not present.  If additional
1609 		 * aggregating actions take arguments, the setting of the
1610 		 * default argument value will presumably have to become more
1611 		 * sophisticated...
1612 		 */
1613 		arg = 1;
1614 	}
1615 
1616 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
1617 	size = rec->dtrd_offset - agg->dtag_base;
1618 	fsize = size + rec->dtrd_size;
1619 
1620 	ASSERT(dbuf->dtb_tomax != NULL);
1621 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
1622 
1623 	if ((tomax = buf->dtb_tomax) == NULL) {
1624 		dtrace_buffer_drop(buf);
1625 		return;
1626 	}
1627 
1628 	/*
1629 	 * The metastructure is always at the bottom of the buffer.
1630 	 */
1631 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
1632 	    sizeof (dtrace_aggbuffer_t));
1633 
1634 	if (buf->dtb_offset == 0) {
1635 		/*
1636 		 * We just kludge up approximately 1/8th of the size to be
1637 		 * buckets.  If this guess ends up being routinely
1638 		 * off-the-mark, we may need to dynamically readjust this
1639 		 * based on past performance.
1640 		 */
1641 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
1642 
1643 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
1644 		    (uintptr_t)tomax || hashsize == 0) {
1645 			/*
1646 			 * We've been given a ludicrously small buffer;
1647 			 * increment our drop count and leave.
1648 			 */
1649 			dtrace_buffer_drop(buf);
1650 			return;
1651 		}
1652 
1653 		/*
1654 		 * And now, a pathetic attempt to try to get a an odd (or
1655 		 * perchance, a prime) hash size for better hash distribution.
1656 		 */
1657 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
1658 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
1659 
1660 		agb->dtagb_hashsize = hashsize;
1661 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
1662 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
1663 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
1664 
1665 		for (i = 0; i < agb->dtagb_hashsize; i++)
1666 			agb->dtagb_hash[i] = NULL;
1667 	}
1668 
1669 	ASSERT(agg->dtag_first != NULL);
1670 	ASSERT(agg->dtag_first->dta_intuple);
1671 
1672 	/*
1673 	 * Calculate the hash value based on the key.  Note that we _don't_
1674 	 * include the aggid in the hashing (but we will store it as part of
1675 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
1676 	 * algorithm: a simple, quick algorithm that has no known funnels, and
1677 	 * gets good distribution in practice.  The efficacy of the hashing
1678 	 * algorithm (and a comparison with other algorithms) may be found by
1679 	 * running the ::dtrace_aggstat MDB dcmd.
1680 	 */
1681 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
1682 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
1683 		limit = i + act->dta_rec.dtrd_size;
1684 		ASSERT(limit <= size);
1685 		isstr = DTRACEACT_ISSTRING(act);
1686 
1687 		for (; i < limit; i++) {
1688 			hashval += data[i];
1689 			hashval += (hashval << 10);
1690 			hashval ^= (hashval >> 6);
1691 
1692 			if (isstr && data[i] == '\0')
1693 				break;
1694 		}
1695 	}
1696 
1697 	hashval += (hashval << 3);
1698 	hashval ^= (hashval >> 11);
1699 	hashval += (hashval << 15);
1700 
1701 	/*
1702 	 * Yes, the divide here is expensive -- but it's generally the least
1703 	 * of the performance issues given the amount of data that we iterate
1704 	 * over to compute hash values, compare data, etc.
1705 	 */
1706 	ndx = hashval % agb->dtagb_hashsize;
1707 
1708 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
1709 		ASSERT((caddr_t)key >= tomax);
1710 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
1711 
1712 		if (hashval != key->dtak_hashval || key->dtak_size != size)
1713 			continue;
1714 
1715 		kdata = key->dtak_data;
1716 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
1717 
1718 		for (act = agg->dtag_first; act->dta_intuple;
1719 		    act = act->dta_next) {
1720 			i = act->dta_rec.dtrd_offset - agg->dtag_base;
1721 			limit = i + act->dta_rec.dtrd_size;
1722 			ASSERT(limit <= size);
1723 			isstr = DTRACEACT_ISSTRING(act);
1724 
1725 			for (; i < limit; i++) {
1726 				if (kdata[i] != data[i])
1727 					goto next;
1728 
1729 				if (isstr && data[i] == '\0')
1730 					break;
1731 			}
1732 		}
1733 
1734 		if (action != key->dtak_action) {
1735 			/*
1736 			 * We are aggregating on the same value in the same
1737 			 * aggregation with two different aggregating actions.
1738 			 * (This should have been picked up in the compiler,
1739 			 * so we may be dealing with errant or devious DIF.)
1740 			 * This is an error condition; we indicate as much,
1741 			 * and return.
1742 			 */
1743 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
1744 			return;
1745 		}
1746 
1747 		/*
1748 		 * This is a hit:  we need to apply the aggregator to
1749 		 * the value at this key.
1750 		 */
1751 		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
1752 		return;
1753 next:
1754 		continue;
1755 	}
1756 
1757 	/*
1758 	 * We didn't find it.  We need to allocate some zero-filled space,
1759 	 * link it into the hash table appropriately, and apply the aggregator
1760 	 * to the (zero-filled) value.
1761 	 */
1762 	offs = buf->dtb_offset;
1763 	while (offs & (align - 1))
1764 		offs += sizeof (uint32_t);
1765 
1766 	/*
1767 	 * If we don't have enough room to both allocate a new key _and_
1768 	 * its associated data, increment the drop count and return.
1769 	 */
1770 	if ((uintptr_t)tomax + offs + fsize >
1771 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
1772 		dtrace_buffer_drop(buf);
1773 		return;
1774 	}
1775 
1776 	/*CONSTCOND*/
1777 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
1778 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
1779 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
1780 
1781 	key->dtak_data = kdata = tomax + offs;
1782 	buf->dtb_offset = offs + fsize;
1783 
1784 	/*
1785 	 * Now copy the data across.
1786 	 */
1787 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
1788 
1789 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
1790 		kdata[i] = data[i];
1791 
1792 	/*
1793 	 * Because strings are not zeroed out by default, we need to iterate
1794 	 * looking for actions that store strings, and we need to explicitly
1795 	 * pad these strings out with zeroes.
1796 	 */
1797 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
1798 		int nul;
1799 
1800 		if (!DTRACEACT_ISSTRING(act))
1801 			continue;
1802 
1803 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
1804 		limit = i + act->dta_rec.dtrd_size;
1805 		ASSERT(limit <= size);
1806 
1807 		for (nul = 0; i < limit; i++) {
1808 			if (nul) {
1809 				kdata[i] = '\0';
1810 				continue;
1811 			}
1812 
1813 			if (data[i] != '\0')
1814 				continue;
1815 
1816 			nul = 1;
1817 		}
1818 	}
1819 
1820 	for (i = size; i < fsize; i++)
1821 		kdata[i] = 0;
1822 
1823 	key->dtak_hashval = hashval;
1824 	key->dtak_size = size;
1825 	key->dtak_action = action;
1826 	key->dtak_next = agb->dtagb_hash[ndx];
1827 	agb->dtagb_hash[ndx] = key;
1828 
1829 	/*
1830 	 * Finally, apply the aggregator.
1831 	 */
1832 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
1833 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
1834 }
1835 
1836 /*
1837  * Given consumer state, this routine finds a speculation in the INACTIVE
1838  * state and transitions it into the ACTIVE state.  If there is no speculation
1839  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
1840  * incremented -- it is up to the caller to take appropriate action.
1841  */
1842 static int
1843 dtrace_speculation(dtrace_state_t *state)
1844 {
1845 	int i = 0;
1846 	dtrace_speculation_state_t current;
1847 	uint32_t *stat = &state->dts_speculations_unavail, count;
1848 
1849 	while (i < state->dts_nspeculations) {
1850 		dtrace_speculation_t *spec = &state->dts_speculations[i];
1851 
1852 		current = spec->dtsp_state;
1853 
1854 		if (current != DTRACESPEC_INACTIVE) {
1855 			if (current == DTRACESPEC_COMMITTINGMANY ||
1856 			    current == DTRACESPEC_COMMITTING ||
1857 			    current == DTRACESPEC_DISCARDING)
1858 				stat = &state->dts_speculations_busy;
1859 			i++;
1860 			continue;
1861 		}
1862 
1863 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
1864 		    current, DTRACESPEC_ACTIVE) == current)
1865 			return (i + 1);
1866 	}
1867 
1868 	/*
1869 	 * We couldn't find a speculation.  If we found as much as a single
1870 	 * busy speculation buffer, we'll attribute this failure as "busy"
1871 	 * instead of "unavail".
1872 	 */
1873 	do {
1874 		count = *stat;
1875 	} while (dtrace_cas32(stat, count, count + 1) != count);
1876 
1877 	return (0);
1878 }
1879 
1880 /*
1881  * This routine commits an active speculation.  If the specified speculation
1882  * is not in a valid state to perform a commit(), this routine will silently do
1883  * nothing.  The state of the specified speculation is transitioned according
1884  * to the state transition diagram outlined in <sys/dtrace_impl.h>
1885  */
1886 static void
1887 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
1888     dtrace_specid_t which)
1889 {
1890 	dtrace_speculation_t *spec;
1891 	dtrace_buffer_t *src, *dest;
1892 	uintptr_t daddr, saddr, dlimit;
1893 	dtrace_speculation_state_t current, new;
1894 	intptr_t offs;
1895 
1896 	if (which == 0)
1897 		return;
1898 
1899 	if (which > state->dts_nspeculations) {
1900 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
1901 		return;
1902 	}
1903 
1904 	spec = &state->dts_speculations[which - 1];
1905 	src = &spec->dtsp_buffer[cpu];
1906 	dest = &state->dts_buffer[cpu];
1907 
1908 	do {
1909 		current = spec->dtsp_state;
1910 
1911 		if (current == DTRACESPEC_COMMITTINGMANY)
1912 			break;
1913 
1914 		switch (current) {
1915 		case DTRACESPEC_INACTIVE:
1916 		case DTRACESPEC_DISCARDING:
1917 			return;
1918 
1919 		case DTRACESPEC_COMMITTING:
1920 			/*
1921 			 * This is only possible if we are (a) commit()'ing
1922 			 * without having done a prior speculate() on this CPU
1923 			 * and (b) racing with another commit() on a different
1924 			 * CPU.  There's nothing to do -- we just assert that
1925 			 * our offset is 0.
1926 			 */
1927 			ASSERT(src->dtb_offset == 0);
1928 			return;
1929 
1930 		case DTRACESPEC_ACTIVE:
1931 			new = DTRACESPEC_COMMITTING;
1932 			break;
1933 
1934 		case DTRACESPEC_ACTIVEONE:
1935 			/*
1936 			 * This speculation is active on one CPU.  If our
1937 			 * buffer offset is non-zero, we know that the one CPU
1938 			 * must be us.  Otherwise, we are committing on a
1939 			 * different CPU from the speculate(), and we must
1940 			 * rely on being asynchronously cleaned.
1941 			 */
1942 			if (src->dtb_offset != 0) {
1943 				new = DTRACESPEC_COMMITTING;
1944 				break;
1945 			}
1946 			/*FALLTHROUGH*/
1947 
1948 		case DTRACESPEC_ACTIVEMANY:
1949 			new = DTRACESPEC_COMMITTINGMANY;
1950 			break;
1951 
1952 		default:
1953 			ASSERT(0);
1954 		}
1955 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
1956 	    current, new) != current);
1957 
1958 	/*
1959 	 * We have set the state to indicate that we are committing this
1960 	 * speculation.  Now reserve the necessary space in the destination
1961 	 * buffer.
1962 	 */
1963 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
1964 	    sizeof (uint64_t), state, NULL)) < 0) {
1965 		dtrace_buffer_drop(dest);
1966 		goto out;
1967 	}
1968 
1969 	/*
1970 	 * We have the space; copy the buffer across.  (Note that this is a
1971 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
1972 	 * a serious performance issue, a high-performance DTrace-specific
1973 	 * bcopy() should obviously be invented.)
1974 	 */
1975 	daddr = (uintptr_t)dest->dtb_tomax + offs;
1976 	dlimit = daddr + src->dtb_offset;
1977 	saddr = (uintptr_t)src->dtb_tomax;
1978 
1979 	/*
1980 	 * First, the aligned portion.
1981 	 */
1982 	while (dlimit - daddr >= sizeof (uint64_t)) {
1983 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
1984 
1985 		daddr += sizeof (uint64_t);
1986 		saddr += sizeof (uint64_t);
1987 	}
1988 
1989 	/*
1990 	 * Now any left-over bit...
1991 	 */
1992 	while (dlimit - daddr)
1993 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
1994 
1995 	/*
1996 	 * Finally, commit the reserved space in the destination buffer.
1997 	 */
1998 	dest->dtb_offset = offs + src->dtb_offset;
1999 
2000 out:
2001 	/*
2002 	 * If we're lucky enough to be the only active CPU on this speculation
2003 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2004 	 */
2005 	if (current == DTRACESPEC_ACTIVE ||
2006 	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2007 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2008 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2009 
2010 		ASSERT(rval == DTRACESPEC_COMMITTING);
2011 	}
2012 
2013 	src->dtb_offset = 0;
2014 	src->dtb_xamot_drops += src->dtb_drops;
2015 	src->dtb_drops = 0;
2016 }
2017 
2018 /*
2019  * This routine discards an active speculation.  If the specified speculation
2020  * is not in a valid state to perform a discard(), this routine will silently
2021  * do nothing.  The state of the specified speculation is transitioned
2022  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2023  */
2024 static void
2025 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2026     dtrace_specid_t which)
2027 {
2028 	dtrace_speculation_t *spec;
2029 	dtrace_speculation_state_t current, new;
2030 	dtrace_buffer_t *buf;
2031 
2032 	if (which == 0)
2033 		return;
2034 
2035 	if (which > state->dts_nspeculations) {
2036 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2037 		return;
2038 	}
2039 
2040 	spec = &state->dts_speculations[which - 1];
2041 	buf = &spec->dtsp_buffer[cpu];
2042 
2043 	do {
2044 		current = spec->dtsp_state;
2045 
2046 		switch (current) {
2047 		case DTRACESPEC_INACTIVE:
2048 		case DTRACESPEC_COMMITTINGMANY:
2049 		case DTRACESPEC_COMMITTING:
2050 		case DTRACESPEC_DISCARDING:
2051 			return;
2052 
2053 		case DTRACESPEC_ACTIVE:
2054 		case DTRACESPEC_ACTIVEMANY:
2055 			new = DTRACESPEC_DISCARDING;
2056 			break;
2057 
2058 		case DTRACESPEC_ACTIVEONE:
2059 			if (buf->dtb_offset != 0) {
2060 				new = DTRACESPEC_INACTIVE;
2061 			} else {
2062 				new = DTRACESPEC_DISCARDING;
2063 			}
2064 			break;
2065 
2066 		default:
2067 			ASSERT(0);
2068 		}
2069 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2070 	    current, new) != current);
2071 
2072 	buf->dtb_offset = 0;
2073 	buf->dtb_drops = 0;
2074 }
2075 
2076 /*
2077  * Note:  not called from probe context.  This function is called
2078  * asynchronously from cross call context to clean any speculations that are
2079  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2080  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2081  * speculation.
2082  */
2083 static void
2084 dtrace_speculation_clean_here(dtrace_state_t *state)
2085 {
2086 	dtrace_icookie_t cookie;
2087 	processorid_t cpu = CPU->cpu_id;
2088 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2089 	dtrace_specid_t i;
2090 
2091 	cookie = dtrace_interrupt_disable();
2092 
2093 	if (dest->dtb_tomax == NULL) {
2094 		dtrace_interrupt_enable(cookie);
2095 		return;
2096 	}
2097 
2098 	for (i = 0; i < state->dts_nspeculations; i++) {
2099 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2100 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2101 
2102 		if (src->dtb_tomax == NULL)
2103 			continue;
2104 
2105 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2106 			src->dtb_offset = 0;
2107 			continue;
2108 		}
2109 
2110 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2111 			continue;
2112 
2113 		if (src->dtb_offset == 0)
2114 			continue;
2115 
2116 		dtrace_speculation_commit(state, cpu, i + 1);
2117 	}
2118 
2119 	dtrace_interrupt_enable(cookie);
2120 }
2121 
2122 /*
2123  * Note:  not called from probe context.  This function is called
2124  * asynchronously (and at a regular interval) to clean any speculations that
2125  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2126  * is work to be done, it cross calls all CPUs to perform that work;
2127  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2128  * INACTIVE state until they have been cleaned by all CPUs.
2129  */
2130 static void
2131 dtrace_speculation_clean(dtrace_state_t *state)
2132 {
2133 	int work = 0, rv;
2134 	dtrace_specid_t i;
2135 
2136 	for (i = 0; i < state->dts_nspeculations; i++) {
2137 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2138 
2139 		ASSERT(!spec->dtsp_cleaning);
2140 
2141 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2142 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2143 			continue;
2144 
2145 		work++;
2146 		spec->dtsp_cleaning = 1;
2147 	}
2148 
2149 	if (!work)
2150 		return;
2151 
2152 	dtrace_xcall(DTRACE_CPUALL,
2153 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2154 
2155 	/*
2156 	 * We now know that all CPUs have committed or discarded their
2157 	 * speculation buffers, as appropriate.  We can now set the state
2158 	 * to inactive.
2159 	 */
2160 	for (i = 0; i < state->dts_nspeculations; i++) {
2161 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2162 		dtrace_speculation_state_t current, new;
2163 
2164 		if (!spec->dtsp_cleaning)
2165 			continue;
2166 
2167 		current = spec->dtsp_state;
2168 		ASSERT(current == DTRACESPEC_DISCARDING ||
2169 		    current == DTRACESPEC_COMMITTINGMANY);
2170 
2171 		new = DTRACESPEC_INACTIVE;
2172 
2173 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2174 		ASSERT(rv == current);
2175 		spec->dtsp_cleaning = 0;
2176 	}
2177 }
2178 
2179 /*
2180  * Called as part of a speculate() to get the speculative buffer associated
2181  * with a given speculation.  Returns NULL if the specified speculation is not
2182  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2183  * the active CPU is not the specified CPU -- the speculation will be
2184  * atomically transitioned into the ACTIVEMANY state.
2185  */
2186 static dtrace_buffer_t *
2187 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2188     dtrace_specid_t which)
2189 {
2190 	dtrace_speculation_t *spec;
2191 	dtrace_speculation_state_t current, new;
2192 	dtrace_buffer_t *buf;
2193 
2194 	if (which == 0)
2195 		return (NULL);
2196 
2197 	if (which > state->dts_nspeculations) {
2198 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2199 		return (NULL);
2200 	}
2201 
2202 	spec = &state->dts_speculations[which - 1];
2203 	buf = &spec->dtsp_buffer[cpuid];
2204 
2205 	do {
2206 		current = spec->dtsp_state;
2207 
2208 		switch (current) {
2209 		case DTRACESPEC_INACTIVE:
2210 		case DTRACESPEC_COMMITTINGMANY:
2211 		case DTRACESPEC_DISCARDING:
2212 			return (NULL);
2213 
2214 		case DTRACESPEC_COMMITTING:
2215 			ASSERT(buf->dtb_offset == 0);
2216 			return (NULL);
2217 
2218 		case DTRACESPEC_ACTIVEONE:
2219 			/*
2220 			 * This speculation is currently active on one CPU.
2221 			 * Check the offset in the buffer; if it's non-zero,
2222 			 * that CPU must be us (and we leave the state alone).
2223 			 * If it's zero, assume that we're starting on a new
2224 			 * CPU -- and change the state to indicate that the
2225 			 * speculation is active on more than one CPU.
2226 			 */
2227 			if (buf->dtb_offset != 0)
2228 				return (buf);
2229 
2230 			new = DTRACESPEC_ACTIVEMANY;
2231 			break;
2232 
2233 		case DTRACESPEC_ACTIVEMANY:
2234 			return (buf);
2235 
2236 		case DTRACESPEC_ACTIVE:
2237 			new = DTRACESPEC_ACTIVEONE;
2238 			break;
2239 
2240 		default:
2241 			ASSERT(0);
2242 		}
2243 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2244 	    current, new) != current);
2245 
2246 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2247 	return (buf);
2248 }
2249 
2250 /*
2251  * This function implements the DIF emulator's variable lookups.  The emulator
2252  * passes a reserved variable identifier and optional built-in array index.
2253  */
2254 static uint64_t
2255 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2256     uint64_t ndx)
2257 {
2258 	/*
2259 	 * If we're accessing one of the uncached arguments, we'll turn this
2260 	 * into a reference in the args array.
2261 	 */
2262 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2263 		ndx = v - DIF_VAR_ARG0;
2264 		v = DIF_VAR_ARGS;
2265 	}
2266 
2267 	switch (v) {
2268 	case DIF_VAR_ARGS:
2269 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2270 		if (ndx >= sizeof (mstate->dtms_arg) /
2271 		    sizeof (mstate->dtms_arg[0])) {
2272 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2273 			dtrace_provider_t *pv;
2274 			uint64_t val;
2275 
2276 			pv = mstate->dtms_probe->dtpr_provider;
2277 			if (pv->dtpv_pops.dtps_getargval != NULL)
2278 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2279 				    mstate->dtms_probe->dtpr_id,
2280 				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2281 			else
2282 				val = dtrace_getarg(ndx, aframes);
2283 
2284 			/*
2285 			 * This is regrettably required to keep the compiler
2286 			 * from tail-optimizing the call to dtrace_getarg().
2287 			 * The condition always evaluates to true, but the
2288 			 * compiler has no way of figuring that out a priori.
2289 			 * (None of this would be necessary if the compiler
2290 			 * could be relied upon to _always_ tail-optimize
2291 			 * the call to dtrace_getarg() -- but it can't.)
2292 			 */
2293 			if (mstate->dtms_probe != NULL)
2294 				return (val);
2295 
2296 			ASSERT(0);
2297 		}
2298 
2299 		return (mstate->dtms_arg[ndx]);
2300 
2301 	case DIF_VAR_UREGS: {
2302 		klwp_t *lwp;
2303 
2304 		if (!dtrace_priv_proc(state))
2305 			return (0);
2306 
2307 		if ((lwp = curthread->t_lwp) == NULL) {
2308 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2309 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL;
2310 			return (0);
2311 		}
2312 
2313 		return (dtrace_getreg(lwp->lwp_regs, ndx));
2314 	}
2315 
2316 	case DIF_VAR_CURTHREAD:
2317 		if (!dtrace_priv_kernel(state))
2318 			return (0);
2319 		return ((uint64_t)(uintptr_t)curthread);
2320 
2321 	case DIF_VAR_TIMESTAMP:
2322 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2323 			mstate->dtms_timestamp = dtrace_gethrtime();
2324 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2325 		}
2326 		return (mstate->dtms_timestamp);
2327 
2328 	case DIF_VAR_VTIMESTAMP:
2329 		ASSERT(dtrace_vtime_references != 0);
2330 		return (curthread->t_dtrace_vtime);
2331 
2332 	case DIF_VAR_WALLTIMESTAMP:
2333 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2334 			mstate->dtms_walltimestamp = dtrace_gethrestime();
2335 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2336 		}
2337 		return (mstate->dtms_walltimestamp);
2338 
2339 	case DIF_VAR_IPL:
2340 		if (!dtrace_priv_kernel(state))
2341 			return (0);
2342 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2343 			mstate->dtms_ipl = dtrace_getipl();
2344 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2345 		}
2346 		return (mstate->dtms_ipl);
2347 
2348 	case DIF_VAR_EPID:
2349 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2350 		return (mstate->dtms_epid);
2351 
2352 	case DIF_VAR_ID:
2353 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2354 		return (mstate->dtms_probe->dtpr_id);
2355 
2356 	case DIF_VAR_STACKDEPTH:
2357 		if (!dtrace_priv_kernel(state))
2358 			return (0);
2359 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2360 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2361 
2362 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2363 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2364 		}
2365 		return (mstate->dtms_stackdepth);
2366 
2367 	case DIF_VAR_USTACKDEPTH:
2368 		if (!dtrace_priv_proc(state))
2369 			return (0);
2370 		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2371 			/*
2372 			 * See comment in DIF_VAR_PID.
2373 			 */
2374 			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2375 			    CPU_ON_INTR(CPU)) {
2376 				mstate->dtms_ustackdepth = 0;
2377 			} else {
2378 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2379 				mstate->dtms_ustackdepth =
2380 				    dtrace_getustackdepth();
2381 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2382 			}
2383 			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2384 		}
2385 		return (mstate->dtms_ustackdepth);
2386 
2387 	case DIF_VAR_CALLER:
2388 		if (!dtrace_priv_kernel(state))
2389 			return (0);
2390 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2391 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2392 
2393 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2394 				/*
2395 				 * If this is an unanchored probe, we are
2396 				 * required to go through the slow path:
2397 				 * dtrace_caller() only guarantees correct
2398 				 * results for anchored probes.
2399 				 */
2400 				pc_t caller[2];
2401 
2402 				dtrace_getpcstack(caller, 2, aframes,
2403 				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2404 				mstate->dtms_caller = caller[1];
2405 			} else if ((mstate->dtms_caller =
2406 			    dtrace_caller(aframes)) == -1) {
2407 				/*
2408 				 * We have failed to do this the quick way;
2409 				 * we must resort to the slower approach of
2410 				 * calling dtrace_getpcstack().
2411 				 */
2412 				pc_t caller;
2413 
2414 				dtrace_getpcstack(&caller, 1, aframes, NULL);
2415 				mstate->dtms_caller = caller;
2416 			}
2417 
2418 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2419 		}
2420 		return (mstate->dtms_caller);
2421 
2422 	case DIF_VAR_UCALLER:
2423 		if (!dtrace_priv_proc(state))
2424 			return (0);
2425 
2426 		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
2427 			uint64_t ustack[3];
2428 
2429 			/*
2430 			 * dtrace_getupcstack() fills in the first uint64_t
2431 			 * with the current PID.  The second uint64_t will
2432 			 * be the program counter at user-level.  The third
2433 			 * uint64_t will contain the caller, which is what
2434 			 * we're after.
2435 			 */
2436 			ustack[2] = NULL;
2437 			dtrace_getupcstack(ustack, 3);
2438 			mstate->dtms_ucaller = ustack[2];
2439 			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
2440 		}
2441 
2442 		return (mstate->dtms_ucaller);
2443 
2444 	case DIF_VAR_PROBEPROV:
2445 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2446 		return ((uint64_t)(uintptr_t)
2447 		    mstate->dtms_probe->dtpr_provider->dtpv_name);
2448 
2449 	case DIF_VAR_PROBEMOD:
2450 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2451 		return ((uint64_t)(uintptr_t)
2452 		    mstate->dtms_probe->dtpr_mod);
2453 
2454 	case DIF_VAR_PROBEFUNC:
2455 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2456 		return ((uint64_t)(uintptr_t)
2457 		    mstate->dtms_probe->dtpr_func);
2458 
2459 	case DIF_VAR_PROBENAME:
2460 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2461 		return ((uint64_t)(uintptr_t)
2462 		    mstate->dtms_probe->dtpr_name);
2463 
2464 	case DIF_VAR_PID:
2465 		if (!dtrace_priv_proc(state))
2466 			return (0);
2467 
2468 		/*
2469 		 * Note that we are assuming that an unanchored probe is
2470 		 * always due to a high-level interrupt.  (And we're assuming
2471 		 * that there is only a single high level interrupt.)
2472 		 */
2473 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2474 			return (pid0.pid_id);
2475 
2476 		/*
2477 		 * It is always safe to dereference one's own t_procp pointer:
2478 		 * it always points to a valid, allocated proc structure.
2479 		 * Further, it is always safe to dereference the p_pidp member
2480 		 * of one's own proc structure.  (These are truisms becuase
2481 		 * threads and processes don't clean up their own state --
2482 		 * they leave that task to whomever reaps them.)
2483 		 */
2484 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
2485 
2486 	case DIF_VAR_TID:
2487 		/*
2488 		 * See comment in DIF_VAR_PID.
2489 		 */
2490 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2491 			return (0);
2492 
2493 		return ((uint64_t)curthread->t_tid);
2494 
2495 	case DIF_VAR_EXECNAME:
2496 		if (!dtrace_priv_proc(state))
2497 			return (0);
2498 
2499 		/*
2500 		 * See comment in DIF_VAR_PID.
2501 		 */
2502 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2503 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
2504 
2505 		/*
2506 		 * It is always safe to dereference one's own t_procp pointer:
2507 		 * it always points to a valid, allocated proc structure.
2508 		 * (This is true because threads don't clean up their own
2509 		 * state -- they leave that task to whomever reaps them.)
2510 		 */
2511 		return ((uint64_t)(uintptr_t)
2512 		    curthread->t_procp->p_user.u_comm);
2513 
2514 	case DIF_VAR_ZONENAME:
2515 		if (!dtrace_priv_proc(state))
2516 			return (0);
2517 
2518 		/*
2519 		 * See comment in DIF_VAR_PID.
2520 		 */
2521 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2522 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
2523 
2524 		/*
2525 		 * It is always safe to dereference one's own t_procp pointer:
2526 		 * it always points to a valid, allocated proc structure.
2527 		 * (This is true because threads don't clean up their own
2528 		 * state -- they leave that task to whomever reaps them.)
2529 		 */
2530 		return ((uint64_t)(uintptr_t)
2531 		    curthread->t_procp->p_zone->zone_name);
2532 
2533 	default:
2534 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2535 		return (0);
2536 	}
2537 }
2538 
2539 /*
2540  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
2541  * Notice that we don't bother validating the proper number of arguments or
2542  * their types in the tuple stack.  This isn't needed because all argument
2543  * interpretation is safe because of our load safety -- the worst that can
2544  * happen is that a bogus program can obtain bogus results.
2545  */
2546 static void
2547 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
2548     dtrace_key_t *tupregs, int nargs,
2549     dtrace_mstate_t *mstate, dtrace_state_t *state)
2550 {
2551 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
2552 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
2553 
2554 	union {
2555 		mutex_impl_t mi;
2556 		uint64_t mx;
2557 	} m;
2558 
2559 	union {
2560 		krwlock_t ri;
2561 		uintptr_t rw;
2562 	} r;
2563 
2564 	switch (subr) {
2565 	case DIF_SUBR_RAND:
2566 		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
2567 		break;
2568 
2569 	case DIF_SUBR_MUTEX_OWNED:
2570 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2571 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
2572 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
2573 		else
2574 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
2575 		break;
2576 
2577 	case DIF_SUBR_MUTEX_OWNER:
2578 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2579 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
2580 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
2581 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
2582 		else
2583 			regs[rd] = 0;
2584 		break;
2585 
2586 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
2587 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2588 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
2589 		break;
2590 
2591 	case DIF_SUBR_MUTEX_TYPE_SPIN:
2592 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2593 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
2594 		break;
2595 
2596 	case DIF_SUBR_RW_READ_HELD: {
2597 		uintptr_t tmp;
2598 
2599 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
2600 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
2601 		break;
2602 	}
2603 
2604 	case DIF_SUBR_RW_WRITE_HELD:
2605 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
2606 		regs[rd] = _RW_WRITE_HELD(&r.ri);
2607 		break;
2608 
2609 	case DIF_SUBR_RW_ISWRITER:
2610 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
2611 		regs[rd] = _RW_ISWRITER(&r.ri);
2612 		break;
2613 
2614 	case DIF_SUBR_BCOPY: {
2615 		/*
2616 		 * We need to be sure that the destination is in the scratch
2617 		 * region -- no other region is allowed.
2618 		 */
2619 		uintptr_t src = tupregs[0].dttk_value;
2620 		uintptr_t dest = tupregs[1].dttk_value;
2621 		size_t size = tupregs[2].dttk_value;
2622 
2623 		if (!dtrace_inscratch(dest, size, mstate)) {
2624 			*flags |= CPU_DTRACE_BADADDR;
2625 			*illval = regs[rd];
2626 			break;
2627 		}
2628 
2629 		dtrace_bcopy((void *)src, (void *)dest, size);
2630 		break;
2631 	}
2632 
2633 	case DIF_SUBR_ALLOCA:
2634 	case DIF_SUBR_COPYIN: {
2635 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
2636 		uint64_t size =
2637 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
2638 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
2639 
2640 		/*
2641 		 * This action doesn't require any credential checks since
2642 		 * probes will not activate in user contexts to which the
2643 		 * enabling user does not have permissions.
2644 		 */
2645 		if (mstate->dtms_scratch_ptr + scratch_size >
2646 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2647 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2648 			regs[rd] = NULL;
2649 			break;
2650 		}
2651 
2652 		if (subr == DIF_SUBR_COPYIN) {
2653 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2654 			dtrace_copyin(tupregs[0].dttk_value, dest, size);
2655 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2656 		}
2657 
2658 		mstate->dtms_scratch_ptr += scratch_size;
2659 		regs[rd] = dest;
2660 		break;
2661 	}
2662 
2663 	case DIF_SUBR_COPYINTO: {
2664 		uint64_t size = tupregs[1].dttk_value;
2665 		uintptr_t dest = tupregs[2].dttk_value;
2666 
2667 		/*
2668 		 * This action doesn't require any credential checks since
2669 		 * probes will not activate in user contexts to which the
2670 		 * enabling user does not have permissions.
2671 		 */
2672 		if (!dtrace_inscratch(dest, size, mstate)) {
2673 			*flags |= CPU_DTRACE_BADADDR;
2674 			*illval = regs[rd];
2675 			break;
2676 		}
2677 
2678 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2679 		dtrace_copyin(tupregs[0].dttk_value, dest, size);
2680 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2681 		break;
2682 	}
2683 
2684 	case DIF_SUBR_COPYINSTR: {
2685 		uintptr_t dest = mstate->dtms_scratch_ptr;
2686 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2687 
2688 		if (nargs > 1 && tupregs[1].dttk_value < size)
2689 			size = tupregs[1].dttk_value + 1;
2690 
2691 		/*
2692 		 * This action doesn't require any credential checks since
2693 		 * probes will not activate in user contexts to which the
2694 		 * enabling user does not have permissions.
2695 		 */
2696 		if (mstate->dtms_scratch_ptr + size >
2697 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2698 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2699 			regs[rd] = NULL;
2700 			break;
2701 		}
2702 
2703 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2704 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size);
2705 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2706 
2707 		((char *)dest)[size - 1] = '\0';
2708 		mstate->dtms_scratch_ptr += size;
2709 		regs[rd] = dest;
2710 		break;
2711 	}
2712 
2713 	case DIF_SUBR_MSGSIZE:
2714 	case DIF_SUBR_MSGDSIZE: {
2715 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
2716 		uintptr_t wptr, rptr;
2717 		size_t count = 0;
2718 		int cont = 0;
2719 
2720 		while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
2721 			wptr = dtrace_loadptr(baddr +
2722 			    offsetof(mblk_t, b_wptr));
2723 
2724 			rptr = dtrace_loadptr(baddr +
2725 			    offsetof(mblk_t, b_rptr));
2726 
2727 			if (wptr < rptr) {
2728 				*flags |= CPU_DTRACE_BADADDR;
2729 				*illval = tupregs[0].dttk_value;
2730 				break;
2731 			}
2732 
2733 			daddr = dtrace_loadptr(baddr +
2734 			    offsetof(mblk_t, b_datap));
2735 
2736 			baddr = dtrace_loadptr(baddr +
2737 			    offsetof(mblk_t, b_cont));
2738 
2739 			/*
2740 			 * We want to prevent against denial-of-service here,
2741 			 * so we're only going to search the list for
2742 			 * dtrace_msgdsize_max mblks.
2743 			 */
2744 			if (cont++ > dtrace_msgdsize_max) {
2745 				*flags |= CPU_DTRACE_ILLOP;
2746 				break;
2747 			}
2748 
2749 			if (subr == DIF_SUBR_MSGDSIZE) {
2750 				if (dtrace_load8(daddr +
2751 				    offsetof(dblk_t, db_type)) != M_DATA)
2752 					continue;
2753 			}
2754 
2755 			count += wptr - rptr;
2756 		}
2757 
2758 		if (!(*flags & CPU_DTRACE_FAULT))
2759 			regs[rd] = count;
2760 
2761 		break;
2762 	}
2763 
2764 	case DIF_SUBR_PROGENYOF: {
2765 		pid_t pid = tupregs[0].dttk_value;
2766 		proc_t *p;
2767 		int rval = 0;
2768 
2769 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2770 
2771 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
2772 			if (p->p_pidp->pid_id == pid) {
2773 				rval = 1;
2774 				break;
2775 			}
2776 		}
2777 
2778 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2779 
2780 		regs[rd] = rval;
2781 		break;
2782 	}
2783 
2784 	case DIF_SUBR_SPECULATION:
2785 		regs[rd] = dtrace_speculation(state);
2786 		break;
2787 
2788 	case DIF_SUBR_COPYOUT: {
2789 		uintptr_t kaddr = tupregs[0].dttk_value;
2790 		uintptr_t uaddr = tupregs[1].dttk_value;
2791 		uint64_t size = tupregs[2].dttk_value;
2792 
2793 		if (!dtrace_destructive_disallow &&
2794 		    dtrace_priv_proc_control(state) &&
2795 		    !dtrace_istoxic(kaddr, size)) {
2796 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2797 			dtrace_copyout(kaddr, uaddr, size);
2798 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2799 		}
2800 		break;
2801 	}
2802 
2803 	case DIF_SUBR_COPYOUTSTR: {
2804 		uintptr_t kaddr = tupregs[0].dttk_value;
2805 		uintptr_t uaddr = tupregs[1].dttk_value;
2806 		uint64_t size = tupregs[2].dttk_value;
2807 
2808 		if (!dtrace_destructive_disallow &&
2809 		    dtrace_priv_proc_control(state) &&
2810 		    !dtrace_istoxic(kaddr, size)) {
2811 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2812 			dtrace_copyoutstr(kaddr, uaddr, size);
2813 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2814 		}
2815 		break;
2816 	}
2817 
2818 	case DIF_SUBR_STRLEN:
2819 		regs[rd] = dtrace_strlen((char *)(uintptr_t)
2820 		    tupregs[0].dttk_value,
2821 		    state->dts_options[DTRACEOPT_STRSIZE]);
2822 		break;
2823 
2824 	case DIF_SUBR_STRCHR:
2825 	case DIF_SUBR_STRRCHR: {
2826 		/*
2827 		 * We're going to iterate over the string looking for the
2828 		 * specified character.  We will iterate until we have reached
2829 		 * the string length or we have found the character.  If this
2830 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
2831 		 * of the specified character instead of the first.
2832 		 */
2833 		uintptr_t addr = tupregs[0].dttk_value;
2834 		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
2835 		char c, target = (char)tupregs[1].dttk_value;
2836 
2837 		for (regs[rd] = NULL; addr < limit; addr++) {
2838 			if ((c = dtrace_load8(addr)) == target) {
2839 				regs[rd] = addr;
2840 
2841 				if (subr == DIF_SUBR_STRCHR)
2842 					break;
2843 			}
2844 
2845 			if (c == '\0')
2846 				break;
2847 		}
2848 
2849 		break;
2850 	}
2851 
2852 	case DIF_SUBR_STRSTR:
2853 	case DIF_SUBR_INDEX:
2854 	case DIF_SUBR_RINDEX: {
2855 		/*
2856 		 * We're going to iterate over the string looking for the
2857 		 * specified string.  We will iterate until we have reached
2858 		 * the string length or we have found the string.  (Yes, this
2859 		 * is done in the most naive way possible -- but considering
2860 		 * that the string we're searching for is likely to be
2861 		 * relatively short, the complexity of Rabin-Karp or similar
2862 		 * hardly seems merited.)
2863 		 */
2864 		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
2865 		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
2866 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2867 		size_t len = dtrace_strlen(addr, size);
2868 		size_t sublen = dtrace_strlen(substr, size);
2869 		char *limit = addr + len, *orig = addr;
2870 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
2871 		int inc = 1;
2872 
2873 		regs[rd] = notfound;
2874 
2875 		/*
2876 		 * strstr() and index()/rindex() have similar semantics if
2877 		 * both strings are the empty string: strstr() returns a
2878 		 * pointer to the (empty) string, and index() and rindex()
2879 		 * both return index 0 (regardless of any position argument).
2880 		 */
2881 		if (sublen == 0 && len == 0) {
2882 			if (subr == DIF_SUBR_STRSTR)
2883 				regs[rd] = (uintptr_t)addr;
2884 			else
2885 				regs[rd] = 0;
2886 			break;
2887 		}
2888 
2889 		if (subr != DIF_SUBR_STRSTR) {
2890 			if (subr == DIF_SUBR_RINDEX) {
2891 				limit = orig - 1;
2892 				addr += len;
2893 				inc = -1;
2894 			}
2895 
2896 			/*
2897 			 * Both index() and rindex() take an optional position
2898 			 * argument that denotes the starting position.
2899 			 */
2900 			if (nargs == 3) {
2901 				int64_t pos = (int64_t)tupregs[2].dttk_value;
2902 
2903 				/*
2904 				 * If the position argument to index() is
2905 				 * negative, Perl implicitly clamps it at
2906 				 * zero.  This semantic is a little surprising
2907 				 * given the special meaning of negative
2908 				 * positions to similar Perl functions like
2909 				 * substr(), but it appears to reflect a
2910 				 * notion that index() can start from a
2911 				 * negative index and increment its way up to
2912 				 * the string.  Given this notion, Perl's
2913 				 * rindex() is at least self-consistent in
2914 				 * that it implicitly clamps positions greater
2915 				 * than the string length to be the string
2916 				 * length.  Where Perl completely loses
2917 				 * coherence, however, is when the specified
2918 				 * substring is the empty string ("").  In
2919 				 * this case, even if the position is
2920 				 * negative, rindex() returns 0 -- and even if
2921 				 * the position is greater than the length,
2922 				 * index() returns the string length.  These
2923 				 * semantics violate the notion that index()
2924 				 * should never return a value less than the
2925 				 * specified position and that rindex() should
2926 				 * never return a value greater than the
2927 				 * specified position.  (One assumes that
2928 				 * these semantics are artifacts of Perl's
2929 				 * implementation and not the results of
2930 				 * deliberate design -- it beggars belief that
2931 				 * even Larry Wall could desire such oddness.)
2932 				 * While in the abstract one would wish for
2933 				 * consistent position semantics across
2934 				 * substr(), index() and rindex() -- or at the
2935 				 * very least self-consistent position
2936 				 * semantics for index() and rindex() -- we
2937 				 * instead opt to keep with the extant Perl
2938 				 * semantics, in all their broken glory.  (Do
2939 				 * we have more desire to maintain Perl's
2940 				 * semantics than Perl does?  Probably.)
2941 				 */
2942 				if (subr == DIF_SUBR_RINDEX) {
2943 					if (pos < 0) {
2944 						if (sublen == 0)
2945 							regs[rd] = 0;
2946 						break;
2947 					}
2948 
2949 					if (pos > len)
2950 						pos = len;
2951 				} else {
2952 					if (pos < 0)
2953 						pos = 0;
2954 
2955 					if (pos >= len) {
2956 						if (sublen == 0)
2957 							regs[rd] = len;
2958 						break;
2959 					}
2960 				}
2961 
2962 				addr = orig + pos;
2963 			}
2964 		}
2965 
2966 		for (regs[rd] = notfound; addr != limit; addr += inc) {
2967 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
2968 				if (subr != DIF_SUBR_STRSTR) {
2969 					/*
2970 					 * As D index() and rindex() are
2971 					 * modeled on Perl (and not on awk),
2972 					 * we return a zero-based (and not a
2973 					 * one-based) index.  (For you Perl
2974 					 * weenies: no, we're not going to add
2975 					 * $[ -- and shouldn't you be at a con
2976 					 * or something?)
2977 					 */
2978 					regs[rd] = (uintptr_t)(addr - orig);
2979 					break;
2980 				}
2981 
2982 				ASSERT(subr == DIF_SUBR_STRSTR);
2983 				regs[rd] = (uintptr_t)addr;
2984 				break;
2985 			}
2986 		}
2987 
2988 		break;
2989 	}
2990 
2991 	case DIF_SUBR_STRTOK: {
2992 		uintptr_t addr = tupregs[0].dttk_value;
2993 		uintptr_t tokaddr = tupregs[1].dttk_value;
2994 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2995 		uintptr_t limit, toklimit = tokaddr + size;
2996 		uint8_t c, tokmap[32];	 /* 256 / 8 */
2997 		char *dest = (char *)mstate->dtms_scratch_ptr;
2998 		int i;
2999 
3000 		if (mstate->dtms_scratch_ptr + size >
3001 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3002 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3003 			regs[rd] = NULL;
3004 			break;
3005 		}
3006 
3007 		if (addr == NULL) {
3008 			/*
3009 			 * If the address specified is NULL, we use our saved
3010 			 * strtok pointer from the mstate.  Note that this
3011 			 * means that the saved strtok pointer is _only_
3012 			 * valid within multiple enablings of the same probe --
3013 			 * it behaves like an implicit clause-local variable.
3014 			 */
3015 			addr = mstate->dtms_strtok;
3016 		}
3017 
3018 		/*
3019 		 * First, zero the token map, and then process the token
3020 		 * string -- setting a bit in the map for every character
3021 		 * found in the token string.
3022 		 */
3023 		for (i = 0; i < sizeof (tokmap); i++)
3024 			tokmap[i] = 0;
3025 
3026 		for (; tokaddr < toklimit; tokaddr++) {
3027 			if ((c = dtrace_load8(tokaddr)) == '\0')
3028 				break;
3029 
3030 			ASSERT((c >> 3) < sizeof (tokmap));
3031 			tokmap[c >> 3] |= (1 << (c & 0x7));
3032 		}
3033 
3034 		for (limit = addr + size; addr < limit; addr++) {
3035 			/*
3036 			 * We're looking for a character that is _not_ contained
3037 			 * in the token string.
3038 			 */
3039 			if ((c = dtrace_load8(addr)) == '\0')
3040 				break;
3041 
3042 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3043 				break;
3044 		}
3045 
3046 		if (c == '\0') {
3047 			/*
3048 			 * We reached the end of the string without finding
3049 			 * any character that was not in the token string.
3050 			 * We return NULL in this case, and we set the saved
3051 			 * address to NULL as well.
3052 			 */
3053 			regs[rd] = NULL;
3054 			mstate->dtms_strtok = NULL;
3055 			break;
3056 		}
3057 
3058 		/*
3059 		 * From here on, we're copying into the destination string.
3060 		 */
3061 		for (i = 0; addr < limit && i < size - 1; addr++) {
3062 			if ((c = dtrace_load8(addr)) == '\0')
3063 				break;
3064 
3065 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
3066 				break;
3067 
3068 			ASSERT(i < size);
3069 			dest[i++] = c;
3070 		}
3071 
3072 		ASSERT(i < size);
3073 		dest[i] = '\0';
3074 		regs[rd] = (uintptr_t)dest;
3075 		mstate->dtms_scratch_ptr += size;
3076 		mstate->dtms_strtok = addr;
3077 		break;
3078 	}
3079 
3080 	case DIF_SUBR_SUBSTR: {
3081 		uintptr_t s = tupregs[0].dttk_value;
3082 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3083 		char *d = (char *)mstate->dtms_scratch_ptr;
3084 		int64_t index = (int64_t)tupregs[1].dttk_value;
3085 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
3086 		size_t len = dtrace_strlen((char *)s, size);
3087 		int64_t i = 0;
3088 
3089 		if (nargs <= 2)
3090 			remaining = (int64_t)size;
3091 
3092 		if (mstate->dtms_scratch_ptr + size >
3093 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3094 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3095 			regs[rd] = NULL;
3096 			break;
3097 		}
3098 
3099 		if (index < 0) {
3100 			index += len;
3101 
3102 			if (index < 0 && index + remaining > 0) {
3103 				remaining += index;
3104 				index = 0;
3105 			}
3106 		}
3107 
3108 		if (index >= len || index < 0)
3109 			index = len;
3110 
3111 		for (d[0] = '\0'; remaining > 0; remaining--) {
3112 			if ((d[i++] = dtrace_load8(s++ + index)) == '\0')
3113 				break;
3114 
3115 			if (i == size) {
3116 				d[i - 1] = '\0';
3117 				break;
3118 			}
3119 		}
3120 
3121 		mstate->dtms_scratch_ptr += size;
3122 		regs[rd] = (uintptr_t)d;
3123 		break;
3124 	}
3125 
3126 	case DIF_SUBR_GETMAJOR:
3127 #ifdef _LP64
3128 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
3129 #else
3130 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
3131 #endif
3132 		break;
3133 
3134 	case DIF_SUBR_GETMINOR:
3135 #ifdef _LP64
3136 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
3137 #else
3138 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
3139 #endif
3140 		break;
3141 
3142 	case DIF_SUBR_DDI_PATHNAME: {
3143 		/*
3144 		 * This one is a galactic mess.  We are going to roughly
3145 		 * emulate ddi_pathname(), but it's made more complicated
3146 		 * by the fact that we (a) want to include the minor name and
3147 		 * (b) must proceed iteratively instead of recursively.
3148 		 */
3149 		uintptr_t dest = mstate->dtms_scratch_ptr;
3150 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3151 		char *start = (char *)dest, *end = start + size - 1;
3152 		uintptr_t daddr = tupregs[0].dttk_value;
3153 		int64_t minor = (int64_t)tupregs[1].dttk_value;
3154 		char *s;
3155 		int i, len, depth = 0;
3156 
3157 		if (size == 0 || mstate->dtms_scratch_ptr + size >
3158 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3159 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3160 			regs[rd] = NULL;
3161 			break;
3162 		}
3163 
3164 		*end = '\0';
3165 
3166 		/*
3167 		 * We want to have a name for the minor.  In order to do this,
3168 		 * we need to walk the minor list from the devinfo.  We want
3169 		 * to be sure that we don't infinitely walk a circular list,
3170 		 * so we check for circularity by sending a scout pointer
3171 		 * ahead two elements for every element that we iterate over;
3172 		 * if the list is circular, these will ultimately point to the
3173 		 * same element.  You may recognize this little trick as the
3174 		 * answer to a stupid interview question -- one that always
3175 		 * seems to be asked by those who had to have it laboriously
3176 		 * explained to them, and who can't even concisely describe
3177 		 * the conditions under which one would be forced to resort to
3178 		 * this technique.  Needless to say, those conditions are
3179 		 * found here -- and probably only here.  Is this is the only
3180 		 * use of this infamous trick in shipping, production code?
3181 		 * If it isn't, it probably should be...
3182 		 */
3183 		if (minor != -1) {
3184 			uintptr_t maddr = dtrace_loadptr(daddr +
3185 			    offsetof(struct dev_info, devi_minor));
3186 
3187 			uintptr_t next = offsetof(struct ddi_minor_data, next);
3188 			uintptr_t name = offsetof(struct ddi_minor_data,
3189 			    d_minor) + offsetof(struct ddi_minor, name);
3190 			uintptr_t dev = offsetof(struct ddi_minor_data,
3191 			    d_minor) + offsetof(struct ddi_minor, dev);
3192 			uintptr_t scout;
3193 
3194 			if (maddr != NULL)
3195 				scout = dtrace_loadptr(maddr + next);
3196 
3197 			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3198 				uint64_t m;
3199 #ifdef _LP64
3200 				m = dtrace_load64(maddr + dev) & MAXMIN64;
3201 #else
3202 				m = dtrace_load32(maddr + dev) & MAXMIN;
3203 #endif
3204 				if (m != minor) {
3205 					maddr = dtrace_loadptr(maddr + next);
3206 
3207 					if (scout == NULL)
3208 						continue;
3209 
3210 					scout = dtrace_loadptr(scout + next);
3211 
3212 					if (scout == NULL)
3213 						continue;
3214 
3215 					scout = dtrace_loadptr(scout + next);
3216 
3217 					if (scout == NULL)
3218 						continue;
3219 
3220 					if (scout == maddr) {
3221 						*flags |= CPU_DTRACE_ILLOP;
3222 						break;
3223 					}
3224 
3225 					continue;
3226 				}
3227 
3228 				/*
3229 				 * We have the minor data.  Now we need to
3230 				 * copy the minor's name into the end of the
3231 				 * pathname.
3232 				 */
3233 				s = (char *)dtrace_loadptr(maddr + name);
3234 				len = dtrace_strlen(s, size);
3235 
3236 				if (*flags & CPU_DTRACE_FAULT)
3237 					break;
3238 
3239 				if (len != 0) {
3240 					if ((end -= (len + 1)) < start)
3241 						break;
3242 
3243 					*end = ':';
3244 				}
3245 
3246 				for (i = 1; i <= len; i++)
3247 					end[i] = dtrace_load8((uintptr_t)s++);
3248 				break;
3249 			}
3250 		}
3251 
3252 		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3253 			ddi_node_state_t devi_state;
3254 
3255 			devi_state = dtrace_load32(daddr +
3256 			    offsetof(struct dev_info, devi_node_state));
3257 
3258 			if (*flags & CPU_DTRACE_FAULT)
3259 				break;
3260 
3261 			if (devi_state >= DS_INITIALIZED) {
3262 				s = (char *)dtrace_loadptr(daddr +
3263 				    offsetof(struct dev_info, devi_addr));
3264 				len = dtrace_strlen(s, size);
3265 
3266 				if (*flags & CPU_DTRACE_FAULT)
3267 					break;
3268 
3269 				if (len != 0) {
3270 					if ((end -= (len + 1)) < start)
3271 						break;
3272 
3273 					*end = '@';
3274 				}
3275 
3276 				for (i = 1; i <= len; i++)
3277 					end[i] = dtrace_load8((uintptr_t)s++);
3278 			}
3279 
3280 			/*
3281 			 * Now for the node name...
3282 			 */
3283 			s = (char *)dtrace_loadptr(daddr +
3284 			    offsetof(struct dev_info, devi_node_name));
3285 
3286 			daddr = dtrace_loadptr(daddr +
3287 			    offsetof(struct dev_info, devi_parent));
3288 
3289 			/*
3290 			 * If our parent is NULL (that is, if we're the root
3291 			 * node), we're going to use the special path
3292 			 * "devices".
3293 			 */
3294 			if (daddr == NULL)
3295 				s = "devices";
3296 
3297 			len = dtrace_strlen(s, size);
3298 			if (*flags & CPU_DTRACE_FAULT)
3299 				break;
3300 
3301 			if ((end -= (len + 1)) < start)
3302 				break;
3303 
3304 			for (i = 1; i <= len; i++)
3305 				end[i] = dtrace_load8((uintptr_t)s++);
3306 			*end = '/';
3307 
3308 			if (depth++ > dtrace_devdepth_max) {
3309 				*flags |= CPU_DTRACE_ILLOP;
3310 				break;
3311 			}
3312 		}
3313 
3314 		if (end < start)
3315 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3316 
3317 		if (daddr == NULL) {
3318 			regs[rd] = (uintptr_t)end;
3319 			mstate->dtms_scratch_ptr += size;
3320 		}
3321 
3322 		break;
3323 	}
3324 
3325 	case DIF_SUBR_STRJOIN: {
3326 		char *d = (char *)mstate->dtms_scratch_ptr;
3327 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3328 		uintptr_t s1 = tupregs[0].dttk_value;
3329 		uintptr_t s2 = tupregs[1].dttk_value;
3330 		int i = 0;
3331 
3332 		if (mstate->dtms_scratch_ptr + size >
3333 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3334 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3335 			regs[rd] = NULL;
3336 			break;
3337 		}
3338 
3339 		for (;;) {
3340 			if (i >= size) {
3341 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3342 				regs[rd] = NULL;
3343 				break;
3344 			}
3345 
3346 			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
3347 				i--;
3348 				break;
3349 			}
3350 		}
3351 
3352 		for (;;) {
3353 			if (i >= size) {
3354 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3355 				regs[rd] = NULL;
3356 				break;
3357 			}
3358 
3359 			if ((d[i++] = dtrace_load8(s2++)) == '\0')
3360 				break;
3361 		}
3362 
3363 		if (i < size) {
3364 			mstate->dtms_scratch_ptr += i;
3365 			regs[rd] = (uintptr_t)d;
3366 		}
3367 
3368 		break;
3369 	}
3370 
3371 	case DIF_SUBR_LLTOSTR: {
3372 		int64_t i = (int64_t)tupregs[0].dttk_value;
3373 		int64_t val = i < 0 ? i * -1 : i;
3374 		uint64_t size = 22;	/* enough room for 2^64 in decimal */
3375 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
3376 
3377 		if (mstate->dtms_scratch_ptr + size >
3378 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3379 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3380 			regs[rd] = NULL;
3381 			break;
3382 		}
3383 
3384 		for (*end-- = '\0'; val; val /= 10)
3385 			*end-- = '0' + (val % 10);
3386 
3387 		if (i == 0)
3388 			*end-- = '0';
3389 
3390 		if (i < 0)
3391 			*end-- = '-';
3392 
3393 		regs[rd] = (uintptr_t)end + 1;
3394 		mstate->dtms_scratch_ptr += size;
3395 		break;
3396 	}
3397 
3398 	case DIF_SUBR_DIRNAME:
3399 	case DIF_SUBR_BASENAME: {
3400 		char *dest = (char *)mstate->dtms_scratch_ptr;
3401 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3402 		uintptr_t src = tupregs[0].dttk_value;
3403 		int i, j, len = dtrace_strlen((char *)src, size);
3404 		int lastbase = -1, firstbase = -1, lastdir = -1;
3405 		int start, end;
3406 
3407 		if (mstate->dtms_scratch_ptr + size >
3408 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3409 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3410 			regs[rd] = NULL;
3411 			break;
3412 		}
3413 
3414 		/*
3415 		 * The basename and dirname for a zero-length string is
3416 		 * defined to be "."
3417 		 */
3418 		if (len == 0) {
3419 			len = 1;
3420 			src = (uintptr_t)".";
3421 		}
3422 
3423 		/*
3424 		 * Start from the back of the string, moving back toward the
3425 		 * front until we see a character that isn't a slash.  That
3426 		 * character is the last character in the basename.
3427 		 */
3428 		for (i = len - 1; i >= 0; i--) {
3429 			if (dtrace_load8(src + i) != '/')
3430 				break;
3431 		}
3432 
3433 		if (i >= 0)
3434 			lastbase = i;
3435 
3436 		/*
3437 		 * Starting from the last character in the basename, move
3438 		 * towards the front until we find a slash.  The character
3439 		 * that we processed immediately before that is the first
3440 		 * character in the basename.
3441 		 */
3442 		for (; i >= 0; i--) {
3443 			if (dtrace_load8(src + i) == '/')
3444 				break;
3445 		}
3446 
3447 		if (i >= 0)
3448 			firstbase = i + 1;
3449 
3450 		/*
3451 		 * Now keep going until we find a non-slash character.  That
3452 		 * character is the last character in the dirname.
3453 		 */
3454 		for (; i >= 0; i--) {
3455 			if (dtrace_load8(src + i) != '/')
3456 				break;
3457 		}
3458 
3459 		if (i >= 0)
3460 			lastdir = i;
3461 
3462 		ASSERT(!(lastbase == -1 && firstbase != -1));
3463 		ASSERT(!(firstbase == -1 && lastdir != -1));
3464 
3465 		if (lastbase == -1) {
3466 			/*
3467 			 * We didn't find a non-slash character.  We know that
3468 			 * the length is non-zero, so the whole string must be
3469 			 * slashes.  In either the dirname or the basename
3470 			 * case, we return '/'.
3471 			 */
3472 			ASSERT(firstbase == -1);
3473 			firstbase = lastbase = lastdir = 0;
3474 		}
3475 
3476 		if (firstbase == -1) {
3477 			/*
3478 			 * The entire string consists only of a basename
3479 			 * component.  If we're looking for dirname, we need
3480 			 * to change our string to be just "."; if we're
3481 			 * looking for a basename, we'll just set the first
3482 			 * character of the basename to be 0.
3483 			 */
3484 			if (subr == DIF_SUBR_DIRNAME) {
3485 				ASSERT(lastdir == -1);
3486 				src = (uintptr_t)".";
3487 				lastdir = 0;
3488 			} else {
3489 				firstbase = 0;
3490 			}
3491 		}
3492 
3493 		if (subr == DIF_SUBR_DIRNAME) {
3494 			if (lastdir == -1) {
3495 				/*
3496 				 * We know that we have a slash in the name --
3497 				 * or lastdir would be set to 0, above.  And
3498 				 * because lastdir is -1, we know that this
3499 				 * slash must be the first character.  (That
3500 				 * is, the full string must be of the form
3501 				 * "/basename".)  In this case, the last
3502 				 * character of the directory name is 0.
3503 				 */
3504 				lastdir = 0;
3505 			}
3506 
3507 			start = 0;
3508 			end = lastdir;
3509 		} else {
3510 			ASSERT(subr == DIF_SUBR_BASENAME);
3511 			ASSERT(firstbase != -1 && lastbase != -1);
3512 			start = firstbase;
3513 			end = lastbase;
3514 		}
3515 
3516 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
3517 			dest[j] = dtrace_load8(src + i);
3518 
3519 		dest[j] = '\0';
3520 		regs[rd] = (uintptr_t)dest;
3521 		mstate->dtms_scratch_ptr += size;
3522 		break;
3523 	}
3524 
3525 	case DIF_SUBR_CLEANPATH: {
3526 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
3527 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3528 		uintptr_t src = tupregs[0].dttk_value;
3529 		int i = 0, j = 0;
3530 
3531 		if (mstate->dtms_scratch_ptr + size >
3532 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3533 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3534 			regs[rd] = NULL;
3535 			break;
3536 		}
3537 
3538 		/*
3539 		 * Move forward, loading each character.
3540 		 */
3541 		do {
3542 			c = dtrace_load8(src + i++);
3543 next:
3544 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
3545 				break;
3546 
3547 			if (c != '/') {
3548 				dest[j++] = c;
3549 				continue;
3550 			}
3551 
3552 			c = dtrace_load8(src + i++);
3553 
3554 			if (c == '/') {
3555 				/*
3556 				 * We have two slashes -- we can just advance
3557 				 * to the next character.
3558 				 */
3559 				goto next;
3560 			}
3561 
3562 			if (c != '.') {
3563 				/*
3564 				 * This is not "." and it's not ".." -- we can
3565 				 * just store the "/" and this character and
3566 				 * drive on.
3567 				 */
3568 				dest[j++] = '/';
3569 				dest[j++] = c;
3570 				continue;
3571 			}
3572 
3573 			c = dtrace_load8(src + i++);
3574 
3575 			if (c == '/') {
3576 				/*
3577 				 * This is a "/./" component.  We're not going
3578 				 * to store anything in the destination buffer;
3579 				 * we're just going to go to the next component.
3580 				 */
3581 				goto next;
3582 			}
3583 
3584 			if (c != '.') {
3585 				/*
3586 				 * This is not ".." -- we can just store the
3587 				 * "/." and this character and continue
3588 				 * processing.
3589 				 */
3590 				dest[j++] = '/';
3591 				dest[j++] = '.';
3592 				dest[j++] = c;
3593 				continue;
3594 			}
3595 
3596 			c = dtrace_load8(src + i++);
3597 
3598 			if (c != '/' && c != '\0') {
3599 				/*
3600 				 * This is not ".." -- it's "..[mumble]".
3601 				 * We'll store the "/.." and this character
3602 				 * and continue processing.
3603 				 */
3604 				dest[j++] = '/';
3605 				dest[j++] = '.';
3606 				dest[j++] = '.';
3607 				dest[j++] = c;
3608 				continue;
3609 			}
3610 
3611 			/*
3612 			 * This is "/../" or "/..\0".  We need to back up
3613 			 * our destination pointer until we find a "/".
3614 			 */
3615 			i--;
3616 			while (j != 0 && dest[--j] != '/')
3617 				continue;
3618 
3619 			if (c == '\0')
3620 				dest[++j] = '/';
3621 		} while (c != '\0');
3622 
3623 		dest[j] = '\0';
3624 		regs[rd] = (uintptr_t)dest;
3625 		mstate->dtms_scratch_ptr += size;
3626 		break;
3627 	}
3628 	}
3629 }
3630 
3631 /*
3632  * Emulate the execution of DTrace IR instructions specified by the given
3633  * DIF object.  This function is deliberately void of assertions as all of
3634  * the necessary checks are handled by a call to dtrace_difo_validate().
3635  */
3636 static uint64_t
3637 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
3638     dtrace_vstate_t *vstate, dtrace_state_t *state)
3639 {
3640 	const dif_instr_t *text = difo->dtdo_buf;
3641 	const uint_t textlen = difo->dtdo_len;
3642 	const char *strtab = difo->dtdo_strtab;
3643 	const uint64_t *inttab = difo->dtdo_inttab;
3644 
3645 	uint64_t rval = 0;
3646 	dtrace_statvar_t *svar;
3647 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
3648 	dtrace_difv_t *v;
3649 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
3650 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
3651 
3652 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
3653 	uint64_t regs[DIF_DIR_NREGS];
3654 	uint64_t *tmp;
3655 
3656 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
3657 	int64_t cc_r;
3658 	uint_t pc = 0, id, opc;
3659 	uint8_t ttop = 0;
3660 	dif_instr_t instr;
3661 	uint_t r1, r2, rd;
3662 
3663 	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
3664 
3665 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
3666 		opc = pc;
3667 
3668 		instr = text[pc++];
3669 		r1 = DIF_INSTR_R1(instr);
3670 		r2 = DIF_INSTR_R2(instr);
3671 		rd = DIF_INSTR_RD(instr);
3672 
3673 		switch (DIF_INSTR_OP(instr)) {
3674 		case DIF_OP_OR:
3675 			regs[rd] = regs[r1] | regs[r2];
3676 			break;
3677 		case DIF_OP_XOR:
3678 			regs[rd] = regs[r1] ^ regs[r2];
3679 			break;
3680 		case DIF_OP_AND:
3681 			regs[rd] = regs[r1] & regs[r2];
3682 			break;
3683 		case DIF_OP_SLL:
3684 			regs[rd] = regs[r1] << regs[r2];
3685 			break;
3686 		case DIF_OP_SRL:
3687 			regs[rd] = regs[r1] >> regs[r2];
3688 			break;
3689 		case DIF_OP_SUB:
3690 			regs[rd] = regs[r1] - regs[r2];
3691 			break;
3692 		case DIF_OP_ADD:
3693 			regs[rd] = regs[r1] + regs[r2];
3694 			break;
3695 		case DIF_OP_MUL:
3696 			regs[rd] = regs[r1] * regs[r2];
3697 			break;
3698 		case DIF_OP_SDIV:
3699 			if (regs[r2] == 0) {
3700 				regs[rd] = 0;
3701 				*flags |= CPU_DTRACE_DIVZERO;
3702 			} else {
3703 				regs[rd] = (int64_t)regs[r1] /
3704 				    (int64_t)regs[r2];
3705 			}
3706 			break;
3707 
3708 		case DIF_OP_UDIV:
3709 			if (regs[r2] == 0) {
3710 				regs[rd] = 0;
3711 				*flags |= CPU_DTRACE_DIVZERO;
3712 			} else {
3713 				regs[rd] = regs[r1] / regs[r2];
3714 			}
3715 			break;
3716 
3717 		case DIF_OP_SREM:
3718 			if (regs[r2] == 0) {
3719 				regs[rd] = 0;
3720 				*flags |= CPU_DTRACE_DIVZERO;
3721 			} else {
3722 				regs[rd] = (int64_t)regs[r1] %
3723 				    (int64_t)regs[r2];
3724 			}
3725 			break;
3726 
3727 		case DIF_OP_UREM:
3728 			if (regs[r2] == 0) {
3729 				regs[rd] = 0;
3730 				*flags |= CPU_DTRACE_DIVZERO;
3731 			} else {
3732 				regs[rd] = regs[r1] % regs[r2];
3733 			}
3734 			break;
3735 
3736 		case DIF_OP_NOT:
3737 			regs[rd] = ~regs[r1];
3738 			break;
3739 		case DIF_OP_MOV:
3740 			regs[rd] = regs[r1];
3741 			break;
3742 		case DIF_OP_CMP:
3743 			cc_r = regs[r1] - regs[r2];
3744 			cc_n = cc_r < 0;
3745 			cc_z = cc_r == 0;
3746 			cc_v = 0;
3747 			cc_c = regs[r1] < regs[r2];
3748 			break;
3749 		case DIF_OP_TST:
3750 			cc_n = cc_v = cc_c = 0;
3751 			cc_z = regs[r1] == 0;
3752 			break;
3753 		case DIF_OP_BA:
3754 			pc = DIF_INSTR_LABEL(instr);
3755 			break;
3756 		case DIF_OP_BE:
3757 			if (cc_z)
3758 				pc = DIF_INSTR_LABEL(instr);
3759 			break;
3760 		case DIF_OP_BNE:
3761 			if (cc_z == 0)
3762 				pc = DIF_INSTR_LABEL(instr);
3763 			break;
3764 		case DIF_OP_BG:
3765 			if ((cc_z | (cc_n ^ cc_v)) == 0)
3766 				pc = DIF_INSTR_LABEL(instr);
3767 			break;
3768 		case DIF_OP_BGU:
3769 			if ((cc_c | cc_z) == 0)
3770 				pc = DIF_INSTR_LABEL(instr);
3771 			break;
3772 		case DIF_OP_BGE:
3773 			if ((cc_n ^ cc_v) == 0)
3774 				pc = DIF_INSTR_LABEL(instr);
3775 			break;
3776 		case DIF_OP_BGEU:
3777 			if (cc_c == 0)
3778 				pc = DIF_INSTR_LABEL(instr);
3779 			break;
3780 		case DIF_OP_BL:
3781 			if (cc_n ^ cc_v)
3782 				pc = DIF_INSTR_LABEL(instr);
3783 			break;
3784 		case DIF_OP_BLU:
3785 			if (cc_c)
3786 				pc = DIF_INSTR_LABEL(instr);
3787 			break;
3788 		case DIF_OP_BLE:
3789 			if (cc_z | (cc_n ^ cc_v))
3790 				pc = DIF_INSTR_LABEL(instr);
3791 			break;
3792 		case DIF_OP_BLEU:
3793 			if (cc_c | cc_z)
3794 				pc = DIF_INSTR_LABEL(instr);
3795 			break;
3796 		case DIF_OP_RLDSB:
3797 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
3798 				*flags |= CPU_DTRACE_KPRIV;
3799 				*illval = regs[r1];
3800 				break;
3801 			}
3802 			/*FALLTHROUGH*/
3803 		case DIF_OP_LDSB:
3804 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
3805 			break;
3806 		case DIF_OP_RLDSH:
3807 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
3808 				*flags |= CPU_DTRACE_KPRIV;
3809 				*illval = regs[r1];
3810 				break;
3811 			}
3812 			/*FALLTHROUGH*/
3813 		case DIF_OP_LDSH:
3814 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
3815 			break;
3816 		case DIF_OP_RLDSW:
3817 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
3818 				*flags |= CPU_DTRACE_KPRIV;
3819 				*illval = regs[r1];
3820 				break;
3821 			}
3822 			/*FALLTHROUGH*/
3823 		case DIF_OP_LDSW:
3824 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
3825 			break;
3826 		case DIF_OP_RLDUB:
3827 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
3828 				*flags |= CPU_DTRACE_KPRIV;
3829 				*illval = regs[r1];
3830 				break;
3831 			}
3832 			/*FALLTHROUGH*/
3833 		case DIF_OP_LDUB:
3834 			regs[rd] = dtrace_load8(regs[r1]);
3835 			break;
3836 		case DIF_OP_RLDUH:
3837 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
3838 				*flags |= CPU_DTRACE_KPRIV;
3839 				*illval = regs[r1];
3840 				break;
3841 			}
3842 			/*FALLTHROUGH*/
3843 		case DIF_OP_LDUH:
3844 			regs[rd] = dtrace_load16(regs[r1]);
3845 			break;
3846 		case DIF_OP_RLDUW:
3847 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
3848 				*flags |= CPU_DTRACE_KPRIV;
3849 				*illval = regs[r1];
3850 				break;
3851 			}
3852 			/*FALLTHROUGH*/
3853 		case DIF_OP_LDUW:
3854 			regs[rd] = dtrace_load32(regs[r1]);
3855 			break;
3856 		case DIF_OP_RLDX:
3857 			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
3858 				*flags |= CPU_DTRACE_KPRIV;
3859 				*illval = regs[r1];
3860 				break;
3861 			}
3862 			/*FALLTHROUGH*/
3863 		case DIF_OP_LDX:
3864 			regs[rd] = dtrace_load64(regs[r1]);
3865 			break;
3866 		case DIF_OP_ULDSB:
3867 			regs[rd] = (int8_t)
3868 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
3869 			break;
3870 		case DIF_OP_ULDSH:
3871 			regs[rd] = (int16_t)
3872 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
3873 			break;
3874 		case DIF_OP_ULDSW:
3875 			regs[rd] = (int32_t)
3876 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
3877 			break;
3878 		case DIF_OP_ULDUB:
3879 			regs[rd] =
3880 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
3881 			break;
3882 		case DIF_OP_ULDUH:
3883 			regs[rd] =
3884 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
3885 			break;
3886 		case DIF_OP_ULDUW:
3887 			regs[rd] =
3888 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
3889 			break;
3890 		case DIF_OP_ULDX:
3891 			regs[rd] =
3892 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
3893 			break;
3894 		case DIF_OP_RET:
3895 			rval = regs[rd];
3896 			break;
3897 		case DIF_OP_NOP:
3898 			break;
3899 		case DIF_OP_SETX:
3900 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
3901 			break;
3902 		case DIF_OP_SETS:
3903 			regs[rd] = (uint64_t)(uintptr_t)
3904 			    (strtab + DIF_INSTR_STRING(instr));
3905 			break;
3906 		case DIF_OP_SCMP:
3907 			cc_r = dtrace_strncmp((char *)(uintptr_t)regs[r1],
3908 			    (char *)(uintptr_t)regs[r2],
3909 			    state->dts_options[DTRACEOPT_STRSIZE]);
3910 
3911 			cc_n = cc_r < 0;
3912 			cc_z = cc_r == 0;
3913 			cc_v = cc_c = 0;
3914 			break;
3915 		case DIF_OP_LDGA:
3916 			regs[rd] = dtrace_dif_variable(mstate, state,
3917 			    r1, regs[r2]);
3918 			break;
3919 		case DIF_OP_LDGS:
3920 			id = DIF_INSTR_VAR(instr);
3921 
3922 			if (id >= DIF_VAR_OTHER_UBASE) {
3923 				uintptr_t a;
3924 
3925 				id -= DIF_VAR_OTHER_UBASE;
3926 				svar = vstate->dtvs_globals[id];
3927 				ASSERT(svar != NULL);
3928 				v = &svar->dtsv_var;
3929 
3930 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
3931 					regs[rd] = svar->dtsv_data;
3932 					break;
3933 				}
3934 
3935 				a = (uintptr_t)svar->dtsv_data;
3936 
3937 				if (*(uint8_t *)a == UINT8_MAX) {
3938 					/*
3939 					 * If the 0th byte is set to UINT8_MAX
3940 					 * then this is to be treated as a
3941 					 * reference to a NULL variable.
3942 					 */
3943 					regs[rd] = NULL;
3944 				} else {
3945 					regs[rd] = a + sizeof (uint64_t);
3946 				}
3947 
3948 				break;
3949 			}
3950 
3951 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
3952 			break;
3953 
3954 		case DIF_OP_STGS:
3955 			id = DIF_INSTR_VAR(instr);
3956 
3957 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
3958 			id -= DIF_VAR_OTHER_UBASE;
3959 
3960 			svar = vstate->dtvs_globals[id];
3961 			ASSERT(svar != NULL);
3962 			v = &svar->dtsv_var;
3963 
3964 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
3965 				uintptr_t a = (uintptr_t)svar->dtsv_data;
3966 
3967 				ASSERT(a != NULL);
3968 				ASSERT(svar->dtsv_size != 0);
3969 
3970 				if (regs[rd] == NULL) {
3971 					*(uint8_t *)a = UINT8_MAX;
3972 					break;
3973 				} else {
3974 					*(uint8_t *)a = 0;
3975 					a += sizeof (uint64_t);
3976 				}
3977 
3978 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
3979 				    (void *)a, &v->dtdv_type);
3980 				break;
3981 			}
3982 
3983 			svar->dtsv_data = regs[rd];
3984 			break;
3985 
3986 		case DIF_OP_LDTA:
3987 			/*
3988 			 * There are no DTrace built-in thread-local arrays at
3989 			 * present.  This opcode is saved for future work.
3990 			 */
3991 			*flags |= CPU_DTRACE_ILLOP;
3992 			regs[rd] = 0;
3993 			break;
3994 
3995 		case DIF_OP_LDLS:
3996 			id = DIF_INSTR_VAR(instr);
3997 
3998 			if (id < DIF_VAR_OTHER_UBASE) {
3999 				/*
4000 				 * For now, this has no meaning.
4001 				 */
4002 				regs[rd] = 0;
4003 				break;
4004 			}
4005 
4006 			id -= DIF_VAR_OTHER_UBASE;
4007 
4008 			ASSERT(id < vstate->dtvs_nlocals);
4009 			ASSERT(vstate->dtvs_locals != NULL);
4010 
4011 			svar = vstate->dtvs_locals[id];
4012 			ASSERT(svar != NULL);
4013 			v = &svar->dtsv_var;
4014 
4015 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4016 				uintptr_t a = (uintptr_t)svar->dtsv_data;
4017 				size_t sz = v->dtdv_type.dtdt_size;
4018 
4019 				sz += sizeof (uint64_t);
4020 				ASSERT(svar->dtsv_size == NCPU * sz);
4021 				a += CPU->cpu_id * sz;
4022 
4023 				if (*(uint8_t *)a == UINT8_MAX) {
4024 					/*
4025 					 * If the 0th byte is set to UINT8_MAX
4026 					 * then this is to be treated as a
4027 					 * reference to a NULL variable.
4028 					 */
4029 					regs[rd] = NULL;
4030 				} else {
4031 					regs[rd] = a + sizeof (uint64_t);
4032 				}
4033 
4034 				break;
4035 			}
4036 
4037 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
4038 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
4039 			regs[rd] = tmp[CPU->cpu_id];
4040 			break;
4041 
4042 		case DIF_OP_STLS:
4043 			id = DIF_INSTR_VAR(instr);
4044 
4045 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4046 			id -= DIF_VAR_OTHER_UBASE;
4047 			ASSERT(id < vstate->dtvs_nlocals);
4048 
4049 			ASSERT(vstate->dtvs_locals != NULL);
4050 			svar = vstate->dtvs_locals[id];
4051 			ASSERT(svar != NULL);
4052 			v = &svar->dtsv_var;
4053 
4054 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4055 				uintptr_t a = (uintptr_t)svar->dtsv_data;
4056 				size_t sz = v->dtdv_type.dtdt_size;
4057 
4058 				sz += sizeof (uint64_t);
4059 				ASSERT(svar->dtsv_size == NCPU * sz);
4060 				a += CPU->cpu_id * sz;
4061 
4062 				if (regs[rd] == NULL) {
4063 					*(uint8_t *)a = UINT8_MAX;
4064 					break;
4065 				} else {
4066 					*(uint8_t *)a = 0;
4067 					a += sizeof (uint64_t);
4068 				}
4069 
4070 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
4071 				    (void *)a, &v->dtdv_type);
4072 				break;
4073 			}
4074 
4075 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
4076 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
4077 			tmp[CPU->cpu_id] = regs[rd];
4078 			break;
4079 
4080 		case DIF_OP_LDTS: {
4081 			dtrace_dynvar_t *dvar;
4082 			dtrace_key_t *key;
4083 
4084 			id = DIF_INSTR_VAR(instr);
4085 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4086 			id -= DIF_VAR_OTHER_UBASE;
4087 			v = &vstate->dtvs_tlocals[id];
4088 
4089 			key = &tupregs[DIF_DTR_NREGS];
4090 			key[0].dttk_value = (uint64_t)id;
4091 			key[0].dttk_size = 0;
4092 			DTRACE_TLS_THRKEY(key[1].dttk_value);
4093 			key[1].dttk_size = 0;
4094 
4095 			dvar = dtrace_dynvar(dstate, 2, key,
4096 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC);
4097 
4098 			if (dvar == NULL) {
4099 				regs[rd] = 0;
4100 				break;
4101 			}
4102 
4103 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4104 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
4105 			} else {
4106 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
4107 			}
4108 
4109 			break;
4110 		}
4111 
4112 		case DIF_OP_STTS: {
4113 			dtrace_dynvar_t *dvar;
4114 			dtrace_key_t *key;
4115 
4116 			id = DIF_INSTR_VAR(instr);
4117 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4118 			id -= DIF_VAR_OTHER_UBASE;
4119 
4120 			key = &tupregs[DIF_DTR_NREGS];
4121 			key[0].dttk_value = (uint64_t)id;
4122 			key[0].dttk_size = 0;
4123 			DTRACE_TLS_THRKEY(key[1].dttk_value);
4124 			key[1].dttk_size = 0;
4125 			v = &vstate->dtvs_tlocals[id];
4126 
4127 			dvar = dtrace_dynvar(dstate, 2, key,
4128 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
4129 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
4130 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
4131 			    DTRACE_DYNVAR_DEALLOC);
4132 
4133 			/*
4134 			 * Given that we're storing to thread-local data,
4135 			 * we need to flush our predicate cache.
4136 			 */
4137 			curthread->t_predcache = NULL;
4138 
4139 			if (dvar == NULL)
4140 				break;
4141 
4142 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4143 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
4144 				    dvar->dtdv_data, &v->dtdv_type);
4145 			} else {
4146 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
4147 			}
4148 
4149 			break;
4150 		}
4151 
4152 		case DIF_OP_SRA:
4153 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
4154 			break;
4155 
4156 		case DIF_OP_CALL:
4157 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
4158 			    regs, tupregs, ttop, mstate, state);
4159 			break;
4160 
4161 		case DIF_OP_PUSHTR:
4162 			if (ttop == DIF_DTR_NREGS) {
4163 				*flags |= CPU_DTRACE_TUPOFLOW;
4164 				break;
4165 			}
4166 
4167 			if (r1 == DIF_TYPE_STRING) {
4168 				/*
4169 				 * If this is a string type and the size is 0,
4170 				 * we'll use the system-wide default string
4171 				 * size.  Note that we are _not_ looking at
4172 				 * the value of the DTRACEOPT_STRSIZE option;
4173 				 * had this been set, we would expect to have
4174 				 * a non-zero size value in the "pushtr".
4175 				 */
4176 				tupregs[ttop].dttk_size =
4177 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
4178 				    regs[r2] ? regs[r2] :
4179 				    dtrace_strsize_default) + 1;
4180 			} else {
4181 				tupregs[ttop].dttk_size = regs[r2];
4182 			}
4183 
4184 			tupregs[ttop++].dttk_value = regs[rd];
4185 			break;
4186 
4187 		case DIF_OP_PUSHTV:
4188 			if (ttop == DIF_DTR_NREGS) {
4189 				*flags |= CPU_DTRACE_TUPOFLOW;
4190 				break;
4191 			}
4192 
4193 			tupregs[ttop].dttk_value = regs[rd];
4194 			tupregs[ttop++].dttk_size = 0;
4195 			break;
4196 
4197 		case DIF_OP_POPTS:
4198 			if (ttop != 0)
4199 				ttop--;
4200 			break;
4201 
4202 		case DIF_OP_FLUSHTS:
4203 			ttop = 0;
4204 			break;
4205 
4206 		case DIF_OP_LDGAA:
4207 		case DIF_OP_LDTAA: {
4208 			dtrace_dynvar_t *dvar;
4209 			dtrace_key_t *key = tupregs;
4210 			uint_t nkeys = ttop;
4211 
4212 			id = DIF_INSTR_VAR(instr);
4213 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4214 			id -= DIF_VAR_OTHER_UBASE;
4215 
4216 			key[nkeys].dttk_value = (uint64_t)id;
4217 			key[nkeys++].dttk_size = 0;
4218 
4219 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
4220 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
4221 				key[nkeys++].dttk_size = 0;
4222 				v = &vstate->dtvs_tlocals[id];
4223 			} else {
4224 				v = &vstate->dtvs_globals[id]->dtsv_var;
4225 			}
4226 
4227 			dvar = dtrace_dynvar(dstate, nkeys, key,
4228 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
4229 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
4230 			    DTRACE_DYNVAR_NOALLOC);
4231 
4232 			if (dvar == NULL) {
4233 				regs[rd] = 0;
4234 				break;
4235 			}
4236 
4237 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4238 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
4239 			} else {
4240 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
4241 			}
4242 
4243 			break;
4244 		}
4245 
4246 		case DIF_OP_STGAA:
4247 		case DIF_OP_STTAA: {
4248 			dtrace_dynvar_t *dvar;
4249 			dtrace_key_t *key = tupregs;
4250 			uint_t nkeys = ttop;
4251 
4252 			id = DIF_INSTR_VAR(instr);
4253 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4254 			id -= DIF_VAR_OTHER_UBASE;
4255 
4256 			key[nkeys].dttk_value = (uint64_t)id;
4257 			key[nkeys++].dttk_size = 0;
4258 
4259 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
4260 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
4261 				key[nkeys++].dttk_size = 0;
4262 				v = &vstate->dtvs_tlocals[id];
4263 			} else {
4264 				v = &vstate->dtvs_globals[id]->dtsv_var;
4265 			}
4266 
4267 			dvar = dtrace_dynvar(dstate, nkeys, key,
4268 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
4269 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
4270 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
4271 			    DTRACE_DYNVAR_DEALLOC);
4272 
4273 			if (dvar == NULL)
4274 				break;
4275 
4276 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4277 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
4278 				    dvar->dtdv_data, &v->dtdv_type);
4279 			} else {
4280 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
4281 			}
4282 
4283 			break;
4284 		}
4285 
4286 		case DIF_OP_ALLOCS: {
4287 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4288 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
4289 
4290 			if (mstate->dtms_scratch_ptr + size >
4291 			    mstate->dtms_scratch_base +
4292 			    mstate->dtms_scratch_size) {
4293 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4294 				regs[rd] = NULL;
4295 			} else {
4296 				dtrace_bzero((void *)
4297 				    mstate->dtms_scratch_ptr, size);
4298 				mstate->dtms_scratch_ptr += size;
4299 				regs[rd] = ptr;
4300 			}
4301 			break;
4302 		}
4303 
4304 		case DIF_OP_COPYS:
4305 			if (!dtrace_canstore(regs[rd], regs[r2],
4306 			    mstate, vstate)) {
4307 				*flags |= CPU_DTRACE_BADADDR;
4308 				*illval = regs[rd];
4309 				break;
4310 			}
4311 
4312 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
4313 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
4314 			break;
4315 
4316 		case DIF_OP_STB:
4317 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
4318 				*flags |= CPU_DTRACE_BADADDR;
4319 				*illval = regs[rd];
4320 				break;
4321 			}
4322 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
4323 			break;
4324 
4325 		case DIF_OP_STH:
4326 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
4327 				*flags |= CPU_DTRACE_BADADDR;
4328 				*illval = regs[rd];
4329 				break;
4330 			}
4331 			if (regs[rd] & 1) {
4332 				*flags |= CPU_DTRACE_BADALIGN;
4333 				*illval = regs[rd];
4334 				break;
4335 			}
4336 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
4337 			break;
4338 
4339 		case DIF_OP_STW:
4340 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
4341 				*flags |= CPU_DTRACE_BADADDR;
4342 				*illval = regs[rd];
4343 				break;
4344 			}
4345 			if (regs[rd] & 3) {
4346 				*flags |= CPU_DTRACE_BADALIGN;
4347 				*illval = regs[rd];
4348 				break;
4349 			}
4350 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
4351 			break;
4352 
4353 		case DIF_OP_STX:
4354 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
4355 				*flags |= CPU_DTRACE_BADADDR;
4356 				*illval = regs[rd];
4357 				break;
4358 			}
4359 			if (regs[rd] & 7) {
4360 				*flags |= CPU_DTRACE_BADALIGN;
4361 				*illval = regs[rd];
4362 				break;
4363 			}
4364 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
4365 			break;
4366 		}
4367 	}
4368 
4369 	if (!(*flags & CPU_DTRACE_FAULT))
4370 		return (rval);
4371 
4372 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
4373 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
4374 
4375 	return (0);
4376 }
4377 
4378 static void
4379 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
4380 {
4381 	dtrace_probe_t *probe = ecb->dte_probe;
4382 	dtrace_provider_t *prov = probe->dtpr_provider;
4383 	char c[DTRACE_FULLNAMELEN + 80], *str;
4384 	char *msg = "dtrace: breakpoint action at probe ";
4385 	char *ecbmsg = " (ecb ";
4386 	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
4387 	uintptr_t val = (uintptr_t)ecb;
4388 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
4389 
4390 	if (dtrace_destructive_disallow)
4391 		return;
4392 
4393 	/*
4394 	 * It's impossible to be taking action on the NULL probe.
4395 	 */
4396 	ASSERT(probe != NULL);
4397 
4398 	/*
4399 	 * This is a poor man's (destitute man's?) sprintf():  we want to
4400 	 * print the provider name, module name, function name and name of
4401 	 * the probe, along with the hex address of the ECB with the breakpoint
4402 	 * action -- all of which we must place in the character buffer by
4403 	 * hand.
4404 	 */
4405 	while (*msg != '\0')
4406 		c[i++] = *msg++;
4407 
4408 	for (str = prov->dtpv_name; *str != '\0'; str++)
4409 		c[i++] = *str;
4410 	c[i++] = ':';
4411 
4412 	for (str = probe->dtpr_mod; *str != '\0'; str++)
4413 		c[i++] = *str;
4414 	c[i++] = ':';
4415 
4416 	for (str = probe->dtpr_func; *str != '\0'; str++)
4417 		c[i++] = *str;
4418 	c[i++] = ':';
4419 
4420 	for (str = probe->dtpr_name; *str != '\0'; str++)
4421 		c[i++] = *str;
4422 
4423 	while (*ecbmsg != '\0')
4424 		c[i++] = *ecbmsg++;
4425 
4426 	while (shift >= 0) {
4427 		mask = (uintptr_t)0xf << shift;
4428 
4429 		if (val >= ((uintptr_t)1 << shift))
4430 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
4431 		shift -= 4;
4432 	}
4433 
4434 	c[i++] = ')';
4435 	c[i] = '\0';
4436 
4437 	debug_enter(c);
4438 }
4439 
4440 static void
4441 dtrace_action_panic(dtrace_ecb_t *ecb)
4442 {
4443 	dtrace_probe_t *probe = ecb->dte_probe;
4444 
4445 	/*
4446 	 * It's impossible to be taking action on the NULL probe.
4447 	 */
4448 	ASSERT(probe != NULL);
4449 
4450 	if (dtrace_destructive_disallow)
4451 		return;
4452 
4453 	if (dtrace_panicked != NULL)
4454 		return;
4455 
4456 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
4457 		return;
4458 
4459 	/*
4460 	 * We won the right to panic.  (We want to be sure that only one
4461 	 * thread calls panic() from dtrace_probe(), and that panic() is
4462 	 * called exactly once.)
4463 	 */
4464 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
4465 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
4466 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
4467 }
4468 
4469 static void
4470 dtrace_action_raise(uint64_t sig)
4471 {
4472 	if (dtrace_destructive_disallow)
4473 		return;
4474 
4475 	if (sig >= NSIG) {
4476 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4477 		return;
4478 	}
4479 
4480 	/*
4481 	 * raise() has a queue depth of 1 -- we ignore all subsequent
4482 	 * invocations of the raise() action.
4483 	 */
4484 	if (curthread->t_dtrace_sig == 0)
4485 		curthread->t_dtrace_sig = (uint8_t)sig;
4486 
4487 	curthread->t_sig_check = 1;
4488 	aston(curthread);
4489 }
4490 
4491 static void
4492 dtrace_action_stop(void)
4493 {
4494 	if (dtrace_destructive_disallow)
4495 		return;
4496 
4497 	if (!curthread->t_dtrace_stop) {
4498 		curthread->t_dtrace_stop = 1;
4499 		curthread->t_sig_check = 1;
4500 		aston(curthread);
4501 	}
4502 }
4503 
4504 static void
4505 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
4506 {
4507 	hrtime_t now;
4508 	volatile uint16_t *flags;
4509 	cpu_t *cpu = CPU;
4510 
4511 	if (dtrace_destructive_disallow)
4512 		return;
4513 
4514 	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
4515 
4516 	now = dtrace_gethrtime();
4517 
4518 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
4519 		/*
4520 		 * We need to advance the mark to the current time.
4521 		 */
4522 		cpu->cpu_dtrace_chillmark = now;
4523 		cpu->cpu_dtrace_chilled = 0;
4524 	}
4525 
4526 	/*
4527 	 * Now check to see if the requested chill time would take us over
4528 	 * the maximum amount of time allowed in the chill interval.  (Or
4529 	 * worse, if the calculation itself induces overflow.)
4530 	 */
4531 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
4532 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
4533 		*flags |= CPU_DTRACE_ILLOP;
4534 		return;
4535 	}
4536 
4537 	while (dtrace_gethrtime() - now < val)
4538 		continue;
4539 
4540 	/*
4541 	 * Normally, we assure that the value of the variable "timestamp" does
4542 	 * not change within an ECB.  The presence of chill() represents an
4543 	 * exception to this rule, however.
4544 	 */
4545 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
4546 	cpu->cpu_dtrace_chilled += val;
4547 }
4548 
4549 static void
4550 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
4551     uint64_t *buf, uint64_t arg)
4552 {
4553 	int nframes = DTRACE_USTACK_NFRAMES(arg);
4554 	int strsize = DTRACE_USTACK_STRSIZE(arg);
4555 	uint64_t *pcs = &buf[1], *fps;
4556 	char *str = (char *)&pcs[nframes];
4557 	int size, offs = 0, i, j;
4558 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
4559 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
4560 	char *sym;
4561 
4562 	/*
4563 	 * Should be taking a faster path if string space has not been
4564 	 * allocated.
4565 	 */
4566 	ASSERT(strsize != 0);
4567 
4568 	/*
4569 	 * We will first allocate some temporary space for the frame pointers.
4570 	 */
4571 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4572 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
4573 	    (nframes * sizeof (uint64_t));
4574 
4575 	if (mstate->dtms_scratch_ptr + size >
4576 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
4577 		/*
4578 		 * Not enough room for our frame pointers -- need to indicate
4579 		 * that we ran out of scratch space.
4580 		 */
4581 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4582 		return;
4583 	}
4584 
4585 	mstate->dtms_scratch_ptr += size;
4586 	saved = mstate->dtms_scratch_ptr;
4587 
4588 	/*
4589 	 * Now get a stack with both program counters and frame pointers.
4590 	 */
4591 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4592 	dtrace_getufpstack(buf, fps, nframes + 1);
4593 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4594 
4595 	/*
4596 	 * If that faulted, we're cooked.
4597 	 */
4598 	if (*flags & CPU_DTRACE_FAULT)
4599 		goto out;
4600 
4601 	/*
4602 	 * Now we want to walk up the stack, calling the USTACK helper.  For
4603 	 * each iteration, we restore the scratch pointer.
4604 	 */
4605 	for (i = 0; i < nframes; i++) {
4606 		mstate->dtms_scratch_ptr = saved;
4607 
4608 		if (offs >= strsize)
4609 			break;
4610 
4611 		sym = (char *)(uintptr_t)dtrace_helper(
4612 		    DTRACE_HELPER_ACTION_USTACK,
4613 		    mstate, state, pcs[i], fps[i]);
4614 
4615 		/*
4616 		 * If we faulted while running the helper, we're going to
4617 		 * clear the fault and null out the corresponding string.
4618 		 */
4619 		if (*flags & CPU_DTRACE_FAULT) {
4620 			*flags &= ~CPU_DTRACE_FAULT;
4621 			str[offs++] = '\0';
4622 			continue;
4623 		}
4624 
4625 		if (sym == NULL) {
4626 			str[offs++] = '\0';
4627 			continue;
4628 		}
4629 
4630 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4631 
4632 		/*
4633 		 * Now copy in the string that the helper returned to us.
4634 		 */
4635 		for (j = 0; offs + j < strsize; j++) {
4636 			if ((str[offs + j] = sym[j]) == '\0')
4637 				break;
4638 		}
4639 
4640 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4641 
4642 		offs += j + 1;
4643 	}
4644 
4645 	if (offs >= strsize) {
4646 		/*
4647 		 * If we didn't have room for all of the strings, we don't
4648 		 * abort processing -- this needn't be a fatal error -- but we
4649 		 * still want to increment a counter (dts_stkstroverflows) to
4650 		 * allow this condition to be warned about.  (If this is from
4651 		 * a jstack() action, it is easily tuned via jstackstrsize.)
4652 		 */
4653 		dtrace_error(&state->dts_stkstroverflows);
4654 	}
4655 
4656 	while (offs < strsize)
4657 		str[offs++] = '\0';
4658 
4659 out:
4660 	mstate->dtms_scratch_ptr = old;
4661 }
4662 
4663 /*
4664  * If you're looking for the epicenter of DTrace, you just found it.  This
4665  * is the function called by the provider to fire a probe -- from which all
4666  * subsequent probe-context DTrace activity emanates.
4667  */
4668 void
4669 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
4670     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
4671 {
4672 	processorid_t cpuid;
4673 	dtrace_icookie_t cookie;
4674 	dtrace_probe_t *probe;
4675 	dtrace_mstate_t mstate;
4676 	dtrace_ecb_t *ecb;
4677 	dtrace_action_t *act;
4678 	intptr_t offs;
4679 	size_t size;
4680 	int vtime, onintr;
4681 	volatile uint16_t *flags;
4682 	hrtime_t now;
4683 
4684 	/*
4685 	 * Kick out immediately if this CPU is still being born (in which case
4686 	 * curthread will be set to -1)
4687 	 */
4688 	if ((uintptr_t)curthread & 1)
4689 		return;
4690 
4691 	cookie = dtrace_interrupt_disable();
4692 	probe = dtrace_probes[id - 1];
4693 	cpuid = CPU->cpu_id;
4694 	onintr = CPU_ON_INTR(CPU);
4695 
4696 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
4697 	    probe->dtpr_predcache == curthread->t_predcache) {
4698 		/*
4699 		 * We have hit in the predicate cache; we know that
4700 		 * this predicate would evaluate to be false.
4701 		 */
4702 		dtrace_interrupt_enable(cookie);
4703 		return;
4704 	}
4705 
4706 	if (panic_quiesce) {
4707 		/*
4708 		 * We don't trace anything if we're panicking.
4709 		 */
4710 		dtrace_interrupt_enable(cookie);
4711 		return;
4712 	}
4713 
4714 	now = dtrace_gethrtime();
4715 	vtime = dtrace_vtime_references != 0;
4716 
4717 	if (vtime && curthread->t_dtrace_start)
4718 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
4719 
4720 	mstate.dtms_probe = probe;
4721 	mstate.dtms_arg[0] = arg0;
4722 	mstate.dtms_arg[1] = arg1;
4723 	mstate.dtms_arg[2] = arg2;
4724 	mstate.dtms_arg[3] = arg3;
4725 	mstate.dtms_arg[4] = arg4;
4726 
4727 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
4728 
4729 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
4730 		dtrace_predicate_t *pred = ecb->dte_predicate;
4731 		dtrace_state_t *state = ecb->dte_state;
4732 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
4733 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
4734 		dtrace_vstate_t *vstate = &state->dts_vstate;
4735 		dtrace_provider_t *prov = probe->dtpr_provider;
4736 		int committed = 0;
4737 		caddr_t tomax;
4738 
4739 		/*
4740 		 * A little subtlety with the following (seemingly innocuous)
4741 		 * declaration of the automatic 'val':  by looking at the
4742 		 * code, you might think that it could be declared in the
4743 		 * action processing loop, below.  (That is, it's only used in
4744 		 * the action processing loop.)  However, it must be declared
4745 		 * out of that scope because in the case of DIF expression
4746 		 * arguments to aggregating actions, one iteration of the
4747 		 * action loop will use the last iteration's value.
4748 		 */
4749 #ifdef lint
4750 		uint64_t val = 0;
4751 #else
4752 		uint64_t val;
4753 #endif
4754 
4755 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
4756 		*flags &= ~CPU_DTRACE_ERROR;
4757 
4758 		if (prov == dtrace_provider) {
4759 			/*
4760 			 * If dtrace itself is the provider of this probe,
4761 			 * we're only going to continue processing the ECB if
4762 			 * arg0 (the dtrace_state_t) is equal to the ECB's
4763 			 * creating state.  (This prevents disjoint consumers
4764 			 * from seeing one another's metaprobes.)
4765 			 */
4766 			if (arg0 != (uint64_t)(uintptr_t)state)
4767 				continue;
4768 		}
4769 
4770 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
4771 			/*
4772 			 * We're not currently active.  If our provider isn't
4773 			 * the dtrace pseudo provider, we're not interested.
4774 			 */
4775 			if (prov != dtrace_provider)
4776 				continue;
4777 
4778 			/*
4779 			 * Now we must further check if we are in the BEGIN
4780 			 * probe.  If we are, we will only continue processing
4781 			 * if we're still in WARMUP -- if one BEGIN enabling
4782 			 * has invoked the exit() action, we don't want to
4783 			 * evaluate subsequent BEGIN enablings.
4784 			 */
4785 			if (probe->dtpr_id == dtrace_probeid_begin &&
4786 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
4787 				ASSERT(state->dts_activity ==
4788 				    DTRACE_ACTIVITY_DRAINING);
4789 				continue;
4790 			}
4791 		}
4792 
4793 		if (ecb->dte_cond) {
4794 			/*
4795 			 * If the dte_cond bits indicate that this
4796 			 * consumer is only allowed to see user-mode firings
4797 			 * of this probe, call the provider's dtps_usermode()
4798 			 * entry point to check that the probe was fired
4799 			 * while in a user context. Skip this ECB if that's
4800 			 * not the case.
4801 			 */
4802 			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
4803 			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
4804 			    probe->dtpr_id, probe->dtpr_arg) == 0)
4805 				continue;
4806 
4807 			/*
4808 			 * This is more subtle than it looks. We have to be
4809 			 * absolutely certain that CRED() isn't going to
4810 			 * change out from under us so it's only legit to
4811 			 * examine that structure if we're in constrained
4812 			 * situations. Currently, the only times we'll this
4813 			 * check is if a non-super-user has enabled the
4814 			 * profile or syscall providers -- providers that
4815 			 * allow visibility of all processes. For the
4816 			 * profile case, the check above will ensure that
4817 			 * we're examining a user context.
4818 			 */
4819 			if (ecb->dte_cond & DTRACE_COND_OWNER) {
4820 				cred_t *cr;
4821 				cred_t *s_cr =
4822 				    ecb->dte_state->dts_cred.dcr_cred;
4823 				proc_t *proc;
4824 
4825 				ASSERT(s_cr != NULL);
4826 
4827 				if ((cr = CRED()) == NULL ||
4828 				    s_cr->cr_uid != cr->cr_uid ||
4829 				    s_cr->cr_uid != cr->cr_ruid ||
4830 				    s_cr->cr_uid != cr->cr_suid ||
4831 				    s_cr->cr_gid != cr->cr_gid ||
4832 				    s_cr->cr_gid != cr->cr_rgid ||
4833 				    s_cr->cr_gid != cr->cr_sgid ||
4834 				    (proc = ttoproc(curthread)) == NULL ||
4835 				    (proc->p_flag & SNOCD))
4836 					continue;
4837 			}
4838 
4839 			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
4840 				cred_t *cr;
4841 				cred_t *s_cr =
4842 				    ecb->dte_state->dts_cred.dcr_cred;
4843 
4844 				ASSERT(s_cr != NULL);
4845 
4846 				if ((cr = CRED()) == NULL ||
4847 				    s_cr->cr_zone->zone_id !=
4848 				    cr->cr_zone->zone_id)
4849 					continue;
4850 			}
4851 		}
4852 
4853 		if (now - state->dts_alive > dtrace_deadman_timeout) {
4854 			/*
4855 			 * We seem to be dead.  Unless we (a) have kernel
4856 			 * destructive permissions (b) have expicitly enabled
4857 			 * destructive actions and (c) destructive actions have
4858 			 * not been disabled, we're going to transition into
4859 			 * the KILLED state, from which no further processing
4860 			 * on this state will be performed.
4861 			 */
4862 			if (!dtrace_priv_kernel_destructive(state) ||
4863 			    !state->dts_cred.dcr_destructive ||
4864 			    dtrace_destructive_disallow) {
4865 				void *activity = &state->dts_activity;
4866 				dtrace_activity_t current;
4867 
4868 				do {
4869 					current = state->dts_activity;
4870 				} while (dtrace_cas32(activity, current,
4871 				    DTRACE_ACTIVITY_KILLED) != current);
4872 
4873 				continue;
4874 			}
4875 		}
4876 
4877 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
4878 		    ecb->dte_alignment, state, &mstate)) < 0)
4879 			continue;
4880 
4881 		tomax = buf->dtb_tomax;
4882 		ASSERT(tomax != NULL);
4883 
4884 		if (ecb->dte_size != 0)
4885 			DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
4886 
4887 		mstate.dtms_epid = ecb->dte_epid;
4888 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
4889 
4890 		if (pred != NULL) {
4891 			dtrace_difo_t *dp = pred->dtp_difo;
4892 			int rval;
4893 
4894 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
4895 
4896 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
4897 				dtrace_cacheid_t cid = probe->dtpr_predcache;
4898 
4899 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
4900 					/*
4901 					 * Update the predicate cache...
4902 					 */
4903 					ASSERT(cid == pred->dtp_cacheid);
4904 					curthread->t_predcache = cid;
4905 				}
4906 
4907 				continue;
4908 			}
4909 		}
4910 
4911 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
4912 		    act != NULL; act = act->dta_next) {
4913 			size_t valoffs;
4914 			dtrace_difo_t *dp;
4915 			dtrace_recdesc_t *rec = &act->dta_rec;
4916 
4917 			size = rec->dtrd_size;
4918 			valoffs = offs + rec->dtrd_offset;
4919 
4920 			if (DTRACEACT_ISAGG(act->dta_kind)) {
4921 				uint64_t v = 0xbad;
4922 				dtrace_aggregation_t *agg;
4923 
4924 				agg = (dtrace_aggregation_t *)act;
4925 
4926 				if ((dp = act->dta_difo) != NULL)
4927 					v = dtrace_dif_emulate(dp,
4928 					    &mstate, vstate, state);
4929 
4930 				if (*flags & CPU_DTRACE_ERROR)
4931 					continue;
4932 
4933 				/*
4934 				 * Note that we always pass the expression
4935 				 * value from the previous iteration of the
4936 				 * action loop.  This value will only be used
4937 				 * if there is an expression argument to the
4938 				 * aggregating action, denoted by the
4939 				 * dtag_hasarg field.
4940 				 */
4941 				dtrace_aggregate(agg, buf,
4942 				    offs, aggbuf, v, val);
4943 				continue;
4944 			}
4945 
4946 			switch (act->dta_kind) {
4947 			case DTRACEACT_STOP:
4948 				if (dtrace_priv_proc_destructive(state))
4949 					dtrace_action_stop();
4950 				continue;
4951 
4952 			case DTRACEACT_BREAKPOINT:
4953 				if (dtrace_priv_kernel_destructive(state))
4954 					dtrace_action_breakpoint(ecb);
4955 				continue;
4956 
4957 			case DTRACEACT_PANIC:
4958 				if (dtrace_priv_kernel_destructive(state))
4959 					dtrace_action_panic(ecb);
4960 				continue;
4961 
4962 			case DTRACEACT_STACK:
4963 				if (!dtrace_priv_kernel(state))
4964 					continue;
4965 
4966 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
4967 				    size / sizeof (pc_t), probe->dtpr_aframes,
4968 				    DTRACE_ANCHORED(probe) ? NULL :
4969 				    (uint32_t *)arg0);
4970 
4971 				continue;
4972 
4973 			case DTRACEACT_JSTACK:
4974 			case DTRACEACT_USTACK:
4975 				if (!dtrace_priv_proc(state))
4976 					continue;
4977 
4978 				/*
4979 				 * See comment in DIF_VAR_PID.
4980 				 */
4981 				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
4982 				    CPU_ON_INTR(CPU)) {
4983 					int depth = DTRACE_USTACK_NFRAMES(
4984 					    rec->dtrd_arg) + 1;
4985 
4986 					dtrace_bzero((void *)(tomax + valoffs),
4987 					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
4988 					    + depth * sizeof (uint64_t));
4989 
4990 					continue;
4991 				}
4992 
4993 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
4994 				    curproc->p_dtrace_helpers != NULL) {
4995 					/*
4996 					 * This is the slow path -- we have
4997 					 * allocated string space, and we're
4998 					 * getting the stack of a process that
4999 					 * has helpers.  Call into a separate
5000 					 * routine to perform this processing.
5001 					 */
5002 					dtrace_action_ustack(&mstate, state,
5003 					    (uint64_t *)(tomax + valoffs),
5004 					    rec->dtrd_arg);
5005 					continue;
5006 				}
5007 
5008 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5009 				dtrace_getupcstack((uint64_t *)
5010 				    (tomax + valoffs),
5011 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
5012 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5013 				continue;
5014 
5015 			default:
5016 				break;
5017 			}
5018 
5019 			dp = act->dta_difo;
5020 			ASSERT(dp != NULL);
5021 
5022 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
5023 
5024 			if (*flags & CPU_DTRACE_ERROR)
5025 				continue;
5026 
5027 			switch (act->dta_kind) {
5028 			case DTRACEACT_SPECULATE:
5029 				ASSERT(buf == &state->dts_buffer[cpuid]);
5030 				buf = dtrace_speculation_buffer(state,
5031 				    cpuid, val);
5032 
5033 				if (buf == NULL) {
5034 					*flags |= CPU_DTRACE_DROP;
5035 					continue;
5036 				}
5037 
5038 				offs = dtrace_buffer_reserve(buf,
5039 				    ecb->dte_needed, ecb->dte_alignment,
5040 				    state, NULL);
5041 
5042 				if (offs < 0) {
5043 					*flags |= CPU_DTRACE_DROP;
5044 					continue;
5045 				}
5046 
5047 				tomax = buf->dtb_tomax;
5048 				ASSERT(tomax != NULL);
5049 
5050 				if (ecb->dte_size != 0)
5051 					DTRACE_STORE(uint32_t, tomax, offs,
5052 					    ecb->dte_epid);
5053 				continue;
5054 
5055 			case DTRACEACT_CHILL:
5056 				if (dtrace_priv_kernel_destructive(state))
5057 					dtrace_action_chill(&mstate, val);
5058 				continue;
5059 
5060 			case DTRACEACT_RAISE:
5061 				if (dtrace_priv_proc_destructive(state))
5062 					dtrace_action_raise(val);
5063 				continue;
5064 
5065 			case DTRACEACT_COMMIT:
5066 				ASSERT(!committed);
5067 
5068 				/*
5069 				 * We need to commit our buffer state.
5070 				 */
5071 				if (ecb->dte_size)
5072 					buf->dtb_offset = offs + ecb->dte_size;
5073 				buf = &state->dts_buffer[cpuid];
5074 				dtrace_speculation_commit(state, cpuid, val);
5075 				committed = 1;
5076 				continue;
5077 
5078 			case DTRACEACT_DISCARD:
5079 				dtrace_speculation_discard(state, cpuid, val);
5080 				continue;
5081 
5082 			case DTRACEACT_DIFEXPR:
5083 			case DTRACEACT_LIBACT:
5084 			case DTRACEACT_PRINTF:
5085 			case DTRACEACT_PRINTA:
5086 			case DTRACEACT_SYSTEM:
5087 			case DTRACEACT_FREOPEN:
5088 				break;
5089 
5090 			case DTRACEACT_SYM:
5091 			case DTRACEACT_MOD:
5092 				if (!dtrace_priv_kernel(state))
5093 					continue;
5094 				break;
5095 
5096 			case DTRACEACT_USYM:
5097 			case DTRACEACT_UMOD:
5098 			case DTRACEACT_UADDR: {
5099 				struct pid *pid = curthread->t_procp->p_pidp;
5100 
5101 				if (!dtrace_priv_proc(state))
5102 					continue;
5103 
5104 				DTRACE_STORE(uint64_t, tomax,
5105 				    valoffs, (uint64_t)pid->pid_id);
5106 				DTRACE_STORE(uint64_t, tomax,
5107 				    valoffs + sizeof (uint64_t), val);
5108 
5109 				continue;
5110 			}
5111 
5112 			case DTRACEACT_EXIT: {
5113 				/*
5114 				 * For the exit action, we are going to attempt
5115 				 * to atomically set our activity to be
5116 				 * draining.  If this fails (either because
5117 				 * another CPU has beat us to the exit action,
5118 				 * or because our current activity is something
5119 				 * other than ACTIVE or WARMUP), we will
5120 				 * continue.  This assures that the exit action
5121 				 * can be successfully recorded at most once
5122 				 * when we're in the ACTIVE state.  If we're
5123 				 * encountering the exit() action while in
5124 				 * COOLDOWN, however, we want to honor the new
5125 				 * status code.  (We know that we're the only
5126 				 * thread in COOLDOWN, so there is no race.)
5127 				 */
5128 				void *activity = &state->dts_activity;
5129 				dtrace_activity_t current = state->dts_activity;
5130 
5131 				if (current == DTRACE_ACTIVITY_COOLDOWN)
5132 					break;
5133 
5134 				if (current != DTRACE_ACTIVITY_WARMUP)
5135 					current = DTRACE_ACTIVITY_ACTIVE;
5136 
5137 				if (dtrace_cas32(activity, current,
5138 				    DTRACE_ACTIVITY_DRAINING) != current) {
5139 					*flags |= CPU_DTRACE_DROP;
5140 					continue;
5141 				}
5142 
5143 				break;
5144 			}
5145 
5146 			default:
5147 				ASSERT(0);
5148 			}
5149 
5150 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
5151 				uintptr_t end = valoffs + size;
5152 
5153 				/*
5154 				 * If this is a string, we're going to only
5155 				 * load until we find the zero byte -- after
5156 				 * which we'll store zero bytes.
5157 				 */
5158 				if (dp->dtdo_rtype.dtdt_kind ==
5159 				    DIF_TYPE_STRING) {
5160 					char c = '\0' + 1;
5161 					int intuple = act->dta_intuple;
5162 					size_t s;
5163 
5164 					for (s = 0; s < size; s++) {
5165 						if (c != '\0')
5166 							c = dtrace_load8(val++);
5167 
5168 						DTRACE_STORE(uint8_t, tomax,
5169 						    valoffs++, c);
5170 
5171 						if (c == '\0' && intuple)
5172 							break;
5173 					}
5174 
5175 					continue;
5176 				}
5177 
5178 				while (valoffs < end) {
5179 					DTRACE_STORE(uint8_t, tomax, valoffs++,
5180 					    dtrace_load8(val++));
5181 				}
5182 
5183 				continue;
5184 			}
5185 
5186 			switch (size) {
5187 			case 0:
5188 				break;
5189 
5190 			case sizeof (uint8_t):
5191 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
5192 				break;
5193 			case sizeof (uint16_t):
5194 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
5195 				break;
5196 			case sizeof (uint32_t):
5197 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
5198 				break;
5199 			case sizeof (uint64_t):
5200 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
5201 				break;
5202 			default:
5203 				/*
5204 				 * Any other size should have been returned by
5205 				 * reference, not by value.
5206 				 */
5207 				ASSERT(0);
5208 				break;
5209 			}
5210 		}
5211 
5212 		if (*flags & CPU_DTRACE_DROP)
5213 			continue;
5214 
5215 		if (*flags & CPU_DTRACE_FAULT) {
5216 			int ndx;
5217 			dtrace_action_t *err;
5218 
5219 			buf->dtb_errors++;
5220 
5221 			if (probe->dtpr_id == dtrace_probeid_error) {
5222 				/*
5223 				 * There's nothing we can do -- we had an
5224 				 * error on the error probe.  We bump an
5225 				 * error counter to at least indicate that
5226 				 * this condition happened.
5227 				 */
5228 				dtrace_error(&state->dts_dblerrors);
5229 				continue;
5230 			}
5231 
5232 			if (vtime) {
5233 				/*
5234 				 * Before recursing on dtrace_probe(), we
5235 				 * need to explicitly clear out our start
5236 				 * time to prevent it from being accumulated
5237 				 * into t_dtrace_vtime.
5238 				 */
5239 				curthread->t_dtrace_start = 0;
5240 			}
5241 
5242 			/*
5243 			 * Iterate over the actions to figure out which action
5244 			 * we were processing when we experienced the error.
5245 			 * Note that act points _past_ the faulting action; if
5246 			 * act is ecb->dte_action, the fault was in the
5247 			 * predicate, if it's ecb->dte_action->dta_next it's
5248 			 * in action #1, and so on.
5249 			 */
5250 			for (err = ecb->dte_action, ndx = 0;
5251 			    err != act; err = err->dta_next, ndx++)
5252 				continue;
5253 
5254 			dtrace_probe_error(state, ecb->dte_epid, ndx,
5255 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
5256 			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
5257 			    cpu_core[cpuid].cpuc_dtrace_illval);
5258 
5259 			continue;
5260 		}
5261 
5262 		if (!committed)
5263 			buf->dtb_offset = offs + ecb->dte_size;
5264 	}
5265 
5266 	if (vtime)
5267 		curthread->t_dtrace_start = dtrace_gethrtime();
5268 
5269 	dtrace_interrupt_enable(cookie);
5270 }
5271 
5272 /*
5273  * DTrace Probe Hashing Functions
5274  *
5275  * The functions in this section (and indeed, the functions in remaining
5276  * sections) are not _called_ from probe context.  (Any exceptions to this are
5277  * marked with a "Note:".)  Rather, they are called from elsewhere in the
5278  * DTrace framework to look-up probes in, add probes to and remove probes from
5279  * the DTrace probe hashes.  (Each probe is hashed by each element of the
5280  * probe tuple -- allowing for fast lookups, regardless of what was
5281  * specified.)
5282  */
5283 static uint_t
5284 dtrace_hash_str(char *p)
5285 {
5286 	unsigned int g;
5287 	uint_t hval = 0;
5288 
5289 	while (*p) {
5290 		hval = (hval << 4) + *p++;
5291 		if ((g = (hval & 0xf0000000)) != 0)
5292 			hval ^= g >> 24;
5293 		hval &= ~g;
5294 	}
5295 	return (hval);
5296 }
5297 
5298 static dtrace_hash_t *
5299 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
5300 {
5301 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
5302 
5303 	hash->dth_stroffs = stroffs;
5304 	hash->dth_nextoffs = nextoffs;
5305 	hash->dth_prevoffs = prevoffs;
5306 
5307 	hash->dth_size = 1;
5308 	hash->dth_mask = hash->dth_size - 1;
5309 
5310 	hash->dth_tab = kmem_zalloc(hash->dth_size *
5311 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
5312 
5313 	return (hash);
5314 }
5315 
5316 static void
5317 dtrace_hash_destroy(dtrace_hash_t *hash)
5318 {
5319 #ifdef DEBUG
5320 	int i;
5321 
5322 	for (i = 0; i < hash->dth_size; i++)
5323 		ASSERT(hash->dth_tab[i] == NULL);
5324 #endif
5325 
5326 	kmem_free(hash->dth_tab,
5327 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
5328 	kmem_free(hash, sizeof (dtrace_hash_t));
5329 }
5330 
5331 static void
5332 dtrace_hash_resize(dtrace_hash_t *hash)
5333 {
5334 	int size = hash->dth_size, i, ndx;
5335 	int new_size = hash->dth_size << 1;
5336 	int new_mask = new_size - 1;
5337 	dtrace_hashbucket_t **new_tab, *bucket, *next;
5338 
5339 	ASSERT((new_size & new_mask) == 0);
5340 
5341 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
5342 
5343 	for (i = 0; i < size; i++) {
5344 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
5345 			dtrace_probe_t *probe = bucket->dthb_chain;
5346 
5347 			ASSERT(probe != NULL);
5348 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
5349 
5350 			next = bucket->dthb_next;
5351 			bucket->dthb_next = new_tab[ndx];
5352 			new_tab[ndx] = bucket;
5353 		}
5354 	}
5355 
5356 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
5357 	hash->dth_tab = new_tab;
5358 	hash->dth_size = new_size;
5359 	hash->dth_mask = new_mask;
5360 }
5361 
5362 static void
5363 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
5364 {
5365 	int hashval = DTRACE_HASHSTR(hash, new);
5366 	int ndx = hashval & hash->dth_mask;
5367 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5368 	dtrace_probe_t **nextp, **prevp;
5369 
5370 	for (; bucket != NULL; bucket = bucket->dthb_next) {
5371 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
5372 			goto add;
5373 	}
5374 
5375 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
5376 		dtrace_hash_resize(hash);
5377 		dtrace_hash_add(hash, new);
5378 		return;
5379 	}
5380 
5381 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
5382 	bucket->dthb_next = hash->dth_tab[ndx];
5383 	hash->dth_tab[ndx] = bucket;
5384 	hash->dth_nbuckets++;
5385 
5386 add:
5387 	nextp = DTRACE_HASHNEXT(hash, new);
5388 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
5389 	*nextp = bucket->dthb_chain;
5390 
5391 	if (bucket->dthb_chain != NULL) {
5392 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
5393 		ASSERT(*prevp == NULL);
5394 		*prevp = new;
5395 	}
5396 
5397 	bucket->dthb_chain = new;
5398 	bucket->dthb_len++;
5399 }
5400 
5401 static dtrace_probe_t *
5402 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
5403 {
5404 	int hashval = DTRACE_HASHSTR(hash, template);
5405 	int ndx = hashval & hash->dth_mask;
5406 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5407 
5408 	for (; bucket != NULL; bucket = bucket->dthb_next) {
5409 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
5410 			return (bucket->dthb_chain);
5411 	}
5412 
5413 	return (NULL);
5414 }
5415 
5416 static int
5417 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
5418 {
5419 	int hashval = DTRACE_HASHSTR(hash, template);
5420 	int ndx = hashval & hash->dth_mask;
5421 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5422 
5423 	for (; bucket != NULL; bucket = bucket->dthb_next) {
5424 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
5425 			return (bucket->dthb_len);
5426 	}
5427 
5428 	return (NULL);
5429 }
5430 
5431 static void
5432 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
5433 {
5434 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
5435 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5436 
5437 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
5438 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
5439 
5440 	/*
5441 	 * Find the bucket that we're removing this probe from.
5442 	 */
5443 	for (; bucket != NULL; bucket = bucket->dthb_next) {
5444 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
5445 			break;
5446 	}
5447 
5448 	ASSERT(bucket != NULL);
5449 
5450 	if (*prevp == NULL) {
5451 		if (*nextp == NULL) {
5452 			/*
5453 			 * The removed probe was the only probe on this
5454 			 * bucket; we need to remove the bucket.
5455 			 */
5456 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
5457 
5458 			ASSERT(bucket->dthb_chain == probe);
5459 			ASSERT(b != NULL);
5460 
5461 			if (b == bucket) {
5462 				hash->dth_tab[ndx] = bucket->dthb_next;
5463 			} else {
5464 				while (b->dthb_next != bucket)
5465 					b = b->dthb_next;
5466 				b->dthb_next = bucket->dthb_next;
5467 			}
5468 
5469 			ASSERT(hash->dth_nbuckets > 0);
5470 			hash->dth_nbuckets--;
5471 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
5472 			return;
5473 		}
5474 
5475 		bucket->dthb_chain = *nextp;
5476 	} else {
5477 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
5478 	}
5479 
5480 	if (*nextp != NULL)
5481 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
5482 }
5483 
5484 /*
5485  * DTrace Utility Functions
5486  *
5487  * These are random utility functions that are _not_ called from probe context.
5488  */
5489 static int
5490 dtrace_badattr(const dtrace_attribute_t *a)
5491 {
5492 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
5493 	    a->dtat_data > DTRACE_STABILITY_MAX ||
5494 	    a->dtat_class > DTRACE_CLASS_MAX);
5495 }
5496 
5497 /*
5498  * Return a duplicate copy of a string.  If the specified string is NULL,
5499  * this function returns a zero-length string.
5500  */
5501 static char *
5502 dtrace_strdup(const char *str)
5503 {
5504 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
5505 
5506 	if (str != NULL)
5507 		(void) strcpy(new, str);
5508 
5509 	return (new);
5510 }
5511 
5512 #define	DTRACE_ISALPHA(c)	\
5513 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
5514 
5515 static int
5516 dtrace_badname(const char *s)
5517 {
5518 	char c;
5519 
5520 	if (s == NULL || (c = *s++) == '\0')
5521 		return (0);
5522 
5523 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
5524 		return (1);
5525 
5526 	while ((c = *s++) != '\0') {
5527 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
5528 		    c != '-' && c != '_' && c != '.' && c != '`')
5529 			return (1);
5530 	}
5531 
5532 	return (0);
5533 }
5534 
5535 static void
5536 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
5537 {
5538 	uint32_t priv;
5539 
5540 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
5541 		/*
5542 		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
5543 		 */
5544 		priv = DTRACE_PRIV_ALL;
5545 	} else {
5546 		*uidp = crgetuid(cr);
5547 		*zoneidp = crgetzoneid(cr);
5548 
5549 		priv = 0;
5550 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
5551 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
5552 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
5553 			priv |= DTRACE_PRIV_USER;
5554 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
5555 			priv |= DTRACE_PRIV_PROC;
5556 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
5557 			priv |= DTRACE_PRIV_OWNER;
5558 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
5559 			priv |= DTRACE_PRIV_ZONEOWNER;
5560 	}
5561 
5562 	*privp = priv;
5563 }
5564 
5565 #ifdef DTRACE_ERRDEBUG
5566 static void
5567 dtrace_errdebug(const char *str)
5568 {
5569 	int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ;
5570 	int occupied = 0;
5571 
5572 	mutex_enter(&dtrace_errlock);
5573 	dtrace_errlast = str;
5574 	dtrace_errthread = curthread;
5575 
5576 	while (occupied++ < DTRACE_ERRHASHSZ) {
5577 		if (dtrace_errhash[hval].dter_msg == str) {
5578 			dtrace_errhash[hval].dter_count++;
5579 			goto out;
5580 		}
5581 
5582 		if (dtrace_errhash[hval].dter_msg != NULL) {
5583 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
5584 			continue;
5585 		}
5586 
5587 		dtrace_errhash[hval].dter_msg = str;
5588 		dtrace_errhash[hval].dter_count = 1;
5589 		goto out;
5590 	}
5591 
5592 	panic("dtrace: undersized error hash");
5593 out:
5594 	mutex_exit(&dtrace_errlock);
5595 }
5596 #endif
5597 
5598 /*
5599  * DTrace Matching Functions
5600  *
5601  * These functions are used to match groups of probes, given some elements of
5602  * a probe tuple, or some globbed expressions for elements of a probe tuple.
5603  */
5604 static int
5605 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
5606     zoneid_t zoneid)
5607 {
5608 	if (priv != DTRACE_PRIV_ALL) {
5609 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
5610 		uint32_t match = priv & ppriv;
5611 
5612 		/*
5613 		 * No PRIV_DTRACE_* privileges...
5614 		 */
5615 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
5616 		    DTRACE_PRIV_KERNEL)) == 0)
5617 			return (0);
5618 
5619 		/*
5620 		 * No matching bits, but there were bits to match...
5621 		 */
5622 		if (match == 0 && ppriv != 0)
5623 			return (0);
5624 
5625 		/*
5626 		 * Need to have permissions to the process, but don't...
5627 		 */
5628 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
5629 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
5630 			return (0);
5631 		}
5632 
5633 		/*
5634 		 * Need to be in the same zone unless we possess the
5635 		 * privilege to examine all zones.
5636 		 */
5637 		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
5638 		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
5639 			return (0);
5640 		}
5641 	}
5642 
5643 	return (1);
5644 }
5645 
5646 /*
5647  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
5648  * consists of input pattern strings and an ops-vector to evaluate them.
5649  * This function returns >0 for match, 0 for no match, and <0 for error.
5650  */
5651 static int
5652 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
5653     uint32_t priv, uid_t uid, zoneid_t zoneid)
5654 {
5655 	dtrace_provider_t *pvp = prp->dtpr_provider;
5656 	int rv;
5657 
5658 	if (pvp->dtpv_defunct)
5659 		return (0);
5660 
5661 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
5662 		return (rv);
5663 
5664 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
5665 		return (rv);
5666 
5667 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
5668 		return (rv);
5669 
5670 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
5671 		return (rv);
5672 
5673 	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
5674 		return (0);
5675 
5676 	return (rv);
5677 }
5678 
5679 /*
5680  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
5681  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
5682  * libc's version, the kernel version only applies to 8-bit ASCII strings.
5683  * In addition, all of the recursion cases except for '*' matching have been
5684  * unwound.  For '*', we still implement recursive evaluation, but a depth
5685  * counter is maintained and matching is aborted if we recurse too deep.
5686  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
5687  */
5688 static int
5689 dtrace_match_glob(const char *s, const char *p, int depth)
5690 {
5691 	const char *olds;
5692 	char s1, c;
5693 	int gs;
5694 
5695 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
5696 		return (-1);
5697 
5698 	if (s == NULL)
5699 		s = ""; /* treat NULL as empty string */
5700 
5701 top:
5702 	olds = s;
5703 	s1 = *s++;
5704 
5705 	if (p == NULL)
5706 		return (0);
5707 
5708 	if ((c = *p++) == '\0')
5709 		return (s1 == '\0');
5710 
5711 	switch (c) {
5712 	case '[': {
5713 		int ok = 0, notflag = 0;
5714 		char lc = '\0';
5715 
5716 		if (s1 == '\0')
5717 			return (0);
5718 
5719 		if (*p == '!') {
5720 			notflag = 1;
5721 			p++;
5722 		}
5723 
5724 		if ((c = *p++) == '\0')
5725 			return (0);
5726 
5727 		do {
5728 			if (c == '-' && lc != '\0' && *p != ']') {
5729 				if ((c = *p++) == '\0')
5730 					return (0);
5731 				if (c == '\\' && (c = *p++) == '\0')
5732 					return (0);
5733 
5734 				if (notflag) {
5735 					if (s1 < lc || s1 > c)
5736 						ok++;
5737 					else
5738 						return (0);
5739 				} else if (lc <= s1 && s1 <= c)
5740 					ok++;
5741 
5742 			} else if (c == '\\' && (c = *p++) == '\0')
5743 				return (0);
5744 
5745 			lc = c; /* save left-hand 'c' for next iteration */
5746 
5747 			if (notflag) {
5748 				if (s1 != c)
5749 					ok++;
5750 				else
5751 					return (0);
5752 			} else if (s1 == c)
5753 				ok++;
5754 
5755 			if ((c = *p++) == '\0')
5756 				return (0);
5757 
5758 		} while (c != ']');
5759 
5760 		if (ok)
5761 			goto top;
5762 
5763 		return (0);
5764 	}
5765 
5766 	case '\\':
5767 		if ((c = *p++) == '\0')
5768 			return (0);
5769 		/*FALLTHRU*/
5770 
5771 	default:
5772 		if (c != s1)
5773 			return (0);
5774 		/*FALLTHRU*/
5775 
5776 	case '?':
5777 		if (s1 != '\0')
5778 			goto top;
5779 		return (0);
5780 
5781 	case '*':
5782 		while (*p == '*')
5783 			p++; /* consecutive *'s are identical to a single one */
5784 
5785 		if (*p == '\0')
5786 			return (1);
5787 
5788 		for (s = olds; *s != '\0'; s++) {
5789 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
5790 				return (gs);
5791 		}
5792 
5793 		return (0);
5794 	}
5795 }
5796 
5797 /*ARGSUSED*/
5798 static int
5799 dtrace_match_string(const char *s, const char *p, int depth)
5800 {
5801 	return (s != NULL && strcmp(s, p) == 0);
5802 }
5803 
5804 /*ARGSUSED*/
5805 static int
5806 dtrace_match_nul(const char *s, const char *p, int depth)
5807 {
5808 	return (1); /* always match the empty pattern */
5809 }
5810 
5811 /*ARGSUSED*/
5812 static int
5813 dtrace_match_nonzero(const char *s, const char *p, int depth)
5814 {
5815 	return (s != NULL && s[0] != '\0');
5816 }
5817 
5818 static int
5819 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
5820     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
5821 {
5822 	dtrace_probe_t template, *probe;
5823 	dtrace_hash_t *hash = NULL;
5824 	int len, best = INT_MAX, nmatched = 0;
5825 	dtrace_id_t i;
5826 
5827 	ASSERT(MUTEX_HELD(&dtrace_lock));
5828 
5829 	/*
5830 	 * If the probe ID is specified in the key, just lookup by ID and
5831 	 * invoke the match callback once if a matching probe is found.
5832 	 */
5833 	if (pkp->dtpk_id != DTRACE_IDNONE) {
5834 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
5835 		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
5836 			(void) (*matched)(probe, arg);
5837 			nmatched++;
5838 		}
5839 		return (nmatched);
5840 	}
5841 
5842 	template.dtpr_mod = (char *)pkp->dtpk_mod;
5843 	template.dtpr_func = (char *)pkp->dtpk_func;
5844 	template.dtpr_name = (char *)pkp->dtpk_name;
5845 
5846 	/*
5847 	 * We want to find the most distinct of the module name, function
5848 	 * name, and name.  So for each one that is not a glob pattern or
5849 	 * empty string, we perform a lookup in the corresponding hash and
5850 	 * use the hash table with the fewest collisions to do our search.
5851 	 */
5852 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
5853 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
5854 		best = len;
5855 		hash = dtrace_bymod;
5856 	}
5857 
5858 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
5859 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
5860 		best = len;
5861 		hash = dtrace_byfunc;
5862 	}
5863 
5864 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
5865 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
5866 		best = len;
5867 		hash = dtrace_byname;
5868 	}
5869 
5870 	/*
5871 	 * If we did not select a hash table, iterate over every probe and
5872 	 * invoke our callback for each one that matches our input probe key.
5873 	 */
5874 	if (hash == NULL) {
5875 		for (i = 0; i < dtrace_nprobes; i++) {
5876 			if ((probe = dtrace_probes[i]) == NULL ||
5877 			    dtrace_match_probe(probe, pkp, priv, uid,
5878 			    zoneid) <= 0)
5879 				continue;
5880 
5881 			nmatched++;
5882 
5883 			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
5884 				break;
5885 		}
5886 
5887 		return (nmatched);
5888 	}
5889 
5890 	/*
5891 	 * If we selected a hash table, iterate over each probe of the same key
5892 	 * name and invoke the callback for every probe that matches the other
5893 	 * attributes of our input probe key.
5894 	 */
5895 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
5896 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
5897 
5898 		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
5899 			continue;
5900 
5901 		nmatched++;
5902 
5903 		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
5904 			break;
5905 	}
5906 
5907 	return (nmatched);
5908 }
5909 
5910 /*
5911  * Return the function pointer dtrace_probecmp() should use to compare the
5912  * specified pattern with a string.  For NULL or empty patterns, we select
5913  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
5914  * For non-empty non-glob strings, we use dtrace_match_string().
5915  */
5916 static dtrace_probekey_f *
5917 dtrace_probekey_func(const char *p)
5918 {
5919 	char c;
5920 
5921 	if (p == NULL || *p == '\0')
5922 		return (&dtrace_match_nul);
5923 
5924 	while ((c = *p++) != '\0') {
5925 		if (c == '[' || c == '?' || c == '*' || c == '\\')
5926 			return (&dtrace_match_glob);
5927 	}
5928 
5929 	return (&dtrace_match_string);
5930 }
5931 
5932 /*
5933  * Build a probe comparison key for use with dtrace_match_probe() from the
5934  * given probe description.  By convention, a null key only matches anchored
5935  * probes: if each field is the empty string, reset dtpk_fmatch to
5936  * dtrace_match_nonzero().
5937  */
5938 static void
5939 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
5940 {
5941 	pkp->dtpk_prov = pdp->dtpd_provider;
5942 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
5943 
5944 	pkp->dtpk_mod = pdp->dtpd_mod;
5945 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
5946 
5947 	pkp->dtpk_func = pdp->dtpd_func;
5948 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
5949 
5950 	pkp->dtpk_name = pdp->dtpd_name;
5951 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
5952 
5953 	pkp->dtpk_id = pdp->dtpd_id;
5954 
5955 	if (pkp->dtpk_id == DTRACE_IDNONE &&
5956 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
5957 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
5958 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
5959 	    pkp->dtpk_nmatch == &dtrace_match_nul)
5960 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
5961 }
5962 
5963 /*
5964  * DTrace Provider-to-Framework API Functions
5965  *
5966  * These functions implement much of the Provider-to-Framework API, as
5967  * described in <sys/dtrace.h>.  The parts of the API not in this section are
5968  * the functions in the API for probe management (found below), and
5969  * dtrace_probe() itself (found above).
5970  */
5971 
5972 /*
5973  * Register the calling provider with the DTrace framework.  This should
5974  * generally be called by DTrace providers in their attach(9E) entry point.
5975  */
5976 int
5977 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
5978     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
5979 {
5980 	dtrace_provider_t *provider;
5981 
5982 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
5983 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
5984 		    "arguments", name ? name : "<NULL>");
5985 		return (EINVAL);
5986 	}
5987 
5988 	if (name[0] == '\0' || dtrace_badname(name)) {
5989 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
5990 		    "provider name", name);
5991 		return (EINVAL);
5992 	}
5993 
5994 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
5995 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
5996 	    pops->dtps_destroy == NULL ||
5997 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
5998 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
5999 		    "provider ops", name);
6000 		return (EINVAL);
6001 	}
6002 
6003 	if (dtrace_badattr(&pap->dtpa_provider) ||
6004 	    dtrace_badattr(&pap->dtpa_mod) ||
6005 	    dtrace_badattr(&pap->dtpa_func) ||
6006 	    dtrace_badattr(&pap->dtpa_name) ||
6007 	    dtrace_badattr(&pap->dtpa_args)) {
6008 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6009 		    "provider attributes", name);
6010 		return (EINVAL);
6011 	}
6012 
6013 	if (priv & ~DTRACE_PRIV_ALL) {
6014 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
6015 		    "privilege attributes", name);
6016 		return (EINVAL);
6017 	}
6018 
6019 	if ((priv & DTRACE_PRIV_KERNEL) &&
6020 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
6021 	    pops->dtps_usermode == NULL) {
6022 		cmn_err(CE_WARN, "failed to register provider '%s': need "
6023 		    "dtps_usermode() op for given privilege attributes", name);
6024 		return (EINVAL);
6025 	}
6026 
6027 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
6028 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
6029 	(void) strcpy(provider->dtpv_name, name);
6030 
6031 	provider->dtpv_attr = *pap;
6032 	provider->dtpv_priv.dtpp_flags = priv;
6033 	if (cr != NULL) {
6034 		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
6035 		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
6036 	}
6037 	provider->dtpv_pops = *pops;
6038 
6039 	if (pops->dtps_provide == NULL) {
6040 		ASSERT(pops->dtps_provide_module != NULL);
6041 		provider->dtpv_pops.dtps_provide =
6042 		    (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
6043 	}
6044 
6045 	if (pops->dtps_provide_module == NULL) {
6046 		ASSERT(pops->dtps_provide != NULL);
6047 		provider->dtpv_pops.dtps_provide_module =
6048 		    (void (*)(void *, struct modctl *))dtrace_nullop;
6049 	}
6050 
6051 	if (pops->dtps_suspend == NULL) {
6052 		ASSERT(pops->dtps_resume == NULL);
6053 		provider->dtpv_pops.dtps_suspend =
6054 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
6055 		provider->dtpv_pops.dtps_resume =
6056 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
6057 	}
6058 
6059 	provider->dtpv_arg = arg;
6060 	*idp = (dtrace_provider_id_t)provider;
6061 
6062 	if (pops == &dtrace_provider_ops) {
6063 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
6064 		ASSERT(MUTEX_HELD(&dtrace_lock));
6065 		ASSERT(dtrace_anon.dta_enabling == NULL);
6066 
6067 		/*
6068 		 * We make sure that the DTrace provider is at the head of
6069 		 * the provider chain.
6070 		 */
6071 		provider->dtpv_next = dtrace_provider;
6072 		dtrace_provider = provider;
6073 		return (0);
6074 	}
6075 
6076 	mutex_enter(&dtrace_provider_lock);
6077 	mutex_enter(&dtrace_lock);
6078 
6079 	/*
6080 	 * If there is at least one provider registered, we'll add this
6081 	 * provider after the first provider.
6082 	 */
6083 	if (dtrace_provider != NULL) {
6084 		provider->dtpv_next = dtrace_provider->dtpv_next;
6085 		dtrace_provider->dtpv_next = provider;
6086 	} else {
6087 		dtrace_provider = provider;
6088 	}
6089 
6090 	if (dtrace_retained != NULL) {
6091 		dtrace_enabling_provide(provider);
6092 
6093 		/*
6094 		 * Now we need to call dtrace_enabling_matchall() -- which
6095 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
6096 		 * to drop all of our locks before calling into it...
6097 		 */
6098 		mutex_exit(&dtrace_lock);
6099 		mutex_exit(&dtrace_provider_lock);
6100 		dtrace_enabling_matchall();
6101 
6102 		return (0);
6103 	}
6104 
6105 	mutex_exit(&dtrace_lock);
6106 	mutex_exit(&dtrace_provider_lock);
6107 
6108 	return (0);
6109 }
6110 
6111 /*
6112  * Unregister the specified provider from the DTrace framework.  This should
6113  * generally be called by DTrace providers in their detach(9E) entry point.
6114  */
6115 int
6116 dtrace_unregister(dtrace_provider_id_t id)
6117 {
6118 	dtrace_provider_t *old = (dtrace_provider_t *)id;
6119 	dtrace_provider_t *prev = NULL;
6120 	int i, self = 0;
6121 	dtrace_probe_t *probe, *first = NULL;
6122 
6123 	if (old->dtpv_pops.dtps_enable ==
6124 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
6125 		/*
6126 		 * If DTrace itself is the provider, we're called with locks
6127 		 * already held.
6128 		 */
6129 		ASSERT(old == dtrace_provider);
6130 		ASSERT(dtrace_devi != NULL);
6131 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
6132 		ASSERT(MUTEX_HELD(&dtrace_lock));
6133 		self = 1;
6134 
6135 		if (dtrace_provider->dtpv_next != NULL) {
6136 			/*
6137 			 * There's another provider here; return failure.
6138 			 */
6139 			return (EBUSY);
6140 		}
6141 	} else {
6142 		mutex_enter(&dtrace_provider_lock);
6143 		mutex_enter(&mod_lock);
6144 		mutex_enter(&dtrace_lock);
6145 	}
6146 
6147 	/*
6148 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
6149 	 * probes, we refuse to let providers slither away, unless this
6150 	 * provider has already been explicitly invalidated.
6151 	 */
6152 	if (!old->dtpv_defunct &&
6153 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
6154 	    dtrace_anon.dta_state->dts_necbs > 0))) {
6155 		if (!self) {
6156 			mutex_exit(&dtrace_lock);
6157 			mutex_exit(&mod_lock);
6158 			mutex_exit(&dtrace_provider_lock);
6159 		}
6160 		return (EBUSY);
6161 	}
6162 
6163 	/*
6164 	 * Attempt to destroy the probes associated with this provider.
6165 	 */
6166 	for (i = 0; i < dtrace_nprobes; i++) {
6167 		if ((probe = dtrace_probes[i]) == NULL)
6168 			continue;
6169 
6170 		if (probe->dtpr_provider != old)
6171 			continue;
6172 
6173 		if (probe->dtpr_ecb == NULL)
6174 			continue;
6175 
6176 		/*
6177 		 * We have at least one ECB; we can't remove this provider.
6178 		 */
6179 		if (!self) {
6180 			mutex_exit(&dtrace_lock);
6181 			mutex_exit(&mod_lock);
6182 			mutex_exit(&dtrace_provider_lock);
6183 		}
6184 		return (EBUSY);
6185 	}
6186 
6187 	/*
6188 	 * All of the probes for this provider are disabled; we can safely
6189 	 * remove all of them from their hash chains and from the probe array.
6190 	 */
6191 	for (i = 0; i < dtrace_nprobes; i++) {
6192 		if ((probe = dtrace_probes[i]) == NULL)
6193 			continue;
6194 
6195 		if (probe->dtpr_provider != old)
6196 			continue;
6197 
6198 		dtrace_probes[i] = NULL;
6199 
6200 		dtrace_hash_remove(dtrace_bymod, probe);
6201 		dtrace_hash_remove(dtrace_byfunc, probe);
6202 		dtrace_hash_remove(dtrace_byname, probe);
6203 
6204 		if (first == NULL) {
6205 			first = probe;
6206 			probe->dtpr_nextmod = NULL;
6207 		} else {
6208 			probe->dtpr_nextmod = first;
6209 			first = probe;
6210 		}
6211 	}
6212 
6213 	/*
6214 	 * The provider's probes have been removed from the hash chains and
6215 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
6216 	 * everyone has cleared out from any probe array processing.
6217 	 */
6218 	dtrace_sync();
6219 
6220 	for (probe = first; probe != NULL; probe = first) {
6221 		first = probe->dtpr_nextmod;
6222 
6223 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
6224 		    probe->dtpr_arg);
6225 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
6226 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
6227 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
6228 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
6229 		kmem_free(probe, sizeof (dtrace_probe_t));
6230 	}
6231 
6232 	if ((prev = dtrace_provider) == old) {
6233 		ASSERT(self || dtrace_devi == NULL);
6234 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
6235 		dtrace_provider = old->dtpv_next;
6236 	} else {
6237 		while (prev != NULL && prev->dtpv_next != old)
6238 			prev = prev->dtpv_next;
6239 
6240 		if (prev == NULL) {
6241 			panic("attempt to unregister non-existent "
6242 			    "dtrace provider %p\n", (void *)id);
6243 		}
6244 
6245 		prev->dtpv_next = old->dtpv_next;
6246 	}
6247 
6248 	if (!self) {
6249 		mutex_exit(&dtrace_lock);
6250 		mutex_exit(&mod_lock);
6251 		mutex_exit(&dtrace_provider_lock);
6252 	}
6253 
6254 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
6255 	kmem_free(old, sizeof (dtrace_provider_t));
6256 
6257 	return (0);
6258 }
6259 
6260 /*
6261  * Invalidate the specified provider.  All subsequent probe lookups for the
6262  * specified provider will fail, but its probes will not be removed.
6263  */
6264 void
6265 dtrace_invalidate(dtrace_provider_id_t id)
6266 {
6267 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
6268 
6269 	ASSERT(pvp->dtpv_pops.dtps_enable !=
6270 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
6271 
6272 	mutex_enter(&dtrace_provider_lock);
6273 	mutex_enter(&dtrace_lock);
6274 
6275 	pvp->dtpv_defunct = 1;
6276 
6277 	mutex_exit(&dtrace_lock);
6278 	mutex_exit(&dtrace_provider_lock);
6279 }
6280 
6281 /*
6282  * Indicate whether or not DTrace has attached.
6283  */
6284 int
6285 dtrace_attached(void)
6286 {
6287 	/*
6288 	 * dtrace_provider will be non-NULL iff the DTrace driver has
6289 	 * attached.  (It's non-NULL because DTrace is always itself a
6290 	 * provider.)
6291 	 */
6292 	return (dtrace_provider != NULL);
6293 }
6294 
6295 /*
6296  * Remove all the unenabled probes for the given provider.  This function is
6297  * not unlike dtrace_unregister(), except that it doesn't remove the provider
6298  * -- just as many of its associated probes as it can.
6299  */
6300 int
6301 dtrace_condense(dtrace_provider_id_t id)
6302 {
6303 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
6304 	int i;
6305 	dtrace_probe_t *probe;
6306 
6307 	/*
6308 	 * Make sure this isn't the dtrace provider itself.
6309 	 */
6310 	ASSERT(prov->dtpv_pops.dtps_enable !=
6311 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
6312 
6313 	mutex_enter(&dtrace_provider_lock);
6314 	mutex_enter(&dtrace_lock);
6315 
6316 	/*
6317 	 * Attempt to destroy the probes associated with this provider.
6318 	 */
6319 	for (i = 0; i < dtrace_nprobes; i++) {
6320 		if ((probe = dtrace_probes[i]) == NULL)
6321 			continue;
6322 
6323 		if (probe->dtpr_provider != prov)
6324 			continue;
6325 
6326 		if (probe->dtpr_ecb != NULL)
6327 			continue;
6328 
6329 		dtrace_probes[i] = NULL;
6330 
6331 		dtrace_hash_remove(dtrace_bymod, probe);
6332 		dtrace_hash_remove(dtrace_byfunc, probe);
6333 		dtrace_hash_remove(dtrace_byname, probe);
6334 
6335 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
6336 		    probe->dtpr_arg);
6337 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
6338 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
6339 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
6340 		kmem_free(probe, sizeof (dtrace_probe_t));
6341 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
6342 	}
6343 
6344 	mutex_exit(&dtrace_lock);
6345 	mutex_exit(&dtrace_provider_lock);
6346 
6347 	return (0);
6348 }
6349 
6350 /*
6351  * DTrace Probe Management Functions
6352  *
6353  * The functions in this section perform the DTrace probe management,
6354  * including functions to create probes, look-up probes, and call into the
6355  * providers to request that probes be provided.  Some of these functions are
6356  * in the Provider-to-Framework API; these functions can be identified by the
6357  * fact that they are not declared "static".
6358  */
6359 
6360 /*
6361  * Create a probe with the specified module name, function name, and name.
6362  */
6363 dtrace_id_t
6364 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
6365     const char *func, const char *name, int aframes, void *arg)
6366 {
6367 	dtrace_probe_t *probe, **probes;
6368 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
6369 	dtrace_id_t id;
6370 
6371 	if (provider == dtrace_provider) {
6372 		ASSERT(MUTEX_HELD(&dtrace_lock));
6373 	} else {
6374 		mutex_enter(&dtrace_lock);
6375 	}
6376 
6377 	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
6378 	    VM_BESTFIT | VM_SLEEP);
6379 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
6380 
6381 	probe->dtpr_id = id;
6382 	probe->dtpr_gen = dtrace_probegen++;
6383 	probe->dtpr_mod = dtrace_strdup(mod);
6384 	probe->dtpr_func = dtrace_strdup(func);
6385 	probe->dtpr_name = dtrace_strdup(name);
6386 	probe->dtpr_arg = arg;
6387 	probe->dtpr_aframes = aframes;
6388 	probe->dtpr_provider = provider;
6389 
6390 	dtrace_hash_add(dtrace_bymod, probe);
6391 	dtrace_hash_add(dtrace_byfunc, probe);
6392 	dtrace_hash_add(dtrace_byname, probe);
6393 
6394 	if (id - 1 >= dtrace_nprobes) {
6395 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
6396 		size_t nsize = osize << 1;
6397 
6398 		if (nsize == 0) {
6399 			ASSERT(osize == 0);
6400 			ASSERT(dtrace_probes == NULL);
6401 			nsize = sizeof (dtrace_probe_t *);
6402 		}
6403 
6404 		probes = kmem_zalloc(nsize, KM_SLEEP);
6405 
6406 		if (dtrace_probes == NULL) {
6407 			ASSERT(osize == 0);
6408 			dtrace_probes = probes;
6409 			dtrace_nprobes = 1;
6410 		} else {
6411 			dtrace_probe_t **oprobes = dtrace_probes;
6412 
6413 			bcopy(oprobes, probes, osize);
6414 			dtrace_membar_producer();
6415 			dtrace_probes = probes;
6416 
6417 			dtrace_sync();
6418 
6419 			/*
6420 			 * All CPUs are now seeing the new probes array; we can
6421 			 * safely free the old array.
6422 			 */
6423 			kmem_free(oprobes, osize);
6424 			dtrace_nprobes <<= 1;
6425 		}
6426 
6427 		ASSERT(id - 1 < dtrace_nprobes);
6428 	}
6429 
6430 	ASSERT(dtrace_probes[id - 1] == NULL);
6431 	dtrace_probes[id - 1] = probe;
6432 
6433 	if (provider != dtrace_provider)
6434 		mutex_exit(&dtrace_lock);
6435 
6436 	return (id);
6437 }
6438 
6439 static dtrace_probe_t *
6440 dtrace_probe_lookup_id(dtrace_id_t id)
6441 {
6442 	ASSERT(MUTEX_HELD(&dtrace_lock));
6443 
6444 	if (id == 0 || id > dtrace_nprobes)
6445 		return (NULL);
6446 
6447 	return (dtrace_probes[id - 1]);
6448 }
6449 
6450 static int
6451 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
6452 {
6453 	*((dtrace_id_t *)arg) = probe->dtpr_id;
6454 
6455 	return (DTRACE_MATCH_DONE);
6456 }
6457 
6458 /*
6459  * Look up a probe based on provider and one or more of module name, function
6460  * name and probe name.
6461  */
6462 dtrace_id_t
6463 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
6464     const char *func, const char *name)
6465 {
6466 	dtrace_probekey_t pkey;
6467 	dtrace_id_t id;
6468 	int match;
6469 
6470 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
6471 	pkey.dtpk_pmatch = &dtrace_match_string;
6472 	pkey.dtpk_mod = mod;
6473 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
6474 	pkey.dtpk_func = func;
6475 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
6476 	pkey.dtpk_name = name;
6477 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
6478 	pkey.dtpk_id = DTRACE_IDNONE;
6479 
6480 	mutex_enter(&dtrace_lock);
6481 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
6482 	    dtrace_probe_lookup_match, &id);
6483 	mutex_exit(&dtrace_lock);
6484 
6485 	ASSERT(match == 1 || match == 0);
6486 	return (match ? id : 0);
6487 }
6488 
6489 /*
6490  * Returns the probe argument associated with the specified probe.
6491  */
6492 void *
6493 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
6494 {
6495 	dtrace_probe_t *probe;
6496 	void *rval = NULL;
6497 
6498 	mutex_enter(&dtrace_lock);
6499 
6500 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
6501 	    probe->dtpr_provider == (dtrace_provider_t *)id)
6502 		rval = probe->dtpr_arg;
6503 
6504 	mutex_exit(&dtrace_lock);
6505 
6506 	return (rval);
6507 }
6508 
6509 /*
6510  * Copy a probe into a probe description.
6511  */
6512 static void
6513 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
6514 {
6515 	bzero(pdp, sizeof (dtrace_probedesc_t));
6516 	pdp->dtpd_id = prp->dtpr_id;
6517 
6518 	(void) strncpy(pdp->dtpd_provider,
6519 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
6520 
6521 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
6522 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
6523 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
6524 }
6525 
6526 /*
6527  * Called to indicate that a probe -- or probes -- should be provided by a
6528  * specfied provider.  If the specified description is NULL, the provider will
6529  * be told to provide all of its probes.  (This is done whenever a new
6530  * consumer comes along, or whenever a retained enabling is to be matched.) If
6531  * the specified description is non-NULL, the provider is given the
6532  * opportunity to dynamically provide the specified probe, allowing providers
6533  * to support the creation of probes on-the-fly.  (So-called _autocreated_
6534  * probes.)  If the provider is NULL, the operations will be applied to all
6535  * providers; if the provider is non-NULL the operations will only be applied
6536  * to the specified provider.  The dtrace_provider_lock must be held, and the
6537  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
6538  * will need to grab the dtrace_lock when it reenters the framework through
6539  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
6540  */
6541 static void
6542 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
6543 {
6544 	struct modctl *ctl;
6545 	int all = 0;
6546 
6547 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
6548 
6549 	if (prv == NULL) {
6550 		all = 1;
6551 		prv = dtrace_provider;
6552 	}
6553 
6554 	do {
6555 		/*
6556 		 * First, call the blanket provide operation.
6557 		 */
6558 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
6559 
6560 		/*
6561 		 * Now call the per-module provide operation.  We will grab
6562 		 * mod_lock to prevent the list from being modified.  Note
6563 		 * that this also prevents the mod_busy bits from changing.
6564 		 * (mod_busy can only be changed with mod_lock held.)
6565 		 */
6566 		mutex_enter(&mod_lock);
6567 
6568 		ctl = &modules;
6569 		do {
6570 			if (ctl->mod_busy || ctl->mod_mp == NULL)
6571 				continue;
6572 
6573 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
6574 
6575 		} while ((ctl = ctl->mod_next) != &modules);
6576 
6577 		mutex_exit(&mod_lock);
6578 	} while (all && (prv = prv->dtpv_next) != NULL);
6579 }
6580 
6581 /*
6582  * Iterate over each probe, and call the Framework-to-Provider API function
6583  * denoted by offs.
6584  */
6585 static void
6586 dtrace_probe_foreach(uintptr_t offs)
6587 {
6588 	dtrace_provider_t *prov;
6589 	void (*func)(void *, dtrace_id_t, void *);
6590 	dtrace_probe_t *probe;
6591 	dtrace_icookie_t cookie;
6592 	int i;
6593 
6594 	/*
6595 	 * We disable interrupts to walk through the probe array.  This is
6596 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
6597 	 * won't see stale data.
6598 	 */
6599 	cookie = dtrace_interrupt_disable();
6600 
6601 	for (i = 0; i < dtrace_nprobes; i++) {
6602 		if ((probe = dtrace_probes[i]) == NULL)
6603 			continue;
6604 
6605 		if (probe->dtpr_ecb == NULL) {
6606 			/*
6607 			 * This probe isn't enabled -- don't call the function.
6608 			 */
6609 			continue;
6610 		}
6611 
6612 		prov = probe->dtpr_provider;
6613 		func = *((void(**)(void *, dtrace_id_t, void *))
6614 		    ((uintptr_t)&prov->dtpv_pops + offs));
6615 
6616 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
6617 	}
6618 
6619 	dtrace_interrupt_enable(cookie);
6620 }
6621 
6622 static int
6623 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
6624 {
6625 	dtrace_probekey_t pkey;
6626 	uint32_t priv;
6627 	uid_t uid;
6628 	zoneid_t zoneid;
6629 
6630 	ASSERT(MUTEX_HELD(&dtrace_lock));
6631 	dtrace_ecb_create_cache = NULL;
6632 
6633 	if (desc == NULL) {
6634 		/*
6635 		 * If we're passed a NULL description, we're being asked to
6636 		 * create an ECB with a NULL probe.
6637 		 */
6638 		(void) dtrace_ecb_create_enable(NULL, enab);
6639 		return (0);
6640 	}
6641 
6642 	dtrace_probekey(desc, &pkey);
6643 	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
6644 	    &priv, &uid, &zoneid);
6645 
6646 	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
6647 	    enab));
6648 }
6649 
6650 /*
6651  * DTrace Helper Provider Functions
6652  */
6653 static void
6654 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
6655 {
6656 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
6657 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
6658 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
6659 }
6660 
6661 static void
6662 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
6663     const dof_provider_t *dofprov, char *strtab)
6664 {
6665 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
6666 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
6667 	    dofprov->dofpv_provattr);
6668 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
6669 	    dofprov->dofpv_modattr);
6670 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
6671 	    dofprov->dofpv_funcattr);
6672 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
6673 	    dofprov->dofpv_nameattr);
6674 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
6675 	    dofprov->dofpv_argsattr);
6676 }
6677 
6678 static void
6679 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
6680 {
6681 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
6682 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
6683 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
6684 	dof_provider_t *provider;
6685 	dof_probe_t *probe;
6686 	uint32_t *off, *enoff;
6687 	uint8_t *arg;
6688 	char *strtab;
6689 	uint_t i, nprobes;
6690 	dtrace_helper_provdesc_t dhpv;
6691 	dtrace_helper_probedesc_t dhpb;
6692 	dtrace_meta_t *meta = dtrace_meta_pid;
6693 	dtrace_mops_t *mops = &meta->dtm_mops;
6694 	void *parg;
6695 
6696 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
6697 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
6698 	    provider->dofpv_strtab * dof->dofh_secsize);
6699 	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
6700 	    provider->dofpv_probes * dof->dofh_secsize);
6701 	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
6702 	    provider->dofpv_prargs * dof->dofh_secsize);
6703 	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
6704 	    provider->dofpv_proffs * dof->dofh_secsize);
6705 
6706 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
6707 	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
6708 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
6709 	enoff = NULL;
6710 
6711 	/*
6712 	 * See dtrace_helper_provider_validate().
6713 	 */
6714 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
6715 	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
6716 		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
6717 		    provider->dofpv_prenoffs * dof->dofh_secsize);
6718 		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
6719 	}
6720 
6721 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
6722 
6723 	/*
6724 	 * Create the provider.
6725 	 */
6726 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
6727 
6728 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
6729 		return;
6730 
6731 	meta->dtm_count++;
6732 
6733 	/*
6734 	 * Create the probes.
6735 	 */
6736 	for (i = 0; i < nprobes; i++) {
6737 		probe = (dof_probe_t *)(uintptr_t)(daddr +
6738 		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
6739 
6740 		dhpb.dthpb_mod = dhp->dofhp_mod;
6741 		dhpb.dthpb_func = strtab + probe->dofpr_func;
6742 		dhpb.dthpb_name = strtab + probe->dofpr_name;
6743 		dhpb.dthpb_base = probe->dofpr_addr;
6744 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
6745 		dhpb.dthpb_noffs = probe->dofpr_noffs;
6746 		if (enoff != NULL) {
6747 			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
6748 			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
6749 		} else {
6750 			dhpb.dthpb_enoffs = NULL;
6751 			dhpb.dthpb_nenoffs = 0;
6752 		}
6753 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
6754 		dhpb.dthpb_nargc = probe->dofpr_nargc;
6755 		dhpb.dthpb_xargc = probe->dofpr_xargc;
6756 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
6757 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
6758 
6759 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
6760 	}
6761 }
6762 
6763 static void
6764 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
6765 {
6766 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
6767 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
6768 	int i;
6769 
6770 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
6771 
6772 	for (i = 0; i < dof->dofh_secnum; i++) {
6773 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
6774 		    dof->dofh_secoff + i * dof->dofh_secsize);
6775 
6776 		if (sec->dofs_type != DOF_SECT_PROVIDER)
6777 			continue;
6778 
6779 		dtrace_helper_provide_one(dhp, sec, pid);
6780 	}
6781 
6782 	/*
6783 	 * We may have just created probes, so we must now rematch against
6784 	 * any retained enablings.  Note that this call will acquire both
6785 	 * cpu_lock and dtrace_lock; the fact that we are holding
6786 	 * dtrace_meta_lock now is what defines the ordering with respect to
6787 	 * these three locks.
6788 	 */
6789 	dtrace_enabling_matchall();
6790 }
6791 
6792 static void
6793 dtrace_helper_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
6794 {
6795 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
6796 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
6797 	dof_sec_t *str_sec;
6798 	dof_provider_t *provider;
6799 	char *strtab;
6800 	dtrace_helper_provdesc_t dhpv;
6801 	dtrace_meta_t *meta = dtrace_meta_pid;
6802 	dtrace_mops_t *mops = &meta->dtm_mops;
6803 
6804 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
6805 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
6806 	    provider->dofpv_strtab * dof->dofh_secsize);
6807 
6808 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
6809 
6810 	/*
6811 	 * Create the provider.
6812 	 */
6813 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
6814 
6815 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
6816 
6817 	meta->dtm_count--;
6818 }
6819 
6820 static void
6821 dtrace_helper_remove(dof_helper_t *dhp, pid_t pid)
6822 {
6823 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
6824 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
6825 	int i;
6826 
6827 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
6828 
6829 	for (i = 0; i < dof->dofh_secnum; i++) {
6830 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
6831 		    dof->dofh_secoff + i * dof->dofh_secsize);
6832 
6833 		if (sec->dofs_type != DOF_SECT_PROVIDER)
6834 			continue;
6835 
6836 		dtrace_helper_remove_one(dhp, sec, pid);
6837 	}
6838 }
6839 
6840 /*
6841  * DTrace Meta Provider-to-Framework API Functions
6842  *
6843  * These functions implement the Meta Provider-to-Framework API, as described
6844  * in <sys/dtrace.h>.
6845  */
6846 int
6847 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
6848     dtrace_meta_provider_id_t *idp)
6849 {
6850 	dtrace_meta_t *meta;
6851 	dtrace_helpers_t *help, *next;
6852 	int i;
6853 
6854 	*idp = DTRACE_METAPROVNONE;
6855 
6856 	/*
6857 	 * We strictly don't need the name, but we hold onto it for
6858 	 * debuggability. All hail error queues!
6859 	 */
6860 	if (name == NULL) {
6861 		cmn_err(CE_WARN, "failed to register meta-provider: "
6862 		    "invalid name");
6863 		return (EINVAL);
6864 	}
6865 
6866 	if (mops == NULL ||
6867 	    mops->dtms_create_probe == NULL ||
6868 	    mops->dtms_provide_pid == NULL ||
6869 	    mops->dtms_remove_pid == NULL) {
6870 		cmn_err(CE_WARN, "failed to register meta-register %s: "
6871 		    "invalid ops", name);
6872 		return (EINVAL);
6873 	}
6874 
6875 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
6876 	meta->dtm_mops = *mops;
6877 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
6878 	(void) strcpy(meta->dtm_name, name);
6879 	meta->dtm_arg = arg;
6880 
6881 	mutex_enter(&dtrace_meta_lock);
6882 	mutex_enter(&dtrace_lock);
6883 
6884 	if (dtrace_meta_pid != NULL) {
6885 		mutex_exit(&dtrace_lock);
6886 		mutex_exit(&dtrace_meta_lock);
6887 		cmn_err(CE_WARN, "failed to register meta-register %s: "
6888 		    "user-land meta-provider exists", name);
6889 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
6890 		kmem_free(meta, sizeof (dtrace_meta_t));
6891 		return (EINVAL);
6892 	}
6893 
6894 	dtrace_meta_pid = meta;
6895 	*idp = (dtrace_meta_provider_id_t)meta;
6896 
6897 	/*
6898 	 * If there are providers and probes ready to go, pass them
6899 	 * off to the new meta provider now.
6900 	 */
6901 
6902 	help = dtrace_deferred_pid;
6903 	dtrace_deferred_pid = NULL;
6904 
6905 	mutex_exit(&dtrace_lock);
6906 
6907 	while (help != NULL) {
6908 		for (i = 0; i < help->dthps_nprovs; i++) {
6909 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
6910 			    help->dthps_pid);
6911 		}
6912 
6913 		next = help->dthps_next;
6914 		help->dthps_next = NULL;
6915 		help->dthps_prev = NULL;
6916 		help->dthps_deferred = 0;
6917 		help = next;
6918 	}
6919 
6920 	mutex_exit(&dtrace_meta_lock);
6921 
6922 	return (0);
6923 }
6924 
6925 int
6926 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
6927 {
6928 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
6929 
6930 	mutex_enter(&dtrace_meta_lock);
6931 	mutex_enter(&dtrace_lock);
6932 
6933 	if (old == dtrace_meta_pid) {
6934 		pp = &dtrace_meta_pid;
6935 	} else {
6936 		panic("attempt to unregister non-existent "
6937 		    "dtrace meta-provider %p\n", (void *)old);
6938 	}
6939 
6940 	if (old->dtm_count != 0) {
6941 		mutex_exit(&dtrace_lock);
6942 		mutex_exit(&dtrace_meta_lock);
6943 		return (EBUSY);
6944 	}
6945 
6946 	*pp = NULL;
6947 
6948 	mutex_exit(&dtrace_lock);
6949 	mutex_exit(&dtrace_meta_lock);
6950 
6951 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
6952 	kmem_free(old, sizeof (dtrace_meta_t));
6953 
6954 	return (0);
6955 }
6956 
6957 
6958 /*
6959  * DTrace DIF Object Functions
6960  */
6961 static int
6962 dtrace_difo_err(uint_t pc, const char *format, ...)
6963 {
6964 	if (dtrace_err_verbose) {
6965 		va_list alist;
6966 
6967 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
6968 		va_start(alist, format);
6969 		(void) vuprintf(format, alist);
6970 		va_end(alist);
6971 	}
6972 
6973 #ifdef DTRACE_ERRDEBUG
6974 	dtrace_errdebug(format);
6975 #endif
6976 	return (1);
6977 }
6978 
6979 /*
6980  * Validate a DTrace DIF object by checking the IR instructions.  The following
6981  * rules are currently enforced by dtrace_difo_validate():
6982  *
6983  * 1. Each instruction must have a valid opcode
6984  * 2. Each register, string, variable, or subroutine reference must be valid
6985  * 3. No instruction can modify register %r0 (must be zero)
6986  * 4. All instruction reserved bits must be set to zero
6987  * 5. The last instruction must be a "ret" instruction
6988  * 6. All branch targets must reference a valid instruction _after_ the branch
6989  */
6990 static int
6991 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
6992     cred_t *cr)
6993 {
6994 	int err = 0, i;
6995 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
6996 	int kcheck;
6997 	uint_t pc;
6998 
6999 	kcheck = cr == NULL ||
7000 	    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE) == 0;
7001 
7002 	dp->dtdo_destructive = 0;
7003 
7004 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
7005 		dif_instr_t instr = dp->dtdo_buf[pc];
7006 
7007 		uint_t r1 = DIF_INSTR_R1(instr);
7008 		uint_t r2 = DIF_INSTR_R2(instr);
7009 		uint_t rd = DIF_INSTR_RD(instr);
7010 		uint_t rs = DIF_INSTR_RS(instr);
7011 		uint_t label = DIF_INSTR_LABEL(instr);
7012 		uint_t v = DIF_INSTR_VAR(instr);
7013 		uint_t subr = DIF_INSTR_SUBR(instr);
7014 		uint_t type = DIF_INSTR_TYPE(instr);
7015 		uint_t op = DIF_INSTR_OP(instr);
7016 
7017 		switch (op) {
7018 		case DIF_OP_OR:
7019 		case DIF_OP_XOR:
7020 		case DIF_OP_AND:
7021 		case DIF_OP_SLL:
7022 		case DIF_OP_SRL:
7023 		case DIF_OP_SRA:
7024 		case DIF_OP_SUB:
7025 		case DIF_OP_ADD:
7026 		case DIF_OP_MUL:
7027 		case DIF_OP_SDIV:
7028 		case DIF_OP_UDIV:
7029 		case DIF_OP_SREM:
7030 		case DIF_OP_UREM:
7031 		case DIF_OP_COPYS:
7032 			if (r1 >= nregs)
7033 				err += efunc(pc, "invalid register %u\n", r1);
7034 			if (r2 >= nregs)
7035 				err += efunc(pc, "invalid register %u\n", r2);
7036 			if (rd >= nregs)
7037 				err += efunc(pc, "invalid register %u\n", rd);
7038 			if (rd == 0)
7039 				err += efunc(pc, "cannot write to %r0\n");
7040 			break;
7041 		case DIF_OP_NOT:
7042 		case DIF_OP_MOV:
7043 		case DIF_OP_ALLOCS:
7044 			if (r1 >= nregs)
7045 				err += efunc(pc, "invalid register %u\n", r1);
7046 			if (r2 != 0)
7047 				err += efunc(pc, "non-zero reserved bits\n");
7048 			if (rd >= nregs)
7049 				err += efunc(pc, "invalid register %u\n", rd);
7050 			if (rd == 0)
7051 				err += efunc(pc, "cannot write to %r0\n");
7052 			break;
7053 		case DIF_OP_LDSB:
7054 		case DIF_OP_LDSH:
7055 		case DIF_OP_LDSW:
7056 		case DIF_OP_LDUB:
7057 		case DIF_OP_LDUH:
7058 		case DIF_OP_LDUW:
7059 		case DIF_OP_LDX:
7060 			if (r1 >= nregs)
7061 				err += efunc(pc, "invalid register %u\n", r1);
7062 			if (r2 != 0)
7063 				err += efunc(pc, "non-zero reserved bits\n");
7064 			if (rd >= nregs)
7065 				err += efunc(pc, "invalid register %u\n", rd);
7066 			if (rd == 0)
7067 				err += efunc(pc, "cannot write to %r0\n");
7068 			if (kcheck)
7069 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
7070 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
7071 			break;
7072 		case DIF_OP_RLDSB:
7073 		case DIF_OP_RLDSH:
7074 		case DIF_OP_RLDSW:
7075 		case DIF_OP_RLDUB:
7076 		case DIF_OP_RLDUH:
7077 		case DIF_OP_RLDUW:
7078 		case DIF_OP_RLDX:
7079 			if (r1 >= nregs)
7080 				err += efunc(pc, "invalid register %u\n", r1);
7081 			if (r2 != 0)
7082 				err += efunc(pc, "non-zero reserved bits\n");
7083 			if (rd >= nregs)
7084 				err += efunc(pc, "invalid register %u\n", rd);
7085 			if (rd == 0)
7086 				err += efunc(pc, "cannot write to %r0\n");
7087 			break;
7088 		case DIF_OP_ULDSB:
7089 		case DIF_OP_ULDSH:
7090 		case DIF_OP_ULDSW:
7091 		case DIF_OP_ULDUB:
7092 		case DIF_OP_ULDUH:
7093 		case DIF_OP_ULDUW:
7094 		case DIF_OP_ULDX:
7095 			if (r1 >= nregs)
7096 				err += efunc(pc, "invalid register %u\n", r1);
7097 			if (r2 != 0)
7098 				err += efunc(pc, "non-zero reserved bits\n");
7099 			if (rd >= nregs)
7100 				err += efunc(pc, "invalid register %u\n", rd);
7101 			if (rd == 0)
7102 				err += efunc(pc, "cannot write to %r0\n");
7103 			break;
7104 		case DIF_OP_STB:
7105 		case DIF_OP_STH:
7106 		case DIF_OP_STW:
7107 		case DIF_OP_STX:
7108 			if (r1 >= nregs)
7109 				err += efunc(pc, "invalid register %u\n", r1);
7110 			if (r2 != 0)
7111 				err += efunc(pc, "non-zero reserved bits\n");
7112 			if (rd >= nregs)
7113 				err += efunc(pc, "invalid register %u\n", rd);
7114 			if (rd == 0)
7115 				err += efunc(pc, "cannot write to 0 address\n");
7116 			break;
7117 		case DIF_OP_CMP:
7118 		case DIF_OP_SCMP:
7119 			if (r1 >= nregs)
7120 				err += efunc(pc, "invalid register %u\n", r1);
7121 			if (r2 >= nregs)
7122 				err += efunc(pc, "invalid register %u\n", r2);
7123 			if (rd != 0)
7124 				err += efunc(pc, "non-zero reserved bits\n");
7125 			break;
7126 		case DIF_OP_TST:
7127 			if (r1 >= nregs)
7128 				err += efunc(pc, "invalid register %u\n", r1);
7129 			if (r2 != 0 || rd != 0)
7130 				err += efunc(pc, "non-zero reserved bits\n");
7131 			break;
7132 		case DIF_OP_BA:
7133 		case DIF_OP_BE:
7134 		case DIF_OP_BNE:
7135 		case DIF_OP_BG:
7136 		case DIF_OP_BGU:
7137 		case DIF_OP_BGE:
7138 		case DIF_OP_BGEU:
7139 		case DIF_OP_BL:
7140 		case DIF_OP_BLU:
7141 		case DIF_OP_BLE:
7142 		case DIF_OP_BLEU:
7143 			if (label >= dp->dtdo_len) {
7144 				err += efunc(pc, "invalid branch target %u\n",
7145 				    label);
7146 			}
7147 			if (label <= pc) {
7148 				err += efunc(pc, "backward branch to %u\n",
7149 				    label);
7150 			}
7151 			break;
7152 		case DIF_OP_RET:
7153 			if (r1 != 0 || r2 != 0)
7154 				err += efunc(pc, "non-zero reserved bits\n");
7155 			if (rd >= nregs)
7156 				err += efunc(pc, "invalid register %u\n", rd);
7157 			break;
7158 		case DIF_OP_NOP:
7159 		case DIF_OP_POPTS:
7160 		case DIF_OP_FLUSHTS:
7161 			if (r1 != 0 || r2 != 0 || rd != 0)
7162 				err += efunc(pc, "non-zero reserved bits\n");
7163 			break;
7164 		case DIF_OP_SETX:
7165 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
7166 				err += efunc(pc, "invalid integer ref %u\n",
7167 				    DIF_INSTR_INTEGER(instr));
7168 			}
7169 			if (rd >= nregs)
7170 				err += efunc(pc, "invalid register %u\n", rd);
7171 			if (rd == 0)
7172 				err += efunc(pc, "cannot write to %r0\n");
7173 			break;
7174 		case DIF_OP_SETS:
7175 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
7176 				err += efunc(pc, "invalid string ref %u\n",
7177 				    DIF_INSTR_STRING(instr));
7178 			}
7179 			if (rd >= nregs)
7180 				err += efunc(pc, "invalid register %u\n", rd);
7181 			if (rd == 0)
7182 				err += efunc(pc, "cannot write to %r0\n");
7183 			break;
7184 		case DIF_OP_LDGA:
7185 		case DIF_OP_LDTA:
7186 			if (r1 > DIF_VAR_ARRAY_MAX)
7187 				err += efunc(pc, "invalid array %u\n", r1);
7188 			if (r2 >= nregs)
7189 				err += efunc(pc, "invalid register %u\n", r2);
7190 			if (rd >= nregs)
7191 				err += efunc(pc, "invalid register %u\n", rd);
7192 			if (rd == 0)
7193 				err += efunc(pc, "cannot write to %r0\n");
7194 			break;
7195 		case DIF_OP_LDGS:
7196 		case DIF_OP_LDTS:
7197 		case DIF_OP_LDLS:
7198 		case DIF_OP_LDGAA:
7199 		case DIF_OP_LDTAA:
7200 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
7201 				err += efunc(pc, "invalid variable %u\n", v);
7202 			if (rd >= nregs)
7203 				err += efunc(pc, "invalid register %u\n", rd);
7204 			if (rd == 0)
7205 				err += efunc(pc, "cannot write to %r0\n");
7206 			break;
7207 		case DIF_OP_STGS:
7208 		case DIF_OP_STTS:
7209 		case DIF_OP_STLS:
7210 		case DIF_OP_STGAA:
7211 		case DIF_OP_STTAA:
7212 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
7213 				err += efunc(pc, "invalid variable %u\n", v);
7214 			if (rs >= nregs)
7215 				err += efunc(pc, "invalid register %u\n", rd);
7216 			break;
7217 		case DIF_OP_CALL:
7218 			if (subr > DIF_SUBR_MAX)
7219 				err += efunc(pc, "invalid subr %u\n", subr);
7220 			if (rd >= nregs)
7221 				err += efunc(pc, "invalid register %u\n", rd);
7222 			if (rd == 0)
7223 				err += efunc(pc, "cannot write to %r0\n");
7224 
7225 			if (subr == DIF_SUBR_COPYOUT ||
7226 			    subr == DIF_SUBR_COPYOUTSTR) {
7227 				dp->dtdo_destructive = 1;
7228 			}
7229 			break;
7230 		case DIF_OP_PUSHTR:
7231 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
7232 				err += efunc(pc, "invalid ref type %u\n", type);
7233 			if (r2 >= nregs)
7234 				err += efunc(pc, "invalid register %u\n", r2);
7235 			if (rs >= nregs)
7236 				err += efunc(pc, "invalid register %u\n", rs);
7237 			break;
7238 		case DIF_OP_PUSHTV:
7239 			if (type != DIF_TYPE_CTF)
7240 				err += efunc(pc, "invalid val type %u\n", type);
7241 			if (r2 >= nregs)
7242 				err += efunc(pc, "invalid register %u\n", r2);
7243 			if (rs >= nregs)
7244 				err += efunc(pc, "invalid register %u\n", rs);
7245 			break;
7246 		default:
7247 			err += efunc(pc, "invalid opcode %u\n",
7248 			    DIF_INSTR_OP(instr));
7249 		}
7250 	}
7251 
7252 	if (dp->dtdo_len != 0 &&
7253 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
7254 		err += efunc(dp->dtdo_len - 1,
7255 		    "expected 'ret' as last DIF instruction\n");
7256 	}
7257 
7258 	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
7259 		/*
7260 		 * If we're not returning by reference, the size must be either
7261 		 * 0 or the size of one of the base types.
7262 		 */
7263 		switch (dp->dtdo_rtype.dtdt_size) {
7264 		case 0:
7265 		case sizeof (uint8_t):
7266 		case sizeof (uint16_t):
7267 		case sizeof (uint32_t):
7268 		case sizeof (uint64_t):
7269 			break;
7270 
7271 		default:
7272 			err += efunc(dp->dtdo_len - 1, "bad return size");
7273 		}
7274 	}
7275 
7276 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
7277 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
7278 		dtrace_diftype_t *vt, *et;
7279 		uint_t id, ndx;
7280 
7281 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
7282 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
7283 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
7284 			err += efunc(i, "unrecognized variable scope %d\n",
7285 			    v->dtdv_scope);
7286 			break;
7287 		}
7288 
7289 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
7290 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
7291 			err += efunc(i, "unrecognized variable type %d\n",
7292 			    v->dtdv_kind);
7293 			break;
7294 		}
7295 
7296 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
7297 			err += efunc(i, "%d exceeds variable id limit\n", id);
7298 			break;
7299 		}
7300 
7301 		if (id < DIF_VAR_OTHER_UBASE)
7302 			continue;
7303 
7304 		/*
7305 		 * For user-defined variables, we need to check that this
7306 		 * definition is identical to any previous definition that we
7307 		 * encountered.
7308 		 */
7309 		ndx = id - DIF_VAR_OTHER_UBASE;
7310 
7311 		switch (v->dtdv_scope) {
7312 		case DIFV_SCOPE_GLOBAL:
7313 			if (ndx < vstate->dtvs_nglobals) {
7314 				dtrace_statvar_t *svar;
7315 
7316 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
7317 					existing = &svar->dtsv_var;
7318 			}
7319 
7320 			break;
7321 
7322 		case DIFV_SCOPE_THREAD:
7323 			if (ndx < vstate->dtvs_ntlocals)
7324 				existing = &vstate->dtvs_tlocals[ndx];
7325 			break;
7326 
7327 		case DIFV_SCOPE_LOCAL:
7328 			if (ndx < vstate->dtvs_nlocals) {
7329 				dtrace_statvar_t *svar;
7330 
7331 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
7332 					existing = &svar->dtsv_var;
7333 			}
7334 
7335 			break;
7336 		}
7337 
7338 		vt = &v->dtdv_type;
7339 
7340 		if (vt->dtdt_flags & DIF_TF_BYREF) {
7341 			if (vt->dtdt_size == 0) {
7342 				err += efunc(i, "zero-sized variable\n");
7343 				break;
7344 			}
7345 
7346 			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
7347 			    vt->dtdt_size > dtrace_global_maxsize) {
7348 				err += efunc(i, "oversized by-ref global\n");
7349 				break;
7350 			}
7351 		}
7352 
7353 		if (existing == NULL || existing->dtdv_id == 0)
7354 			continue;
7355 
7356 		ASSERT(existing->dtdv_id == v->dtdv_id);
7357 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
7358 
7359 		if (existing->dtdv_kind != v->dtdv_kind)
7360 			err += efunc(i, "%d changed variable kind\n", id);
7361 
7362 		et = &existing->dtdv_type;
7363 
7364 		if (vt->dtdt_flags != et->dtdt_flags) {
7365 			err += efunc(i, "%d changed variable type flags\n", id);
7366 			break;
7367 		}
7368 
7369 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
7370 			err += efunc(i, "%d changed variable type size\n", id);
7371 			break;
7372 		}
7373 	}
7374 
7375 	return (err);
7376 }
7377 
7378 /*
7379  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
7380  * are much more constrained than normal DIFOs.  Specifically, they may
7381  * not:
7382  *
7383  * 1. Make calls to subroutines other than copyin(), copyinstr() or
7384  *    miscellaneous string routines
7385  * 2. Access DTrace variables other than the args[] array, and the
7386  *    curthread, pid, tid and execname variables.
7387  * 3. Have thread-local variables.
7388  * 4. Have dynamic variables.
7389  */
7390 static int
7391 dtrace_difo_validate_helper(dtrace_difo_t *dp)
7392 {
7393 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
7394 	int err = 0;
7395 	uint_t pc;
7396 
7397 	for (pc = 0; pc < dp->dtdo_len; pc++) {
7398 		dif_instr_t instr = dp->dtdo_buf[pc];
7399 
7400 		uint_t v = DIF_INSTR_VAR(instr);
7401 		uint_t subr = DIF_INSTR_SUBR(instr);
7402 		uint_t op = DIF_INSTR_OP(instr);
7403 
7404 		switch (op) {
7405 		case DIF_OP_OR:
7406 		case DIF_OP_XOR:
7407 		case DIF_OP_AND:
7408 		case DIF_OP_SLL:
7409 		case DIF_OP_SRL:
7410 		case DIF_OP_SRA:
7411 		case DIF_OP_SUB:
7412 		case DIF_OP_ADD:
7413 		case DIF_OP_MUL:
7414 		case DIF_OP_SDIV:
7415 		case DIF_OP_UDIV:
7416 		case DIF_OP_SREM:
7417 		case DIF_OP_UREM:
7418 		case DIF_OP_COPYS:
7419 		case DIF_OP_NOT:
7420 		case DIF_OP_MOV:
7421 		case DIF_OP_RLDSB:
7422 		case DIF_OP_RLDSH:
7423 		case DIF_OP_RLDSW:
7424 		case DIF_OP_RLDUB:
7425 		case DIF_OP_RLDUH:
7426 		case DIF_OP_RLDUW:
7427 		case DIF_OP_RLDX:
7428 		case DIF_OP_ULDSB:
7429 		case DIF_OP_ULDSH:
7430 		case DIF_OP_ULDSW:
7431 		case DIF_OP_ULDUB:
7432 		case DIF_OP_ULDUH:
7433 		case DIF_OP_ULDUW:
7434 		case DIF_OP_ULDX:
7435 		case DIF_OP_STB:
7436 		case DIF_OP_STH:
7437 		case DIF_OP_STW:
7438 		case DIF_OP_STX:
7439 		case DIF_OP_ALLOCS:
7440 		case DIF_OP_CMP:
7441 		case DIF_OP_SCMP:
7442 		case DIF_OP_TST:
7443 		case DIF_OP_BA:
7444 		case DIF_OP_BE:
7445 		case DIF_OP_BNE:
7446 		case DIF_OP_BG:
7447 		case DIF_OP_BGU:
7448 		case DIF_OP_BGE:
7449 		case DIF_OP_BGEU:
7450 		case DIF_OP_BL:
7451 		case DIF_OP_BLU:
7452 		case DIF_OP_BLE:
7453 		case DIF_OP_BLEU:
7454 		case DIF_OP_RET:
7455 		case DIF_OP_NOP:
7456 		case DIF_OP_POPTS:
7457 		case DIF_OP_FLUSHTS:
7458 		case DIF_OP_SETX:
7459 		case DIF_OP_SETS:
7460 		case DIF_OP_LDGA:
7461 		case DIF_OP_LDLS:
7462 		case DIF_OP_STGS:
7463 		case DIF_OP_STLS:
7464 		case DIF_OP_PUSHTR:
7465 		case DIF_OP_PUSHTV:
7466 			break;
7467 
7468 		case DIF_OP_LDGS:
7469 			if (v >= DIF_VAR_OTHER_UBASE)
7470 				break;
7471 
7472 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
7473 				break;
7474 
7475 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
7476 			    v == DIF_VAR_TID || v == DIF_VAR_EXECNAME ||
7477 			    v == DIF_VAR_ZONENAME)
7478 				break;
7479 
7480 			err += efunc(pc, "illegal variable %u\n", v);
7481 			break;
7482 
7483 		case DIF_OP_LDTA:
7484 		case DIF_OP_LDTS:
7485 		case DIF_OP_LDGAA:
7486 		case DIF_OP_LDTAA:
7487 			err += efunc(pc, "illegal dynamic variable load\n");
7488 			break;
7489 
7490 		case DIF_OP_STTS:
7491 		case DIF_OP_STGAA:
7492 		case DIF_OP_STTAA:
7493 			err += efunc(pc, "illegal dynamic variable store\n");
7494 			break;
7495 
7496 		case DIF_OP_CALL:
7497 			if (subr == DIF_SUBR_ALLOCA ||
7498 			    subr == DIF_SUBR_BCOPY ||
7499 			    subr == DIF_SUBR_COPYIN ||
7500 			    subr == DIF_SUBR_COPYINTO ||
7501 			    subr == DIF_SUBR_COPYINSTR ||
7502 			    subr == DIF_SUBR_INDEX ||
7503 			    subr == DIF_SUBR_LLTOSTR ||
7504 			    subr == DIF_SUBR_RINDEX ||
7505 			    subr == DIF_SUBR_STRCHR ||
7506 			    subr == DIF_SUBR_STRJOIN ||
7507 			    subr == DIF_SUBR_STRRCHR ||
7508 			    subr == DIF_SUBR_STRSTR)
7509 				break;
7510 
7511 			err += efunc(pc, "invalid subr %u\n", subr);
7512 			break;
7513 
7514 		default:
7515 			err += efunc(pc, "invalid opcode %u\n",
7516 			    DIF_INSTR_OP(instr));
7517 		}
7518 	}
7519 
7520 	return (err);
7521 }
7522 
7523 /*
7524  * Returns 1 if the expression in the DIF object can be cached on a per-thread
7525  * basis; 0 if not.
7526  */
7527 static int
7528 dtrace_difo_cacheable(dtrace_difo_t *dp)
7529 {
7530 	int i;
7531 
7532 	if (dp == NULL)
7533 		return (0);
7534 
7535 	for (i = 0; i < dp->dtdo_varlen; i++) {
7536 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
7537 
7538 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
7539 			continue;
7540 
7541 		switch (v->dtdv_id) {
7542 		case DIF_VAR_CURTHREAD:
7543 		case DIF_VAR_PID:
7544 		case DIF_VAR_TID:
7545 		case DIF_VAR_EXECNAME:
7546 		case DIF_VAR_ZONENAME:
7547 			break;
7548 
7549 		default:
7550 			return (0);
7551 		}
7552 	}
7553 
7554 	/*
7555 	 * This DIF object may be cacheable.  Now we need to look for any
7556 	 * array loading instructions, any memory loading instructions, or
7557 	 * any stores to thread-local variables.
7558 	 */
7559 	for (i = 0; i < dp->dtdo_len; i++) {
7560 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
7561 
7562 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
7563 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
7564 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
7565 		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
7566 			return (0);
7567 	}
7568 
7569 	return (1);
7570 }
7571 
7572 static void
7573 dtrace_difo_hold(dtrace_difo_t *dp)
7574 {
7575 	int i;
7576 
7577 	ASSERT(MUTEX_HELD(&dtrace_lock));
7578 
7579 	dp->dtdo_refcnt++;
7580 	ASSERT(dp->dtdo_refcnt != 0);
7581 
7582 	/*
7583 	 * We need to check this DIF object for references to the variable
7584 	 * DIF_VAR_VTIMESTAMP.
7585 	 */
7586 	for (i = 0; i < dp->dtdo_varlen; i++) {
7587 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
7588 
7589 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
7590 			continue;
7591 
7592 		if (dtrace_vtime_references++ == 0)
7593 			dtrace_vtime_enable();
7594 	}
7595 }
7596 
7597 /*
7598  * This routine calculates the dynamic variable chunksize for a given DIF
7599  * object.  The calculation is not fool-proof, and can probably be tricked by
7600  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
7601  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
7602  * if a dynamic variable size exceeds the chunksize.
7603  */
7604 static void
7605 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
7606 {
7607 	uint64_t sval;
7608 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
7609 	const dif_instr_t *text = dp->dtdo_buf;
7610 	uint_t pc, srd = 0;
7611 	uint_t ttop = 0;
7612 	size_t size, ksize;
7613 	uint_t id, i;
7614 
7615 	for (pc = 0; pc < dp->dtdo_len; pc++) {
7616 		dif_instr_t instr = text[pc];
7617 		uint_t op = DIF_INSTR_OP(instr);
7618 		uint_t rd = DIF_INSTR_RD(instr);
7619 		uint_t r1 = DIF_INSTR_R1(instr);
7620 		uint_t nkeys = 0;
7621 		uchar_t scope;
7622 
7623 		dtrace_key_t *key = tupregs;
7624 
7625 		switch (op) {
7626 		case DIF_OP_SETX:
7627 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
7628 			srd = rd;
7629 			continue;
7630 
7631 		case DIF_OP_STTS:
7632 			key = &tupregs[DIF_DTR_NREGS];
7633 			key[0].dttk_size = 0;
7634 			key[1].dttk_size = 0;
7635 			nkeys = 2;
7636 			scope = DIFV_SCOPE_THREAD;
7637 			break;
7638 
7639 		case DIF_OP_STGAA:
7640 		case DIF_OP_STTAA:
7641 			nkeys = ttop;
7642 
7643 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
7644 				key[nkeys++].dttk_size = 0;
7645 
7646 			key[nkeys++].dttk_size = 0;
7647 
7648 			if (op == DIF_OP_STTAA) {
7649 				scope = DIFV_SCOPE_THREAD;
7650 			} else {
7651 				scope = DIFV_SCOPE_GLOBAL;
7652 			}
7653 
7654 			break;
7655 
7656 		case DIF_OP_PUSHTR:
7657 			if (ttop == DIF_DTR_NREGS)
7658 				return;
7659 
7660 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
7661 				/*
7662 				 * If the register for the size of the "pushtr"
7663 				 * is %r0 (or the value is 0) and the type is
7664 				 * a string, we'll use the system-wide default
7665 				 * string size.
7666 				 */
7667 				tupregs[ttop++].dttk_size =
7668 				    dtrace_strsize_default;
7669 			} else {
7670 				if (srd == 0)
7671 					return;
7672 
7673 				tupregs[ttop++].dttk_size = sval;
7674 			}
7675 
7676 			break;
7677 
7678 		case DIF_OP_PUSHTV:
7679 			if (ttop == DIF_DTR_NREGS)
7680 				return;
7681 
7682 			tupregs[ttop++].dttk_size = 0;
7683 			break;
7684 
7685 		case DIF_OP_FLUSHTS:
7686 			ttop = 0;
7687 			break;
7688 
7689 		case DIF_OP_POPTS:
7690 			if (ttop != 0)
7691 				ttop--;
7692 			break;
7693 		}
7694 
7695 		sval = 0;
7696 		srd = 0;
7697 
7698 		if (nkeys == 0)
7699 			continue;
7700 
7701 		/*
7702 		 * We have a dynamic variable allocation; calculate its size.
7703 		 */
7704 		for (ksize = 0, i = 0; i < nkeys; i++)
7705 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
7706 
7707 		size = sizeof (dtrace_dynvar_t);
7708 		size += sizeof (dtrace_key_t) * (nkeys - 1);
7709 		size += ksize;
7710 
7711 		/*
7712 		 * Now we need to determine the size of the stored data.
7713 		 */
7714 		id = DIF_INSTR_VAR(instr);
7715 
7716 		for (i = 0; i < dp->dtdo_varlen; i++) {
7717 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
7718 
7719 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
7720 				size += v->dtdv_type.dtdt_size;
7721 				break;
7722 			}
7723 		}
7724 
7725 		if (i == dp->dtdo_varlen)
7726 			return;
7727 
7728 		/*
7729 		 * We have the size.  If this is larger than the chunk size
7730 		 * for our dynamic variable state, reset the chunk size.
7731 		 */
7732 		size = P2ROUNDUP(size, sizeof (uint64_t));
7733 
7734 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
7735 			vstate->dtvs_dynvars.dtds_chunksize = size;
7736 	}
7737 }
7738 
7739 static void
7740 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
7741 {
7742 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
7743 	uint_t id;
7744 
7745 	ASSERT(MUTEX_HELD(&dtrace_lock));
7746 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
7747 
7748 	for (i = 0; i < dp->dtdo_varlen; i++) {
7749 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
7750 		dtrace_statvar_t *svar, ***svarp;
7751 		size_t dsize = 0;
7752 		uint8_t scope = v->dtdv_scope;
7753 		int *np;
7754 
7755 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
7756 			continue;
7757 
7758 		id -= DIF_VAR_OTHER_UBASE;
7759 
7760 		switch (scope) {
7761 		case DIFV_SCOPE_THREAD:
7762 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
7763 				dtrace_difv_t *tlocals;
7764 
7765 				if ((ntlocals = (otlocals << 1)) == 0)
7766 					ntlocals = 1;
7767 
7768 				osz = otlocals * sizeof (dtrace_difv_t);
7769 				nsz = ntlocals * sizeof (dtrace_difv_t);
7770 
7771 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
7772 
7773 				if (osz != 0) {
7774 					bcopy(vstate->dtvs_tlocals,
7775 					    tlocals, osz);
7776 					kmem_free(vstate->dtvs_tlocals, osz);
7777 				}
7778 
7779 				vstate->dtvs_tlocals = tlocals;
7780 				vstate->dtvs_ntlocals = ntlocals;
7781 			}
7782 
7783 			vstate->dtvs_tlocals[id] = *v;
7784 			continue;
7785 
7786 		case DIFV_SCOPE_LOCAL:
7787 			np = &vstate->dtvs_nlocals;
7788 			svarp = &vstate->dtvs_locals;
7789 
7790 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
7791 				dsize = NCPU * (v->dtdv_type.dtdt_size +
7792 				    sizeof (uint64_t));
7793 			else
7794 				dsize = NCPU * sizeof (uint64_t);
7795 
7796 			break;
7797 
7798 		case DIFV_SCOPE_GLOBAL:
7799 			np = &vstate->dtvs_nglobals;
7800 			svarp = &vstate->dtvs_globals;
7801 
7802 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
7803 				dsize = v->dtdv_type.dtdt_size +
7804 				    sizeof (uint64_t);
7805 
7806 			break;
7807 
7808 		default:
7809 			ASSERT(0);
7810 		}
7811 
7812 		while (id >= (oldsvars = *np)) {
7813 			dtrace_statvar_t **statics;
7814 			int newsvars, oldsize, newsize;
7815 
7816 			if ((newsvars = (oldsvars << 1)) == 0)
7817 				newsvars = 1;
7818 
7819 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
7820 			newsize = newsvars * sizeof (dtrace_statvar_t *);
7821 
7822 			statics = kmem_zalloc(newsize, KM_SLEEP);
7823 
7824 			if (oldsize != 0) {
7825 				bcopy(*svarp, statics, oldsize);
7826 				kmem_free(*svarp, oldsize);
7827 			}
7828 
7829 			*svarp = statics;
7830 			*np = newsvars;
7831 		}
7832 
7833 		if ((svar = (*svarp)[id]) == NULL) {
7834 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
7835 			svar->dtsv_var = *v;
7836 
7837 			if ((svar->dtsv_size = dsize) != 0) {
7838 				svar->dtsv_data = (uint64_t)(uintptr_t)
7839 				    kmem_zalloc(dsize, KM_SLEEP);
7840 			}
7841 
7842 			(*svarp)[id] = svar;
7843 		}
7844 
7845 		svar->dtsv_refcnt++;
7846 	}
7847 
7848 	dtrace_difo_chunksize(dp, vstate);
7849 	dtrace_difo_hold(dp);
7850 }
7851 
7852 static dtrace_difo_t *
7853 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
7854 {
7855 	dtrace_difo_t *new;
7856 	size_t sz;
7857 
7858 	ASSERT(dp->dtdo_buf != NULL);
7859 	ASSERT(dp->dtdo_refcnt != 0);
7860 
7861 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
7862 
7863 	ASSERT(dp->dtdo_buf != NULL);
7864 	sz = dp->dtdo_len * sizeof (dif_instr_t);
7865 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
7866 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
7867 	new->dtdo_len = dp->dtdo_len;
7868 
7869 	if (dp->dtdo_strtab != NULL) {
7870 		ASSERT(dp->dtdo_strlen != 0);
7871 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
7872 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
7873 		new->dtdo_strlen = dp->dtdo_strlen;
7874 	}
7875 
7876 	if (dp->dtdo_inttab != NULL) {
7877 		ASSERT(dp->dtdo_intlen != 0);
7878 		sz = dp->dtdo_intlen * sizeof (uint64_t);
7879 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
7880 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
7881 		new->dtdo_intlen = dp->dtdo_intlen;
7882 	}
7883 
7884 	if (dp->dtdo_vartab != NULL) {
7885 		ASSERT(dp->dtdo_varlen != 0);
7886 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
7887 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
7888 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
7889 		new->dtdo_varlen = dp->dtdo_varlen;
7890 	}
7891 
7892 	dtrace_difo_init(new, vstate);
7893 	return (new);
7894 }
7895 
7896 static void
7897 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
7898 {
7899 	int i;
7900 
7901 	ASSERT(dp->dtdo_refcnt == 0);
7902 
7903 	for (i = 0; i < dp->dtdo_varlen; i++) {
7904 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
7905 		dtrace_statvar_t *svar, **svarp;
7906 		uint_t id;
7907 		uint8_t scope = v->dtdv_scope;
7908 		int *np;
7909 
7910 		switch (scope) {
7911 		case DIFV_SCOPE_THREAD:
7912 			continue;
7913 
7914 		case DIFV_SCOPE_LOCAL:
7915 			np = &vstate->dtvs_nlocals;
7916 			svarp = vstate->dtvs_locals;
7917 			break;
7918 
7919 		case DIFV_SCOPE_GLOBAL:
7920 			np = &vstate->dtvs_nglobals;
7921 			svarp = vstate->dtvs_globals;
7922 			break;
7923 
7924 		default:
7925 			ASSERT(0);
7926 		}
7927 
7928 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
7929 			continue;
7930 
7931 		id -= DIF_VAR_OTHER_UBASE;
7932 		ASSERT(id < *np);
7933 
7934 		svar = svarp[id];
7935 		ASSERT(svar != NULL);
7936 		ASSERT(svar->dtsv_refcnt > 0);
7937 
7938 		if (--svar->dtsv_refcnt > 0)
7939 			continue;
7940 
7941 		if (svar->dtsv_size != 0) {
7942 			ASSERT(svar->dtsv_data != NULL);
7943 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
7944 			    svar->dtsv_size);
7945 		}
7946 
7947 		kmem_free(svar, sizeof (dtrace_statvar_t));
7948 		svarp[id] = NULL;
7949 	}
7950 
7951 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
7952 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
7953 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
7954 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
7955 
7956 	kmem_free(dp, sizeof (dtrace_difo_t));
7957 }
7958 
7959 static void
7960 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
7961 {
7962 	int i;
7963 
7964 	ASSERT(MUTEX_HELD(&dtrace_lock));
7965 	ASSERT(dp->dtdo_refcnt != 0);
7966 
7967 	for (i = 0; i < dp->dtdo_varlen; i++) {
7968 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
7969 
7970 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
7971 			continue;
7972 
7973 		ASSERT(dtrace_vtime_references > 0);
7974 		if (--dtrace_vtime_references == 0)
7975 			dtrace_vtime_disable();
7976 	}
7977 
7978 	if (--dp->dtdo_refcnt == 0)
7979 		dtrace_difo_destroy(dp, vstate);
7980 }
7981 
7982 /*
7983  * DTrace Format Functions
7984  */
7985 static uint16_t
7986 dtrace_format_add(dtrace_state_t *state, char *str)
7987 {
7988 	char *fmt, **new;
7989 	uint16_t ndx, len = strlen(str) + 1;
7990 
7991 	fmt = kmem_zalloc(len, KM_SLEEP);
7992 	bcopy(str, fmt, len);
7993 
7994 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
7995 		if (state->dts_formats[ndx] == NULL) {
7996 			state->dts_formats[ndx] = fmt;
7997 			return (ndx + 1);
7998 		}
7999 	}
8000 
8001 	if (state->dts_nformats == USHRT_MAX) {
8002 		/*
8003 		 * This is only likely if a denial-of-service attack is being
8004 		 * attempted.  As such, it's okay to fail silently here.
8005 		 */
8006 		kmem_free(fmt, len);
8007 		return (0);
8008 	}
8009 
8010 	/*
8011 	 * For simplicity, we always resize the formats array to be exactly the
8012 	 * number of formats.
8013 	 */
8014 	ndx = state->dts_nformats++;
8015 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
8016 
8017 	if (state->dts_formats != NULL) {
8018 		ASSERT(ndx != 0);
8019 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
8020 		kmem_free(state->dts_formats, ndx * sizeof (char *));
8021 	}
8022 
8023 	state->dts_formats = new;
8024 	state->dts_formats[ndx] = fmt;
8025 
8026 	return (ndx + 1);
8027 }
8028 
8029 static void
8030 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
8031 {
8032 	char *fmt;
8033 
8034 	ASSERT(state->dts_formats != NULL);
8035 	ASSERT(format <= state->dts_nformats);
8036 	ASSERT(state->dts_formats[format - 1] != NULL);
8037 
8038 	fmt = state->dts_formats[format - 1];
8039 	kmem_free(fmt, strlen(fmt) + 1);
8040 	state->dts_formats[format - 1] = NULL;
8041 }
8042 
8043 static void
8044 dtrace_format_destroy(dtrace_state_t *state)
8045 {
8046 	int i;
8047 
8048 	if (state->dts_nformats == 0) {
8049 		ASSERT(state->dts_formats == NULL);
8050 		return;
8051 	}
8052 
8053 	ASSERT(state->dts_formats != NULL);
8054 
8055 	for (i = 0; i < state->dts_nformats; i++) {
8056 		char *fmt = state->dts_formats[i];
8057 
8058 		if (fmt == NULL)
8059 			continue;
8060 
8061 		kmem_free(fmt, strlen(fmt) + 1);
8062 	}
8063 
8064 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
8065 	state->dts_nformats = 0;
8066 	state->dts_formats = NULL;
8067 }
8068 
8069 /*
8070  * DTrace Predicate Functions
8071  */
8072 static dtrace_predicate_t *
8073 dtrace_predicate_create(dtrace_difo_t *dp)
8074 {
8075 	dtrace_predicate_t *pred;
8076 
8077 	ASSERT(MUTEX_HELD(&dtrace_lock));
8078 	ASSERT(dp->dtdo_refcnt != 0);
8079 
8080 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
8081 	pred->dtp_difo = dp;
8082 	pred->dtp_refcnt = 1;
8083 
8084 	if (!dtrace_difo_cacheable(dp))
8085 		return (pred);
8086 
8087 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
8088 		/*
8089 		 * This is only theoretically possible -- we have had 2^32
8090 		 * cacheable predicates on this machine.  We cannot allow any
8091 		 * more predicates to become cacheable:  as unlikely as it is,
8092 		 * there may be a thread caching a (now stale) predicate cache
8093 		 * ID. (N.B.: the temptation is being successfully resisted to
8094 		 * have this cmn_err() "Holy shit -- we executed this code!")
8095 		 */
8096 		return (pred);
8097 	}
8098 
8099 	pred->dtp_cacheid = dtrace_predcache_id++;
8100 
8101 	return (pred);
8102 }
8103 
8104 static void
8105 dtrace_predicate_hold(dtrace_predicate_t *pred)
8106 {
8107 	ASSERT(MUTEX_HELD(&dtrace_lock));
8108 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
8109 	ASSERT(pred->dtp_refcnt > 0);
8110 
8111 	pred->dtp_refcnt++;
8112 }
8113 
8114 static void
8115 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
8116 {
8117 	dtrace_difo_t *dp = pred->dtp_difo;
8118 
8119 	ASSERT(MUTEX_HELD(&dtrace_lock));
8120 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
8121 	ASSERT(pred->dtp_refcnt > 0);
8122 
8123 	if (--pred->dtp_refcnt == 0) {
8124 		dtrace_difo_release(pred->dtp_difo, vstate);
8125 		kmem_free(pred, sizeof (dtrace_predicate_t));
8126 	}
8127 }
8128 
8129 /*
8130  * DTrace Action Description Functions
8131  */
8132 static dtrace_actdesc_t *
8133 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
8134     uint64_t uarg, uint64_t arg)
8135 {
8136 	dtrace_actdesc_t *act;
8137 
8138 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
8139 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
8140 
8141 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
8142 	act->dtad_kind = kind;
8143 	act->dtad_ntuple = ntuple;
8144 	act->dtad_uarg = uarg;
8145 	act->dtad_arg = arg;
8146 	act->dtad_refcnt = 1;
8147 
8148 	return (act);
8149 }
8150 
8151 static void
8152 dtrace_actdesc_hold(dtrace_actdesc_t *act)
8153 {
8154 	ASSERT(act->dtad_refcnt >= 1);
8155 	act->dtad_refcnt++;
8156 }
8157 
8158 static void
8159 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
8160 {
8161 	dtrace_actkind_t kind = act->dtad_kind;
8162 	dtrace_difo_t *dp;
8163 
8164 	ASSERT(act->dtad_refcnt >= 1);
8165 
8166 	if (--act->dtad_refcnt != 0)
8167 		return;
8168 
8169 	if ((dp = act->dtad_difo) != NULL)
8170 		dtrace_difo_release(dp, vstate);
8171 
8172 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
8173 		char *str = (char *)(uintptr_t)act->dtad_arg;
8174 
8175 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
8176 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
8177 
8178 		if (str != NULL)
8179 			kmem_free(str, strlen(str) + 1);
8180 	}
8181 
8182 	kmem_free(act, sizeof (dtrace_actdesc_t));
8183 }
8184 
8185 /*
8186  * DTrace ECB Functions
8187  */
8188 static dtrace_ecb_t *
8189 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
8190 {
8191 	dtrace_ecb_t *ecb;
8192 	dtrace_epid_t epid;
8193 
8194 	ASSERT(MUTEX_HELD(&dtrace_lock));
8195 
8196 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
8197 	ecb->dte_predicate = NULL;
8198 	ecb->dte_probe = probe;
8199 
8200 	/*
8201 	 * The default size is the size of the default action: recording
8202 	 * the epid.
8203 	 */
8204 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
8205 	ecb->dte_alignment = sizeof (dtrace_epid_t);
8206 
8207 	epid = state->dts_epid++;
8208 
8209 	if (epid - 1 >= state->dts_necbs) {
8210 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
8211 		int necbs = state->dts_necbs << 1;
8212 
8213 		ASSERT(epid == state->dts_necbs + 1);
8214 
8215 		if (necbs == 0) {
8216 			ASSERT(oecbs == NULL);
8217 			necbs = 1;
8218 		}
8219 
8220 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
8221 
8222 		if (oecbs != NULL)
8223 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
8224 
8225 		dtrace_membar_producer();
8226 		state->dts_ecbs = ecbs;
8227 
8228 		if (oecbs != NULL) {
8229 			/*
8230 			 * If this state is active, we must dtrace_sync()
8231 			 * before we can free the old dts_ecbs array:  we're
8232 			 * coming in hot, and there may be active ring
8233 			 * buffer processing (which indexes into the dts_ecbs
8234 			 * array) on another CPU.
8235 			 */
8236 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
8237 				dtrace_sync();
8238 
8239 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
8240 		}
8241 
8242 		dtrace_membar_producer();
8243 		state->dts_necbs = necbs;
8244 	}
8245 
8246 	ecb->dte_state = state;
8247 
8248 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
8249 	dtrace_membar_producer();
8250 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
8251 
8252 	return (ecb);
8253 }
8254 
8255 static void
8256 dtrace_ecb_enable(dtrace_ecb_t *ecb)
8257 {
8258 	dtrace_probe_t *probe = ecb->dte_probe;
8259 
8260 	ASSERT(MUTEX_HELD(&cpu_lock));
8261 	ASSERT(MUTEX_HELD(&dtrace_lock));
8262 	ASSERT(ecb->dte_next == NULL);
8263 
8264 	if (probe == NULL) {
8265 		/*
8266 		 * This is the NULL probe -- there's nothing to do.
8267 		 */
8268 		return;
8269 	}
8270 
8271 	if (probe->dtpr_ecb == NULL) {
8272 		dtrace_provider_t *prov = probe->dtpr_provider;
8273 
8274 		/*
8275 		 * We're the first ECB on this probe.
8276 		 */
8277 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
8278 
8279 		if (ecb->dte_predicate != NULL)
8280 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
8281 
8282 		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
8283 		    probe->dtpr_id, probe->dtpr_arg);
8284 	} else {
8285 		/*
8286 		 * This probe is already active.  Swing the last pointer to
8287 		 * point to the new ECB, and issue a dtrace_sync() to assure
8288 		 * that all CPUs have seen the change.
8289 		 */
8290 		ASSERT(probe->dtpr_ecb_last != NULL);
8291 		probe->dtpr_ecb_last->dte_next = ecb;
8292 		probe->dtpr_ecb_last = ecb;
8293 		probe->dtpr_predcache = 0;
8294 
8295 		dtrace_sync();
8296 	}
8297 }
8298 
8299 static void
8300 dtrace_ecb_resize(dtrace_ecb_t *ecb)
8301 {
8302 	uint32_t maxalign = sizeof (dtrace_epid_t);
8303 	uint32_t align = sizeof (uint8_t), offs, diff;
8304 	dtrace_action_t *act;
8305 	int wastuple = 0;
8306 	uint32_t aggbase = UINT32_MAX;
8307 	dtrace_state_t *state = ecb->dte_state;
8308 
8309 	/*
8310 	 * If we record anything, we always record the epid.  (And we always
8311 	 * record it first.)
8312 	 */
8313 	offs = sizeof (dtrace_epid_t);
8314 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
8315 
8316 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
8317 		dtrace_recdesc_t *rec = &act->dta_rec;
8318 
8319 		if ((align = rec->dtrd_alignment) > maxalign)
8320 			maxalign = align;
8321 
8322 		if (!wastuple && act->dta_intuple) {
8323 			/*
8324 			 * This is the first record in a tuple.  Align the
8325 			 * offset to be at offset 4 in an 8-byte aligned
8326 			 * block.
8327 			 */
8328 			diff = offs + sizeof (dtrace_aggid_t);
8329 
8330 			if (diff = (diff & (sizeof (uint64_t) - 1)))
8331 				offs += sizeof (uint64_t) - diff;
8332 
8333 			aggbase = offs - sizeof (dtrace_aggid_t);
8334 			ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
8335 		}
8336 
8337 		/*LINTED*/
8338 		if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
8339 			/*
8340 			 * The current offset is not properly aligned; align it.
8341 			 */
8342 			offs += align - diff;
8343 		}
8344 
8345 		rec->dtrd_offset = offs;
8346 
8347 		if (offs + rec->dtrd_size > ecb->dte_needed) {
8348 			ecb->dte_needed = offs + rec->dtrd_size;
8349 
8350 			if (ecb->dte_needed > state->dts_needed)
8351 				state->dts_needed = ecb->dte_needed;
8352 		}
8353 
8354 		if (DTRACEACT_ISAGG(act->dta_kind)) {
8355 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
8356 			dtrace_action_t *first = agg->dtag_first, *prev;
8357 
8358 			ASSERT(rec->dtrd_size != 0 && first != NULL);
8359 			ASSERT(wastuple);
8360 			ASSERT(aggbase != UINT32_MAX);
8361 
8362 			agg->dtag_base = aggbase;
8363 
8364 			while ((prev = first->dta_prev) != NULL &&
8365 			    DTRACEACT_ISAGG(prev->dta_kind)) {
8366 				agg = (dtrace_aggregation_t *)prev;
8367 				first = agg->dtag_first;
8368 			}
8369 
8370 			if (prev != NULL) {
8371 				offs = prev->dta_rec.dtrd_offset +
8372 				    prev->dta_rec.dtrd_size;
8373 			} else {
8374 				offs = sizeof (dtrace_epid_t);
8375 			}
8376 			wastuple = 0;
8377 		} else {
8378 			if (!act->dta_intuple)
8379 				ecb->dte_size = offs + rec->dtrd_size;
8380 
8381 			offs += rec->dtrd_size;
8382 		}
8383 
8384 		wastuple = act->dta_intuple;
8385 	}
8386 
8387 	if ((act = ecb->dte_action) != NULL &&
8388 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
8389 	    ecb->dte_size == sizeof (dtrace_epid_t)) {
8390 		/*
8391 		 * If the size is still sizeof (dtrace_epid_t), then all
8392 		 * actions store no data; set the size to 0.
8393 		 */
8394 		ecb->dte_alignment = maxalign;
8395 		ecb->dte_size = 0;
8396 
8397 		/*
8398 		 * If the needed space is still sizeof (dtrace_epid_t), then
8399 		 * all actions need no additional space; set the needed
8400 		 * size to 0.
8401 		 */
8402 		if (ecb->dte_needed == sizeof (dtrace_epid_t))
8403 			ecb->dte_needed = 0;
8404 
8405 		return;
8406 	}
8407 
8408 	/*
8409 	 * Set our alignment, and make sure that the dte_size and dte_needed
8410 	 * are aligned to the size of an EPID.
8411 	 */
8412 	ecb->dte_alignment = maxalign;
8413 	ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
8414 	    ~(sizeof (dtrace_epid_t) - 1);
8415 	ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
8416 	    ~(sizeof (dtrace_epid_t) - 1);
8417 	ASSERT(ecb->dte_size <= ecb->dte_needed);
8418 }
8419 
8420 static dtrace_action_t *
8421 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
8422 {
8423 	dtrace_aggregation_t *agg;
8424 	size_t size = sizeof (uint64_t);
8425 	int ntuple = desc->dtad_ntuple;
8426 	dtrace_action_t *act;
8427 	dtrace_recdesc_t *frec;
8428 	dtrace_aggid_t aggid;
8429 	dtrace_state_t *state = ecb->dte_state;
8430 
8431 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
8432 	agg->dtag_ecb = ecb;
8433 
8434 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
8435 
8436 	switch (desc->dtad_kind) {
8437 	case DTRACEAGG_MIN:
8438 		agg->dtag_initial = UINT64_MAX;
8439 		agg->dtag_aggregate = dtrace_aggregate_min;
8440 		break;
8441 
8442 	case DTRACEAGG_MAX:
8443 		agg->dtag_aggregate = dtrace_aggregate_max;
8444 		break;
8445 
8446 	case DTRACEAGG_COUNT:
8447 		agg->dtag_aggregate = dtrace_aggregate_count;
8448 		break;
8449 
8450 	case DTRACEAGG_QUANTIZE:
8451 		agg->dtag_aggregate = dtrace_aggregate_quantize;
8452 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
8453 		    sizeof (uint64_t);
8454 		break;
8455 
8456 	case DTRACEAGG_LQUANTIZE: {
8457 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
8458 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
8459 
8460 		agg->dtag_initial = desc->dtad_arg;
8461 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
8462 
8463 		if (step == 0 || levels == 0)
8464 			goto err;
8465 
8466 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
8467 		break;
8468 	}
8469 
8470 	case DTRACEAGG_AVG:
8471 		agg->dtag_aggregate = dtrace_aggregate_avg;
8472 		size = sizeof (uint64_t) * 2;
8473 		break;
8474 
8475 	case DTRACEAGG_SUM:
8476 		agg->dtag_aggregate = dtrace_aggregate_sum;
8477 		break;
8478 
8479 	default:
8480 		goto err;
8481 	}
8482 
8483 	agg->dtag_action.dta_rec.dtrd_size = size;
8484 
8485 	if (ntuple == 0)
8486 		goto err;
8487 
8488 	/*
8489 	 * We must make sure that we have enough actions for the n-tuple.
8490 	 */
8491 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
8492 		if (DTRACEACT_ISAGG(act->dta_kind))
8493 			break;
8494 
8495 		if (--ntuple == 0) {
8496 			/*
8497 			 * This is the action with which our n-tuple begins.
8498 			 */
8499 			agg->dtag_first = act;
8500 			goto success;
8501 		}
8502 	}
8503 
8504 	/*
8505 	 * This n-tuple is short by ntuple elements.  Return failure.
8506 	 */
8507 	ASSERT(ntuple != 0);
8508 err:
8509 	kmem_free(agg, sizeof (dtrace_aggregation_t));
8510 	return (NULL);
8511 
8512 success:
8513 	/*
8514 	 * If the last action in the tuple has a size of zero, it's actually
8515 	 * an expression argument for the aggregating action.
8516 	 */
8517 	ASSERT(ecb->dte_action_last != NULL);
8518 	act = ecb->dte_action_last;
8519 
8520 	if (act->dta_kind == DTRACEACT_DIFEXPR) {
8521 		ASSERT(act->dta_difo != NULL);
8522 
8523 		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
8524 			agg->dtag_hasarg = 1;
8525 	}
8526 
8527 	/*
8528 	 * We need to allocate an id for this aggregation.
8529 	 */
8530 	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
8531 	    VM_BESTFIT | VM_SLEEP);
8532 
8533 	if (aggid - 1 >= state->dts_naggregations) {
8534 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
8535 		dtrace_aggregation_t **aggs;
8536 		int naggs = state->dts_naggregations << 1;
8537 		int onaggs = state->dts_naggregations;
8538 
8539 		ASSERT(aggid == state->dts_naggregations + 1);
8540 
8541 		if (naggs == 0) {
8542 			ASSERT(oaggs == NULL);
8543 			naggs = 1;
8544 		}
8545 
8546 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
8547 
8548 		if (oaggs != NULL) {
8549 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
8550 			kmem_free(oaggs, onaggs * sizeof (*aggs));
8551 		}
8552 
8553 		state->dts_aggregations = aggs;
8554 		state->dts_naggregations = naggs;
8555 	}
8556 
8557 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
8558 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
8559 
8560 	frec = &agg->dtag_first->dta_rec;
8561 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
8562 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
8563 
8564 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
8565 		ASSERT(!act->dta_intuple);
8566 		act->dta_intuple = 1;
8567 	}
8568 
8569 	return (&agg->dtag_action);
8570 }
8571 
8572 static void
8573 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
8574 {
8575 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
8576 	dtrace_state_t *state = ecb->dte_state;
8577 	dtrace_aggid_t aggid = agg->dtag_id;
8578 
8579 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
8580 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
8581 
8582 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
8583 	state->dts_aggregations[aggid - 1] = NULL;
8584 
8585 	kmem_free(agg, sizeof (dtrace_aggregation_t));
8586 }
8587 
8588 static int
8589 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
8590 {
8591 	dtrace_action_t *action, *last;
8592 	dtrace_difo_t *dp = desc->dtad_difo;
8593 	uint32_t size = 0, align = sizeof (uint8_t), mask;
8594 	uint16_t format = 0;
8595 	dtrace_recdesc_t *rec;
8596 	dtrace_state_t *state = ecb->dte_state;
8597 	dtrace_optval_t *opt = state->dts_options, nframes, strsize;
8598 	uint64_t arg = desc->dtad_arg;
8599 
8600 	ASSERT(MUTEX_HELD(&dtrace_lock));
8601 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
8602 
8603 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
8604 		/*
8605 		 * If this is an aggregating action, there must be neither
8606 		 * a speculate nor a commit on the action chain.
8607 		 */
8608 		dtrace_action_t *act;
8609 
8610 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
8611 			if (act->dta_kind == DTRACEACT_COMMIT)
8612 				return (EINVAL);
8613 
8614 			if (act->dta_kind == DTRACEACT_SPECULATE)
8615 				return (EINVAL);
8616 		}
8617 
8618 		action = dtrace_ecb_aggregation_create(ecb, desc);
8619 
8620 		if (action == NULL)
8621 			return (EINVAL);
8622 	} else {
8623 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
8624 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
8625 		    dp != NULL && dp->dtdo_destructive)) {
8626 			state->dts_destructive = 1;
8627 		}
8628 
8629 		switch (desc->dtad_kind) {
8630 		case DTRACEACT_PRINTF:
8631 		case DTRACEACT_PRINTA:
8632 		case DTRACEACT_SYSTEM:
8633 		case DTRACEACT_FREOPEN:
8634 			/*
8635 			 * We know that our arg is a string -- turn it into a
8636 			 * format.
8637 			 */
8638 			if (arg == NULL) {
8639 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA);
8640 				format = 0;
8641 			} else {
8642 				ASSERT(arg != NULL);
8643 				ASSERT(arg > KERNELBASE);
8644 				format = dtrace_format_add(state,
8645 				    (char *)(uintptr_t)arg);
8646 			}
8647 
8648 			/*FALLTHROUGH*/
8649 		case DTRACEACT_LIBACT:
8650 		case DTRACEACT_DIFEXPR:
8651 			if (dp == NULL)
8652 				return (EINVAL);
8653 
8654 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
8655 				break;
8656 
8657 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
8658 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
8659 					return (EINVAL);
8660 
8661 				size = opt[DTRACEOPT_STRSIZE];
8662 			}
8663 
8664 			break;
8665 
8666 		case DTRACEACT_STACK:
8667 			if ((nframes = arg) == 0) {
8668 				nframes = opt[DTRACEOPT_STACKFRAMES];
8669 				ASSERT(nframes > 0);
8670 				arg = nframes;
8671 			}
8672 
8673 			size = nframes * sizeof (pc_t);
8674 			break;
8675 
8676 		case DTRACEACT_JSTACK:
8677 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
8678 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
8679 
8680 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
8681 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
8682 
8683 			arg = DTRACE_USTACK_ARG(nframes, strsize);
8684 
8685 			/*FALLTHROUGH*/
8686 		case DTRACEACT_USTACK:
8687 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
8688 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
8689 				strsize = DTRACE_USTACK_STRSIZE(arg);
8690 				nframes = opt[DTRACEOPT_USTACKFRAMES];
8691 				ASSERT(nframes > 0);
8692 				arg = DTRACE_USTACK_ARG(nframes, strsize);
8693 			}
8694 
8695 			/*
8696 			 * Save a slot for the pid.
8697 			 */
8698 			size = (nframes + 1) * sizeof (uint64_t);
8699 			size += DTRACE_USTACK_STRSIZE(arg);
8700 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
8701 
8702 			break;
8703 
8704 		case DTRACEACT_SYM:
8705 		case DTRACEACT_MOD:
8706 			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
8707 			    sizeof (uint64_t)) ||
8708 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
8709 				return (EINVAL);
8710 			break;
8711 
8712 		case DTRACEACT_USYM:
8713 		case DTRACEACT_UMOD:
8714 		case DTRACEACT_UADDR:
8715 			if (dp == NULL ||
8716 			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
8717 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
8718 				return (EINVAL);
8719 
8720 			/*
8721 			 * We have a slot for the pid, plus a slot for the
8722 			 * argument.  To keep things simple (aligned with
8723 			 * bitness-neutral sizing), we store each as a 64-bit
8724 			 * quantity.
8725 			 */
8726 			size = 2 * sizeof (uint64_t);
8727 			break;
8728 
8729 		case DTRACEACT_STOP:
8730 		case DTRACEACT_BREAKPOINT:
8731 		case DTRACEACT_PANIC:
8732 			break;
8733 
8734 		case DTRACEACT_CHILL:
8735 		case DTRACEACT_DISCARD:
8736 		case DTRACEACT_RAISE:
8737 			if (dp == NULL)
8738 				return (EINVAL);
8739 			break;
8740 
8741 		case DTRACEACT_EXIT:
8742 			if (dp == NULL ||
8743 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
8744 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
8745 				return (EINVAL);
8746 			break;
8747 
8748 		case DTRACEACT_SPECULATE:
8749 			if (ecb->dte_size > sizeof (dtrace_epid_t))
8750 				return (EINVAL);
8751 
8752 			if (dp == NULL)
8753 				return (EINVAL);
8754 
8755 			state->dts_speculates = 1;
8756 			break;
8757 
8758 		case DTRACEACT_COMMIT: {
8759 			dtrace_action_t *act = ecb->dte_action;
8760 
8761 			for (; act != NULL; act = act->dta_next) {
8762 				if (act->dta_kind == DTRACEACT_COMMIT)
8763 					return (EINVAL);
8764 			}
8765 
8766 			if (dp == NULL)
8767 				return (EINVAL);
8768 			break;
8769 		}
8770 
8771 		default:
8772 			return (EINVAL);
8773 		}
8774 
8775 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
8776 			/*
8777 			 * If this is a data-storing action or a speculate,
8778 			 * we must be sure that there isn't a commit on the
8779 			 * action chain.
8780 			 */
8781 			dtrace_action_t *act = ecb->dte_action;
8782 
8783 			for (; act != NULL; act = act->dta_next) {
8784 				if (act->dta_kind == DTRACEACT_COMMIT)
8785 					return (EINVAL);
8786 			}
8787 		}
8788 
8789 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
8790 		action->dta_rec.dtrd_size = size;
8791 	}
8792 
8793 	action->dta_refcnt = 1;
8794 	rec = &action->dta_rec;
8795 	size = rec->dtrd_size;
8796 
8797 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
8798 		if (!(size & mask)) {
8799 			align = mask + 1;
8800 			break;
8801 		}
8802 	}
8803 
8804 	action->dta_kind = desc->dtad_kind;
8805 
8806 	if ((action->dta_difo = dp) != NULL)
8807 		dtrace_difo_hold(dp);
8808 
8809 	rec->dtrd_action = action->dta_kind;
8810 	rec->dtrd_arg = arg;
8811 	rec->dtrd_uarg = desc->dtad_uarg;
8812 	rec->dtrd_alignment = (uint16_t)align;
8813 	rec->dtrd_format = format;
8814 
8815 	if ((last = ecb->dte_action_last) != NULL) {
8816 		ASSERT(ecb->dte_action != NULL);
8817 		action->dta_prev = last;
8818 		last->dta_next = action;
8819 	} else {
8820 		ASSERT(ecb->dte_action == NULL);
8821 		ecb->dte_action = action;
8822 	}
8823 
8824 	ecb->dte_action_last = action;
8825 
8826 	return (0);
8827 }
8828 
8829 static void
8830 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
8831 {
8832 	dtrace_action_t *act = ecb->dte_action, *next;
8833 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
8834 	dtrace_difo_t *dp;
8835 	uint16_t format;
8836 
8837 	if (act != NULL && act->dta_refcnt > 1) {
8838 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
8839 		act->dta_refcnt--;
8840 	} else {
8841 		for (; act != NULL; act = next) {
8842 			next = act->dta_next;
8843 			ASSERT(next != NULL || act == ecb->dte_action_last);
8844 			ASSERT(act->dta_refcnt == 1);
8845 
8846 			if ((format = act->dta_rec.dtrd_format) != 0)
8847 				dtrace_format_remove(ecb->dte_state, format);
8848 
8849 			if ((dp = act->dta_difo) != NULL)
8850 				dtrace_difo_release(dp, vstate);
8851 
8852 			if (DTRACEACT_ISAGG(act->dta_kind)) {
8853 				dtrace_ecb_aggregation_destroy(ecb, act);
8854 			} else {
8855 				kmem_free(act, sizeof (dtrace_action_t));
8856 			}
8857 		}
8858 	}
8859 
8860 	ecb->dte_action = NULL;
8861 	ecb->dte_action_last = NULL;
8862 	ecb->dte_size = sizeof (dtrace_epid_t);
8863 }
8864 
8865 static void
8866 dtrace_ecb_disable(dtrace_ecb_t *ecb)
8867 {
8868 	/*
8869 	 * We disable the ECB by removing it from its probe.
8870 	 */
8871 	dtrace_ecb_t *pecb, *prev = NULL;
8872 	dtrace_probe_t *probe = ecb->dte_probe;
8873 
8874 	ASSERT(MUTEX_HELD(&dtrace_lock));
8875 
8876 	if (probe == NULL) {
8877 		/*
8878 		 * This is the NULL probe; there is nothing to disable.
8879 		 */
8880 		return;
8881 	}
8882 
8883 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
8884 		if (pecb == ecb)
8885 			break;
8886 		prev = pecb;
8887 	}
8888 
8889 	ASSERT(pecb != NULL);
8890 
8891 	if (prev == NULL) {
8892 		probe->dtpr_ecb = ecb->dte_next;
8893 	} else {
8894 		prev->dte_next = ecb->dte_next;
8895 	}
8896 
8897 	if (ecb == probe->dtpr_ecb_last) {
8898 		ASSERT(ecb->dte_next == NULL);
8899 		probe->dtpr_ecb_last = prev;
8900 	}
8901 
8902 	/*
8903 	 * The ECB has been disconnected from the probe; now sync to assure
8904 	 * that all CPUs have seen the change before returning.
8905 	 */
8906 	dtrace_sync();
8907 
8908 	if (probe->dtpr_ecb == NULL) {
8909 		/*
8910 		 * That was the last ECB on the probe; clear the predicate
8911 		 * cache ID for the probe, disable it and sync one more time
8912 		 * to assure that we'll never hit it again.
8913 		 */
8914 		dtrace_provider_t *prov = probe->dtpr_provider;
8915 
8916 		ASSERT(ecb->dte_next == NULL);
8917 		ASSERT(probe->dtpr_ecb_last == NULL);
8918 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
8919 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
8920 		    probe->dtpr_id, probe->dtpr_arg);
8921 		dtrace_sync();
8922 	} else {
8923 		/*
8924 		 * There is at least one ECB remaining on the probe.  If there
8925 		 * is _exactly_ one, set the probe's predicate cache ID to be
8926 		 * the predicate cache ID of the remaining ECB.
8927 		 */
8928 		ASSERT(probe->dtpr_ecb_last != NULL);
8929 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
8930 
8931 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
8932 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
8933 
8934 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
8935 
8936 			if (p != NULL)
8937 				probe->dtpr_predcache = p->dtp_cacheid;
8938 		}
8939 
8940 		ecb->dte_next = NULL;
8941 	}
8942 }
8943 
8944 static void
8945 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
8946 {
8947 	dtrace_state_t *state = ecb->dte_state;
8948 	dtrace_vstate_t *vstate = &state->dts_vstate;
8949 	dtrace_predicate_t *pred;
8950 	dtrace_epid_t epid = ecb->dte_epid;
8951 
8952 	ASSERT(MUTEX_HELD(&dtrace_lock));
8953 	ASSERT(ecb->dte_next == NULL);
8954 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
8955 
8956 	if ((pred = ecb->dte_predicate) != NULL)
8957 		dtrace_predicate_release(pred, vstate);
8958 
8959 	dtrace_ecb_action_remove(ecb);
8960 
8961 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
8962 	state->dts_ecbs[epid - 1] = NULL;
8963 
8964 	kmem_free(ecb, sizeof (dtrace_ecb_t));
8965 }
8966 
8967 static dtrace_ecb_t *
8968 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
8969     dtrace_enabling_t *enab)
8970 {
8971 	dtrace_ecb_t *ecb;
8972 	dtrace_predicate_t *pred;
8973 	dtrace_actdesc_t *act;
8974 	dtrace_provider_t *prov;
8975 	dtrace_ecbdesc_t *desc = enab->dten_current;
8976 
8977 	ASSERT(MUTEX_HELD(&dtrace_lock));
8978 	ASSERT(state != NULL);
8979 
8980 	ecb = dtrace_ecb_add(state, probe);
8981 	ecb->dte_uarg = desc->dted_uarg;
8982 
8983 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
8984 		dtrace_predicate_hold(pred);
8985 		ecb->dte_predicate = pred;
8986 	}
8987 
8988 	if (probe != NULL) {
8989 		/*
8990 		 * If the provider shows more leg than the consumer is old
8991 		 * enough to see, we need to enable the appropriate implicit
8992 		 * predicate bits to prevent the ecb from activating at
8993 		 * revealing times.
8994 		 *
8995 		 * Providers specifying DTRACE_PRIV_USER at register time
8996 		 * are stating that they need the /proc-style privilege
8997 		 * model to be enforced, and this is what DTRACE_COND_OWNER
8998 		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
8999 		 */
9000 		prov = probe->dtpr_provider;
9001 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
9002 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
9003 			ecb->dte_cond |= DTRACE_COND_OWNER;
9004 
9005 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
9006 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
9007 			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
9008 
9009 		/*
9010 		 * If the provider shows us kernel innards and the user
9011 		 * is lacking sufficient privilege, enable the
9012 		 * DTRACE_COND_USERMODE implicit predicate.
9013 		 */
9014 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
9015 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
9016 			ecb->dte_cond |= DTRACE_COND_USERMODE;
9017 	}
9018 
9019 	if (dtrace_ecb_create_cache != NULL) {
9020 		/*
9021 		 * If we have a cached ecb, we'll use its action list instead
9022 		 * of creating our own (saving both time and space).
9023 		 */
9024 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
9025 		dtrace_action_t *act = cached->dte_action;
9026 
9027 		if (act != NULL) {
9028 			ASSERT(act->dta_refcnt > 0);
9029 			act->dta_refcnt++;
9030 			ecb->dte_action = act;
9031 			ecb->dte_action_last = cached->dte_action_last;
9032 			ecb->dte_needed = cached->dte_needed;
9033 			ecb->dte_size = cached->dte_size;
9034 			ecb->dte_alignment = cached->dte_alignment;
9035 		}
9036 
9037 		return (ecb);
9038 	}
9039 
9040 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
9041 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
9042 			dtrace_ecb_destroy(ecb);
9043 			return (NULL);
9044 		}
9045 	}
9046 
9047 	dtrace_ecb_resize(ecb);
9048 
9049 	return (dtrace_ecb_create_cache = ecb);
9050 }
9051 
9052 static int
9053 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
9054 {
9055 	dtrace_ecb_t *ecb;
9056 	dtrace_enabling_t *enab = arg;
9057 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
9058 
9059 	ASSERT(state != NULL);
9060 
9061 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
9062 		/*
9063 		 * This probe was created in a generation for which this
9064 		 * enabling has previously created ECBs; we don't want to
9065 		 * enable it again, so just kick out.
9066 		 */
9067 		return (DTRACE_MATCH_NEXT);
9068 	}
9069 
9070 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
9071 		return (DTRACE_MATCH_DONE);
9072 
9073 	dtrace_ecb_enable(ecb);
9074 	return (DTRACE_MATCH_NEXT);
9075 }
9076 
9077 static dtrace_ecb_t *
9078 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
9079 {
9080 	dtrace_ecb_t *ecb;
9081 
9082 	ASSERT(MUTEX_HELD(&dtrace_lock));
9083 
9084 	if (id == 0 || id > state->dts_necbs)
9085 		return (NULL);
9086 
9087 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
9088 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
9089 
9090 	return (state->dts_ecbs[id - 1]);
9091 }
9092 
9093 static dtrace_aggregation_t *
9094 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
9095 {
9096 	dtrace_aggregation_t *agg;
9097 
9098 	ASSERT(MUTEX_HELD(&dtrace_lock));
9099 
9100 	if (id == 0 || id > state->dts_naggregations)
9101 		return (NULL);
9102 
9103 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
9104 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
9105 	    agg->dtag_id == id);
9106 
9107 	return (state->dts_aggregations[id - 1]);
9108 }
9109 
9110 /*
9111  * DTrace Buffer Functions
9112  *
9113  * The following functions manipulate DTrace buffers.  Most of these functions
9114  * are called in the context of establishing or processing consumer state;
9115  * exceptions are explicitly noted.
9116  */
9117 
9118 /*
9119  * Note:  called from cross call context.  This function switches the two
9120  * buffers on a given CPU.  The atomicity of this operation is assured by
9121  * disabling interrupts while the actual switch takes place; the disabling of
9122  * interrupts serializes the execution with any execution of dtrace_probe() on
9123  * the same CPU.
9124  */
9125 static void
9126 dtrace_buffer_switch(dtrace_buffer_t *buf)
9127 {
9128 	caddr_t tomax = buf->dtb_tomax;
9129 	caddr_t xamot = buf->dtb_xamot;
9130 	dtrace_icookie_t cookie;
9131 
9132 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
9133 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
9134 
9135 	cookie = dtrace_interrupt_disable();
9136 	buf->dtb_tomax = xamot;
9137 	buf->dtb_xamot = tomax;
9138 	buf->dtb_xamot_drops = buf->dtb_drops;
9139 	buf->dtb_xamot_offset = buf->dtb_offset;
9140 	buf->dtb_xamot_errors = buf->dtb_errors;
9141 	buf->dtb_xamot_flags = buf->dtb_flags;
9142 	buf->dtb_offset = 0;
9143 	buf->dtb_drops = 0;
9144 	buf->dtb_errors = 0;
9145 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
9146 	dtrace_interrupt_enable(cookie);
9147 }
9148 
9149 /*
9150  * Note:  called from cross call context.  This function activates a buffer
9151  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
9152  * is guaranteed by the disabling of interrupts.
9153  */
9154 static void
9155 dtrace_buffer_activate(dtrace_state_t *state)
9156 {
9157 	dtrace_buffer_t *buf;
9158 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
9159 
9160 	buf = &state->dts_buffer[CPU->cpu_id];
9161 
9162 	if (buf->dtb_tomax != NULL) {
9163 		/*
9164 		 * We might like to assert that the buffer is marked inactive,
9165 		 * but this isn't necessarily true:  the buffer for the CPU
9166 		 * that processes the BEGIN probe has its buffer activated
9167 		 * manually.  In this case, we take the (harmless) action
9168 		 * re-clearing the bit INACTIVE bit.
9169 		 */
9170 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
9171 	}
9172 
9173 	dtrace_interrupt_enable(cookie);
9174 }
9175 
9176 static int
9177 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
9178     processorid_t cpu)
9179 {
9180 	cpu_t *cp;
9181 	dtrace_buffer_t *buf;
9182 
9183 	ASSERT(MUTEX_HELD(&cpu_lock));
9184 	ASSERT(MUTEX_HELD(&dtrace_lock));
9185 
9186 	if (size > dtrace_nonroot_maxsize &&
9187 	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
9188 		return (EFBIG);
9189 
9190 	cp = cpu_list;
9191 
9192 	do {
9193 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
9194 			continue;
9195 
9196 		buf = &bufs[cp->cpu_id];
9197 
9198 		/*
9199 		 * If there is already a buffer allocated for this CPU, it
9200 		 * is only possible that this is a DR event.  In this case,
9201 		 * the buffer size must match our specified size.
9202 		 */
9203 		if (buf->dtb_tomax != NULL) {
9204 			ASSERT(buf->dtb_size == size);
9205 			continue;
9206 		}
9207 
9208 		ASSERT(buf->dtb_xamot == NULL);
9209 
9210 		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
9211 			goto err;
9212 
9213 		buf->dtb_size = size;
9214 		buf->dtb_flags = flags;
9215 		buf->dtb_offset = 0;
9216 		buf->dtb_drops = 0;
9217 
9218 		if (flags & DTRACEBUF_NOSWITCH)
9219 			continue;
9220 
9221 		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
9222 			goto err;
9223 	} while ((cp = cp->cpu_next) != cpu_list);
9224 
9225 	return (0);
9226 
9227 err:
9228 	cp = cpu_list;
9229 
9230 	do {
9231 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
9232 			continue;
9233 
9234 		buf = &bufs[cp->cpu_id];
9235 
9236 		if (buf->dtb_xamot != NULL) {
9237 			ASSERT(buf->dtb_tomax != NULL);
9238 			ASSERT(buf->dtb_size == size);
9239 			kmem_free(buf->dtb_xamot, size);
9240 		}
9241 
9242 		if (buf->dtb_tomax != NULL) {
9243 			ASSERT(buf->dtb_size == size);
9244 			kmem_free(buf->dtb_tomax, size);
9245 		}
9246 
9247 		buf->dtb_tomax = NULL;
9248 		buf->dtb_xamot = NULL;
9249 		buf->dtb_size = 0;
9250 	} while ((cp = cp->cpu_next) != cpu_list);
9251 
9252 	return (ENOMEM);
9253 }
9254 
9255 /*
9256  * Note:  called from probe context.  This function just increments the drop
9257  * count on a buffer.  It has been made a function to allow for the
9258  * possibility of understanding the source of mysterious drop counts.  (A
9259  * problem for which one may be particularly disappointed that DTrace cannot
9260  * be used to understand DTrace.)
9261  */
9262 static void
9263 dtrace_buffer_drop(dtrace_buffer_t *buf)
9264 {
9265 	buf->dtb_drops++;
9266 }
9267 
9268 /*
9269  * Note:  called from probe context.  This function is called to reserve space
9270  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
9271  * mstate.  Returns the new offset in the buffer, or a negative value if an
9272  * error has occurred.
9273  */
9274 static intptr_t
9275 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
9276     dtrace_state_t *state, dtrace_mstate_t *mstate)
9277 {
9278 	intptr_t offs = buf->dtb_offset, soffs;
9279 	intptr_t woffs;
9280 	caddr_t tomax;
9281 	size_t total;
9282 
9283 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
9284 		return (-1);
9285 
9286 	if ((tomax = buf->dtb_tomax) == NULL) {
9287 		dtrace_buffer_drop(buf);
9288 		return (-1);
9289 	}
9290 
9291 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
9292 		while (offs & (align - 1)) {
9293 			/*
9294 			 * Assert that our alignment is off by a number which
9295 			 * is itself sizeof (uint32_t) aligned.
9296 			 */
9297 			ASSERT(!((align - (offs & (align - 1))) &
9298 			    (sizeof (uint32_t) - 1)));
9299 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
9300 			offs += sizeof (uint32_t);
9301 		}
9302 
9303 		if ((soffs = offs + needed) > buf->dtb_size) {
9304 			dtrace_buffer_drop(buf);
9305 			return (-1);
9306 		}
9307 
9308 		if (mstate == NULL)
9309 			return (offs);
9310 
9311 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
9312 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
9313 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
9314 
9315 		return (offs);
9316 	}
9317 
9318 	if (buf->dtb_flags & DTRACEBUF_FILL) {
9319 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
9320 		    (buf->dtb_flags & DTRACEBUF_FULL))
9321 			return (-1);
9322 		goto out;
9323 	}
9324 
9325 	total = needed + (offs & (align - 1));
9326 
9327 	/*
9328 	 * For a ring buffer, life is quite a bit more complicated.  Before
9329 	 * we can store any padding, we need to adjust our wrapping offset.
9330 	 * (If we've never before wrapped or we're not about to, no adjustment
9331 	 * is required.)
9332 	 */
9333 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
9334 	    offs + total > buf->dtb_size) {
9335 		woffs = buf->dtb_xamot_offset;
9336 
9337 		if (offs + total > buf->dtb_size) {
9338 			/*
9339 			 * We can't fit in the end of the buffer.  First, a
9340 			 * sanity check that we can fit in the buffer at all.
9341 			 */
9342 			if (total > buf->dtb_size) {
9343 				dtrace_buffer_drop(buf);
9344 				return (-1);
9345 			}
9346 
9347 			/*
9348 			 * We're going to be storing at the top of the buffer,
9349 			 * so now we need to deal with the wrapped offset.  We
9350 			 * only reset our wrapped offset to 0 if it is
9351 			 * currently greater than the current offset.  If it
9352 			 * is less than the current offset, it is because a
9353 			 * previous allocation induced a wrap -- but the
9354 			 * allocation didn't subsequently take the space due
9355 			 * to an error or false predicate evaluation.  In this
9356 			 * case, we'll just leave the wrapped offset alone: if
9357 			 * the wrapped offset hasn't been advanced far enough
9358 			 * for this allocation, it will be adjusted in the
9359 			 * lower loop.
9360 			 */
9361 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
9362 				if (woffs >= offs)
9363 					woffs = 0;
9364 			} else {
9365 				woffs = 0;
9366 			}
9367 
9368 			/*
9369 			 * Now we know that we're going to be storing to the
9370 			 * top of the buffer and that there is room for us
9371 			 * there.  We need to clear the buffer from the current
9372 			 * offset to the end (there may be old gunk there).
9373 			 */
9374 			while (offs < buf->dtb_size)
9375 				tomax[offs++] = 0;
9376 
9377 			/*
9378 			 * We need to set our offset to zero.  And because we
9379 			 * are wrapping, we need to set the bit indicating as
9380 			 * much.  We can also adjust our needed space back
9381 			 * down to the space required by the ECB -- we know
9382 			 * that the top of the buffer is aligned.
9383 			 */
9384 			offs = 0;
9385 			total = needed;
9386 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
9387 		} else {
9388 			/*
9389 			 * There is room for us in the buffer, so we simply
9390 			 * need to check the wrapped offset.
9391 			 */
9392 			if (woffs < offs) {
9393 				/*
9394 				 * The wrapped offset is less than the offset.
9395 				 * This can happen if we allocated buffer space
9396 				 * that induced a wrap, but then we didn't
9397 				 * subsequently take the space due to an error
9398 				 * or false predicate evaluation.  This is
9399 				 * okay; we know that _this_ allocation isn't
9400 				 * going to induce a wrap.  We still can't
9401 				 * reset the wrapped offset to be zero,
9402 				 * however: the space may have been trashed in
9403 				 * the previous failed probe attempt.  But at
9404 				 * least the wrapped offset doesn't need to
9405 				 * be adjusted at all...
9406 				 */
9407 				goto out;
9408 			}
9409 		}
9410 
9411 		while (offs + total > woffs) {
9412 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
9413 			size_t size;
9414 
9415 			if (epid == DTRACE_EPIDNONE) {
9416 				size = sizeof (uint32_t);
9417 			} else {
9418 				ASSERT(epid <= state->dts_necbs);
9419 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
9420 
9421 				size = state->dts_ecbs[epid - 1]->dte_size;
9422 			}
9423 
9424 			ASSERT(woffs + size <= buf->dtb_size);
9425 			ASSERT(size != 0);
9426 
9427 			if (woffs + size == buf->dtb_size) {
9428 				/*
9429 				 * We've reached the end of the buffer; we want
9430 				 * to set the wrapped offset to 0 and break
9431 				 * out.  However, if the offs is 0, then we're
9432 				 * in a strange edge-condition:  the amount of
9433 				 * space that we want to reserve plus the size
9434 				 * of the record that we're overwriting is
9435 				 * greater than the size of the buffer.  This
9436 				 * is problematic because if we reserve the
9437 				 * space but subsequently don't consume it (due
9438 				 * to a failed predicate or error) the wrapped
9439 				 * offset will be 0 -- yet the EPID at offset 0
9440 				 * will not be committed.  This situation is
9441 				 * relatively easy to deal with:  if we're in
9442 				 * this case, the buffer is indistinguishable
9443 				 * from one that hasn't wrapped; we need only
9444 				 * finish the job by clearing the wrapped bit,
9445 				 * explicitly setting the offset to be 0, and
9446 				 * zero'ing out the old data in the buffer.
9447 				 */
9448 				if (offs == 0) {
9449 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
9450 					buf->dtb_offset = 0;
9451 					woffs = total;
9452 
9453 					while (woffs < buf->dtb_size)
9454 						tomax[woffs++] = 0;
9455 				}
9456 
9457 				woffs = 0;
9458 				break;
9459 			}
9460 
9461 			woffs += size;
9462 		}
9463 
9464 		/*
9465 		 * We have a wrapped offset.  It may be that the wrapped offset
9466 		 * has become zero -- that's okay.
9467 		 */
9468 		buf->dtb_xamot_offset = woffs;
9469 	}
9470 
9471 out:
9472 	/*
9473 	 * Now we can plow the buffer with any necessary padding.
9474 	 */
9475 	while (offs & (align - 1)) {
9476 		/*
9477 		 * Assert that our alignment is off by a number which
9478 		 * is itself sizeof (uint32_t) aligned.
9479 		 */
9480 		ASSERT(!((align - (offs & (align - 1))) &
9481 		    (sizeof (uint32_t) - 1)));
9482 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
9483 		offs += sizeof (uint32_t);
9484 	}
9485 
9486 	if (buf->dtb_flags & DTRACEBUF_FILL) {
9487 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
9488 			buf->dtb_flags |= DTRACEBUF_FULL;
9489 			return (-1);
9490 		}
9491 	}
9492 
9493 	if (mstate == NULL)
9494 		return (offs);
9495 
9496 	/*
9497 	 * For ring buffers and fill buffers, the scratch space is always
9498 	 * the inactive buffer.
9499 	 */
9500 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
9501 	mstate->dtms_scratch_size = buf->dtb_size;
9502 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
9503 
9504 	return (offs);
9505 }
9506 
9507 static void
9508 dtrace_buffer_polish(dtrace_buffer_t *buf)
9509 {
9510 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
9511 	ASSERT(MUTEX_HELD(&dtrace_lock));
9512 
9513 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
9514 		return;
9515 
9516 	/*
9517 	 * We need to polish the ring buffer.  There are three cases:
9518 	 *
9519 	 * - The first (and presumably most common) is that there is no gap
9520 	 *   between the buffer offset and the wrapped offset.  In this case,
9521 	 *   there is nothing in the buffer that isn't valid data; we can
9522 	 *   mark the buffer as polished and return.
9523 	 *
9524 	 * - The second (less common than the first but still more common
9525 	 *   than the third) is that there is a gap between the buffer offset
9526 	 *   and the wrapped offset, and the wrapped offset is larger than the
9527 	 *   buffer offset.  This can happen because of an alignment issue, or
9528 	 *   can happen because of a call to dtrace_buffer_reserve() that
9529 	 *   didn't subsequently consume the buffer space.  In this case,
9530 	 *   we need to zero the data from the buffer offset to the wrapped
9531 	 *   offset.
9532 	 *
9533 	 * - The third (and least common) is that there is a gap between the
9534 	 *   buffer offset and the wrapped offset, but the wrapped offset is
9535 	 *   _less_ than the buffer offset.  This can only happen because a
9536 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
9537 	 *   was not subsequently consumed.  In this case, we need to zero the
9538 	 *   space from the offset to the end of the buffer _and_ from the
9539 	 *   top of the buffer to the wrapped offset.
9540 	 */
9541 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
9542 		bzero(buf->dtb_tomax + buf->dtb_offset,
9543 		    buf->dtb_xamot_offset - buf->dtb_offset);
9544 	}
9545 
9546 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
9547 		bzero(buf->dtb_tomax + buf->dtb_offset,
9548 		    buf->dtb_size - buf->dtb_offset);
9549 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
9550 	}
9551 }
9552 
9553 static void
9554 dtrace_buffer_free(dtrace_buffer_t *bufs)
9555 {
9556 	int i;
9557 
9558 	for (i = 0; i < NCPU; i++) {
9559 		dtrace_buffer_t *buf = &bufs[i];
9560 
9561 		if (buf->dtb_tomax == NULL) {
9562 			ASSERT(buf->dtb_xamot == NULL);
9563 			ASSERT(buf->dtb_size == 0);
9564 			continue;
9565 		}
9566 
9567 		if (buf->dtb_xamot != NULL) {
9568 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
9569 			kmem_free(buf->dtb_xamot, buf->dtb_size);
9570 		}
9571 
9572 		kmem_free(buf->dtb_tomax, buf->dtb_size);
9573 		buf->dtb_size = 0;
9574 		buf->dtb_tomax = NULL;
9575 		buf->dtb_xamot = NULL;
9576 	}
9577 }
9578 
9579 /*
9580  * DTrace Enabling Functions
9581  */
9582 static dtrace_enabling_t *
9583 dtrace_enabling_create(dtrace_vstate_t *vstate)
9584 {
9585 	dtrace_enabling_t *enab;
9586 
9587 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
9588 	enab->dten_vstate = vstate;
9589 
9590 	return (enab);
9591 }
9592 
9593 static void
9594 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
9595 {
9596 	dtrace_ecbdesc_t **ndesc;
9597 	size_t osize, nsize;
9598 
9599 	/*
9600 	 * We can't add to enablings after we've enabled them, or after we've
9601 	 * retained them.
9602 	 */
9603 	ASSERT(enab->dten_probegen == 0);
9604 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
9605 
9606 	if (enab->dten_ndesc < enab->dten_maxdesc) {
9607 		enab->dten_desc[enab->dten_ndesc++] = ecb;
9608 		return;
9609 	}
9610 
9611 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
9612 
9613 	if (enab->dten_maxdesc == 0) {
9614 		enab->dten_maxdesc = 1;
9615 	} else {
9616 		enab->dten_maxdesc <<= 1;
9617 	}
9618 
9619 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
9620 
9621 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
9622 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
9623 	bcopy(enab->dten_desc, ndesc, osize);
9624 	kmem_free(enab->dten_desc, osize);
9625 
9626 	enab->dten_desc = ndesc;
9627 	enab->dten_desc[enab->dten_ndesc++] = ecb;
9628 }
9629 
9630 static void
9631 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
9632     dtrace_probedesc_t *pd)
9633 {
9634 	dtrace_ecbdesc_t *new;
9635 	dtrace_predicate_t *pred;
9636 	dtrace_actdesc_t *act;
9637 
9638 	/*
9639 	 * We're going to create a new ECB description that matches the
9640 	 * specified ECB in every way, but has the specified probe description.
9641 	 */
9642 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
9643 
9644 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
9645 		dtrace_predicate_hold(pred);
9646 
9647 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
9648 		dtrace_actdesc_hold(act);
9649 
9650 	new->dted_action = ecb->dted_action;
9651 	new->dted_pred = ecb->dted_pred;
9652 	new->dted_probe = *pd;
9653 	new->dted_uarg = ecb->dted_uarg;
9654 
9655 	dtrace_enabling_add(enab, new);
9656 }
9657 
9658 static void
9659 dtrace_enabling_dump(dtrace_enabling_t *enab)
9660 {
9661 	int i;
9662 
9663 	for (i = 0; i < enab->dten_ndesc; i++) {
9664 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
9665 
9666 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
9667 		    desc->dtpd_provider, desc->dtpd_mod,
9668 		    desc->dtpd_func, desc->dtpd_name);
9669 	}
9670 }
9671 
9672 static void
9673 dtrace_enabling_destroy(dtrace_enabling_t *enab)
9674 {
9675 	int i;
9676 	dtrace_ecbdesc_t *ep;
9677 	dtrace_vstate_t *vstate = enab->dten_vstate;
9678 
9679 	ASSERT(MUTEX_HELD(&dtrace_lock));
9680 
9681 	for (i = 0; i < enab->dten_ndesc; i++) {
9682 		dtrace_actdesc_t *act, *next;
9683 		dtrace_predicate_t *pred;
9684 
9685 		ep = enab->dten_desc[i];
9686 
9687 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
9688 			dtrace_predicate_release(pred, vstate);
9689 
9690 		for (act = ep->dted_action; act != NULL; act = next) {
9691 			next = act->dtad_next;
9692 			dtrace_actdesc_release(act, vstate);
9693 		}
9694 
9695 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
9696 	}
9697 
9698 	kmem_free(enab->dten_desc,
9699 	    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
9700 
9701 	/*
9702 	 * If this was a retained enabling, decrement the dts_nretained count
9703 	 * and take it off of the dtrace_retained list.
9704 	 */
9705 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
9706 	    dtrace_retained == enab) {
9707 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
9708 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
9709 		enab->dten_vstate->dtvs_state->dts_nretained--;
9710 	}
9711 
9712 	if (enab->dten_prev == NULL) {
9713 		if (dtrace_retained == enab) {
9714 			dtrace_retained = enab->dten_next;
9715 
9716 			if (dtrace_retained != NULL)
9717 				dtrace_retained->dten_prev = NULL;
9718 		}
9719 	} else {
9720 		ASSERT(enab != dtrace_retained);
9721 		ASSERT(dtrace_retained != NULL);
9722 		enab->dten_prev->dten_next = enab->dten_next;
9723 	}
9724 
9725 	if (enab->dten_next != NULL) {
9726 		ASSERT(dtrace_retained != NULL);
9727 		enab->dten_next->dten_prev = enab->dten_prev;
9728 	}
9729 
9730 	kmem_free(enab, sizeof (dtrace_enabling_t));
9731 }
9732 
9733 static int
9734 dtrace_enabling_retain(dtrace_enabling_t *enab)
9735 {
9736 	dtrace_state_t *state;
9737 
9738 	ASSERT(MUTEX_HELD(&dtrace_lock));
9739 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
9740 	ASSERT(enab->dten_vstate != NULL);
9741 
9742 	state = enab->dten_vstate->dtvs_state;
9743 	ASSERT(state != NULL);
9744 
9745 	/*
9746 	 * We only allow each state to retain dtrace_retain_max enablings.
9747 	 */
9748 	if (state->dts_nretained >= dtrace_retain_max)
9749 		return (ENOSPC);
9750 
9751 	state->dts_nretained++;
9752 
9753 	if (dtrace_retained == NULL) {
9754 		dtrace_retained = enab;
9755 		return (0);
9756 	}
9757 
9758 	enab->dten_next = dtrace_retained;
9759 	dtrace_retained->dten_prev = enab;
9760 	dtrace_retained = enab;
9761 
9762 	return (0);
9763 }
9764 
9765 static int
9766 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
9767     dtrace_probedesc_t *create)
9768 {
9769 	dtrace_enabling_t *new, *enab;
9770 	int found = 0, err = ENOENT;
9771 
9772 	ASSERT(MUTEX_HELD(&dtrace_lock));
9773 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
9774 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
9775 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
9776 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
9777 
9778 	new = dtrace_enabling_create(&state->dts_vstate);
9779 
9780 	/*
9781 	 * Iterate over all retained enablings, looking for enablings that
9782 	 * match the specified state.
9783 	 */
9784 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
9785 		int i;
9786 
9787 		/*
9788 		 * dtvs_state can only be NULL for helper enablings -- and
9789 		 * helper enablings can't be retained.
9790 		 */
9791 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
9792 
9793 		if (enab->dten_vstate->dtvs_state != state)
9794 			continue;
9795 
9796 		/*
9797 		 * Now iterate over each probe description; we're looking for
9798 		 * an exact match to the specified probe description.
9799 		 */
9800 		for (i = 0; i < enab->dten_ndesc; i++) {
9801 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
9802 			dtrace_probedesc_t *pd = &ep->dted_probe;
9803 
9804 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
9805 				continue;
9806 
9807 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
9808 				continue;
9809 
9810 			if (strcmp(pd->dtpd_func, match->dtpd_func))
9811 				continue;
9812 
9813 			if (strcmp(pd->dtpd_name, match->dtpd_name))
9814 				continue;
9815 
9816 			/*
9817 			 * We have a winning probe!  Add it to our growing
9818 			 * enabling.
9819 			 */
9820 			found = 1;
9821 			dtrace_enabling_addlike(new, ep, create);
9822 		}
9823 	}
9824 
9825 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
9826 		dtrace_enabling_destroy(new);
9827 		return (err);
9828 	}
9829 
9830 	return (0);
9831 }
9832 
9833 static void
9834 dtrace_enabling_retract(dtrace_state_t *state)
9835 {
9836 	dtrace_enabling_t *enab, *next;
9837 
9838 	ASSERT(MUTEX_HELD(&dtrace_lock));
9839 
9840 	/*
9841 	 * Iterate over all retained enablings, destroy the enablings retained
9842 	 * for the specified state.
9843 	 */
9844 	for (enab = dtrace_retained; enab != NULL; enab = next) {
9845 		next = enab->dten_next;
9846 
9847 		/*
9848 		 * dtvs_state can only be NULL for helper enablings -- and
9849 		 * helper enablings can't be retained.
9850 		 */
9851 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
9852 
9853 		if (enab->dten_vstate->dtvs_state == state) {
9854 			ASSERT(state->dts_nretained > 0);
9855 			dtrace_enabling_destroy(enab);
9856 		}
9857 	}
9858 
9859 	ASSERT(state->dts_nretained == 0);
9860 }
9861 
9862 static int
9863 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
9864 {
9865 	int i = 0;
9866 	int matched = 0;
9867 
9868 	ASSERT(MUTEX_HELD(&cpu_lock));
9869 	ASSERT(MUTEX_HELD(&dtrace_lock));
9870 
9871 	for (i = 0; i < enab->dten_ndesc; i++) {
9872 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
9873 
9874 		enab->dten_current = ep;
9875 		enab->dten_error = 0;
9876 
9877 		matched += dtrace_probe_enable(&ep->dted_probe, enab);
9878 
9879 		if (enab->dten_error != 0) {
9880 			/*
9881 			 * If we get an error half-way through enabling the
9882 			 * probes, we kick out -- perhaps with some number of
9883 			 * them enabled.  Leaving enabled probes enabled may
9884 			 * be slightly confusing for user-level, but we expect
9885 			 * that no one will attempt to actually drive on in
9886 			 * the face of such errors.  If this is an anonymous
9887 			 * enabling (indicated with a NULL nmatched pointer),
9888 			 * we cmn_err() a message.  We aren't expecting to
9889 			 * get such an error -- such as it can exist at all,
9890 			 * it would be a result of corrupted DOF in the driver
9891 			 * properties.
9892 			 */
9893 			if (nmatched == NULL) {
9894 				cmn_err(CE_WARN, "dtrace_enabling_match() "
9895 				    "error on %p: %d", (void *)ep,
9896 				    enab->dten_error);
9897 			}
9898 
9899 			return (enab->dten_error);
9900 		}
9901 	}
9902 
9903 	enab->dten_probegen = dtrace_probegen;
9904 	if (nmatched != NULL)
9905 		*nmatched = matched;
9906 
9907 	return (0);
9908 }
9909 
9910 static void
9911 dtrace_enabling_matchall(void)
9912 {
9913 	dtrace_enabling_t *enab;
9914 
9915 	mutex_enter(&cpu_lock);
9916 	mutex_enter(&dtrace_lock);
9917 
9918 	/*
9919 	 * Because we can be called after dtrace_detach() has been called, we
9920 	 * cannot assert that there are retained enablings.  We can safely
9921 	 * load from dtrace_retained, however:  the taskq_destroy() at the
9922 	 * end of dtrace_detach() will block pending our completion.
9923 	 */
9924 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next)
9925 		(void) dtrace_enabling_match(enab, NULL);
9926 
9927 	mutex_exit(&dtrace_lock);
9928 	mutex_exit(&cpu_lock);
9929 }
9930 
9931 static int
9932 dtrace_enabling_matchstate(dtrace_state_t *state, int *nmatched)
9933 {
9934 	dtrace_enabling_t *enab;
9935 	int matched, total = 0, err;
9936 
9937 	ASSERT(MUTEX_HELD(&cpu_lock));
9938 	ASSERT(MUTEX_HELD(&dtrace_lock));
9939 
9940 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
9941 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
9942 
9943 		if (enab->dten_vstate->dtvs_state != state)
9944 			continue;
9945 
9946 		if ((err = dtrace_enabling_match(enab, &matched)) != 0)
9947 			return (err);
9948 
9949 		total += matched;
9950 	}
9951 
9952 	if (nmatched != NULL)
9953 		*nmatched = total;
9954 
9955 	return (0);
9956 }
9957 
9958 /*
9959  * If an enabling is to be enabled without having matched probes (that is, if
9960  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
9961  * enabling must be _primed_ by creating an ECB for every ECB description.
9962  * This must be done to assure that we know the number of speculations, the
9963  * number of aggregations, the minimum buffer size needed, etc. before we
9964  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
9965  * enabling any probes, we create ECBs for every ECB decription, but with a
9966  * NULL probe -- which is exactly what this function does.
9967  */
9968 static void
9969 dtrace_enabling_prime(dtrace_state_t *state)
9970 {
9971 	dtrace_enabling_t *enab;
9972 	int i;
9973 
9974 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
9975 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
9976 
9977 		if (enab->dten_vstate->dtvs_state != state)
9978 			continue;
9979 
9980 		/*
9981 		 * We don't want to prime an enabling more than once, lest
9982 		 * we allow a malicious user to induce resource exhaustion.
9983 		 * (The ECBs that result from priming an enabling aren't
9984 		 * leaked -- but they also aren't deallocated until the
9985 		 * consumer state is destroyed.)
9986 		 */
9987 		if (enab->dten_primed)
9988 			continue;
9989 
9990 		for (i = 0; i < enab->dten_ndesc; i++) {
9991 			enab->dten_current = enab->dten_desc[i];
9992 			(void) dtrace_probe_enable(NULL, enab);
9993 		}
9994 
9995 		enab->dten_primed = 1;
9996 	}
9997 }
9998 
9999 /*
10000  * Called to indicate that probes should be provided due to retained
10001  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
10002  * must take an initial lap through the enabling calling the dtps_provide()
10003  * entry point explicitly to allow for autocreated probes.
10004  */
10005 static void
10006 dtrace_enabling_provide(dtrace_provider_t *prv)
10007 {
10008 	int i, all = 0;
10009 	dtrace_probedesc_t desc;
10010 
10011 	ASSERT(MUTEX_HELD(&dtrace_lock));
10012 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
10013 
10014 	if (prv == NULL) {
10015 		all = 1;
10016 		prv = dtrace_provider;
10017 	}
10018 
10019 	do {
10020 		dtrace_enabling_t *enab = dtrace_retained;
10021 		void *parg = prv->dtpv_arg;
10022 
10023 		for (; enab != NULL; enab = enab->dten_next) {
10024 			for (i = 0; i < enab->dten_ndesc; i++) {
10025 				desc = enab->dten_desc[i]->dted_probe;
10026 				mutex_exit(&dtrace_lock);
10027 				prv->dtpv_pops.dtps_provide(parg, &desc);
10028 				mutex_enter(&dtrace_lock);
10029 			}
10030 		}
10031 	} while (all && (prv = prv->dtpv_next) != NULL);
10032 
10033 	mutex_exit(&dtrace_lock);
10034 	dtrace_probe_provide(NULL, all ? NULL : prv);
10035 	mutex_enter(&dtrace_lock);
10036 }
10037 
10038 /*
10039  * DTrace DOF Functions
10040  */
10041 /*ARGSUSED*/
10042 static void
10043 dtrace_dof_error(dof_hdr_t *dof, const char *str)
10044 {
10045 	if (dtrace_err_verbose)
10046 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
10047 
10048 #ifdef DTRACE_ERRDEBUG
10049 	dtrace_errdebug(str);
10050 #endif
10051 }
10052 
10053 /*
10054  * Create DOF out of a currently enabled state.  Right now, we only create
10055  * DOF containing the run-time options -- but this could be expanded to create
10056  * complete DOF representing the enabled state.
10057  */
10058 static dof_hdr_t *
10059 dtrace_dof_create(dtrace_state_t *state)
10060 {
10061 	dof_hdr_t *dof;
10062 	dof_sec_t *sec;
10063 	dof_optdesc_t *opt;
10064 	int i, len = sizeof (dof_hdr_t) +
10065 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
10066 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
10067 
10068 	ASSERT(MUTEX_HELD(&dtrace_lock));
10069 
10070 	dof = kmem_zalloc(len, KM_SLEEP);
10071 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
10072 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
10073 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
10074 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
10075 
10076 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
10077 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
10078 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
10079 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
10080 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
10081 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
10082 
10083 	dof->dofh_flags = 0;
10084 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
10085 	dof->dofh_secsize = sizeof (dof_sec_t);
10086 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
10087 	dof->dofh_secoff = sizeof (dof_hdr_t);
10088 	dof->dofh_loadsz = len;
10089 	dof->dofh_filesz = len;
10090 	dof->dofh_pad = 0;
10091 
10092 	/*
10093 	 * Fill in the option section header...
10094 	 */
10095 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
10096 	sec->dofs_type = DOF_SECT_OPTDESC;
10097 	sec->dofs_align = sizeof (uint64_t);
10098 	sec->dofs_flags = DOF_SECF_LOAD;
10099 	sec->dofs_entsize = sizeof (dof_optdesc_t);
10100 
10101 	opt = (dof_optdesc_t *)((uintptr_t)sec +
10102 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
10103 
10104 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
10105 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
10106 
10107 	for (i = 0; i < DTRACEOPT_MAX; i++) {
10108 		opt[i].dofo_option = i;
10109 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
10110 		opt[i].dofo_value = state->dts_options[i];
10111 	}
10112 
10113 	return (dof);
10114 }
10115 
10116 static dof_hdr_t *
10117 dtrace_dof_copyin(uintptr_t uarg, int *errp)
10118 {
10119 	dof_hdr_t hdr, *dof;
10120 
10121 	ASSERT(!MUTEX_HELD(&dtrace_lock));
10122 
10123 	/*
10124 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
10125 	 */
10126 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
10127 		dtrace_dof_error(NULL, "failed to copyin DOF header");
10128 		*errp = EFAULT;
10129 		return (NULL);
10130 	}
10131 
10132 	/*
10133 	 * Now we'll allocate the entire DOF and copy it in -- provided
10134 	 * that the length isn't outrageous.
10135 	 */
10136 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
10137 		dtrace_dof_error(&hdr, "load size exceeds maximum");
10138 		*errp = E2BIG;
10139 		return (NULL);
10140 	}
10141 
10142 	if (hdr.dofh_loadsz < sizeof (hdr)) {
10143 		dtrace_dof_error(&hdr, "invalid load size");
10144 		*errp = EINVAL;
10145 		return (NULL);
10146 	}
10147 
10148 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
10149 
10150 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
10151 		kmem_free(dof, hdr.dofh_loadsz);
10152 		*errp = EFAULT;
10153 		return (NULL);
10154 	}
10155 
10156 	return (dof);
10157 }
10158 
10159 static dof_hdr_t *
10160 dtrace_dof_property(const char *name)
10161 {
10162 	uchar_t *buf;
10163 	uint64_t loadsz;
10164 	unsigned int len, i;
10165 	dof_hdr_t *dof;
10166 
10167 	/*
10168 	 * Unfortunately, array of values in .conf files are always (and
10169 	 * only) interpreted to be integer arrays.  We must read our DOF
10170 	 * as an integer array, and then squeeze it into a byte array.
10171 	 */
10172 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
10173 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
10174 		return (NULL);
10175 
10176 	for (i = 0; i < len; i++)
10177 		buf[i] = (uchar_t)(((int *)buf)[i]);
10178 
10179 	if (len < sizeof (dof_hdr_t)) {
10180 		ddi_prop_free(buf);
10181 		dtrace_dof_error(NULL, "truncated header");
10182 		return (NULL);
10183 	}
10184 
10185 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
10186 		ddi_prop_free(buf);
10187 		dtrace_dof_error(NULL, "truncated DOF");
10188 		return (NULL);
10189 	}
10190 
10191 	if (loadsz >= dtrace_dof_maxsize) {
10192 		ddi_prop_free(buf);
10193 		dtrace_dof_error(NULL, "oversized DOF");
10194 		return (NULL);
10195 	}
10196 
10197 	dof = kmem_alloc(loadsz, KM_SLEEP);
10198 	bcopy(buf, dof, loadsz);
10199 	ddi_prop_free(buf);
10200 
10201 	return (dof);
10202 }
10203 
10204 static void
10205 dtrace_dof_destroy(dof_hdr_t *dof)
10206 {
10207 	kmem_free(dof, dof->dofh_loadsz);
10208 }
10209 
10210 /*
10211  * Return the dof_sec_t pointer corresponding to a given section index.  If the
10212  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
10213  * a type other than DOF_SECT_NONE is specified, the header is checked against
10214  * this type and NULL is returned if the types do not match.
10215  */
10216 static dof_sec_t *
10217 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
10218 {
10219 	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
10220 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
10221 
10222 	if (i >= dof->dofh_secnum) {
10223 		dtrace_dof_error(dof, "referenced section index is invalid");
10224 		return (NULL);
10225 	}
10226 
10227 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
10228 		dtrace_dof_error(dof, "referenced section is not loadable");
10229 		return (NULL);
10230 	}
10231 
10232 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
10233 		dtrace_dof_error(dof, "referenced section is the wrong type");
10234 		return (NULL);
10235 	}
10236 
10237 	return (sec);
10238 }
10239 
10240 static dtrace_probedesc_t *
10241 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
10242 {
10243 	dof_probedesc_t *probe;
10244 	dof_sec_t *strtab;
10245 	uintptr_t daddr = (uintptr_t)dof;
10246 	uintptr_t str;
10247 	size_t size;
10248 
10249 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
10250 		dtrace_dof_error(dof, "invalid probe section");
10251 		return (NULL);
10252 	}
10253 
10254 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
10255 		dtrace_dof_error(dof, "bad alignment in probe description");
10256 		return (NULL);
10257 	}
10258 
10259 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
10260 		dtrace_dof_error(dof, "truncated probe description");
10261 		return (NULL);
10262 	}
10263 
10264 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
10265 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
10266 
10267 	if (strtab == NULL)
10268 		return (NULL);
10269 
10270 	str = daddr + strtab->dofs_offset;
10271 	size = strtab->dofs_size;
10272 
10273 	if (probe->dofp_provider >= strtab->dofs_size) {
10274 		dtrace_dof_error(dof, "corrupt probe provider");
10275 		return (NULL);
10276 	}
10277 
10278 	(void) strncpy(desc->dtpd_provider,
10279 	    (char *)(str + probe->dofp_provider),
10280 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
10281 
10282 	if (probe->dofp_mod >= strtab->dofs_size) {
10283 		dtrace_dof_error(dof, "corrupt probe module");
10284 		return (NULL);
10285 	}
10286 
10287 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
10288 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
10289 
10290 	if (probe->dofp_func >= strtab->dofs_size) {
10291 		dtrace_dof_error(dof, "corrupt probe function");
10292 		return (NULL);
10293 	}
10294 
10295 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
10296 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
10297 
10298 	if (probe->dofp_name >= strtab->dofs_size) {
10299 		dtrace_dof_error(dof, "corrupt probe name");
10300 		return (NULL);
10301 	}
10302 
10303 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
10304 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
10305 
10306 	return (desc);
10307 }
10308 
10309 static dtrace_difo_t *
10310 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
10311     cred_t *cr)
10312 {
10313 	dtrace_difo_t *dp;
10314 	size_t ttl = 0;
10315 	dof_difohdr_t *dofd;
10316 	uintptr_t daddr = (uintptr_t)dof;
10317 	size_t max = dtrace_difo_maxsize;
10318 	int i, l, n;
10319 
10320 	static const struct {
10321 		int section;
10322 		int bufoffs;
10323 		int lenoffs;
10324 		int entsize;
10325 		int align;
10326 		const char *msg;
10327 	} difo[] = {
10328 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
10329 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
10330 		sizeof (dif_instr_t), "multiple DIF sections" },
10331 
10332 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
10333 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
10334 		sizeof (uint64_t), "multiple integer tables" },
10335 
10336 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
10337 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
10338 		sizeof (char), "multiple string tables" },
10339 
10340 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
10341 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
10342 		sizeof (uint_t), "multiple variable tables" },
10343 
10344 		{ DOF_SECT_NONE, 0, 0, 0, NULL }
10345 	};
10346 
10347 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
10348 		dtrace_dof_error(dof, "invalid DIFO header section");
10349 		return (NULL);
10350 	}
10351 
10352 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
10353 		dtrace_dof_error(dof, "bad alignment in DIFO header");
10354 		return (NULL);
10355 	}
10356 
10357 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
10358 	    sec->dofs_size % sizeof (dof_secidx_t)) {
10359 		dtrace_dof_error(dof, "bad size in DIFO header");
10360 		return (NULL);
10361 	}
10362 
10363 	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
10364 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
10365 
10366 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
10367 	dp->dtdo_rtype = dofd->dofd_rtype;
10368 
10369 	for (l = 0; l < n; l++) {
10370 		dof_sec_t *subsec;
10371 		void **bufp;
10372 		uint32_t *lenp;
10373 
10374 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
10375 		    dofd->dofd_links[l])) == NULL)
10376 			goto err; /* invalid section link */
10377 
10378 		if (ttl + subsec->dofs_size > max) {
10379 			dtrace_dof_error(dof, "exceeds maximum size");
10380 			goto err;
10381 		}
10382 
10383 		ttl += subsec->dofs_size;
10384 
10385 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
10386 			if (subsec->dofs_type != difo[i].section)
10387 				continue;
10388 
10389 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
10390 				dtrace_dof_error(dof, "section not loaded");
10391 				goto err;
10392 			}
10393 
10394 			if (subsec->dofs_align != difo[i].align) {
10395 				dtrace_dof_error(dof, "bad alignment");
10396 				goto err;
10397 			}
10398 
10399 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
10400 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
10401 
10402 			if (*bufp != NULL) {
10403 				dtrace_dof_error(dof, difo[i].msg);
10404 				goto err;
10405 			}
10406 
10407 			if (difo[i].entsize != subsec->dofs_entsize) {
10408 				dtrace_dof_error(dof, "entry size mismatch");
10409 				goto err;
10410 			}
10411 
10412 			if (subsec->dofs_entsize != 0 &&
10413 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
10414 				dtrace_dof_error(dof, "corrupt entry size");
10415 				goto err;
10416 			}
10417 
10418 			*lenp = subsec->dofs_size;
10419 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
10420 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
10421 			    *bufp, subsec->dofs_size);
10422 
10423 			if (subsec->dofs_entsize != 0)
10424 				*lenp /= subsec->dofs_entsize;
10425 
10426 			break;
10427 		}
10428 
10429 		/*
10430 		 * If we encounter a loadable DIFO sub-section that is not
10431 		 * known to us, assume this is a broken program and fail.
10432 		 */
10433 		if (difo[i].section == DOF_SECT_NONE &&
10434 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
10435 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
10436 			goto err;
10437 		}
10438 	}
10439 
10440 	if (dp->dtdo_buf == NULL) {
10441 		/*
10442 		 * We can't have a DIF object without DIF text.
10443 		 */
10444 		dtrace_dof_error(dof, "missing DIF text");
10445 		goto err;
10446 	}
10447 
10448 	/*
10449 	 * Before we validate the DIF object, run through the variable table
10450 	 * looking for the strings -- if any of their size are under, we'll set
10451 	 * their size to be the system-wide default string size.  Note that
10452 	 * this should _not_ happen if the "strsize" option has been set --
10453 	 * in this case, the compiler should have set the size to reflect the
10454 	 * setting of the option.
10455 	 */
10456 	for (i = 0; i < dp->dtdo_varlen; i++) {
10457 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10458 		dtrace_diftype_t *t = &v->dtdv_type;
10459 
10460 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
10461 			continue;
10462 
10463 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
10464 			t->dtdt_size = dtrace_strsize_default;
10465 	}
10466 
10467 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
10468 		goto err;
10469 
10470 	dtrace_difo_init(dp, vstate);
10471 	return (dp);
10472 
10473 err:
10474 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10475 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10476 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10477 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10478 
10479 	kmem_free(dp, sizeof (dtrace_difo_t));
10480 	return (NULL);
10481 }
10482 
10483 static dtrace_predicate_t *
10484 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
10485     cred_t *cr)
10486 {
10487 	dtrace_difo_t *dp;
10488 
10489 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
10490 		return (NULL);
10491 
10492 	return (dtrace_predicate_create(dp));
10493 }
10494 
10495 static dtrace_actdesc_t *
10496 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
10497     cred_t *cr)
10498 {
10499 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
10500 	dof_actdesc_t *desc;
10501 	dof_sec_t *difosec;
10502 	size_t offs;
10503 	uintptr_t daddr = (uintptr_t)dof;
10504 	uint64_t arg;
10505 	dtrace_actkind_t kind;
10506 
10507 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
10508 		dtrace_dof_error(dof, "invalid action section");
10509 		return (NULL);
10510 	}
10511 
10512 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
10513 		dtrace_dof_error(dof, "truncated action description");
10514 		return (NULL);
10515 	}
10516 
10517 	if (sec->dofs_align != sizeof (uint64_t)) {
10518 		dtrace_dof_error(dof, "bad alignment in action description");
10519 		return (NULL);
10520 	}
10521 
10522 	if (sec->dofs_size < sec->dofs_entsize) {
10523 		dtrace_dof_error(dof, "section entry size exceeds total size");
10524 		return (NULL);
10525 	}
10526 
10527 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
10528 		dtrace_dof_error(dof, "bad entry size in action description");
10529 		return (NULL);
10530 	}
10531 
10532 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
10533 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
10534 		return (NULL);
10535 	}
10536 
10537 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
10538 		desc = (dof_actdesc_t *)(daddr +
10539 		    (uintptr_t)sec->dofs_offset + offs);
10540 		kind = (dtrace_actkind_t)desc->dofa_kind;
10541 
10542 		if (DTRACEACT_ISPRINTFLIKE(kind) &&
10543 		    (kind != DTRACEACT_PRINTA ||
10544 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
10545 			dof_sec_t *strtab;
10546 			char *str, *fmt;
10547 			uint64_t i;
10548 
10549 			/*
10550 			 * printf()-like actions must have a format string.
10551 			 */
10552 			if ((strtab = dtrace_dof_sect(dof,
10553 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
10554 				goto err;
10555 
10556 			str = (char *)((uintptr_t)dof +
10557 			    (uintptr_t)strtab->dofs_offset);
10558 
10559 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
10560 				if (str[i] == '\0')
10561 					break;
10562 			}
10563 
10564 			if (i >= strtab->dofs_size) {
10565 				dtrace_dof_error(dof, "bogus format string");
10566 				goto err;
10567 			}
10568 
10569 			if (i == desc->dofa_arg) {
10570 				dtrace_dof_error(dof, "empty format string");
10571 				goto err;
10572 			}
10573 
10574 			i -= desc->dofa_arg;
10575 			fmt = kmem_alloc(i + 1, KM_SLEEP);
10576 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
10577 			arg = (uint64_t)(uintptr_t)fmt;
10578 		} else {
10579 			if (kind == DTRACEACT_PRINTA) {
10580 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
10581 				arg = 0;
10582 			} else {
10583 				arg = desc->dofa_arg;
10584 			}
10585 		}
10586 
10587 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
10588 		    desc->dofa_uarg, arg);
10589 
10590 		if (last != NULL) {
10591 			last->dtad_next = act;
10592 		} else {
10593 			first = act;
10594 		}
10595 
10596 		last = act;
10597 
10598 		if (desc->dofa_difo == DOF_SECIDX_NONE)
10599 			continue;
10600 
10601 		if ((difosec = dtrace_dof_sect(dof,
10602 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
10603 			goto err;
10604 
10605 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
10606 
10607 		if (act->dtad_difo == NULL)
10608 			goto err;
10609 	}
10610 
10611 	ASSERT(first != NULL);
10612 	return (first);
10613 
10614 err:
10615 	for (act = first; act != NULL; act = next) {
10616 		next = act->dtad_next;
10617 		dtrace_actdesc_release(act, vstate);
10618 	}
10619 
10620 	return (NULL);
10621 }
10622 
10623 static dtrace_ecbdesc_t *
10624 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
10625     cred_t *cr)
10626 {
10627 	dtrace_ecbdesc_t *ep;
10628 	dof_ecbdesc_t *ecb;
10629 	dtrace_probedesc_t *desc;
10630 	dtrace_predicate_t *pred = NULL;
10631 
10632 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
10633 		dtrace_dof_error(dof, "truncated ECB description");
10634 		return (NULL);
10635 	}
10636 
10637 	if (sec->dofs_align != sizeof (uint64_t)) {
10638 		dtrace_dof_error(dof, "bad alignment in ECB description");
10639 		return (NULL);
10640 	}
10641 
10642 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
10643 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
10644 
10645 	if (sec == NULL)
10646 		return (NULL);
10647 
10648 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
10649 	ep->dted_uarg = ecb->dofe_uarg;
10650 	desc = &ep->dted_probe;
10651 
10652 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
10653 		goto err;
10654 
10655 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
10656 		if ((sec = dtrace_dof_sect(dof,
10657 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
10658 			goto err;
10659 
10660 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
10661 			goto err;
10662 
10663 		ep->dted_pred.dtpdd_predicate = pred;
10664 	}
10665 
10666 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
10667 		if ((sec = dtrace_dof_sect(dof,
10668 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
10669 			goto err;
10670 
10671 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
10672 
10673 		if (ep->dted_action == NULL)
10674 			goto err;
10675 	}
10676 
10677 	return (ep);
10678 
10679 err:
10680 	if (pred != NULL)
10681 		dtrace_predicate_release(pred, vstate);
10682 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
10683 	return (NULL);
10684 }
10685 
10686 /*
10687  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
10688  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
10689  * site of any user SETX relocations to account for load object base address.
10690  * In the future, if we need other relocations, this function can be extended.
10691  */
10692 static int
10693 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
10694 {
10695 	uintptr_t daddr = (uintptr_t)dof;
10696 	dof_relohdr_t *dofr =
10697 	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
10698 	dof_sec_t *ss, *rs, *ts;
10699 	dof_relodesc_t *r;
10700 	uint_t i, n;
10701 
10702 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
10703 	    sec->dofs_align != sizeof (dof_secidx_t)) {
10704 		dtrace_dof_error(dof, "invalid relocation header");
10705 		return (-1);
10706 	}
10707 
10708 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
10709 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
10710 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
10711 
10712 	if (ss == NULL || rs == NULL || ts == NULL)
10713 		return (-1); /* dtrace_dof_error() has been called already */
10714 
10715 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
10716 	    rs->dofs_align != sizeof (uint64_t)) {
10717 		dtrace_dof_error(dof, "invalid relocation section");
10718 		return (-1);
10719 	}
10720 
10721 	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
10722 	n = rs->dofs_size / rs->dofs_entsize;
10723 
10724 	for (i = 0; i < n; i++) {
10725 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
10726 
10727 		switch (r->dofr_type) {
10728 		case DOF_RELO_NONE:
10729 			break;
10730 		case DOF_RELO_SETX:
10731 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
10732 			    sizeof (uint64_t) > ts->dofs_size) {
10733 				dtrace_dof_error(dof, "bad relocation offset");
10734 				return (-1);
10735 			}
10736 
10737 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
10738 				dtrace_dof_error(dof, "misaligned setx relo");
10739 				return (-1);
10740 			}
10741 
10742 			*(uint64_t *)taddr += ubase;
10743 			break;
10744 		default:
10745 			dtrace_dof_error(dof, "invalid relocation type");
10746 			return (-1);
10747 		}
10748 
10749 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
10750 	}
10751 
10752 	return (0);
10753 }
10754 
10755 /*
10756  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
10757  * header:  it should be at the front of a memory region that is at least
10758  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
10759  * size.  It need not be validated in any other way.
10760  */
10761 static int
10762 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
10763     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
10764 {
10765 	uint64_t len = dof->dofh_loadsz, seclen;
10766 	uintptr_t daddr = (uintptr_t)dof;
10767 	dtrace_ecbdesc_t *ep;
10768 	dtrace_enabling_t *enab;
10769 	uint_t i;
10770 
10771 	ASSERT(MUTEX_HELD(&dtrace_lock));
10772 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
10773 
10774 	/*
10775 	 * Check the DOF header identification bytes.  In addition to checking
10776 	 * valid settings, we also verify that unused bits/bytes are zeroed so
10777 	 * we can use them later without fear of regressing existing binaries.
10778 	 */
10779 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
10780 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
10781 		dtrace_dof_error(dof, "DOF magic string mismatch");
10782 		return (-1);
10783 	}
10784 
10785 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
10786 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
10787 		dtrace_dof_error(dof, "DOF has invalid data model");
10788 		return (-1);
10789 	}
10790 
10791 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
10792 		dtrace_dof_error(dof, "DOF encoding mismatch");
10793 		return (-1);
10794 	}
10795 
10796 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
10797 	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
10798 		dtrace_dof_error(dof, "DOF version mismatch");
10799 		return (-1);
10800 	}
10801 
10802 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
10803 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
10804 		return (-1);
10805 	}
10806 
10807 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
10808 		dtrace_dof_error(dof, "DOF uses too many integer registers");
10809 		return (-1);
10810 	}
10811 
10812 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
10813 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
10814 		return (-1);
10815 	}
10816 
10817 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
10818 		if (dof->dofh_ident[i] != 0) {
10819 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
10820 			return (-1);
10821 		}
10822 	}
10823 
10824 	if (dof->dofh_flags & ~DOF_FL_VALID) {
10825 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
10826 		return (-1);
10827 	}
10828 
10829 	if (dof->dofh_secsize == 0) {
10830 		dtrace_dof_error(dof, "zero section header size");
10831 		return (-1);
10832 	}
10833 
10834 	/*
10835 	 * Check that the section headers don't exceed the amount of DOF
10836 	 * data.  Note that we cast the section size and number of sections
10837 	 * to uint64_t's to prevent possible overflow in the multiplication.
10838 	 */
10839 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
10840 
10841 	if (dof->dofh_secoff > len || seclen > len ||
10842 	    dof->dofh_secoff + seclen > len) {
10843 		dtrace_dof_error(dof, "truncated section headers");
10844 		return (-1);
10845 	}
10846 
10847 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
10848 		dtrace_dof_error(dof, "misaligned section headers");
10849 		return (-1);
10850 	}
10851 
10852 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
10853 		dtrace_dof_error(dof, "misaligned section size");
10854 		return (-1);
10855 	}
10856 
10857 	/*
10858 	 * Take an initial pass through the section headers to be sure that
10859 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
10860 	 * set, do not permit sections relating to providers, probes, or args.
10861 	 */
10862 	for (i = 0; i < dof->dofh_secnum; i++) {
10863 		dof_sec_t *sec = (dof_sec_t *)(daddr +
10864 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
10865 
10866 		if (noprobes) {
10867 			switch (sec->dofs_type) {
10868 			case DOF_SECT_PROVIDER:
10869 			case DOF_SECT_PROBES:
10870 			case DOF_SECT_PRARGS:
10871 			case DOF_SECT_PROFFS:
10872 				dtrace_dof_error(dof, "illegal sections "
10873 				    "for enabling");
10874 				return (-1);
10875 			}
10876 		}
10877 
10878 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
10879 			continue; /* just ignore non-loadable sections */
10880 
10881 		if (sec->dofs_align & (sec->dofs_align - 1)) {
10882 			dtrace_dof_error(dof, "bad section alignment");
10883 			return (-1);
10884 		}
10885 
10886 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
10887 			dtrace_dof_error(dof, "misaligned section");
10888 			return (-1);
10889 		}
10890 
10891 		if (sec->dofs_offset > len || sec->dofs_size > len ||
10892 		    sec->dofs_offset + sec->dofs_size > len) {
10893 			dtrace_dof_error(dof, "corrupt section header");
10894 			return (-1);
10895 		}
10896 
10897 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
10898 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
10899 			dtrace_dof_error(dof, "non-terminating string table");
10900 			return (-1);
10901 		}
10902 	}
10903 
10904 	/*
10905 	 * Take a second pass through the sections and locate and perform any
10906 	 * relocations that are present.  We do this after the first pass to
10907 	 * be sure that all sections have had their headers validated.
10908 	 */
10909 	for (i = 0; i < dof->dofh_secnum; i++) {
10910 		dof_sec_t *sec = (dof_sec_t *)(daddr +
10911 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
10912 
10913 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
10914 			continue; /* skip sections that are not loadable */
10915 
10916 		switch (sec->dofs_type) {
10917 		case DOF_SECT_URELHDR:
10918 			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
10919 				return (-1);
10920 			break;
10921 		}
10922 	}
10923 
10924 	if ((enab = *enabp) == NULL)
10925 		enab = *enabp = dtrace_enabling_create(vstate);
10926 
10927 	for (i = 0; i < dof->dofh_secnum; i++) {
10928 		dof_sec_t *sec = (dof_sec_t *)(daddr +
10929 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
10930 
10931 		if (sec->dofs_type != DOF_SECT_ECBDESC)
10932 			continue;
10933 
10934 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
10935 			dtrace_enabling_destroy(enab);
10936 			*enabp = NULL;
10937 			return (-1);
10938 		}
10939 
10940 		dtrace_enabling_add(enab, ep);
10941 	}
10942 
10943 	return (0);
10944 }
10945 
10946 /*
10947  * Process DOF for any options.  This routine assumes that the DOF has been
10948  * at least processed by dtrace_dof_slurp().
10949  */
10950 static int
10951 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
10952 {
10953 	int i, rval;
10954 	uint32_t entsize;
10955 	size_t offs;
10956 	dof_optdesc_t *desc;
10957 
10958 	for (i = 0; i < dof->dofh_secnum; i++) {
10959 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
10960 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
10961 
10962 		if (sec->dofs_type != DOF_SECT_OPTDESC)
10963 			continue;
10964 
10965 		if (sec->dofs_align != sizeof (uint64_t)) {
10966 			dtrace_dof_error(dof, "bad alignment in "
10967 			    "option description");
10968 			return (EINVAL);
10969 		}
10970 
10971 		if ((entsize = sec->dofs_entsize) == 0) {
10972 			dtrace_dof_error(dof, "zeroed option entry size");
10973 			return (EINVAL);
10974 		}
10975 
10976 		if (entsize < sizeof (dof_optdesc_t)) {
10977 			dtrace_dof_error(dof, "bad option entry size");
10978 			return (EINVAL);
10979 		}
10980 
10981 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
10982 			desc = (dof_optdesc_t *)((uintptr_t)dof +
10983 			    (uintptr_t)sec->dofs_offset + offs);
10984 
10985 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
10986 				dtrace_dof_error(dof, "non-zero option string");
10987 				return (EINVAL);
10988 			}
10989 
10990 			if (desc->dofo_value == DTRACEOPT_UNSET) {
10991 				dtrace_dof_error(dof, "unset option");
10992 				return (EINVAL);
10993 			}
10994 
10995 			if ((rval = dtrace_state_option(state,
10996 			    desc->dofo_option, desc->dofo_value)) != 0) {
10997 				dtrace_dof_error(dof, "rejected option");
10998 				return (rval);
10999 			}
11000 		}
11001 	}
11002 
11003 	return (0);
11004 }
11005 
11006 /*
11007  * DTrace Consumer State Functions
11008  */
11009 int
11010 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
11011 {
11012 	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
11013 	void *base;
11014 	uintptr_t limit;
11015 	dtrace_dynvar_t *dvar, *next, *start;
11016 	int i;
11017 
11018 	ASSERT(MUTEX_HELD(&dtrace_lock));
11019 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
11020 
11021 	bzero(dstate, sizeof (dtrace_dstate_t));
11022 
11023 	if ((dstate->dtds_chunksize = chunksize) == 0)
11024 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
11025 
11026 	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
11027 		size = min;
11028 
11029 	if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
11030 		return (ENOMEM);
11031 
11032 	dstate->dtds_size = size;
11033 	dstate->dtds_base = base;
11034 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
11035 	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
11036 
11037 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
11038 
11039 	if (hashsize != 1 && (hashsize & 1))
11040 		hashsize--;
11041 
11042 	dstate->dtds_hashsize = hashsize;
11043 	dstate->dtds_hash = dstate->dtds_base;
11044 
11045 	/*
11046 	 * Set all of our hash buckets to point to the single sink, and (if
11047 	 * it hasn't already been set), set the sink's hash value to be the
11048 	 * sink sentinel value.  The sink is needed for dynamic variable
11049 	 * lookups to know that they have iterated over an entire, valid hash
11050 	 * chain.
11051 	 */
11052 	for (i = 0; i < hashsize; i++)
11053 		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
11054 
11055 	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
11056 		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
11057 
11058 	/*
11059 	 * Determine number of active CPUs.  Divide free list evenly among
11060 	 * active CPUs.
11061 	 */
11062 	start = (dtrace_dynvar_t *)
11063 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
11064 	limit = (uintptr_t)base + size;
11065 
11066 	maxper = (limit - (uintptr_t)start) / NCPU;
11067 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
11068 
11069 	for (i = 0; i < NCPU; i++) {
11070 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
11071 
11072 		/*
11073 		 * If we don't even have enough chunks to make it once through
11074 		 * NCPUs, we're just going to allocate everything to the first
11075 		 * CPU.  And if we're on the last CPU, we're going to allocate
11076 		 * whatever is left over.  In either case, we set the limit to
11077 		 * be the limit of the dynamic variable space.
11078 		 */
11079 		if (maxper == 0 || i == NCPU - 1) {
11080 			limit = (uintptr_t)base + size;
11081 			start = NULL;
11082 		} else {
11083 			limit = (uintptr_t)start + maxper;
11084 			start = (dtrace_dynvar_t *)limit;
11085 		}
11086 
11087 		ASSERT(limit <= (uintptr_t)base + size);
11088 
11089 		for (;;) {
11090 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
11091 			    dstate->dtds_chunksize);
11092 
11093 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
11094 				break;
11095 
11096 			dvar->dtdv_next = next;
11097 			dvar = next;
11098 		}
11099 
11100 		if (maxper == 0)
11101 			break;
11102 	}
11103 
11104 	return (0);
11105 }
11106 
11107 void
11108 dtrace_dstate_fini(dtrace_dstate_t *dstate)
11109 {
11110 	ASSERT(MUTEX_HELD(&cpu_lock));
11111 
11112 	if (dstate->dtds_base == NULL)
11113 		return;
11114 
11115 	kmem_free(dstate->dtds_base, dstate->dtds_size);
11116 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
11117 }
11118 
11119 static void
11120 dtrace_vstate_fini(dtrace_vstate_t *vstate)
11121 {
11122 	/*
11123 	 * Logical XOR, where are you?
11124 	 */
11125 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
11126 
11127 	if (vstate->dtvs_nglobals > 0) {
11128 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
11129 		    sizeof (dtrace_statvar_t *));
11130 	}
11131 
11132 	if (vstate->dtvs_ntlocals > 0) {
11133 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
11134 		    sizeof (dtrace_difv_t));
11135 	}
11136 
11137 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
11138 
11139 	if (vstate->dtvs_nlocals > 0) {
11140 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
11141 		    sizeof (dtrace_statvar_t *));
11142 	}
11143 }
11144 
11145 static void
11146 dtrace_state_clean(dtrace_state_t *state)
11147 {
11148 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
11149 		return;
11150 
11151 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
11152 	dtrace_speculation_clean(state);
11153 }
11154 
11155 static void
11156 dtrace_state_deadman(dtrace_state_t *state)
11157 {
11158 	hrtime_t now;
11159 
11160 	dtrace_sync();
11161 
11162 	now = dtrace_gethrtime();
11163 
11164 	if (state != dtrace_anon.dta_state &&
11165 	    now - state->dts_laststatus >= dtrace_deadman_user)
11166 		return;
11167 
11168 	/*
11169 	 * We must be sure that dts_alive never appears to be less than the
11170 	 * value upon entry to dtrace_state_deadman(), and because we lack a
11171 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
11172 	 * store INT64_MAX to it, followed by a memory barrier, followed by
11173 	 * the new value.  This assures that dts_alive never appears to be
11174 	 * less than its true value, regardless of the order in which the
11175 	 * stores to the underlying storage are issued.
11176 	 */
11177 	state->dts_alive = INT64_MAX;
11178 	dtrace_membar_producer();
11179 	state->dts_alive = now;
11180 }
11181 
11182 dtrace_state_t *
11183 dtrace_state_create(dev_t *devp, cred_t *cr)
11184 {
11185 	minor_t minor;
11186 	major_t major;
11187 	char c[30];
11188 	dtrace_state_t *state;
11189 	dtrace_optval_t *opt;
11190 	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
11191 
11192 	ASSERT(MUTEX_HELD(&dtrace_lock));
11193 	ASSERT(MUTEX_HELD(&cpu_lock));
11194 
11195 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
11196 	    VM_BESTFIT | VM_SLEEP);
11197 
11198 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
11199 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
11200 		return (NULL);
11201 	}
11202 
11203 	state = ddi_get_soft_state(dtrace_softstate, minor);
11204 	state->dts_epid = DTRACE_EPIDNONE + 1;
11205 
11206 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
11207 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
11208 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
11209 
11210 	if (devp != NULL) {
11211 		major = getemajor(*devp);
11212 	} else {
11213 		major = ddi_driver_major(dtrace_devi);
11214 	}
11215 
11216 	state->dts_dev = makedevice(major, minor);
11217 
11218 	if (devp != NULL)
11219 		*devp = state->dts_dev;
11220 
11221 	/*
11222 	 * We allocate NCPU buffers.  On the one hand, this can be quite
11223 	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
11224 	 * other hand, it saves an additional memory reference in the probe
11225 	 * path.
11226 	 */
11227 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
11228 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
11229 	state->dts_cleaner = CYCLIC_NONE;
11230 	state->dts_deadman = CYCLIC_NONE;
11231 	state->dts_vstate.dtvs_state = state;
11232 
11233 	for (i = 0; i < DTRACEOPT_MAX; i++)
11234 		state->dts_options[i] = DTRACEOPT_UNSET;
11235 
11236 	/*
11237 	 * Set the default options.
11238 	 */
11239 	opt = state->dts_options;
11240 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
11241 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
11242 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
11243 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
11244 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
11245 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
11246 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
11247 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
11248 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
11249 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
11250 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
11251 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
11252 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
11253 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
11254 
11255 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
11256 
11257 	/*
11258 	 * Depending on the user credentials, we set flag bits which alter probe
11259 	 * visibility or the amount of destructiveness allowed.  In the case of
11260 	 * actual anonymous tracing, or the possession of all privileges, all of
11261 	 * the normal checks are bypassed.
11262 	 */
11263 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
11264 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
11265 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
11266 	} else {
11267 		/*
11268 		 * Set up the credentials for this instantiation.  We take a
11269 		 * hold on the credential to prevent it from disappearing on
11270 		 * us; this in turn prevents the zone_t referenced by this
11271 		 * credential from disappearing.  This means that we can
11272 		 * examine the credential and the zone from probe context.
11273 		 */
11274 		crhold(cr);
11275 		state->dts_cred.dcr_cred = cr;
11276 
11277 		/*
11278 		 * CRA_PROC means "we have *some* privilege for dtrace" and
11279 		 * unlocks the use of variables like pid, zonename, etc.
11280 		 */
11281 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
11282 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
11283 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
11284 		}
11285 
11286 		/*
11287 		 * dtrace_user allows use of syscall and profile providers.
11288 		 * If the user also has proc_owner and/or proc_zone, we
11289 		 * extend the scope to include additional visibility and
11290 		 * destructive power.
11291 		 */
11292 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
11293 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
11294 				state->dts_cred.dcr_visible |=
11295 				    DTRACE_CRV_ALLPROC;
11296 
11297 				state->dts_cred.dcr_action |=
11298 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
11299 			}
11300 
11301 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
11302 				state->dts_cred.dcr_visible |=
11303 				    DTRACE_CRV_ALLZONE;
11304 
11305 				state->dts_cred.dcr_action |=
11306 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
11307 			}
11308 
11309 			/*
11310 			 * If we have all privs in whatever zone this is,
11311 			 * we can do destructive things to processes which
11312 			 * have altered credentials.
11313 			 */
11314 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
11315 			    cr->cr_zone->zone_privset)) {
11316 				state->dts_cred.dcr_action |=
11317 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
11318 			}
11319 		}
11320 
11321 		/*
11322 		 * Holding the dtrace_kernel privilege also implies that
11323 		 * the user has the dtrace_user privilege from a visibility
11324 		 * perspective.  But without further privileges, some
11325 		 * destructive actions are not available.
11326 		 */
11327 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
11328 			/*
11329 			 * Make all probes in all zones visible.  However,
11330 			 * this doesn't mean that all actions become available
11331 			 * to all zones.
11332 			 */
11333 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
11334 			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
11335 
11336 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
11337 			    DTRACE_CRA_PROC;
11338 			/*
11339 			 * Holding proc_owner means that destructive actions
11340 			 * for *this* zone are allowed.
11341 			 */
11342 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
11343 				state->dts_cred.dcr_action |=
11344 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
11345 
11346 			/*
11347 			 * Holding proc_zone means that destructive actions
11348 			 * for this user/group ID in all zones is allowed.
11349 			 */
11350 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
11351 				state->dts_cred.dcr_action |=
11352 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
11353 
11354 			/*
11355 			 * If we have all privs in whatever zone this is,
11356 			 * we can do destructive things to processes which
11357 			 * have altered credentials.
11358 			 */
11359 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
11360 			    cr->cr_zone->zone_privset)) {
11361 				state->dts_cred.dcr_action |=
11362 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
11363 			}
11364 		}
11365 
11366 		/*
11367 		 * Holding the dtrace_proc privilege gives control over fasttrap
11368 		 * and pid providers.  We need to grant wider destructive
11369 		 * privileges in the event that the user has proc_owner and/or
11370 		 * proc_zone.
11371 		 */
11372 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
11373 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
11374 				state->dts_cred.dcr_action |=
11375 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
11376 
11377 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
11378 				state->dts_cred.dcr_action |=
11379 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
11380 		}
11381 	}
11382 
11383 	return (state);
11384 }
11385 
11386 static int
11387 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
11388 {
11389 	dtrace_optval_t *opt = state->dts_options, size;
11390 	processorid_t cpu;
11391 	int flags = 0, rval;
11392 
11393 	ASSERT(MUTEX_HELD(&dtrace_lock));
11394 	ASSERT(MUTEX_HELD(&cpu_lock));
11395 	ASSERT(which < DTRACEOPT_MAX);
11396 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
11397 	    (state == dtrace_anon.dta_state &&
11398 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
11399 
11400 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
11401 		return (0);
11402 
11403 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
11404 		cpu = opt[DTRACEOPT_CPU];
11405 
11406 	if (which == DTRACEOPT_SPECSIZE)
11407 		flags |= DTRACEBUF_NOSWITCH;
11408 
11409 	if (which == DTRACEOPT_BUFSIZE) {
11410 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
11411 			flags |= DTRACEBUF_RING;
11412 
11413 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
11414 			flags |= DTRACEBUF_FILL;
11415 
11416 		flags |= DTRACEBUF_INACTIVE;
11417 	}
11418 
11419 	for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
11420 		/*
11421 		 * The size must be 8-byte aligned.  If the size is not 8-byte
11422 		 * aligned, drop it down by the difference.
11423 		 */
11424 		if (size & (sizeof (uint64_t) - 1))
11425 			size -= size & (sizeof (uint64_t) - 1);
11426 
11427 		if (size < state->dts_reserve) {
11428 			/*
11429 			 * Buffers always must be large enough to accommodate
11430 			 * their prereserved space.  We return E2BIG instead
11431 			 * of ENOMEM in this case to allow for user-level
11432 			 * software to differentiate the cases.
11433 			 */
11434 			return (E2BIG);
11435 		}
11436 
11437 		rval = dtrace_buffer_alloc(buf, size, flags, cpu);
11438 
11439 		if (rval != ENOMEM) {
11440 			opt[which] = size;
11441 			return (rval);
11442 		}
11443 
11444 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
11445 			return (rval);
11446 	}
11447 
11448 	return (ENOMEM);
11449 }
11450 
11451 static int
11452 dtrace_state_buffers(dtrace_state_t *state)
11453 {
11454 	dtrace_speculation_t *spec = state->dts_speculations;
11455 	int rval, i;
11456 
11457 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
11458 	    DTRACEOPT_BUFSIZE)) != 0)
11459 		return (rval);
11460 
11461 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
11462 	    DTRACEOPT_AGGSIZE)) != 0)
11463 		return (rval);
11464 
11465 	for (i = 0; i < state->dts_nspeculations; i++) {
11466 		if ((rval = dtrace_state_buffer(state,
11467 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
11468 			return (rval);
11469 	}
11470 
11471 	return (0);
11472 }
11473 
11474 static void
11475 dtrace_state_prereserve(dtrace_state_t *state)
11476 {
11477 	dtrace_ecb_t *ecb;
11478 	dtrace_probe_t *probe;
11479 
11480 	state->dts_reserve = 0;
11481 
11482 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
11483 		return;
11484 
11485 	/*
11486 	 * If our buffer policy is a "fill" buffer policy, we need to set the
11487 	 * prereserved space to be the space required by the END probes.
11488 	 */
11489 	probe = dtrace_probes[dtrace_probeid_end - 1];
11490 	ASSERT(probe != NULL);
11491 
11492 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
11493 		if (ecb->dte_state != state)
11494 			continue;
11495 
11496 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
11497 	}
11498 }
11499 
11500 static int
11501 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
11502 {
11503 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
11504 	dtrace_speculation_t *spec;
11505 	dtrace_buffer_t *buf;
11506 	cyc_handler_t hdlr;
11507 	cyc_time_t when;
11508 	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
11509 	dtrace_icookie_t cookie;
11510 
11511 	mutex_enter(&cpu_lock);
11512 	mutex_enter(&dtrace_lock);
11513 
11514 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
11515 		rval = EBUSY;
11516 		goto out;
11517 	}
11518 
11519 	/*
11520 	 * Before we can perform any checks, we must prime all of the
11521 	 * retained enablings that correspond to this state.
11522 	 */
11523 	dtrace_enabling_prime(state);
11524 
11525 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
11526 		rval = EACCES;
11527 		goto out;
11528 	}
11529 
11530 	dtrace_state_prereserve(state);
11531 
11532 	/*
11533 	 * Now we want to do is try to allocate our speculations.
11534 	 * We do not automatically resize the number of speculations; if
11535 	 * this fails, we will fail the operation.
11536 	 */
11537 	nspec = opt[DTRACEOPT_NSPEC];
11538 	ASSERT(nspec != DTRACEOPT_UNSET);
11539 
11540 	if (nspec > INT_MAX) {
11541 		rval = ENOMEM;
11542 		goto out;
11543 	}
11544 
11545 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
11546 
11547 	if (spec == NULL) {
11548 		rval = ENOMEM;
11549 		goto out;
11550 	}
11551 
11552 	state->dts_speculations = spec;
11553 	state->dts_nspeculations = (int)nspec;
11554 
11555 	for (i = 0; i < nspec; i++) {
11556 		if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
11557 			rval = ENOMEM;
11558 			goto err;
11559 		}
11560 
11561 		spec[i].dtsp_buffer = buf;
11562 	}
11563 
11564 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
11565 		if (dtrace_anon.dta_state == NULL) {
11566 			rval = ENOENT;
11567 			goto out;
11568 		}
11569 
11570 		if (state->dts_necbs != 0) {
11571 			rval = EALREADY;
11572 			goto out;
11573 		}
11574 
11575 		state->dts_anon = dtrace_anon_grab();
11576 		ASSERT(state->dts_anon != NULL);
11577 		state = state->dts_anon;
11578 
11579 		/*
11580 		 * We want "grabanon" to be set in the grabbed state, so we'll
11581 		 * copy that option value from the grabbing state into the
11582 		 * grabbed state.
11583 		 */
11584 		state->dts_options[DTRACEOPT_GRABANON] =
11585 		    opt[DTRACEOPT_GRABANON];
11586 
11587 		*cpu = dtrace_anon.dta_beganon;
11588 
11589 		/*
11590 		 * If the anonymous state is active (as it almost certainly
11591 		 * is if the anonymous enabling ultimately matched anything),
11592 		 * we don't allow any further option processing -- but we
11593 		 * don't return failure.
11594 		 */
11595 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
11596 			goto out;
11597 	}
11598 
11599 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
11600 	    opt[DTRACEOPT_AGGSIZE] != 0) {
11601 		if (state->dts_aggregations == NULL) {
11602 			/*
11603 			 * We're not going to create an aggregation buffer
11604 			 * because we don't have any ECBs that contain
11605 			 * aggregations -- set this option to 0.
11606 			 */
11607 			opt[DTRACEOPT_AGGSIZE] = 0;
11608 		} else {
11609 			/*
11610 			 * If we have an aggregation buffer, we must also have
11611 			 * a buffer to use as scratch.
11612 			 */
11613 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
11614 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
11615 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
11616 			}
11617 		}
11618 	}
11619 
11620 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
11621 	    opt[DTRACEOPT_SPECSIZE] != 0) {
11622 		if (!state->dts_speculates) {
11623 			/*
11624 			 * We're not going to create speculation buffers
11625 			 * because we don't have any ECBs that actually
11626 			 * speculate -- set the speculation size to 0.
11627 			 */
11628 			opt[DTRACEOPT_SPECSIZE] = 0;
11629 		}
11630 	}
11631 
11632 	/*
11633 	 * The bare minimum size for any buffer that we're actually going to
11634 	 * do anything to is sizeof (uint64_t).
11635 	 */
11636 	sz = sizeof (uint64_t);
11637 
11638 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
11639 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
11640 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
11641 		/*
11642 		 * A buffer size has been explicitly set to 0 (or to a size
11643 		 * that will be adjusted to 0) and we need the space -- we
11644 		 * need to return failure.  We return ENOSPC to differentiate
11645 		 * it from failing to allocate a buffer due to failure to meet
11646 		 * the reserve (for which we return E2BIG).
11647 		 */
11648 		rval = ENOSPC;
11649 		goto out;
11650 	}
11651 
11652 	if ((rval = dtrace_state_buffers(state)) != 0)
11653 		goto err;
11654 
11655 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
11656 		sz = dtrace_dstate_defsize;
11657 
11658 	do {
11659 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
11660 
11661 		if (rval == 0)
11662 			break;
11663 
11664 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
11665 			goto err;
11666 	} while (sz >>= 1);
11667 
11668 	opt[DTRACEOPT_DYNVARSIZE] = sz;
11669 
11670 	if (rval != 0)
11671 		goto err;
11672 
11673 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
11674 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
11675 
11676 	if (opt[DTRACEOPT_CLEANRATE] == 0)
11677 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
11678 
11679 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
11680 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
11681 
11682 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
11683 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
11684 
11685 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
11686 	hdlr.cyh_arg = state;
11687 	hdlr.cyh_level = CY_LOW_LEVEL;
11688 
11689 	when.cyt_when = 0;
11690 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
11691 
11692 	state->dts_cleaner = cyclic_add(&hdlr, &when);
11693 
11694 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
11695 	hdlr.cyh_arg = state;
11696 	hdlr.cyh_level = CY_LOW_LEVEL;
11697 
11698 	when.cyt_when = 0;
11699 	when.cyt_interval = dtrace_deadman_interval;
11700 
11701 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
11702 	state->dts_deadman = cyclic_add(&hdlr, &when);
11703 
11704 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
11705 
11706 	/*
11707 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
11708 	 * interrupts here both to record the CPU on which we fired the BEGIN
11709 	 * probe (the data from this CPU will be processed first at user
11710 	 * level) and to manually activate the buffer for this CPU.
11711 	 */
11712 	cookie = dtrace_interrupt_disable();
11713 	*cpu = CPU->cpu_id;
11714 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
11715 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
11716 
11717 	dtrace_probe(dtrace_probeid_begin,
11718 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
11719 	dtrace_interrupt_enable(cookie);
11720 	/*
11721 	 * We may have had an exit action from a BEGIN probe; only change our
11722 	 * state to ACTIVE if we're still in WARMUP.
11723 	 */
11724 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
11725 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
11726 
11727 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
11728 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
11729 
11730 	/*
11731 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
11732 	 * want each CPU to transition its principal buffer out of the
11733 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
11734 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
11735 	 * atomically transition from processing none of a state's ECBs to
11736 	 * processing all of them.
11737 	 */
11738 	dtrace_xcall(DTRACE_CPUALL,
11739 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
11740 	goto out;
11741 
11742 err:
11743 	dtrace_buffer_free(state->dts_buffer);
11744 	dtrace_buffer_free(state->dts_aggbuffer);
11745 
11746 	if ((nspec = state->dts_nspeculations) == 0) {
11747 		ASSERT(state->dts_speculations == NULL);
11748 		goto out;
11749 	}
11750 
11751 	spec = state->dts_speculations;
11752 	ASSERT(spec != NULL);
11753 
11754 	for (i = 0; i < state->dts_nspeculations; i++) {
11755 		if ((buf = spec[i].dtsp_buffer) == NULL)
11756 			break;
11757 
11758 		dtrace_buffer_free(buf);
11759 		kmem_free(buf, bufsize);
11760 	}
11761 
11762 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
11763 	state->dts_nspeculations = 0;
11764 	state->dts_speculations = NULL;
11765 
11766 out:
11767 	mutex_exit(&dtrace_lock);
11768 	mutex_exit(&cpu_lock);
11769 
11770 	return (rval);
11771 }
11772 
11773 static int
11774 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
11775 {
11776 	dtrace_icookie_t cookie;
11777 
11778 	ASSERT(MUTEX_HELD(&dtrace_lock));
11779 
11780 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
11781 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
11782 		return (EINVAL);
11783 
11784 	/*
11785 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
11786 	 * to be sure that every CPU has seen it.  See below for the details
11787 	 * on why this is done.
11788 	 */
11789 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
11790 	dtrace_sync();
11791 
11792 	/*
11793 	 * By this point, it is impossible for any CPU to be still processing
11794 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
11795 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
11796 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
11797 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
11798 	 * iff we're in the END probe.
11799 	 */
11800 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
11801 	dtrace_sync();
11802 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
11803 
11804 	/*
11805 	 * Finally, we can release the reserve and call the END probe.  We
11806 	 * disable interrupts across calling the END probe to allow us to
11807 	 * return the CPU on which we actually called the END probe.  This
11808 	 * allows user-land to be sure that this CPU's principal buffer is
11809 	 * processed last.
11810 	 */
11811 	state->dts_reserve = 0;
11812 
11813 	cookie = dtrace_interrupt_disable();
11814 	*cpu = CPU->cpu_id;
11815 	dtrace_probe(dtrace_probeid_end,
11816 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
11817 	dtrace_interrupt_enable(cookie);
11818 
11819 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
11820 	dtrace_sync();
11821 
11822 	return (0);
11823 }
11824 
11825 static int
11826 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
11827     dtrace_optval_t val)
11828 {
11829 	ASSERT(MUTEX_HELD(&dtrace_lock));
11830 
11831 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
11832 		return (EBUSY);
11833 
11834 	if (option >= DTRACEOPT_MAX)
11835 		return (EINVAL);
11836 
11837 	if (option != DTRACEOPT_CPU && val < 0)
11838 		return (EINVAL);
11839 
11840 	switch (option) {
11841 	case DTRACEOPT_DESTRUCTIVE:
11842 		if (dtrace_destructive_disallow)
11843 			return (EACCES);
11844 
11845 		state->dts_cred.dcr_destructive = 1;
11846 		break;
11847 
11848 	case DTRACEOPT_BUFSIZE:
11849 	case DTRACEOPT_DYNVARSIZE:
11850 	case DTRACEOPT_AGGSIZE:
11851 	case DTRACEOPT_SPECSIZE:
11852 	case DTRACEOPT_STRSIZE:
11853 		if (val < 0)
11854 			return (EINVAL);
11855 
11856 		if (val >= LONG_MAX) {
11857 			/*
11858 			 * If this is an otherwise negative value, set it to
11859 			 * the highest multiple of 128m less than LONG_MAX.
11860 			 * Technically, we're adjusting the size without
11861 			 * regard to the buffer resizing policy, but in fact,
11862 			 * this has no effect -- if we set the buffer size to
11863 			 * ~LONG_MAX and the buffer policy is ultimately set to
11864 			 * be "manual", the buffer allocation is guaranteed to
11865 			 * fail, if only because the allocation requires two
11866 			 * buffers.  (We set the the size to the highest
11867 			 * multiple of 128m because it ensures that the size
11868 			 * will remain a multiple of a megabyte when
11869 			 * repeatedly halved -- all the way down to 15m.)
11870 			 */
11871 			val = LONG_MAX - (1 << 27) + 1;
11872 		}
11873 	}
11874 
11875 	state->dts_options[option] = val;
11876 
11877 	return (0);
11878 }
11879 
11880 static void
11881 dtrace_state_destroy(dtrace_state_t *state)
11882 {
11883 	dtrace_ecb_t *ecb;
11884 	dtrace_vstate_t *vstate = &state->dts_vstate;
11885 	minor_t minor = getminor(state->dts_dev);
11886 	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
11887 	dtrace_speculation_t *spec = state->dts_speculations;
11888 	int nspec = state->dts_nspeculations;
11889 	uint32_t match;
11890 
11891 	ASSERT(MUTEX_HELD(&dtrace_lock));
11892 	ASSERT(MUTEX_HELD(&cpu_lock));
11893 
11894 	/*
11895 	 * First, retract any retained enablings for this state.
11896 	 */
11897 	dtrace_enabling_retract(state);
11898 	ASSERT(state->dts_nretained == 0);
11899 
11900 	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
11901 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
11902 		/*
11903 		 * We have managed to come into dtrace_state_destroy() on a
11904 		 * hot enabling -- almost certainly because of a disorderly
11905 		 * shutdown of a consumer.  (That is, a consumer that is
11906 		 * exiting without having called dtrace_stop().) In this case,
11907 		 * we're going to set our activity to be KILLED, and then
11908 		 * issue a sync to be sure that everyone is out of probe
11909 		 * context before we start blowing away ECBs.
11910 		 */
11911 		state->dts_activity = DTRACE_ACTIVITY_KILLED;
11912 		dtrace_sync();
11913 	}
11914 
11915 	/*
11916 	 * Release the credential hold we took in dtrace_state_create().
11917 	 */
11918 	if (state->dts_cred.dcr_cred != NULL)
11919 		crfree(state->dts_cred.dcr_cred);
11920 
11921 	/*
11922 	 * Now we can safely disable and destroy any enabled probes.  Because
11923 	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
11924 	 * (especially if they're all enabled), we take two passes through the
11925 	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
11926 	 * in the second we disable whatever is left over.
11927 	 */
11928 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
11929 		for (i = 0; i < state->dts_necbs; i++) {
11930 			if ((ecb = state->dts_ecbs[i]) == NULL)
11931 				continue;
11932 
11933 			if (match && ecb->dte_probe != NULL) {
11934 				dtrace_probe_t *probe = ecb->dte_probe;
11935 				dtrace_provider_t *prov = probe->dtpr_provider;
11936 
11937 				if (!(prov->dtpv_priv.dtpp_flags & match))
11938 					continue;
11939 			}
11940 
11941 			dtrace_ecb_disable(ecb);
11942 			dtrace_ecb_destroy(ecb);
11943 		}
11944 
11945 		if (!match)
11946 			break;
11947 	}
11948 
11949 	/*
11950 	 * Before we free the buffers, perform one more sync to assure that
11951 	 * every CPU is out of probe context.
11952 	 */
11953 	dtrace_sync();
11954 
11955 	dtrace_buffer_free(state->dts_buffer);
11956 	dtrace_buffer_free(state->dts_aggbuffer);
11957 
11958 	for (i = 0; i < nspec; i++)
11959 		dtrace_buffer_free(spec[i].dtsp_buffer);
11960 
11961 	if (state->dts_cleaner != CYCLIC_NONE)
11962 		cyclic_remove(state->dts_cleaner);
11963 
11964 	if (state->dts_deadman != CYCLIC_NONE)
11965 		cyclic_remove(state->dts_deadman);
11966 
11967 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
11968 	dtrace_vstate_fini(vstate);
11969 	kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
11970 
11971 	if (state->dts_aggregations != NULL) {
11972 #ifdef DEBUG
11973 		for (i = 0; i < state->dts_naggregations; i++)
11974 			ASSERT(state->dts_aggregations[i] == NULL);
11975 #endif
11976 		ASSERT(state->dts_naggregations > 0);
11977 		kmem_free(state->dts_aggregations,
11978 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
11979 	}
11980 
11981 	kmem_free(state->dts_buffer, bufsize);
11982 	kmem_free(state->dts_aggbuffer, bufsize);
11983 
11984 	for (i = 0; i < nspec; i++)
11985 		kmem_free(spec[i].dtsp_buffer, bufsize);
11986 
11987 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
11988 
11989 	dtrace_format_destroy(state);
11990 
11991 	vmem_destroy(state->dts_aggid_arena);
11992 	ddi_soft_state_free(dtrace_softstate, minor);
11993 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
11994 }
11995 
11996 /*
11997  * DTrace Anonymous Enabling Functions
11998  */
11999 static dtrace_state_t *
12000 dtrace_anon_grab(void)
12001 {
12002 	dtrace_state_t *state;
12003 
12004 	ASSERT(MUTEX_HELD(&dtrace_lock));
12005 
12006 	if ((state = dtrace_anon.dta_state) == NULL) {
12007 		ASSERT(dtrace_anon.dta_enabling == NULL);
12008 		return (NULL);
12009 	}
12010 
12011 	ASSERT(dtrace_anon.dta_enabling != NULL);
12012 	ASSERT(dtrace_retained != NULL);
12013 
12014 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
12015 	dtrace_anon.dta_enabling = NULL;
12016 	dtrace_anon.dta_state = NULL;
12017 
12018 	return (state);
12019 }
12020 
12021 static void
12022 dtrace_anon_property(void)
12023 {
12024 	int i, rv;
12025 	dtrace_state_t *state;
12026 	dof_hdr_t *dof;
12027 	char c[32];		/* enough for "dof-data-" + digits */
12028 
12029 	ASSERT(MUTEX_HELD(&dtrace_lock));
12030 	ASSERT(MUTEX_HELD(&cpu_lock));
12031 
12032 	for (i = 0; ; i++) {
12033 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
12034 
12035 		dtrace_err_verbose = 1;
12036 
12037 		if ((dof = dtrace_dof_property(c)) == NULL) {
12038 			dtrace_err_verbose = 0;
12039 			break;
12040 		}
12041 
12042 		/*
12043 		 * We want to create anonymous state, so we need to transition
12044 		 * the kernel debugger to indicate that DTrace is active.  If
12045 		 * this fails (e.g. because the debugger has modified text in
12046 		 * some way), we won't continue with the processing.
12047 		 */
12048 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
12049 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
12050 			    "enabling ignored.");
12051 			dtrace_dof_destroy(dof);
12052 			break;
12053 		}
12054 
12055 		/*
12056 		 * If we haven't allocated an anonymous state, we'll do so now.
12057 		 */
12058 		if ((state = dtrace_anon.dta_state) == NULL) {
12059 			state = dtrace_state_create(NULL, NULL);
12060 			dtrace_anon.dta_state = state;
12061 
12062 			if (state == NULL) {
12063 				/*
12064 				 * This basically shouldn't happen:  the only
12065 				 * failure mode from dtrace_state_create() is a
12066 				 * failure of ddi_soft_state_zalloc() that
12067 				 * itself should never happen.  Still, the
12068 				 * interface allows for a failure mode, and
12069 				 * we want to fail as gracefully as possible:
12070 				 * we'll emit an error message and cease
12071 				 * processing anonymous state in this case.
12072 				 */
12073 				cmn_err(CE_WARN, "failed to create "
12074 				    "anonymous state");
12075 				dtrace_dof_destroy(dof);
12076 				break;
12077 			}
12078 		}
12079 
12080 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
12081 		    &dtrace_anon.dta_enabling, 0, B_TRUE);
12082 
12083 		if (rv == 0)
12084 			rv = dtrace_dof_options(dof, state);
12085 
12086 		dtrace_err_verbose = 0;
12087 		dtrace_dof_destroy(dof);
12088 
12089 		if (rv != 0) {
12090 			/*
12091 			 * This is malformed DOF; chuck any anonymous state
12092 			 * that we created.
12093 			 */
12094 			ASSERT(dtrace_anon.dta_enabling == NULL);
12095 			dtrace_state_destroy(state);
12096 			dtrace_anon.dta_state = NULL;
12097 			break;
12098 		}
12099 
12100 		ASSERT(dtrace_anon.dta_enabling != NULL);
12101 	}
12102 
12103 	if (dtrace_anon.dta_enabling != NULL) {
12104 		int rval;
12105 
12106 		/*
12107 		 * dtrace_enabling_retain() can only fail because we are
12108 		 * trying to retain more enablings than are allowed -- but
12109 		 * we only have one anonymous enabling, and we are guaranteed
12110 		 * to be allowed at least one retained enabling; we assert
12111 		 * that dtrace_enabling_retain() returns success.
12112 		 */
12113 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
12114 		ASSERT(rval == 0);
12115 
12116 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
12117 	}
12118 }
12119 
12120 /*
12121  * DTrace Helper Functions
12122  */
12123 static void
12124 dtrace_helper_trace(dtrace_helper_action_t *helper,
12125     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
12126 {
12127 	uint32_t size, next, nnext, i;
12128 	dtrace_helptrace_t *ent;
12129 	uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
12130 
12131 	if (!dtrace_helptrace_enabled)
12132 		return;
12133 
12134 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
12135 
12136 	/*
12137 	 * What would a tracing framework be without its own tracing
12138 	 * framework?  (Well, a hell of a lot simpler, for starters...)
12139 	 */
12140 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
12141 	    sizeof (uint64_t) - sizeof (uint64_t);
12142 
12143 	/*
12144 	 * Iterate until we can allocate a slot in the trace buffer.
12145 	 */
12146 	do {
12147 		next = dtrace_helptrace_next;
12148 
12149 		if (next + size < dtrace_helptrace_bufsize) {
12150 			nnext = next + size;
12151 		} else {
12152 			nnext = size;
12153 		}
12154 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
12155 
12156 	/*
12157 	 * We have our slot; fill it in.
12158 	 */
12159 	if (nnext == size)
12160 		next = 0;
12161 
12162 	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
12163 	ent->dtht_helper = helper;
12164 	ent->dtht_where = where;
12165 	ent->dtht_nlocals = vstate->dtvs_nlocals;
12166 
12167 	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
12168 	    mstate->dtms_fltoffs : -1;
12169 	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
12170 	ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
12171 
12172 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
12173 		dtrace_statvar_t *svar;
12174 
12175 		if ((svar = vstate->dtvs_locals[i]) == NULL)
12176 			continue;
12177 
12178 		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
12179 		ent->dtht_locals[i] =
12180 		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
12181 	}
12182 }
12183 
12184 static uint64_t
12185 dtrace_helper(int which, dtrace_mstate_t *mstate,
12186     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
12187 {
12188 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
12189 	uint64_t sarg0 = mstate->dtms_arg[0];
12190 	uint64_t sarg1 = mstate->dtms_arg[1];
12191 	uint64_t rval;
12192 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
12193 	dtrace_helper_action_t *helper;
12194 	dtrace_vstate_t *vstate;
12195 	dtrace_difo_t *pred;
12196 	int i, trace = dtrace_helptrace_enabled;
12197 
12198 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
12199 
12200 	if (helpers == NULL)
12201 		return (0);
12202 
12203 	if ((helper = helpers->dthps_actions[which]) == NULL)
12204 		return (0);
12205 
12206 	vstate = &helpers->dthps_vstate;
12207 	mstate->dtms_arg[0] = arg0;
12208 	mstate->dtms_arg[1] = arg1;
12209 
12210 	/*
12211 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
12212 	 * we'll call the corresponding actions.  Note that the below calls
12213 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
12214 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
12215 	 * the stored DIF offset with its own (which is the desired behavior).
12216 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
12217 	 * from machine state; this is okay, too.
12218 	 */
12219 	for (; helper != NULL; helper = helper->dthp_next) {
12220 		if ((pred = helper->dthp_predicate) != NULL) {
12221 			if (trace)
12222 				dtrace_helper_trace(helper, mstate, vstate, 0);
12223 
12224 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
12225 				goto next;
12226 
12227 			if (*flags & CPU_DTRACE_FAULT)
12228 				goto err;
12229 		}
12230 
12231 		for (i = 0; i < helper->dthp_nactions; i++) {
12232 			if (trace)
12233 				dtrace_helper_trace(helper,
12234 				    mstate, vstate, i + 1);
12235 
12236 			rval = dtrace_dif_emulate(helper->dthp_actions[i],
12237 			    mstate, vstate, state);
12238 
12239 			if (*flags & CPU_DTRACE_FAULT)
12240 				goto err;
12241 		}
12242 
12243 next:
12244 		if (trace)
12245 			dtrace_helper_trace(helper, mstate, vstate,
12246 			    DTRACE_HELPTRACE_NEXT);
12247 	}
12248 
12249 	if (trace)
12250 		dtrace_helper_trace(helper, mstate, vstate,
12251 		    DTRACE_HELPTRACE_DONE);
12252 
12253 	/*
12254 	 * Restore the arg0 that we saved upon entry.
12255 	 */
12256 	mstate->dtms_arg[0] = sarg0;
12257 	mstate->dtms_arg[1] = sarg1;
12258 
12259 	return (rval);
12260 
12261 err:
12262 	if (trace)
12263 		dtrace_helper_trace(helper, mstate, vstate,
12264 		    DTRACE_HELPTRACE_ERR);
12265 
12266 	/*
12267 	 * Restore the arg0 that we saved upon entry.
12268 	 */
12269 	mstate->dtms_arg[0] = sarg0;
12270 	mstate->dtms_arg[1] = sarg1;
12271 
12272 	return (NULL);
12273 }
12274 
12275 static void
12276 dtrace_helper_destroy(dtrace_helper_action_t *helper, dtrace_vstate_t *vstate)
12277 {
12278 	int i;
12279 
12280 	if (helper->dthp_predicate != NULL)
12281 		dtrace_difo_release(helper->dthp_predicate, vstate);
12282 
12283 	for (i = 0; i < helper->dthp_nactions; i++) {
12284 		ASSERT(helper->dthp_actions[i] != NULL);
12285 		dtrace_difo_release(helper->dthp_actions[i], vstate);
12286 	}
12287 
12288 	kmem_free(helper->dthp_actions,
12289 	    helper->dthp_nactions * sizeof (dtrace_difo_t *));
12290 	kmem_free(helper, sizeof (dtrace_helper_action_t));
12291 }
12292 
12293 static int
12294 dtrace_helper_destroygen(int gen)
12295 {
12296 	dtrace_helpers_t *help = curproc->p_dtrace_helpers;
12297 	dtrace_vstate_t *vstate;
12298 	int i;
12299 
12300 	ASSERT(MUTEX_HELD(&dtrace_lock));
12301 
12302 	if (help == NULL || gen > help->dthps_generation)
12303 		return (EINVAL);
12304 
12305 	vstate = &help->dthps_vstate;
12306 
12307 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
12308 		dtrace_helper_action_t *last = NULL, *h, *next;
12309 
12310 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
12311 			next = h->dthp_next;
12312 
12313 			if (h->dthp_generation == gen) {
12314 				if (last != NULL) {
12315 					last->dthp_next = next;
12316 				} else {
12317 					help->dthps_actions[i] = next;
12318 				}
12319 
12320 				dtrace_helper_destroy(h, vstate);
12321 			} else {
12322 				last = h;
12323 			}
12324 		}
12325 	}
12326 
12327 	return (0);
12328 }
12329 
12330 static int
12331 dtrace_helper_validate(dtrace_helper_action_t *helper)
12332 {
12333 	int err = 0, i;
12334 	dtrace_difo_t *dp;
12335 
12336 	if ((dp = helper->dthp_predicate) != NULL)
12337 		err += dtrace_difo_validate_helper(dp);
12338 
12339 	for (i = 0; i < helper->dthp_nactions; i++)
12340 		err += dtrace_difo_validate_helper(helper->dthp_actions[i]);
12341 
12342 	return (err == 0);
12343 }
12344 
12345 static int
12346 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
12347 {
12348 	dtrace_helpers_t *help;
12349 	dtrace_helper_action_t *helper, *last;
12350 	dtrace_actdesc_t *act;
12351 	dtrace_vstate_t *vstate;
12352 	dtrace_predicate_t *pred;
12353 	int count = 0, nactions = 0, i;
12354 
12355 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
12356 		return (EINVAL);
12357 
12358 	help = curproc->p_dtrace_helpers;
12359 	last = help->dthps_actions[which];
12360 	vstate = &help->dthps_vstate;
12361 
12362 	for (count = 0; last != NULL; last = last->dthp_next) {
12363 		count++;
12364 		if (last->dthp_next == NULL)
12365 			break;
12366 	}
12367 
12368 	/*
12369 	 * If we already have dtrace_helper_actions_max helper actions for this
12370 	 * helper action type, we'll refuse to add a new one.
12371 	 */
12372 	if (count >= dtrace_helper_actions_max)
12373 		return (ENOSPC);
12374 
12375 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
12376 	helper->dthp_generation = help->dthps_generation;
12377 
12378 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
12379 		ASSERT(pred->dtp_difo != NULL);
12380 		dtrace_difo_hold(pred->dtp_difo);
12381 		helper->dthp_predicate = pred->dtp_difo;
12382 	}
12383 
12384 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
12385 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
12386 			goto err;
12387 
12388 		if (act->dtad_difo == NULL)
12389 			goto err;
12390 
12391 		nactions++;
12392 	}
12393 
12394 	helper->dthp_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
12395 	    (helper->dthp_nactions = nactions), KM_SLEEP);
12396 
12397 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
12398 		dtrace_difo_hold(act->dtad_difo);
12399 		helper->dthp_actions[i++] = act->dtad_difo;
12400 	}
12401 
12402 	if (!dtrace_helper_validate(helper))
12403 		goto err;
12404 
12405 	if (last == NULL) {
12406 		help->dthps_actions[which] = helper;
12407 	} else {
12408 		last->dthp_next = helper;
12409 	}
12410 
12411 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
12412 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
12413 		dtrace_helptrace_next = 0;
12414 	}
12415 
12416 	return (0);
12417 err:
12418 	dtrace_helper_destroy(helper, vstate);
12419 	return (EINVAL);
12420 }
12421 
12422 static void
12423 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
12424     dof_helper_t *dofhp)
12425 {
12426 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
12427 
12428 	mutex_enter(&dtrace_meta_lock);
12429 	mutex_enter(&dtrace_lock);
12430 
12431 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
12432 		/*
12433 		 * If the dtrace module is loaded but not attached, or if
12434 		 * there aren't isn't a meta provider registered to deal with
12435 		 * these provider descriptions, we need to postpone creating
12436 		 * the actual providers until later.
12437 		 */
12438 
12439 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
12440 		    dtrace_deferred_pid != help) {
12441 			help->dthps_deferred = 1;
12442 			help->dthps_pid = p->p_pid;
12443 			help->dthps_next = dtrace_deferred_pid;
12444 			help->dthps_prev = NULL;
12445 			if (dtrace_deferred_pid != NULL)
12446 				dtrace_deferred_pid->dthps_prev = help;
12447 			dtrace_deferred_pid = help;
12448 		}
12449 
12450 		mutex_exit(&dtrace_lock);
12451 
12452 	} else if (dofhp != NULL) {
12453 		/*
12454 		 * If the dtrace module is loaded and we have a particular
12455 		 * helper provider description, pass that off to the
12456 		 * meta provider.
12457 		 */
12458 
12459 		mutex_exit(&dtrace_lock);
12460 
12461 		dtrace_helper_provide(dofhp, p->p_pid);
12462 
12463 	} else {
12464 		/*
12465 		 * Otherwise, just pass all the helper provider descriptions
12466 		 * off to the meta provider.
12467 		 */
12468 
12469 		int i;
12470 		mutex_exit(&dtrace_lock);
12471 
12472 		for (i = 0; i < help->dthps_nprovs; i++) {
12473 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
12474 			    p->p_pid);
12475 		}
12476 	}
12477 
12478 	mutex_exit(&dtrace_meta_lock);
12479 }
12480 
12481 static int
12482 dtrace_helper_provider_add(dof_helper_t *dofhp)
12483 {
12484 	dtrace_helpers_t *help;
12485 	dtrace_helper_provider_t *hprov, **tmp_provs;
12486 	uint_t tmp_nprovs, i;
12487 
12488 	help = curproc->p_dtrace_helpers;
12489 	ASSERT(help != NULL);
12490 
12491 	/*
12492 	 * If we already have dtrace_helper_providers_max helper providers,
12493 	 * we're refuse to add a new one.
12494 	 */
12495 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
12496 		return (ENOSPC);
12497 
12498 	/*
12499 	 * Check to make sure this isn't a duplicate.
12500 	 */
12501 	for (i = 0; i < help->dthps_nprovs; i++) {
12502 		if (dofhp->dofhp_addr ==
12503 		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
12504 			return (EALREADY);
12505 	}
12506 
12507 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
12508 	hprov->dthp_prov = *dofhp;
12509 	hprov->dthp_ref = 1;
12510 
12511 	tmp_nprovs = help->dthps_nprovs;
12512 	tmp_provs = help->dthps_provs;
12513 	help->dthps_nprovs++;
12514 	help->dthps_provs = kmem_zalloc(help->dthps_nprovs *
12515 	    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
12516 
12517 	help->dthps_provs[tmp_nprovs] = hprov;
12518 	if (tmp_provs != NULL) {
12519 		bcopy(tmp_provs, help->dthps_provs, tmp_nprovs *
12520 		    sizeof (dtrace_helper_provider_t *));
12521 		kmem_free(tmp_provs, tmp_nprovs *
12522 		    sizeof (dtrace_helper_provider_t *));
12523 	}
12524 
12525 	return (0);
12526 }
12527 
12528 static void
12529 dtrace_helper_provider_remove(dtrace_helper_provider_t *hprov)
12530 {
12531 	mutex_enter(&dtrace_lock);
12532 
12533 	if (--hprov->dthp_ref == 0) {
12534 		dof_hdr_t *dof;
12535 		mutex_exit(&dtrace_lock);
12536 		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
12537 		dtrace_dof_destroy(dof);
12538 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
12539 	} else {
12540 		mutex_exit(&dtrace_lock);
12541 	}
12542 }
12543 
12544 static int
12545 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
12546 {
12547 	uintptr_t daddr = (uintptr_t)dof;
12548 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
12549 	dof_provider_t *provider;
12550 	dof_probe_t *probe;
12551 	uint8_t *arg;
12552 	char *strtab, *typestr;
12553 	dof_stridx_t typeidx;
12554 	size_t typesz;
12555 	uint_t nprobes, j, k;
12556 
12557 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
12558 
12559 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
12560 		dtrace_dof_error(dof, "misaligned section offset");
12561 		return (-1);
12562 	}
12563 
12564 	/*
12565 	 * The section needs to be large enough to contain the DOF provider
12566 	 * structure appropriate for the given version.
12567 	 */
12568 	if (sec->dofs_size <
12569 	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
12570 	    offsetof(dof_provider_t, dofpv_prenoffs) :
12571 	    sizeof (dof_provider_t))) {
12572 		dtrace_dof_error(dof, "provider section too small");
12573 		return (-1);
12574 	}
12575 
12576 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
12577 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
12578 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
12579 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
12580 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
12581 
12582 	if (str_sec == NULL || prb_sec == NULL ||
12583 	    arg_sec == NULL || off_sec == NULL)
12584 		return (-1);
12585 
12586 	enoff_sec = NULL;
12587 
12588 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12589 	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
12590 	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
12591 	    provider->dofpv_prenoffs)) == NULL)
12592 		return (-1);
12593 
12594 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
12595 
12596 	if (provider->dofpv_name >= str_sec->dofs_size ||
12597 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
12598 		dtrace_dof_error(dof, "invalid provider name");
12599 		return (-1);
12600 	}
12601 
12602 	if (prb_sec->dofs_entsize == 0 ||
12603 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
12604 		dtrace_dof_error(dof, "invalid entry size");
12605 		return (-1);
12606 	}
12607 
12608 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
12609 		dtrace_dof_error(dof, "misaligned entry size");
12610 		return (-1);
12611 	}
12612 
12613 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
12614 		dtrace_dof_error(dof, "invalid entry size");
12615 		return (-1);
12616 	}
12617 
12618 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
12619 		dtrace_dof_error(dof, "misaligned section offset");
12620 		return (-1);
12621 	}
12622 
12623 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
12624 		dtrace_dof_error(dof, "invalid entry size");
12625 		return (-1);
12626 	}
12627 
12628 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
12629 
12630 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
12631 
12632 	/*
12633 	 * Take a pass through the probes to check for errors.
12634 	 */
12635 	for (j = 0; j < nprobes; j++) {
12636 		probe = (dof_probe_t *)(uintptr_t)(daddr +
12637 		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
12638 
12639 		if (probe->dofpr_func >= str_sec->dofs_size) {
12640 			dtrace_dof_error(dof, "invalid function name");
12641 			return (-1);
12642 		}
12643 
12644 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
12645 			dtrace_dof_error(dof, "function name too long");
12646 			return (-1);
12647 		}
12648 
12649 		if (probe->dofpr_name >= str_sec->dofs_size ||
12650 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
12651 			dtrace_dof_error(dof, "invalid probe name");
12652 			return (-1);
12653 		}
12654 
12655 		/*
12656 		 * The offset count must not wrap the index, and the offsets
12657 		 * must also not overflow the section's data.
12658 		 */
12659 		if (probe->dofpr_offidx + probe->dofpr_noffs <
12660 		    probe->dofpr_offidx ||
12661 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
12662 		    off_sec->dofs_entsize > off_sec->dofs_size) {
12663 			dtrace_dof_error(dof, "invalid probe offset");
12664 			return (-1);
12665 		}
12666 
12667 		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
12668 			/*
12669 			 * If there's no is-enabled offset section, make sure
12670 			 * there aren't any is-enabled offsets. Otherwise
12671 			 * perform the same checks as for probe offsets
12672 			 * (immediately above).
12673 			 */
12674 			if (enoff_sec == NULL) {
12675 				if (probe->dofpr_enoffidx != 0 ||
12676 				    probe->dofpr_nenoffs != 0) {
12677 					dtrace_dof_error(dof, "is-enabled "
12678 					    "offsets with null section");
12679 					return (-1);
12680 				}
12681 			} else if (probe->dofpr_enoffidx +
12682 			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
12683 			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
12684 			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
12685 				dtrace_dof_error(dof, "invalid is-enabled "
12686 				    "offset");
12687 				return (-1);
12688 			}
12689 
12690 			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
12691 				dtrace_dof_error(dof, "zero probe and "
12692 				    "is-enabled offsets");
12693 				return (-1);
12694 			}
12695 		} else if (probe->dofpr_noffs == 0) {
12696 			dtrace_dof_error(dof, "zero probe offsets");
12697 			return (-1);
12698 		}
12699 
12700 		if (probe->dofpr_argidx + probe->dofpr_xargc <
12701 		    probe->dofpr_argidx ||
12702 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
12703 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
12704 			dtrace_dof_error(dof, "invalid args");
12705 			return (-1);
12706 		}
12707 
12708 		typeidx = probe->dofpr_nargv;
12709 		typestr = strtab + probe->dofpr_nargv;
12710 		for (k = 0; k < probe->dofpr_nargc; k++) {
12711 			if (typeidx >= str_sec->dofs_size) {
12712 				dtrace_dof_error(dof, "bad "
12713 				    "native argument type");
12714 				return (-1);
12715 			}
12716 
12717 			typesz = strlen(typestr) + 1;
12718 			if (typesz > DTRACE_ARGTYPELEN) {
12719 				dtrace_dof_error(dof, "native "
12720 				    "argument type too long");
12721 				return (-1);
12722 			}
12723 			typeidx += typesz;
12724 			typestr += typesz;
12725 		}
12726 
12727 		typeidx = probe->dofpr_xargv;
12728 		typestr = strtab + probe->dofpr_xargv;
12729 		for (k = 0; k < probe->dofpr_xargc; k++) {
12730 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
12731 				dtrace_dof_error(dof, "bad "
12732 				    "native argument index");
12733 				return (-1);
12734 			}
12735 
12736 			if (typeidx >= str_sec->dofs_size) {
12737 				dtrace_dof_error(dof, "bad "
12738 				    "translated argument type");
12739 				return (-1);
12740 			}
12741 
12742 			typesz = strlen(typestr) + 1;
12743 			if (typesz > DTRACE_ARGTYPELEN) {
12744 				dtrace_dof_error(dof, "translated argument "
12745 				    "type too long");
12746 				return (-1);
12747 			}
12748 
12749 			typeidx += typesz;
12750 			typestr += typesz;
12751 		}
12752 	}
12753 
12754 	return (0);
12755 }
12756 
12757 static int
12758 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
12759 {
12760 	dtrace_helpers_t *help;
12761 	dtrace_vstate_t *vstate;
12762 	dtrace_enabling_t *enab = NULL;
12763 	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
12764 	uintptr_t daddr = (uintptr_t)dof;
12765 
12766 	ASSERT(MUTEX_HELD(&dtrace_lock));
12767 
12768 	if ((help = curproc->p_dtrace_helpers) == NULL)
12769 		help = dtrace_helpers_create(curproc);
12770 
12771 	vstate = &help->dthps_vstate;
12772 
12773 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
12774 	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
12775 		dtrace_dof_destroy(dof);
12776 		return (rv);
12777 	}
12778 
12779 	/*
12780 	 * Look for helper providers and validate their descriptions.
12781 	 */
12782 	if (dhp != NULL) {
12783 		for (i = 0; i < dof->dofh_secnum; i++) {
12784 			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
12785 			    dof->dofh_secoff + i * dof->dofh_secsize);
12786 
12787 			if (sec->dofs_type != DOF_SECT_PROVIDER)
12788 				continue;
12789 
12790 			if (dtrace_helper_provider_validate(dof, sec) != 0) {
12791 				dtrace_enabling_destroy(enab);
12792 				dtrace_dof_destroy(dof);
12793 				return (-1);
12794 			}
12795 
12796 			nprovs++;
12797 		}
12798 	}
12799 
12800 	/*
12801 	 * Now we need to walk through the ECB descriptions in the enabling.
12802 	 */
12803 	for (i = 0; i < enab->dten_ndesc; i++) {
12804 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12805 		dtrace_probedesc_t *desc = &ep->dted_probe;
12806 
12807 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
12808 			continue;
12809 
12810 		if (strcmp(desc->dtpd_mod, "helper") != 0)
12811 			continue;
12812 
12813 		if (strcmp(desc->dtpd_func, "ustack") != 0)
12814 			continue;
12815 
12816 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
12817 		    ep)) != 0) {
12818 			/*
12819 			 * Adding this helper action failed -- we are now going
12820 			 * to rip out the entire generation and return failure.
12821 			 */
12822 			(void) dtrace_helper_destroygen(help->dthps_generation);
12823 			dtrace_enabling_destroy(enab);
12824 			dtrace_dof_destroy(dof);
12825 			return (-1);
12826 		}
12827 
12828 		nhelpers++;
12829 	}
12830 
12831 	if (nhelpers < enab->dten_ndesc)
12832 		dtrace_dof_error(dof, "unmatched helpers");
12833 
12834 	gen = help->dthps_generation++;
12835 	dtrace_enabling_destroy(enab);
12836 
12837 	if (dhp != NULL && nprovs > 0) {
12838 		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
12839 		if (dtrace_helper_provider_add(dhp) == 0) {
12840 			mutex_exit(&dtrace_lock);
12841 			dtrace_helper_provider_register(curproc, help, dhp);
12842 			mutex_enter(&dtrace_lock);
12843 
12844 			destroy = 0;
12845 		}
12846 	}
12847 
12848 	if (destroy)
12849 		dtrace_dof_destroy(dof);
12850 
12851 	return (gen);
12852 }
12853 
12854 static dtrace_helpers_t *
12855 dtrace_helpers_create(proc_t *p)
12856 {
12857 	dtrace_helpers_t *help;
12858 
12859 	ASSERT(MUTEX_HELD(&dtrace_lock));
12860 	ASSERT(p->p_dtrace_helpers == NULL);
12861 
12862 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
12863 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
12864 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
12865 
12866 	p->p_dtrace_helpers = help;
12867 	dtrace_helpers++;
12868 
12869 	return (help);
12870 }
12871 
12872 static void
12873 dtrace_helpers_destroy(void)
12874 {
12875 	dtrace_helpers_t *help;
12876 	dtrace_vstate_t *vstate;
12877 	proc_t *p = curproc;
12878 	int i;
12879 
12880 	mutex_enter(&dtrace_lock);
12881 
12882 	ASSERT(p->p_dtrace_helpers != NULL);
12883 	ASSERT(dtrace_helpers > 0);
12884 
12885 	help = p->p_dtrace_helpers;
12886 	vstate = &help->dthps_vstate;
12887 
12888 	/*
12889 	 * We're now going to lose the help from this process.
12890 	 */
12891 	p->p_dtrace_helpers = NULL;
12892 	dtrace_sync();
12893 
12894 	/*
12895 	 * Destory the helper actions.
12896 	 */
12897 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
12898 		dtrace_helper_action_t *h, *next;
12899 
12900 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
12901 			next = h->dthp_next;
12902 			dtrace_helper_destroy(h, vstate);
12903 			h = next;
12904 		}
12905 	}
12906 
12907 	mutex_exit(&dtrace_lock);
12908 
12909 	/*
12910 	 * Destroy the helper providers.
12911 	 */
12912 	if (help->dthps_nprovs > 0) {
12913 		mutex_enter(&dtrace_meta_lock);
12914 		if (dtrace_meta_pid != NULL) {
12915 			ASSERT(dtrace_deferred_pid == NULL);
12916 
12917 			for (i = 0; i < help->dthps_nprovs; i++) {
12918 				dtrace_helper_remove(
12919 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
12920 			}
12921 		} else {
12922 			mutex_enter(&dtrace_lock);
12923 			ASSERT(help->dthps_deferred == 0 ||
12924 			    help->dthps_next != NULL ||
12925 			    help->dthps_prev != NULL ||
12926 			    help == dtrace_deferred_pid);
12927 
12928 			/*
12929 			 * Remove the helper from the deferred list.
12930 			 */
12931 			if (help->dthps_next != NULL)
12932 				help->dthps_next->dthps_prev = help->dthps_prev;
12933 			if (help->dthps_prev != NULL)
12934 				help->dthps_prev->dthps_next = help->dthps_next;
12935 			if (dtrace_deferred_pid == help) {
12936 				dtrace_deferred_pid = help->dthps_next;
12937 				ASSERT(help->dthps_prev == NULL);
12938 			}
12939 
12940 			mutex_exit(&dtrace_lock);
12941 		}
12942 
12943 		mutex_exit(&dtrace_meta_lock);
12944 
12945 		for (i = 0; i < help->dthps_nprovs; i++) {
12946 			dtrace_helper_provider_remove(help->dthps_provs[i]);
12947 		}
12948 
12949 		kmem_free(help->dthps_provs, help->dthps_nprovs *
12950 		    sizeof (dtrace_helper_provider_t *));
12951 	}
12952 
12953 	mutex_enter(&dtrace_lock);
12954 
12955 	dtrace_vstate_fini(&help->dthps_vstate);
12956 	kmem_free(help->dthps_actions,
12957 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
12958 	kmem_free(help, sizeof (dtrace_helpers_t));
12959 
12960 	--dtrace_helpers;
12961 	mutex_exit(&dtrace_lock);
12962 }
12963 
12964 static void
12965 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
12966 {
12967 	dtrace_helpers_t *help, *newhelp;
12968 	dtrace_helper_action_t *helper, *new, *last;
12969 	dtrace_difo_t *dp;
12970 	dtrace_vstate_t *vstate;
12971 	int i, j, sz, hasprovs = 0;
12972 
12973 	mutex_enter(&dtrace_lock);
12974 	ASSERT(from->p_dtrace_helpers != NULL);
12975 	ASSERT(dtrace_helpers > 0);
12976 
12977 	help = from->p_dtrace_helpers;
12978 	newhelp = dtrace_helpers_create(to);
12979 	ASSERT(to->p_dtrace_helpers != NULL);
12980 
12981 	newhelp->dthps_generation = help->dthps_generation;
12982 	vstate = &newhelp->dthps_vstate;
12983 
12984 	/*
12985 	 * Duplicate the helper actions.
12986 	 */
12987 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
12988 		if ((helper = help->dthps_actions[i]) == NULL)
12989 			continue;
12990 
12991 		for (last = NULL; helper != NULL; helper = helper->dthp_next) {
12992 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
12993 			    KM_SLEEP);
12994 			new->dthp_generation = helper->dthp_generation;
12995 
12996 			if ((dp = helper->dthp_predicate) != NULL) {
12997 				dp = dtrace_difo_duplicate(dp, vstate);
12998 				new->dthp_predicate = dp;
12999 			}
13000 
13001 			new->dthp_nactions = helper->dthp_nactions;
13002 			sz = sizeof (dtrace_difo_t *) * new->dthp_nactions;
13003 			new->dthp_actions = kmem_alloc(sz, KM_SLEEP);
13004 
13005 			for (j = 0; j < new->dthp_nactions; j++) {
13006 				dtrace_difo_t *dp = helper->dthp_actions[j];
13007 
13008 				ASSERT(dp != NULL);
13009 				dp = dtrace_difo_duplicate(dp, vstate);
13010 				new->dthp_actions[j] = dp;
13011 			}
13012 
13013 			if (last != NULL) {
13014 				last->dthp_next = new;
13015 			} else {
13016 				newhelp->dthps_actions[i] = new;
13017 			}
13018 
13019 			last = new;
13020 		}
13021 	}
13022 
13023 	/*
13024 	 * Duplicate the helper providers and register them with the
13025 	 * DTrace framework.
13026 	 */
13027 	if (help->dthps_nprovs > 0) {
13028 		newhelp->dthps_nprovs = help->dthps_nprovs;
13029 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
13030 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
13031 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
13032 			newhelp->dthps_provs[i] = help->dthps_provs[i];
13033 			newhelp->dthps_provs[i]->dthp_ref++;
13034 		}
13035 
13036 		hasprovs = 1;
13037 	}
13038 
13039 	mutex_exit(&dtrace_lock);
13040 
13041 	if (hasprovs)
13042 		dtrace_helper_provider_register(to, newhelp, NULL);
13043 }
13044 
13045 /*
13046  * DTrace Hook Functions
13047  */
13048 static void
13049 dtrace_module_loaded(struct modctl *ctl)
13050 {
13051 	dtrace_provider_t *prv;
13052 
13053 	mutex_enter(&dtrace_provider_lock);
13054 	mutex_enter(&mod_lock);
13055 
13056 	ASSERT(ctl->mod_busy);
13057 
13058 	/*
13059 	 * We're going to call each providers per-module provide operation
13060 	 * specifying only this module.
13061 	 */
13062 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
13063 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
13064 
13065 	mutex_exit(&mod_lock);
13066 	mutex_exit(&dtrace_provider_lock);
13067 
13068 	/*
13069 	 * If we have any retained enablings, we need to match against them.
13070 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
13071 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
13072 	 * module.  (In particular, this happens when loading scheduling
13073 	 * classes.)  So if we have any retained enablings, we need to dispatch
13074 	 * our task queue to do the match for us.
13075 	 */
13076 	mutex_enter(&dtrace_lock);
13077 
13078 	if (dtrace_retained == NULL) {
13079 		mutex_exit(&dtrace_lock);
13080 		return;
13081 	}
13082 
13083 	(void) taskq_dispatch(dtrace_taskq,
13084 	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
13085 
13086 	mutex_exit(&dtrace_lock);
13087 
13088 	/*
13089 	 * And now, for a little heuristic sleaze:  in general, we want to
13090 	 * match modules as soon as they load.  However, we cannot guarantee
13091 	 * this, because it would lead us to the lock ordering violation
13092 	 * outlined above.  The common case, of course, is that cpu_lock is
13093 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
13094 	 * long enough for the task queue to do its work.  If it's not, it's
13095 	 * not a serious problem -- it just means that the module that we
13096 	 * just loaded may not be immediately instrumentable.
13097 	 */
13098 	delay(1);
13099 }
13100 
13101 static void
13102 dtrace_module_unloaded(struct modctl *ctl)
13103 {
13104 	dtrace_probe_t template, *probe, *first, *next;
13105 	dtrace_provider_t *prov;
13106 
13107 	template.dtpr_mod = ctl->mod_modname;
13108 
13109 	mutex_enter(&dtrace_provider_lock);
13110 	mutex_enter(&mod_lock);
13111 	mutex_enter(&dtrace_lock);
13112 
13113 	if (dtrace_bymod == NULL) {
13114 		/*
13115 		 * The DTrace module is loaded (obviously) but not attached;
13116 		 * we don't have any work to do.
13117 		 */
13118 		mutex_exit(&dtrace_provider_lock);
13119 		mutex_exit(&mod_lock);
13120 		mutex_exit(&dtrace_lock);
13121 		return;
13122 	}
13123 
13124 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
13125 	    probe != NULL; probe = probe->dtpr_nextmod) {
13126 		if (probe->dtpr_ecb != NULL) {
13127 			mutex_exit(&dtrace_provider_lock);
13128 			mutex_exit(&mod_lock);
13129 			mutex_exit(&dtrace_lock);
13130 
13131 			/*
13132 			 * This shouldn't _actually_ be possible -- we're
13133 			 * unloading a module that has an enabled probe in it.
13134 			 * (It's normally up to the provider to make sure that
13135 			 * this can't happen.)  However, because dtps_enable()
13136 			 * doesn't have a failure mode, there can be an
13137 			 * enable/unload race.  Upshot:  we don't want to
13138 			 * assert, but we're not going to disable the
13139 			 * probe, either.
13140 			 */
13141 			if (dtrace_err_verbose) {
13142 				cmn_err(CE_WARN, "unloaded module '%s' had "
13143 				    "enabled probes", ctl->mod_modname);
13144 			}
13145 
13146 			return;
13147 		}
13148 	}
13149 
13150 	probe = first;
13151 
13152 	for (first = NULL; probe != NULL; probe = next) {
13153 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
13154 
13155 		dtrace_probes[probe->dtpr_id - 1] = NULL;
13156 
13157 		next = probe->dtpr_nextmod;
13158 		dtrace_hash_remove(dtrace_bymod, probe);
13159 		dtrace_hash_remove(dtrace_byfunc, probe);
13160 		dtrace_hash_remove(dtrace_byname, probe);
13161 
13162 		if (first == NULL) {
13163 			first = probe;
13164 			probe->dtpr_nextmod = NULL;
13165 		} else {
13166 			probe->dtpr_nextmod = first;
13167 			first = probe;
13168 		}
13169 	}
13170 
13171 	/*
13172 	 * We've removed all of the module's probes from the hash chains and
13173 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
13174 	 * everyone has cleared out from any probe array processing.
13175 	 */
13176 	dtrace_sync();
13177 
13178 	for (probe = first; probe != NULL; probe = first) {
13179 		first = probe->dtpr_nextmod;
13180 		prov = probe->dtpr_provider;
13181 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
13182 		    probe->dtpr_arg);
13183 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
13184 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
13185 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
13186 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
13187 		kmem_free(probe, sizeof (dtrace_probe_t));
13188 	}
13189 
13190 	mutex_exit(&dtrace_lock);
13191 	mutex_exit(&mod_lock);
13192 	mutex_exit(&dtrace_provider_lock);
13193 }
13194 
13195 void
13196 dtrace_suspend(void)
13197 {
13198 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
13199 }
13200 
13201 void
13202 dtrace_resume(void)
13203 {
13204 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
13205 }
13206 
13207 static int
13208 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
13209 {
13210 	ASSERT(MUTEX_HELD(&cpu_lock));
13211 	mutex_enter(&dtrace_lock);
13212 
13213 	switch (what) {
13214 	case CPU_CONFIG: {
13215 		dtrace_state_t *state;
13216 		dtrace_optval_t *opt, rs, c;
13217 
13218 		/*
13219 		 * For now, we only allocate a new buffer for anonymous state.
13220 		 */
13221 		if ((state = dtrace_anon.dta_state) == NULL)
13222 			break;
13223 
13224 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13225 			break;
13226 
13227 		opt = state->dts_options;
13228 		c = opt[DTRACEOPT_CPU];
13229 
13230 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
13231 			break;
13232 
13233 		/*
13234 		 * Regardless of what the actual policy is, we're going to
13235 		 * temporarily set our resize policy to be manual.  We're
13236 		 * also going to temporarily set our CPU option to denote
13237 		 * the newly configured CPU.
13238 		 */
13239 		rs = opt[DTRACEOPT_BUFRESIZE];
13240 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
13241 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
13242 
13243 		(void) dtrace_state_buffers(state);
13244 
13245 		opt[DTRACEOPT_BUFRESIZE] = rs;
13246 		opt[DTRACEOPT_CPU] = c;
13247 
13248 		break;
13249 	}
13250 
13251 	case CPU_UNCONFIG:
13252 		/*
13253 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
13254 		 * buffer will be freed when the consumer exits.)
13255 		 */
13256 		break;
13257 
13258 	default:
13259 		break;
13260 	}
13261 
13262 	mutex_exit(&dtrace_lock);
13263 	return (0);
13264 }
13265 
13266 static void
13267 dtrace_cpu_setup_initial(processorid_t cpu)
13268 {
13269 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
13270 }
13271 
13272 static void
13273 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
13274 {
13275 	if (dtrace_toxranges >= dtrace_toxranges_max) {
13276 		int osize, nsize;
13277 		dtrace_toxrange_t *range;
13278 
13279 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
13280 
13281 		if (osize == 0) {
13282 			ASSERT(dtrace_toxrange == NULL);
13283 			ASSERT(dtrace_toxranges_max == 0);
13284 			dtrace_toxranges_max = 1;
13285 		} else {
13286 			dtrace_toxranges_max <<= 1;
13287 		}
13288 
13289 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
13290 		range = kmem_zalloc(nsize, KM_SLEEP);
13291 
13292 		if (dtrace_toxrange != NULL) {
13293 			ASSERT(osize != 0);
13294 			bcopy(dtrace_toxrange, range, osize);
13295 			kmem_free(dtrace_toxrange, osize);
13296 		}
13297 
13298 		dtrace_toxrange = range;
13299 	}
13300 
13301 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL);
13302 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL);
13303 
13304 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
13305 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
13306 	dtrace_toxranges++;
13307 }
13308 
13309 /*
13310  * DTrace Driver Cookbook Functions
13311  */
13312 /*ARGSUSED*/
13313 static int
13314 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
13315 {
13316 	dtrace_provider_id_t id;
13317 	dtrace_state_t *state = NULL;
13318 	dtrace_enabling_t *enab;
13319 
13320 	mutex_enter(&cpu_lock);
13321 	mutex_enter(&dtrace_provider_lock);
13322 	mutex_enter(&dtrace_lock);
13323 
13324 	if (ddi_soft_state_init(&dtrace_softstate,
13325 	    sizeof (dtrace_state_t), 0) != 0) {
13326 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
13327 		mutex_exit(&cpu_lock);
13328 		mutex_exit(&dtrace_provider_lock);
13329 		mutex_exit(&dtrace_lock);
13330 		return (DDI_FAILURE);
13331 	}
13332 
13333 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
13334 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
13335 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
13336 	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
13337 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
13338 		ddi_remove_minor_node(devi, NULL);
13339 		ddi_soft_state_fini(&dtrace_softstate);
13340 		mutex_exit(&cpu_lock);
13341 		mutex_exit(&dtrace_provider_lock);
13342 		mutex_exit(&dtrace_lock);
13343 		return (DDI_FAILURE);
13344 	}
13345 
13346 	ddi_report_dev(devi);
13347 	dtrace_devi = devi;
13348 
13349 	dtrace_modload = dtrace_module_loaded;
13350 	dtrace_modunload = dtrace_module_unloaded;
13351 	dtrace_cpu_init = dtrace_cpu_setup_initial;
13352 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
13353 	dtrace_helpers_fork = dtrace_helpers_duplicate;
13354 	dtrace_cpustart_init = dtrace_suspend;
13355 	dtrace_cpustart_fini = dtrace_resume;
13356 	dtrace_debugger_init = dtrace_suspend;
13357 	dtrace_debugger_fini = dtrace_resume;
13358 	dtrace_kreloc_init = dtrace_suspend;
13359 	dtrace_kreloc_fini = dtrace_resume;
13360 
13361 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
13362 
13363 	ASSERT(MUTEX_HELD(&cpu_lock));
13364 
13365 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
13366 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
13367 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
13368 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
13369 	    VM_SLEEP | VMC_IDENTIFIER);
13370 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
13371 	    1, INT_MAX, 0);
13372 
13373 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
13374 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
13375 	    NULL, NULL, NULL, NULL, NULL, 0);
13376 
13377 	ASSERT(MUTEX_HELD(&cpu_lock));
13378 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
13379 	    offsetof(dtrace_probe_t, dtpr_nextmod),
13380 	    offsetof(dtrace_probe_t, dtpr_prevmod));
13381 
13382 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
13383 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
13384 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
13385 
13386 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
13387 	    offsetof(dtrace_probe_t, dtpr_nextname),
13388 	    offsetof(dtrace_probe_t, dtpr_prevname));
13389 
13390 	if (dtrace_retain_max < 1) {
13391 		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
13392 		    "setting to 1", dtrace_retain_max);
13393 		dtrace_retain_max = 1;
13394 	}
13395 
13396 	/*
13397 	 * Now discover our toxic ranges.
13398 	 */
13399 	dtrace_toxic_ranges(dtrace_toxrange_add);
13400 
13401 	/*
13402 	 * Before we register ourselves as a provider to our own framework,
13403 	 * we would like to assert that dtrace_provider is NULL -- but that's
13404 	 * not true if we were loaded as a dependency of a DTrace provider.
13405 	 * Once we've registered, we can assert that dtrace_provider is our
13406 	 * pseudo provider.
13407 	 */
13408 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
13409 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
13410 
13411 	ASSERT(dtrace_provider != NULL);
13412 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
13413 
13414 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
13415 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
13416 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
13417 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
13418 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
13419 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
13420 
13421 	dtrace_anon_property();
13422 	mutex_exit(&cpu_lock);
13423 
13424 	/*
13425 	 * If DTrace helper tracing is enabled, we need to allocate the
13426 	 * trace buffer and initialize the values.
13427 	 */
13428 	if (dtrace_helptrace_enabled) {
13429 		ASSERT(dtrace_helptrace_buffer == NULL);
13430 		dtrace_helptrace_buffer =
13431 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
13432 		dtrace_helptrace_next = 0;
13433 	}
13434 
13435 	/*
13436 	 * If there are already providers, we must ask them to provide their
13437 	 * probes, and then match any anonymous enabling against them.  Note
13438 	 * that there should be no other retained enablings at this time:
13439 	 * the only retained enablings at this time should be the anonymous
13440 	 * enabling.
13441 	 */
13442 	if (dtrace_anon.dta_enabling != NULL) {
13443 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
13444 
13445 		dtrace_enabling_provide(NULL);
13446 		state = dtrace_anon.dta_state;
13447 
13448 		/*
13449 		 * We couldn't hold cpu_lock across the above call to
13450 		 * dtrace_enabling_provide(), but we must hold it to actually
13451 		 * enable the probes.  We have to drop all of our locks, pick
13452 		 * up cpu_lock, and regain our locks before matching the
13453 		 * retained anonymous enabling.
13454 		 */
13455 		mutex_exit(&dtrace_lock);
13456 		mutex_exit(&dtrace_provider_lock);
13457 
13458 		mutex_enter(&cpu_lock);
13459 		mutex_enter(&dtrace_provider_lock);
13460 		mutex_enter(&dtrace_lock);
13461 
13462 		if ((enab = dtrace_anon.dta_enabling) != NULL)
13463 			(void) dtrace_enabling_match(enab, NULL);
13464 
13465 		mutex_exit(&cpu_lock);
13466 	}
13467 
13468 	mutex_exit(&dtrace_lock);
13469 	mutex_exit(&dtrace_provider_lock);
13470 
13471 	if (state != NULL) {
13472 		/*
13473 		 * If we created any anonymous state, set it going now.
13474 		 */
13475 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
13476 	}
13477 
13478 	return (DDI_SUCCESS);
13479 }
13480 
13481 /*ARGSUSED*/
13482 static int
13483 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
13484 {
13485 	dtrace_state_t *state;
13486 	uint32_t priv;
13487 	uid_t uid;
13488 	zoneid_t zoneid;
13489 
13490 	if (getminor(*devp) == DTRACEMNRN_HELPER)
13491 		return (0);
13492 
13493 	/*
13494 	 * If this wasn't an open with the "helper" minor, then it must be
13495 	 * the "dtrace" minor.
13496 	 */
13497 	ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
13498 
13499 	/*
13500 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
13501 	 * caller lacks sufficient permission to do anything with DTrace.
13502 	 */
13503 	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
13504 	if (priv == DTRACE_PRIV_NONE)
13505 		return (EACCES);
13506 
13507 	/*
13508 	 * Ask all providers to provide all their probes.
13509 	 */
13510 	mutex_enter(&dtrace_provider_lock);
13511 	dtrace_probe_provide(NULL, NULL);
13512 	mutex_exit(&dtrace_provider_lock);
13513 
13514 	mutex_enter(&cpu_lock);
13515 	mutex_enter(&dtrace_lock);
13516 	dtrace_opens++;
13517 	dtrace_membar_producer();
13518 
13519 	/*
13520 	 * If the kernel debugger is active (that is, if the kernel debugger
13521 	 * modified text in some way), we won't allow the open.
13522 	 */
13523 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
13524 		dtrace_opens--;
13525 		mutex_exit(&cpu_lock);
13526 		mutex_exit(&dtrace_lock);
13527 		return (EBUSY);
13528 	}
13529 
13530 	state = dtrace_state_create(devp, cred_p);
13531 	mutex_exit(&cpu_lock);
13532 
13533 	if (state == NULL) {
13534 		if (--dtrace_opens == 0)
13535 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
13536 		mutex_exit(&dtrace_lock);
13537 		return (EAGAIN);
13538 	}
13539 
13540 	mutex_exit(&dtrace_lock);
13541 
13542 	return (0);
13543 }
13544 
13545 /*ARGSUSED*/
13546 static int
13547 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
13548 {
13549 	minor_t minor = getminor(dev);
13550 	dtrace_state_t *state;
13551 
13552 	if (minor == DTRACEMNRN_HELPER)
13553 		return (0);
13554 
13555 	state = ddi_get_soft_state(dtrace_softstate, minor);
13556 
13557 	mutex_enter(&cpu_lock);
13558 	mutex_enter(&dtrace_lock);
13559 
13560 	if (state->dts_anon) {
13561 		/*
13562 		 * There is anonymous state. Destroy that first.
13563 		 */
13564 		ASSERT(dtrace_anon.dta_state == NULL);
13565 		dtrace_state_destroy(state->dts_anon);
13566 	}
13567 
13568 	dtrace_state_destroy(state);
13569 	ASSERT(dtrace_opens > 0);
13570 	if (--dtrace_opens == 0)
13571 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
13572 
13573 	mutex_exit(&dtrace_lock);
13574 	mutex_exit(&cpu_lock);
13575 
13576 	return (0);
13577 }
13578 
13579 /*ARGSUSED*/
13580 static int
13581 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
13582 {
13583 	int rval;
13584 	dof_helper_t help, *dhp = NULL;
13585 
13586 	switch (cmd) {
13587 	case DTRACEHIOC_ADDDOF:
13588 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
13589 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
13590 			return (EFAULT);
13591 		}
13592 
13593 		dhp = &help;
13594 		arg = (intptr_t)help.dofhp_dof;
13595 		/*FALLTHROUGH*/
13596 
13597 	case DTRACEHIOC_ADD: {
13598 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
13599 
13600 		if (dof == NULL)
13601 			return (rval);
13602 
13603 		mutex_enter(&dtrace_lock);
13604 
13605 		/*
13606 		 * dtrace_helper_slurp() takes responsibility for the dof --
13607 		 * it may free it now or it may save it and free it later.
13608 		 */
13609 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
13610 			*rv = rval;
13611 			rval = 0;
13612 		} else {
13613 			rval = EINVAL;
13614 		}
13615 
13616 		mutex_exit(&dtrace_lock);
13617 		return (rval);
13618 	}
13619 
13620 	case DTRACEHIOC_REMOVE: {
13621 		mutex_enter(&dtrace_lock);
13622 		rval = dtrace_helper_destroygen(arg);
13623 		mutex_exit(&dtrace_lock);
13624 
13625 		return (rval);
13626 	}
13627 
13628 	default:
13629 		break;
13630 	}
13631 
13632 	return (ENOTTY);
13633 }
13634 
13635 /*ARGSUSED*/
13636 static int
13637 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
13638 {
13639 	minor_t minor = getminor(dev);
13640 	dtrace_state_t *state;
13641 	int rval;
13642 
13643 	if (minor == DTRACEMNRN_HELPER)
13644 		return (dtrace_ioctl_helper(cmd, arg, rv));
13645 
13646 	state = ddi_get_soft_state(dtrace_softstate, minor);
13647 
13648 	if (state->dts_anon) {
13649 		ASSERT(dtrace_anon.dta_state == NULL);
13650 		state = state->dts_anon;
13651 	}
13652 
13653 	switch (cmd) {
13654 	case DTRACEIOC_PROVIDER: {
13655 		dtrace_providerdesc_t pvd;
13656 		dtrace_provider_t *pvp;
13657 
13658 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
13659 			return (EFAULT);
13660 
13661 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
13662 		mutex_enter(&dtrace_provider_lock);
13663 
13664 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
13665 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
13666 				break;
13667 		}
13668 
13669 		mutex_exit(&dtrace_provider_lock);
13670 
13671 		if (pvp == NULL)
13672 			return (ESRCH);
13673 
13674 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
13675 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
13676 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
13677 			return (EFAULT);
13678 
13679 		return (0);
13680 	}
13681 
13682 	case DTRACEIOC_EPROBE: {
13683 		dtrace_eprobedesc_t epdesc;
13684 		dtrace_ecb_t *ecb;
13685 		dtrace_action_t *act;
13686 		void *buf;
13687 		size_t size;
13688 		uintptr_t dest;
13689 		int nrecs;
13690 
13691 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
13692 			return (EFAULT);
13693 
13694 		mutex_enter(&dtrace_lock);
13695 
13696 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
13697 			mutex_exit(&dtrace_lock);
13698 			return (EINVAL);
13699 		}
13700 
13701 		if (ecb->dte_probe == NULL) {
13702 			mutex_exit(&dtrace_lock);
13703 			return (EINVAL);
13704 		}
13705 
13706 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
13707 		epdesc.dtepd_uarg = ecb->dte_uarg;
13708 		epdesc.dtepd_size = ecb->dte_size;
13709 
13710 		nrecs = epdesc.dtepd_nrecs;
13711 		epdesc.dtepd_nrecs = 0;
13712 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
13713 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
13714 				continue;
13715 
13716 			epdesc.dtepd_nrecs++;
13717 		}
13718 
13719 		/*
13720 		 * Now that we have the size, we need to allocate a temporary
13721 		 * buffer in which to store the complete description.  We need
13722 		 * the temporary buffer to be able to drop dtrace_lock()
13723 		 * across the copyout(), below.
13724 		 */
13725 		size = sizeof (dtrace_eprobedesc_t) +
13726 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
13727 
13728 		buf = kmem_alloc(size, KM_SLEEP);
13729 		dest = (uintptr_t)buf;
13730 
13731 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
13732 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
13733 
13734 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
13735 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
13736 				continue;
13737 
13738 			if (nrecs-- == 0)
13739 				break;
13740 
13741 			bcopy(&act->dta_rec, (void *)dest,
13742 			    sizeof (dtrace_recdesc_t));
13743 			dest += sizeof (dtrace_recdesc_t);
13744 		}
13745 
13746 		mutex_exit(&dtrace_lock);
13747 
13748 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
13749 			kmem_free(buf, size);
13750 			return (EFAULT);
13751 		}
13752 
13753 		kmem_free(buf, size);
13754 		return (0);
13755 	}
13756 
13757 	case DTRACEIOC_AGGDESC: {
13758 		dtrace_aggdesc_t aggdesc;
13759 		dtrace_action_t *act;
13760 		dtrace_aggregation_t *agg;
13761 		int nrecs;
13762 		uint32_t offs;
13763 		dtrace_recdesc_t *lrec;
13764 		void *buf;
13765 		size_t size;
13766 		uintptr_t dest;
13767 
13768 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
13769 			return (EFAULT);
13770 
13771 		mutex_enter(&dtrace_lock);
13772 
13773 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
13774 			mutex_exit(&dtrace_lock);
13775 			return (EINVAL);
13776 		}
13777 
13778 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
13779 
13780 		nrecs = aggdesc.dtagd_nrecs;
13781 		aggdesc.dtagd_nrecs = 0;
13782 
13783 		offs = agg->dtag_base;
13784 		lrec = &agg->dtag_action.dta_rec;
13785 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
13786 
13787 		for (act = agg->dtag_first; ; act = act->dta_next) {
13788 			ASSERT(act->dta_intuple ||
13789 			    DTRACEACT_ISAGG(act->dta_kind));
13790 
13791 			/*
13792 			 * If this action has a record size of zero, it
13793 			 * denotes an argument to the aggregating action.
13794 			 * Because the presence of this record doesn't (or
13795 			 * shouldn't) affect the way the data is interpreted,
13796 			 * we don't copy it out to save user-level the
13797 			 * confusion of dealing with a zero-length record.
13798 			 */
13799 			if (act->dta_rec.dtrd_size == 0) {
13800 				ASSERT(agg->dtag_hasarg);
13801 				continue;
13802 			}
13803 
13804 			aggdesc.dtagd_nrecs++;
13805 
13806 			if (act == &agg->dtag_action)
13807 				break;
13808 		}
13809 
13810 		/*
13811 		 * Now that we have the size, we need to allocate a temporary
13812 		 * buffer in which to store the complete description.  We need
13813 		 * the temporary buffer to be able to drop dtrace_lock()
13814 		 * across the copyout(), below.
13815 		 */
13816 		size = sizeof (dtrace_aggdesc_t) +
13817 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
13818 
13819 		buf = kmem_alloc(size, KM_SLEEP);
13820 		dest = (uintptr_t)buf;
13821 
13822 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
13823 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
13824 
13825 		for (act = agg->dtag_first; ; act = act->dta_next) {
13826 			dtrace_recdesc_t rec = act->dta_rec;
13827 
13828 			/*
13829 			 * See the comment in the above loop for why we pass
13830 			 * over zero-length records.
13831 			 */
13832 			if (rec.dtrd_size == 0) {
13833 				ASSERT(agg->dtag_hasarg);
13834 				continue;
13835 			}
13836 
13837 			if (nrecs-- == 0)
13838 				break;
13839 
13840 			rec.dtrd_offset -= offs;
13841 			bcopy(&rec, (void *)dest, sizeof (rec));
13842 			dest += sizeof (dtrace_recdesc_t);
13843 
13844 			if (act == &agg->dtag_action)
13845 				break;
13846 		}
13847 
13848 		mutex_exit(&dtrace_lock);
13849 
13850 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
13851 			kmem_free(buf, size);
13852 			return (EFAULT);
13853 		}
13854 
13855 		kmem_free(buf, size);
13856 		return (0);
13857 	}
13858 
13859 	case DTRACEIOC_ENABLE: {
13860 		dof_hdr_t *dof;
13861 		dtrace_enabling_t *enab = NULL;
13862 		dtrace_vstate_t *vstate;
13863 		int err = 0;
13864 
13865 		*rv = 0;
13866 
13867 		/*
13868 		 * If a NULL argument has been passed, we take this as our
13869 		 * cue to reevaluate our enablings.
13870 		 */
13871 		if (arg == NULL) {
13872 			mutex_enter(&cpu_lock);
13873 			mutex_enter(&dtrace_lock);
13874 			err = dtrace_enabling_matchstate(state, rv);
13875 			mutex_exit(&dtrace_lock);
13876 			mutex_exit(&cpu_lock);
13877 
13878 			return (err);
13879 		}
13880 
13881 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
13882 			return (rval);
13883 
13884 		mutex_enter(&cpu_lock);
13885 		mutex_enter(&dtrace_lock);
13886 		vstate = &state->dts_vstate;
13887 
13888 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13889 			mutex_exit(&dtrace_lock);
13890 			mutex_exit(&cpu_lock);
13891 			dtrace_dof_destroy(dof);
13892 			return (EBUSY);
13893 		}
13894 
13895 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
13896 			mutex_exit(&dtrace_lock);
13897 			mutex_exit(&cpu_lock);
13898 			dtrace_dof_destroy(dof);
13899 			return (EINVAL);
13900 		}
13901 
13902 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
13903 			dtrace_enabling_destroy(enab);
13904 			mutex_exit(&dtrace_lock);
13905 			mutex_exit(&cpu_lock);
13906 			dtrace_dof_destroy(dof);
13907 			return (rval);
13908 		}
13909 
13910 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
13911 			err = dtrace_enabling_retain(enab);
13912 		} else {
13913 			dtrace_enabling_destroy(enab);
13914 		}
13915 
13916 		mutex_exit(&cpu_lock);
13917 		mutex_exit(&dtrace_lock);
13918 		dtrace_dof_destroy(dof);
13919 
13920 		return (err);
13921 	}
13922 
13923 	case DTRACEIOC_REPLICATE: {
13924 		dtrace_repldesc_t desc;
13925 		dtrace_probedesc_t *match = &desc.dtrpd_match;
13926 		dtrace_probedesc_t *create = &desc.dtrpd_create;
13927 		int err;
13928 
13929 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
13930 			return (EFAULT);
13931 
13932 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
13933 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
13934 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
13935 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
13936 
13937 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
13938 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
13939 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
13940 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
13941 
13942 		mutex_enter(&dtrace_lock);
13943 		err = dtrace_enabling_replicate(state, match, create);
13944 		mutex_exit(&dtrace_lock);
13945 
13946 		return (err);
13947 	}
13948 
13949 	case DTRACEIOC_PROBEMATCH:
13950 	case DTRACEIOC_PROBES: {
13951 		dtrace_probe_t *probe = NULL;
13952 		dtrace_probedesc_t desc;
13953 		dtrace_probekey_t pkey;
13954 		dtrace_id_t i;
13955 		int m = 0;
13956 		uint32_t priv;
13957 		uid_t uid;
13958 		zoneid_t zoneid;
13959 
13960 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
13961 			return (EFAULT);
13962 
13963 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
13964 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
13965 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
13966 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
13967 
13968 		/*
13969 		 * Before we attempt to match this probe, we want to give
13970 		 * all providers the opportunity to provide it.
13971 		 */
13972 		if (desc.dtpd_id == DTRACE_IDNONE) {
13973 			mutex_enter(&dtrace_provider_lock);
13974 			dtrace_probe_provide(&desc, NULL);
13975 			mutex_exit(&dtrace_provider_lock);
13976 			desc.dtpd_id++;
13977 		}
13978 
13979 		if (cmd == DTRACEIOC_PROBEMATCH)  {
13980 			dtrace_probekey(&desc, &pkey);
13981 			pkey.dtpk_id = DTRACE_IDNONE;
13982 		}
13983 
13984 		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
13985 
13986 		mutex_enter(&dtrace_lock);
13987 
13988 		if (cmd == DTRACEIOC_PROBEMATCH) {
13989 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
13990 				if ((probe = dtrace_probes[i - 1]) != NULL &&
13991 				    (m = dtrace_match_probe(probe, &pkey,
13992 				    priv, uid, zoneid)) != 0)
13993 					break;
13994 			}
13995 
13996 			if (m < 0) {
13997 				mutex_exit(&dtrace_lock);
13998 				return (EINVAL);
13999 			}
14000 
14001 		} else {
14002 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
14003 				if ((probe = dtrace_probes[i - 1]) != NULL &&
14004 				    dtrace_match_priv(probe, priv, uid, zoneid))
14005 					break;
14006 			}
14007 		}
14008 
14009 		if (probe == NULL) {
14010 			mutex_exit(&dtrace_lock);
14011 			return (ESRCH);
14012 		}
14013 
14014 		dtrace_probe_description(probe, &desc);
14015 		mutex_exit(&dtrace_lock);
14016 
14017 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
14018 			return (EFAULT);
14019 
14020 		return (0);
14021 	}
14022 
14023 	case DTRACEIOC_PROBEARG: {
14024 		dtrace_argdesc_t desc;
14025 		dtrace_probe_t *probe;
14026 		dtrace_provider_t *prov;
14027 
14028 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
14029 			return (EFAULT);
14030 
14031 		if (desc.dtargd_id == DTRACE_IDNONE)
14032 			return (EINVAL);
14033 
14034 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
14035 			return (EINVAL);
14036 
14037 		mutex_enter(&dtrace_provider_lock);
14038 		mutex_enter(&mod_lock);
14039 		mutex_enter(&dtrace_lock);
14040 
14041 		if (desc.dtargd_id > dtrace_nprobes) {
14042 			mutex_exit(&dtrace_lock);
14043 			mutex_exit(&mod_lock);
14044 			mutex_exit(&dtrace_provider_lock);
14045 			return (EINVAL);
14046 		}
14047 
14048 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
14049 			mutex_exit(&dtrace_lock);
14050 			mutex_exit(&mod_lock);
14051 			mutex_exit(&dtrace_provider_lock);
14052 			return (EINVAL);
14053 		}
14054 
14055 		mutex_exit(&dtrace_lock);
14056 
14057 		prov = probe->dtpr_provider;
14058 
14059 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
14060 			/*
14061 			 * There isn't any typed information for this probe.
14062 			 * Set the argument number to DTRACE_ARGNONE.
14063 			 */
14064 			desc.dtargd_ndx = DTRACE_ARGNONE;
14065 		} else {
14066 			desc.dtargd_native[0] = '\0';
14067 			desc.dtargd_xlate[0] = '\0';
14068 			desc.dtargd_mapping = desc.dtargd_ndx;
14069 
14070 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
14071 			    probe->dtpr_id, probe->dtpr_arg, &desc);
14072 		}
14073 
14074 		mutex_exit(&mod_lock);
14075 		mutex_exit(&dtrace_provider_lock);
14076 
14077 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
14078 			return (EFAULT);
14079 
14080 		return (0);
14081 	}
14082 
14083 	case DTRACEIOC_GO: {
14084 		processorid_t cpuid;
14085 		rval = dtrace_state_go(state, &cpuid);
14086 
14087 		if (rval != 0)
14088 			return (rval);
14089 
14090 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
14091 			return (EFAULT);
14092 
14093 		return (0);
14094 	}
14095 
14096 	case DTRACEIOC_STOP: {
14097 		processorid_t cpuid;
14098 
14099 		mutex_enter(&dtrace_lock);
14100 		rval = dtrace_state_stop(state, &cpuid);
14101 		mutex_exit(&dtrace_lock);
14102 
14103 		if (rval != 0)
14104 			return (rval);
14105 
14106 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
14107 			return (EFAULT);
14108 
14109 		return (0);
14110 	}
14111 
14112 	case DTRACEIOC_DOFGET: {
14113 		dof_hdr_t hdr, *dof;
14114 		uint64_t len;
14115 
14116 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
14117 			return (EFAULT);
14118 
14119 		mutex_enter(&dtrace_lock);
14120 		dof = dtrace_dof_create(state);
14121 		mutex_exit(&dtrace_lock);
14122 
14123 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
14124 		rval = copyout(dof, (void *)arg, len);
14125 		dtrace_dof_destroy(dof);
14126 
14127 		return (rval == 0 ? 0 : EFAULT);
14128 	}
14129 
14130 	case DTRACEIOC_AGGSNAP:
14131 	case DTRACEIOC_BUFSNAP: {
14132 		dtrace_bufdesc_t desc;
14133 		caddr_t cached;
14134 		dtrace_buffer_t *buf;
14135 
14136 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
14137 			return (EFAULT);
14138 
14139 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
14140 			return (EINVAL);
14141 
14142 		mutex_enter(&dtrace_lock);
14143 
14144 		if (cmd == DTRACEIOC_BUFSNAP) {
14145 			buf = &state->dts_buffer[desc.dtbd_cpu];
14146 		} else {
14147 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
14148 		}
14149 
14150 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
14151 			size_t sz = buf->dtb_offset;
14152 
14153 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
14154 				mutex_exit(&dtrace_lock);
14155 				return (EBUSY);
14156 			}
14157 
14158 			/*
14159 			 * If this buffer has already been consumed, we're
14160 			 * going to indicate that there's nothing left here
14161 			 * to consume.
14162 			 */
14163 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
14164 				mutex_exit(&dtrace_lock);
14165 
14166 				desc.dtbd_size = 0;
14167 				desc.dtbd_drops = 0;
14168 				desc.dtbd_errors = 0;
14169 				desc.dtbd_oldest = 0;
14170 				sz = sizeof (desc);
14171 
14172 				if (copyout(&desc, (void *)arg, sz) != 0)
14173 					return (EFAULT);
14174 
14175 				return (0);
14176 			}
14177 
14178 			/*
14179 			 * If this is a ring buffer that has wrapped, we want
14180 			 * to copy the whole thing out.
14181 			 */
14182 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
14183 				dtrace_buffer_polish(buf);
14184 				sz = buf->dtb_size;
14185 			}
14186 
14187 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
14188 				mutex_exit(&dtrace_lock);
14189 				return (EFAULT);
14190 			}
14191 
14192 			desc.dtbd_size = sz;
14193 			desc.dtbd_drops = buf->dtb_drops;
14194 			desc.dtbd_errors = buf->dtb_errors;
14195 			desc.dtbd_oldest = buf->dtb_xamot_offset;
14196 
14197 			mutex_exit(&dtrace_lock);
14198 
14199 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
14200 				return (EFAULT);
14201 
14202 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
14203 
14204 			return (0);
14205 		}
14206 
14207 		if (buf->dtb_tomax == NULL) {
14208 			ASSERT(buf->dtb_xamot == NULL);
14209 			mutex_exit(&dtrace_lock);
14210 			return (ENOENT);
14211 		}
14212 
14213 		cached = buf->dtb_tomax;
14214 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
14215 
14216 		dtrace_xcall(desc.dtbd_cpu,
14217 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
14218 
14219 		state->dts_errors += buf->dtb_xamot_errors;
14220 
14221 		/*
14222 		 * If the buffers did not actually switch, then the cross call
14223 		 * did not take place -- presumably because the given CPU is
14224 		 * not in the ready set.  If this is the case, we'll return
14225 		 * ENOENT.
14226 		 */
14227 		if (buf->dtb_tomax == cached) {
14228 			ASSERT(buf->dtb_xamot != cached);
14229 			mutex_exit(&dtrace_lock);
14230 			return (ENOENT);
14231 		}
14232 
14233 		ASSERT(cached == buf->dtb_xamot);
14234 
14235 		/*
14236 		 * We have our snapshot; now copy it out.
14237 		 */
14238 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
14239 		    buf->dtb_xamot_offset) != 0) {
14240 			mutex_exit(&dtrace_lock);
14241 			return (EFAULT);
14242 		}
14243 
14244 		desc.dtbd_size = buf->dtb_xamot_offset;
14245 		desc.dtbd_drops = buf->dtb_xamot_drops;
14246 		desc.dtbd_errors = buf->dtb_xamot_errors;
14247 		desc.dtbd_oldest = 0;
14248 
14249 		mutex_exit(&dtrace_lock);
14250 
14251 		/*
14252 		 * Finally, copy out the buffer description.
14253 		 */
14254 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
14255 			return (EFAULT);
14256 
14257 		return (0);
14258 	}
14259 
14260 	case DTRACEIOC_CONF: {
14261 		dtrace_conf_t conf;
14262 
14263 		bzero(&conf, sizeof (conf));
14264 		conf.dtc_difversion = DIF_VERSION;
14265 		conf.dtc_difintregs = DIF_DIR_NREGS;
14266 		conf.dtc_diftupregs = DIF_DTR_NREGS;
14267 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
14268 
14269 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
14270 			return (EFAULT);
14271 
14272 		return (0);
14273 	}
14274 
14275 	case DTRACEIOC_STATUS: {
14276 		dtrace_status_t stat;
14277 		dtrace_dstate_t *dstate;
14278 		int i, j;
14279 		uint64_t nerrs;
14280 
14281 		/*
14282 		 * See the comment in dtrace_state_deadman() for the reason
14283 		 * for setting dts_laststatus to INT64_MAX before setting
14284 		 * it to the correct value.
14285 		 */
14286 		state->dts_laststatus = INT64_MAX;
14287 		dtrace_membar_producer();
14288 		state->dts_laststatus = dtrace_gethrtime();
14289 
14290 		bzero(&stat, sizeof (stat));
14291 
14292 		mutex_enter(&dtrace_lock);
14293 
14294 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
14295 			mutex_exit(&dtrace_lock);
14296 			return (ENOENT);
14297 		}
14298 
14299 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
14300 			stat.dtst_exiting = 1;
14301 
14302 		nerrs = state->dts_errors;
14303 		dstate = &state->dts_vstate.dtvs_dynvars;
14304 
14305 		for (i = 0; i < NCPU; i++) {
14306 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
14307 
14308 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
14309 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
14310 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
14311 
14312 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
14313 				stat.dtst_filled++;
14314 
14315 			nerrs += state->dts_buffer[i].dtb_errors;
14316 
14317 			for (j = 0; j < state->dts_nspeculations; j++) {
14318 				dtrace_speculation_t *spec;
14319 				dtrace_buffer_t *buf;
14320 
14321 				spec = &state->dts_speculations[j];
14322 				buf = &spec->dtsp_buffer[i];
14323 				stat.dtst_specdrops += buf->dtb_xamot_drops;
14324 			}
14325 		}
14326 
14327 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
14328 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
14329 		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
14330 		stat.dtst_dblerrors = state->dts_dblerrors;
14331 		stat.dtst_killed =
14332 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
14333 		stat.dtst_errors = nerrs;
14334 
14335 		mutex_exit(&dtrace_lock);
14336 
14337 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
14338 			return (EFAULT);
14339 
14340 		return (0);
14341 	}
14342 
14343 	case DTRACEIOC_FORMAT: {
14344 		dtrace_fmtdesc_t fmt;
14345 		char *str;
14346 		int len;
14347 
14348 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
14349 			return (EFAULT);
14350 
14351 		mutex_enter(&dtrace_lock);
14352 
14353 		if (fmt.dtfd_format == 0 ||
14354 		    fmt.dtfd_format > state->dts_nformats) {
14355 			mutex_exit(&dtrace_lock);
14356 			return (EINVAL);
14357 		}
14358 
14359 		/*
14360 		 * Format strings are allocated contiguously and they are
14361 		 * never freed; if a format index is less than the number
14362 		 * of formats, we can assert that the format map is non-NULL
14363 		 * and that the format for the specified index is non-NULL.
14364 		 */
14365 		ASSERT(state->dts_formats != NULL);
14366 		str = state->dts_formats[fmt.dtfd_format - 1];
14367 		ASSERT(str != NULL);
14368 
14369 		len = strlen(str) + 1;
14370 
14371 		if (len > fmt.dtfd_length) {
14372 			fmt.dtfd_length = len;
14373 
14374 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
14375 				mutex_exit(&dtrace_lock);
14376 				return (EINVAL);
14377 			}
14378 		} else {
14379 			if (copyout(str, fmt.dtfd_string, len) != 0) {
14380 				mutex_exit(&dtrace_lock);
14381 				return (EINVAL);
14382 			}
14383 		}
14384 
14385 		mutex_exit(&dtrace_lock);
14386 		return (0);
14387 	}
14388 
14389 	default:
14390 		break;
14391 	}
14392 
14393 	return (ENOTTY);
14394 }
14395 
14396 /*ARGSUSED*/
14397 static int
14398 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
14399 {
14400 	dtrace_state_t *state;
14401 
14402 	switch (cmd) {
14403 	case DDI_DETACH:
14404 		break;
14405 
14406 	case DDI_SUSPEND:
14407 		return (DDI_SUCCESS);
14408 
14409 	default:
14410 		return (DDI_FAILURE);
14411 	}
14412 
14413 	mutex_enter(&cpu_lock);
14414 	mutex_enter(&dtrace_provider_lock);
14415 	mutex_enter(&dtrace_lock);
14416 
14417 	ASSERT(dtrace_opens == 0);
14418 
14419 	if (dtrace_helpers > 0) {
14420 		mutex_exit(&dtrace_provider_lock);
14421 		mutex_exit(&dtrace_lock);
14422 		mutex_exit(&cpu_lock);
14423 		return (DDI_FAILURE);
14424 	}
14425 
14426 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
14427 		mutex_exit(&dtrace_provider_lock);
14428 		mutex_exit(&dtrace_lock);
14429 		mutex_exit(&cpu_lock);
14430 		return (DDI_FAILURE);
14431 	}
14432 
14433 	dtrace_provider = NULL;
14434 
14435 	if ((state = dtrace_anon_grab()) != NULL) {
14436 		/*
14437 		 * If there were ECBs on this state, the provider should
14438 		 * have not been allowed to detach; assert that there is
14439 		 * none.
14440 		 */
14441 		ASSERT(state->dts_necbs == 0);
14442 		dtrace_state_destroy(state);
14443 
14444 		/*
14445 		 * If we're being detached with anonymous state, we need to
14446 		 * indicate to the kernel debugger that DTrace is now inactive.
14447 		 */
14448 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
14449 	}
14450 
14451 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
14452 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
14453 	dtrace_cpu_init = NULL;
14454 	dtrace_helpers_cleanup = NULL;
14455 	dtrace_helpers_fork = NULL;
14456 	dtrace_cpustart_init = NULL;
14457 	dtrace_cpustart_fini = NULL;
14458 	dtrace_debugger_init = NULL;
14459 	dtrace_debugger_fini = NULL;
14460 	dtrace_kreloc_init = NULL;
14461 	dtrace_kreloc_fini = NULL;
14462 	dtrace_modload = NULL;
14463 	dtrace_modunload = NULL;
14464 
14465 	mutex_exit(&cpu_lock);
14466 
14467 	if (dtrace_helptrace_enabled) {
14468 		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
14469 		dtrace_helptrace_buffer = NULL;
14470 	}
14471 
14472 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
14473 	dtrace_probes = NULL;
14474 	dtrace_nprobes = 0;
14475 
14476 	dtrace_hash_destroy(dtrace_bymod);
14477 	dtrace_hash_destroy(dtrace_byfunc);
14478 	dtrace_hash_destroy(dtrace_byname);
14479 	dtrace_bymod = NULL;
14480 	dtrace_byfunc = NULL;
14481 	dtrace_byname = NULL;
14482 
14483 	kmem_cache_destroy(dtrace_state_cache);
14484 	vmem_destroy(dtrace_minor);
14485 	vmem_destroy(dtrace_arena);
14486 
14487 	if (dtrace_toxrange != NULL) {
14488 		kmem_free(dtrace_toxrange,
14489 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
14490 		dtrace_toxrange = NULL;
14491 		dtrace_toxranges = 0;
14492 		dtrace_toxranges_max = 0;
14493 	}
14494 
14495 	ddi_remove_minor_node(dtrace_devi, NULL);
14496 	dtrace_devi = NULL;
14497 
14498 	ddi_soft_state_fini(&dtrace_softstate);
14499 
14500 	ASSERT(dtrace_vtime_references == 0);
14501 	ASSERT(dtrace_opens == 0);
14502 	ASSERT(dtrace_retained == NULL);
14503 
14504 	mutex_exit(&dtrace_lock);
14505 	mutex_exit(&dtrace_provider_lock);
14506 
14507 	/*
14508 	 * We don't destroy the task queue until after we have dropped our
14509 	 * locks (taskq_destroy() may block on running tasks).  To prevent
14510 	 * attempting to do work after we have effectively detached but before
14511 	 * the task queue has been destroyed, all tasks dispatched via the
14512 	 * task queue must check that DTrace is still attached before
14513 	 * performing any operation.
14514 	 */
14515 	taskq_destroy(dtrace_taskq);
14516 	dtrace_taskq = NULL;
14517 
14518 	return (DDI_SUCCESS);
14519 }
14520 
14521 /*ARGSUSED*/
14522 static int
14523 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
14524 {
14525 	int error;
14526 
14527 	switch (infocmd) {
14528 	case DDI_INFO_DEVT2DEVINFO:
14529 		*result = (void *)dtrace_devi;
14530 		error = DDI_SUCCESS;
14531 		break;
14532 	case DDI_INFO_DEVT2INSTANCE:
14533 		*result = (void *)0;
14534 		error = DDI_SUCCESS;
14535 		break;
14536 	default:
14537 		error = DDI_FAILURE;
14538 	}
14539 	return (error);
14540 }
14541 
14542 static struct cb_ops dtrace_cb_ops = {
14543 	dtrace_open,		/* open */
14544 	dtrace_close,		/* close */
14545 	nulldev,		/* strategy */
14546 	nulldev,		/* print */
14547 	nodev,			/* dump */
14548 	nodev,			/* read */
14549 	nodev,			/* write */
14550 	dtrace_ioctl,		/* ioctl */
14551 	nodev,			/* devmap */
14552 	nodev,			/* mmap */
14553 	nodev,			/* segmap */
14554 	nochpoll,		/* poll */
14555 	ddi_prop_op,		/* cb_prop_op */
14556 	0,			/* streamtab  */
14557 	D_NEW | D_MP		/* Driver compatibility flag */
14558 };
14559 
14560 static struct dev_ops dtrace_ops = {
14561 	DEVO_REV,		/* devo_rev */
14562 	0,			/* refcnt */
14563 	dtrace_info,		/* get_dev_info */
14564 	nulldev,		/* identify */
14565 	nulldev,		/* probe */
14566 	dtrace_attach,		/* attach */
14567 	dtrace_detach,		/* detach */
14568 	nodev,			/* reset */
14569 	&dtrace_cb_ops,		/* driver operations */
14570 	NULL,			/* bus operations */
14571 	nodev			/* dev power */
14572 };
14573 
14574 static struct modldrv modldrv = {
14575 	&mod_driverops,		/* module type (this is a pseudo driver) */
14576 	"Dynamic Tracing",	/* name of module */
14577 	&dtrace_ops,		/* driver ops */
14578 };
14579 
14580 static struct modlinkage modlinkage = {
14581 	MODREV_1,
14582 	(void *)&modldrv,
14583 	NULL
14584 };
14585 
14586 int
14587 _init(void)
14588 {
14589 	return (mod_install(&modlinkage));
14590 }
14591 
14592 int
14593 _info(struct modinfo *modinfop)
14594 {
14595 	return (mod_info(&modlinkage, modinfop));
14596 }
14597 
14598 int
14599 _fini(void)
14600 {
14601 	return (mod_remove(&modlinkage));
14602 }
14603