1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 31 #pragma ident "%Z%%M% %I% %E% SMI" /* from SVr4.0 1.23 */ 32 33 #include <sys/types.h> 34 #include <sys/param.h> 35 #include <sys/sysmacros.h> 36 #include <sys/cred.h> 37 #include <sys/proc.h> 38 #include <sys/session.h> 39 #include <sys/strsubr.h> 40 #include <sys/signal.h> 41 #include <sys/user.h> 42 #include <sys/priocntl.h> 43 #include <sys/class.h> 44 #include <sys/disp.h> 45 #include <sys/procset.h> 46 #include <sys/debug.h> 47 #include <sys/ts.h> 48 #include <sys/tspriocntl.h> 49 #include <sys/iapriocntl.h> 50 #include <sys/kmem.h> 51 #include <sys/errno.h> 52 #include <sys/cpuvar.h> 53 #include <sys/systm.h> /* for lbolt */ 54 #include <sys/vtrace.h> 55 #include <sys/vmsystm.h> 56 #include <sys/schedctl.h> 57 #include <sys/tnf_probe.h> 58 #include <sys/atomic.h> 59 #include <sys/policy.h> 60 #include <sys/sdt.h> 61 #include <sys/cpupart.h> 62 #include <vm/rm.h> 63 #include <vm/seg_kmem.h> 64 #include <sys/modctl.h> 65 #include <sys/cpucaps.h> 66 67 static pri_t ts_init(id_t, int, classfuncs_t **); 68 69 static struct sclass csw = { 70 "TS", 71 ts_init, 72 0 73 }; 74 75 static struct modlsched modlsched = { 76 &mod_schedops, "time sharing sched class", &csw 77 }; 78 79 static struct modlinkage modlinkage = { 80 MODREV_1, (void *)&modlsched, NULL 81 }; 82 83 int 84 _init() 85 { 86 return (mod_install(&modlinkage)); 87 } 88 89 int 90 _fini() 91 { 92 return (EBUSY); /* don't remove TS for now */ 93 } 94 95 int 96 _info(struct modinfo *modinfop) 97 { 98 return (mod_info(&modlinkage, modinfop)); 99 } 100 101 /* 102 * Class specific code for the time-sharing class 103 */ 104 105 106 /* 107 * Extern declarations for variables defined in the ts master file 108 */ 109 #define TSMAXUPRI 60 110 111 pri_t ts_maxupri = TSMAXUPRI; /* max time-sharing user priority */ 112 pri_t ts_maxumdpri; /* maximum user mode ts priority */ 113 114 pri_t ia_maxupri = IAMAXUPRI; /* max interactive user priority */ 115 pri_t ia_boost = IA_BOOST; /* boost value for interactive */ 116 117 tsdpent_t *ts_dptbl; /* time-sharing disp parameter table */ 118 pri_t *ts_kmdpris; /* array of global pris used by ts procs when */ 119 /* sleeping or running in kernel after sleep */ 120 121 static id_t ia_cid; 122 123 int ts_sleep_promote = 1; 124 125 #define tsmedumdpri (ts_maxumdpri >> 1) 126 127 #define TS_NEWUMDPRI(tspp) \ 128 { \ 129 pri_t pri; \ 130 pri = (tspp)->ts_cpupri + (tspp)->ts_upri + (tspp)->ts_boost; \ 131 if (pri > ts_maxumdpri) \ 132 (tspp)->ts_umdpri = ts_maxumdpri; \ 133 else if (pri < 0) \ 134 (tspp)->ts_umdpri = 0; \ 135 else \ 136 (tspp)->ts_umdpri = pri; \ 137 ASSERT((tspp)->ts_umdpri >= 0 && (tspp)->ts_umdpri <= ts_maxumdpri); \ 138 } 139 140 /* 141 * The tsproc_t structures are kept in an array of circular doubly linked 142 * lists. A hash on the thread pointer is used to determine which list 143 * each thread should be placed. Each list has a dummy "head" which is 144 * never removed, so the list is never empty. ts_update traverses these 145 * lists to update the priorities of threads that have been waiting on 146 * the run queue. 147 */ 148 149 #define TS_LISTS 16 /* number of lists, must be power of 2 */ 150 151 /* hash function, argument is a thread pointer */ 152 #define TS_LIST_HASH(tp) (((uintptr_t)(tp) >> 9) & (TS_LISTS - 1)) 153 154 /* iterate to the next list */ 155 #define TS_LIST_NEXT(i) (((i) + 1) & (TS_LISTS - 1)) 156 157 /* 158 * Insert thread into the appropriate tsproc list. 159 */ 160 #define TS_LIST_INSERT(tspp) \ 161 { \ 162 int index = TS_LIST_HASH(tspp->ts_tp); \ 163 kmutex_t *lockp = &ts_list_lock[index]; \ 164 tsproc_t *headp = &ts_plisthead[index]; \ 165 mutex_enter(lockp); \ 166 tspp->ts_next = headp->ts_next; \ 167 tspp->ts_prev = headp; \ 168 headp->ts_next->ts_prev = tspp; \ 169 headp->ts_next = tspp; \ 170 mutex_exit(lockp); \ 171 } 172 173 /* 174 * Remove thread from tsproc list. 175 */ 176 #define TS_LIST_DELETE(tspp) \ 177 { \ 178 int index = TS_LIST_HASH(tspp->ts_tp); \ 179 kmutex_t *lockp = &ts_list_lock[index]; \ 180 mutex_enter(lockp); \ 181 tspp->ts_prev->ts_next = tspp->ts_next; \ 182 tspp->ts_next->ts_prev = tspp->ts_prev; \ 183 mutex_exit(lockp); \ 184 } 185 186 187 static int ts_admin(caddr_t, cred_t *); 188 static int ts_enterclass(kthread_t *, id_t, void *, cred_t *, void *); 189 static int ts_fork(kthread_t *, kthread_t *, void *); 190 static int ts_getclinfo(void *); 191 static int ts_getclpri(pcpri_t *); 192 static int ts_parmsin(void *); 193 static int ts_parmsout(void *, pc_vaparms_t *); 194 static int ts_vaparmsin(void *, pc_vaparms_t *); 195 static int ts_vaparmsout(void *, pc_vaparms_t *); 196 static int ts_parmsset(kthread_t *, void *, id_t, cred_t *); 197 static void ts_exit(kthread_t *); 198 static int ts_donice(kthread_t *, cred_t *, int, int *); 199 static void ts_exitclass(void *); 200 static int ts_canexit(kthread_t *, cred_t *); 201 static void ts_forkret(kthread_t *, kthread_t *); 202 static void ts_nullsys(); 203 static void ts_parmsget(kthread_t *, void *); 204 static void ts_preempt(kthread_t *); 205 static void ts_setrun(kthread_t *); 206 static void ts_sleep(kthread_t *); 207 static pri_t ts_swapin(kthread_t *, int); 208 static pri_t ts_swapout(kthread_t *, int); 209 static void ts_tick(kthread_t *); 210 static void ts_trapret(kthread_t *); 211 static void ts_update(void *); 212 static int ts_update_list(int); 213 static void ts_wakeup(kthread_t *); 214 static pri_t ts_globpri(kthread_t *); 215 static void ts_yield(kthread_t *); 216 extern tsdpent_t *ts_getdptbl(void); 217 extern pri_t *ts_getkmdpris(void); 218 extern pri_t td_getmaxumdpri(void); 219 static int ts_alloc(void **, int); 220 static void ts_free(void *); 221 222 pri_t ia_init(id_t, int, classfuncs_t **); 223 static int ia_getclinfo(void *); 224 static int ia_parmsin(void *); 225 static int ia_vaparmsin(void *, pc_vaparms_t *); 226 static int ia_vaparmsout(void *, pc_vaparms_t *); 227 static int ia_parmsset(kthread_t *, void *, id_t, cred_t *); 228 static void ia_parmsget(kthread_t *, void *); 229 static void ia_set_process_group(pid_t, pid_t, pid_t); 230 231 static void ts_change_priority(kthread_t *, tsproc_t *); 232 233 extern pri_t ts_maxkmdpri; /* maximum kernel mode ts priority */ 234 static pri_t ts_maxglobpri; /* maximum global priority used by ts class */ 235 static kmutex_t ts_dptblock; /* protects time sharing dispatch table */ 236 static kmutex_t ts_list_lock[TS_LISTS]; /* protects tsproc lists */ 237 static tsproc_t ts_plisthead[TS_LISTS]; /* dummy tsproc at head of lists */ 238 239 static gid_t IA_gid = 0; 240 241 static struct classfuncs ts_classfuncs = { 242 /* class functions */ 243 ts_admin, 244 ts_getclinfo, 245 ts_parmsin, 246 ts_parmsout, 247 ts_vaparmsin, 248 ts_vaparmsout, 249 ts_getclpri, 250 ts_alloc, 251 ts_free, 252 253 /* thread functions */ 254 ts_enterclass, 255 ts_exitclass, 256 ts_canexit, 257 ts_fork, 258 ts_forkret, 259 ts_parmsget, 260 ts_parmsset, 261 ts_nullsys, /* stop */ 262 ts_exit, 263 ts_nullsys, /* active */ 264 ts_nullsys, /* inactive */ 265 ts_swapin, 266 ts_swapout, 267 ts_trapret, 268 ts_preempt, 269 ts_setrun, 270 ts_sleep, 271 ts_tick, 272 ts_wakeup, 273 ts_donice, 274 ts_globpri, 275 ts_nullsys, /* set_process_group */ 276 ts_yield, 277 }; 278 279 /* 280 * ia_classfuncs is used for interactive class threads; IA threads are stored 281 * on the same class list as TS threads, and most of the class functions are 282 * identical, but a few have different enough functionality to require their 283 * own functions. 284 */ 285 static struct classfuncs ia_classfuncs = { 286 /* class functions */ 287 ts_admin, 288 ia_getclinfo, 289 ia_parmsin, 290 ts_parmsout, 291 ia_vaparmsin, 292 ia_vaparmsout, 293 ts_getclpri, 294 ts_alloc, 295 ts_free, 296 297 /* thread functions */ 298 ts_enterclass, 299 ts_exitclass, 300 ts_canexit, 301 ts_fork, 302 ts_forkret, 303 ia_parmsget, 304 ia_parmsset, 305 ts_nullsys, /* stop */ 306 ts_exit, 307 ts_nullsys, /* active */ 308 ts_nullsys, /* inactive */ 309 ts_swapin, 310 ts_swapout, 311 ts_trapret, 312 ts_preempt, 313 ts_setrun, 314 ts_sleep, 315 ts_tick, 316 ts_wakeup, 317 ts_donice, 318 ts_globpri, 319 ia_set_process_group, 320 ts_yield, 321 }; 322 323 324 /* 325 * Time sharing class initialization. Called by dispinit() at boot time. 326 * We can ignore the clparmsz argument since we know that the smallest 327 * possible parameter buffer is big enough for us. 328 */ 329 /* ARGSUSED */ 330 static pri_t 331 ts_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp) 332 { 333 int i; 334 extern pri_t ts_getmaxumdpri(void); 335 336 ts_dptbl = ts_getdptbl(); 337 ts_kmdpris = ts_getkmdpris(); 338 ts_maxumdpri = ts_getmaxumdpri(); 339 ts_maxglobpri = MAX(ts_kmdpris[0], ts_dptbl[ts_maxumdpri].ts_globpri); 340 341 /* 342 * Initialize the tsproc lists. 343 */ 344 for (i = 0; i < TS_LISTS; i++) { 345 ts_plisthead[i].ts_next = ts_plisthead[i].ts_prev = 346 &ts_plisthead[i]; 347 } 348 349 /* 350 * We're required to return a pointer to our classfuncs 351 * structure and the highest global priority value we use. 352 */ 353 *clfuncspp = &ts_classfuncs; 354 return (ts_maxglobpri); 355 } 356 357 358 /* 359 * Interactive class scheduler initialization 360 */ 361 /* ARGSUSED */ 362 pri_t 363 ia_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp) 364 { 365 /* 366 * We're required to return a pointer to our classfuncs 367 * structure and the highest global priority value we use. 368 */ 369 ia_cid = cid; 370 *clfuncspp = &ia_classfuncs; 371 return (ts_maxglobpri); 372 } 373 374 375 /* 376 * Get or reset the ts_dptbl values per the user's request. 377 */ 378 static int 379 ts_admin(caddr_t uaddr, cred_t *reqpcredp) 380 { 381 tsadmin_t tsadmin; 382 tsdpent_t *tmpdpp; 383 int userdpsz; 384 int i; 385 size_t tsdpsz; 386 387 if (get_udatamodel() == DATAMODEL_NATIVE) { 388 if (copyin(uaddr, &tsadmin, sizeof (tsadmin_t))) 389 return (EFAULT); 390 } 391 #ifdef _SYSCALL32_IMPL 392 else { 393 /* get tsadmin struct from ILP32 caller */ 394 tsadmin32_t tsadmin32; 395 if (copyin(uaddr, &tsadmin32, sizeof (tsadmin32_t))) 396 return (EFAULT); 397 tsadmin.ts_dpents = 398 (struct tsdpent *)(uintptr_t)tsadmin32.ts_dpents; 399 tsadmin.ts_ndpents = tsadmin32.ts_ndpents; 400 tsadmin.ts_cmd = tsadmin32.ts_cmd; 401 } 402 #endif /* _SYSCALL32_IMPL */ 403 404 tsdpsz = (ts_maxumdpri + 1) * sizeof (tsdpent_t); 405 406 switch (tsadmin.ts_cmd) { 407 case TS_GETDPSIZE: 408 tsadmin.ts_ndpents = ts_maxumdpri + 1; 409 410 if (get_udatamodel() == DATAMODEL_NATIVE) { 411 if (copyout(&tsadmin, uaddr, sizeof (tsadmin_t))) 412 return (EFAULT); 413 } 414 #ifdef _SYSCALL32_IMPL 415 else { 416 /* return tsadmin struct to ILP32 caller */ 417 tsadmin32_t tsadmin32; 418 tsadmin32.ts_dpents = 419 (caddr32_t)(uintptr_t)tsadmin.ts_dpents; 420 tsadmin32.ts_ndpents = tsadmin.ts_ndpents; 421 tsadmin32.ts_cmd = tsadmin.ts_cmd; 422 if (copyout(&tsadmin32, uaddr, sizeof (tsadmin32_t))) 423 return (EFAULT); 424 } 425 #endif /* _SYSCALL32_IMPL */ 426 break; 427 428 case TS_GETDPTBL: 429 userdpsz = MIN(tsadmin.ts_ndpents * sizeof (tsdpent_t), 430 tsdpsz); 431 if (copyout(ts_dptbl, tsadmin.ts_dpents, userdpsz)) 432 return (EFAULT); 433 434 tsadmin.ts_ndpents = userdpsz / sizeof (tsdpent_t); 435 436 if (get_udatamodel() == DATAMODEL_NATIVE) { 437 if (copyout(&tsadmin, uaddr, sizeof (tsadmin_t))) 438 return (EFAULT); 439 } 440 #ifdef _SYSCALL32_IMPL 441 else { 442 /* return tsadmin struct to ILP32 callers */ 443 tsadmin32_t tsadmin32; 444 tsadmin32.ts_dpents = 445 (caddr32_t)(uintptr_t)tsadmin.ts_dpents; 446 tsadmin32.ts_ndpents = tsadmin.ts_ndpents; 447 tsadmin32.ts_cmd = tsadmin.ts_cmd; 448 if (copyout(&tsadmin32, uaddr, sizeof (tsadmin32_t))) 449 return (EFAULT); 450 } 451 #endif /* _SYSCALL32_IMPL */ 452 break; 453 454 case TS_SETDPTBL: 455 /* 456 * We require that the requesting process has sufficient 457 * priveleges. We also require that the table supplied by 458 * the user exactly match the current ts_dptbl in size. 459 */ 460 if (secpolicy_dispadm(reqpcredp) != 0) 461 return (EPERM); 462 463 if (tsadmin.ts_ndpents * sizeof (tsdpent_t) != tsdpsz) { 464 return (EINVAL); 465 } 466 467 /* 468 * We read the user supplied table into a temporary buffer 469 * where it is validated before being copied over the 470 * ts_dptbl. 471 */ 472 tmpdpp = kmem_alloc(tsdpsz, KM_SLEEP); 473 if (copyin((caddr_t)tsadmin.ts_dpents, (caddr_t)tmpdpp, 474 tsdpsz)) { 475 kmem_free(tmpdpp, tsdpsz); 476 return (EFAULT); 477 } 478 for (i = 0; i < tsadmin.ts_ndpents; i++) { 479 480 /* 481 * Validate the user supplied values. All we are doing 482 * here is verifying that the values are within their 483 * allowable ranges and will not panic the system. We 484 * make no attempt to ensure that the resulting 485 * configuration makes sense or results in reasonable 486 * performance. 487 */ 488 if (tmpdpp[i].ts_quantum <= 0) { 489 kmem_free(tmpdpp, tsdpsz); 490 return (EINVAL); 491 } 492 if (tmpdpp[i].ts_tqexp > ts_maxumdpri || 493 tmpdpp[i].ts_tqexp < 0) { 494 kmem_free(tmpdpp, tsdpsz); 495 return (EINVAL); 496 } 497 if (tmpdpp[i].ts_slpret > ts_maxumdpri || 498 tmpdpp[i].ts_slpret < 0) { 499 kmem_free(tmpdpp, tsdpsz); 500 return (EINVAL); 501 } 502 if (tmpdpp[i].ts_maxwait < 0) { 503 kmem_free(tmpdpp, tsdpsz); 504 return (EINVAL); 505 } 506 if (tmpdpp[i].ts_lwait > ts_maxumdpri || 507 tmpdpp[i].ts_lwait < 0) { 508 kmem_free(tmpdpp, tsdpsz); 509 return (EINVAL); 510 } 511 } 512 513 /* 514 * Copy the user supplied values over the current ts_dptbl 515 * values. The ts_globpri member is read-only so we don't 516 * overwrite it. 517 */ 518 mutex_enter(&ts_dptblock); 519 for (i = 0; i < tsadmin.ts_ndpents; i++) { 520 ts_dptbl[i].ts_quantum = tmpdpp[i].ts_quantum; 521 ts_dptbl[i].ts_tqexp = tmpdpp[i].ts_tqexp; 522 ts_dptbl[i].ts_slpret = tmpdpp[i].ts_slpret; 523 ts_dptbl[i].ts_maxwait = tmpdpp[i].ts_maxwait; 524 ts_dptbl[i].ts_lwait = tmpdpp[i].ts_lwait; 525 } 526 mutex_exit(&ts_dptblock); 527 kmem_free(tmpdpp, tsdpsz); 528 break; 529 530 default: 531 return (EINVAL); 532 } 533 return (0); 534 } 535 536 537 /* 538 * Allocate a time-sharing class specific thread structure and 539 * initialize it with the parameters supplied. Also move the thread 540 * to specified time-sharing priority. 541 */ 542 static int 543 ts_enterclass(kthread_t *t, id_t cid, void *parmsp, 544 cred_t *reqpcredp, void *bufp) 545 { 546 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 547 tsproc_t *tspp; 548 pri_t reqtsuprilim; 549 pri_t reqtsupri; 550 static uint32_t tspexists = 0; /* set on first occurrence of */ 551 /* a time-sharing process */ 552 553 tspp = (tsproc_t *)bufp; 554 ASSERT(tspp != NULL); 555 556 /* 557 * Initialize the tsproc structure. 558 */ 559 tspp->ts_cpupri = tsmedumdpri; 560 if (cid == ia_cid) { 561 /* 562 * Check to make sure caller is either privileged or the 563 * window system. When the window system is converted 564 * to using privileges, the second check can go away. 565 */ 566 if (reqpcredp != NULL && !groupmember(IA_gid, reqpcredp) && 567 secpolicy_setpriority(reqpcredp) != 0) 568 return (EPERM); 569 /* 570 * Belongs to IA "class", so set appropriate flags. 571 * Mark as 'on' so it will not be a swap victim 572 * while forking. 573 */ 574 tspp->ts_flags = TSIA | TSIASET; 575 tspp->ts_boost = ia_boost; 576 } else { 577 tspp->ts_flags = 0; 578 tspp->ts_boost = 0; 579 } 580 581 if (tsparmsp == NULL) { 582 /* 583 * Use default values. 584 */ 585 tspp->ts_uprilim = tspp->ts_upri = 0; 586 tspp->ts_nice = NZERO; 587 } else { 588 /* 589 * Use supplied values. 590 */ 591 if (tsparmsp->ts_uprilim == TS_NOCHANGE) 592 reqtsuprilim = 0; 593 else { 594 if (tsparmsp->ts_uprilim > 0 && 595 secpolicy_setpriority(reqpcredp) != 0) 596 return (EPERM); 597 reqtsuprilim = tsparmsp->ts_uprilim; 598 } 599 600 if (tsparmsp->ts_upri == TS_NOCHANGE) { 601 reqtsupri = reqtsuprilim; 602 } else { 603 if (tsparmsp->ts_upri > 0 && 604 secpolicy_setpriority(reqpcredp) != 0) 605 return (EPERM); 606 /* 607 * Set the user priority to the requested value 608 * or the upri limit, whichever is lower. 609 */ 610 reqtsupri = tsparmsp->ts_upri; 611 if (reqtsupri > reqtsuprilim) 612 reqtsupri = reqtsuprilim; 613 } 614 615 616 tspp->ts_uprilim = reqtsuprilim; 617 tspp->ts_upri = reqtsupri; 618 tspp->ts_nice = NZERO - (NZERO * reqtsupri) 619 / ts_maxupri; 620 } 621 TS_NEWUMDPRI(tspp); 622 623 tspp->ts_dispwait = 0; 624 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 625 tspp->ts_tp = t; 626 cpucaps_sc_init(&tspp->ts_caps); 627 628 /* 629 * Reset priority. Process goes to a "user mode" priority 630 * here regardless of whether or not it has slept since 631 * entering the kernel. 632 */ 633 thread_lock(t); /* get dispatcher lock on thread */ 634 t->t_clfuncs = &(sclass[cid].cl_funcs->thread); 635 t->t_cid = cid; 636 t->t_cldata = (void *)tspp; 637 t->t_schedflag &= ~TS_RUNQMATCH; 638 ts_change_priority(t, tspp); 639 thread_unlock(t); 640 641 /* 642 * Link new structure into tsproc list. 643 */ 644 TS_LIST_INSERT(tspp); 645 646 /* 647 * If this is the first time-sharing thread to occur since 648 * boot we set up the initial call to ts_update() here. 649 * Use an atomic compare-and-swap since that's easier and 650 * faster than a mutex (but check with an ordinary load first 651 * since most of the time this will already be done). 652 */ 653 if (tspexists == 0 && cas32(&tspexists, 0, 1) == 0) 654 (void) timeout(ts_update, NULL, hz); 655 656 return (0); 657 } 658 659 660 /* 661 * Free tsproc structure of thread. 662 */ 663 static void 664 ts_exitclass(void *procp) 665 { 666 tsproc_t *tspp = (tsproc_t *)procp; 667 668 /* Remove tsproc_t structure from list */ 669 TS_LIST_DELETE(tspp); 670 kmem_free(tspp, sizeof (tsproc_t)); 671 } 672 673 /* ARGSUSED */ 674 static int 675 ts_canexit(kthread_t *t, cred_t *cred) 676 { 677 /* 678 * A thread can always leave a TS/IA class 679 */ 680 return (0); 681 } 682 683 static int 684 ts_fork(kthread_t *t, kthread_t *ct, void *bufp) 685 { 686 tsproc_t *ptspp; /* ptr to parent's tsproc structure */ 687 tsproc_t *ctspp; /* ptr to child's tsproc structure */ 688 689 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 690 691 ctspp = (tsproc_t *)bufp; 692 ASSERT(ctspp != NULL); 693 ptspp = (tsproc_t *)t->t_cldata; 694 /* 695 * Initialize child's tsproc structure. 696 */ 697 thread_lock(t); 698 ctspp->ts_timeleft = ts_dptbl[ptspp->ts_cpupri].ts_quantum; 699 ctspp->ts_cpupri = ptspp->ts_cpupri; 700 ctspp->ts_boost = ptspp->ts_boost; 701 ctspp->ts_uprilim = ptspp->ts_uprilim; 702 ctspp->ts_upri = ptspp->ts_upri; 703 TS_NEWUMDPRI(ctspp); 704 ctspp->ts_nice = ptspp->ts_nice; 705 ctspp->ts_dispwait = 0; 706 ctspp->ts_flags = ptspp->ts_flags & ~(TSKPRI | TSBACKQ | TSRESTORE); 707 ctspp->ts_tp = ct; 708 cpucaps_sc_init(&ctspp->ts_caps); 709 thread_unlock(t); 710 711 /* 712 * Link new structure into tsproc list. 713 */ 714 ct->t_cldata = (void *)ctspp; 715 TS_LIST_INSERT(ctspp); 716 return (0); 717 } 718 719 720 /* 721 * Child is placed at back of dispatcher queue and parent gives 722 * up processor so that the child runs first after the fork. 723 * This allows the child immediately execing to break the multiple 724 * use of copy on write pages with no disk home. The parent will 725 * get to steal them back rather than uselessly copying them. 726 */ 727 static void 728 ts_forkret(kthread_t *t, kthread_t *ct) 729 { 730 proc_t *pp = ttoproc(t); 731 proc_t *cp = ttoproc(ct); 732 tsproc_t *tspp; 733 734 ASSERT(t == curthread); 735 ASSERT(MUTEX_HELD(&pidlock)); 736 737 /* 738 * Grab the child's p_lock before dropping pidlock to ensure 739 * the process does not disappear before we set it running. 740 */ 741 mutex_enter(&cp->p_lock); 742 mutex_exit(&pidlock); 743 continuelwps(cp); 744 mutex_exit(&cp->p_lock); 745 746 mutex_enter(&pp->p_lock); 747 continuelwps(pp); 748 mutex_exit(&pp->p_lock); 749 750 thread_lock(t); 751 tspp = (tsproc_t *)(t->t_cldata); 752 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp; 753 TS_NEWUMDPRI(tspp); 754 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 755 tspp->ts_dispwait = 0; 756 t->t_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 757 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 758 tspp->ts_flags &= ~TSKPRI; 759 THREAD_TRANSITION(t); 760 ts_setrun(t); 761 thread_unlock(t); 762 763 swtch(); 764 } 765 766 767 /* 768 * Get information about the time-sharing class into the buffer 769 * pointed to by tsinfop. The maximum configured user priority 770 * is the only information we supply. ts_getclinfo() is called 771 * for TS threads, and ia_getclinfo() is called for IA threads. 772 */ 773 static int 774 ts_getclinfo(void *infop) 775 { 776 tsinfo_t *tsinfop = (tsinfo_t *)infop; 777 tsinfop->ts_maxupri = ts_maxupri; 778 return (0); 779 } 780 781 static int 782 ia_getclinfo(void *infop) 783 { 784 iainfo_t *iainfop = (iainfo_t *)infop; 785 iainfop->ia_maxupri = ia_maxupri; 786 return (0); 787 } 788 789 790 /* 791 * Return the global scheduling priority ranges for the timesharing 792 * class in pcpri_t structure. 793 */ 794 static int 795 ts_getclpri(pcpri_t *pcprip) 796 { 797 pcprip->pc_clpmax = ts_dptbl[ts_maxumdpri].ts_globpri; 798 pcprip->pc_clpmin = ts_dptbl[0].ts_globpri; 799 return (0); 800 } 801 802 803 static void 804 ts_nullsys() 805 {} 806 807 808 /* 809 * Get the time-sharing parameters of the thread pointed to by 810 * tsprocp into the buffer pointed to by tsparmsp. ts_parmsget() 811 * is called for TS threads, and ia_parmsget() is called for IA 812 * threads. 813 */ 814 static void 815 ts_parmsget(kthread_t *t, void *parmsp) 816 { 817 tsproc_t *tspp = (tsproc_t *)t->t_cldata; 818 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 819 820 tsparmsp->ts_uprilim = tspp->ts_uprilim; 821 tsparmsp->ts_upri = tspp->ts_upri; 822 } 823 824 static void 825 ia_parmsget(kthread_t *t, void *parmsp) 826 { 827 tsproc_t *tspp = (tsproc_t *)t->t_cldata; 828 iaparms_t *iaparmsp = (iaparms_t *)parmsp; 829 830 iaparmsp->ia_uprilim = tspp->ts_uprilim; 831 iaparmsp->ia_upri = tspp->ts_upri; 832 if (tspp->ts_flags & TSIASET) 833 iaparmsp->ia_mode = IA_SET_INTERACTIVE; 834 else 835 iaparmsp->ia_mode = IA_INTERACTIVE_OFF; 836 iaparmsp->ia_nice = tspp->ts_nice; 837 } 838 839 840 /* 841 * Check the validity of the time-sharing parameters in the buffer 842 * pointed to by tsparmsp. 843 * ts_parmsin() is called for TS threads, and ia_parmsin() is called 844 * for IA threads. 845 */ 846 static int 847 ts_parmsin(void *parmsp) 848 { 849 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 850 /* 851 * Check validity of parameters. 852 */ 853 if ((tsparmsp->ts_uprilim > ts_maxupri || 854 tsparmsp->ts_uprilim < -ts_maxupri) && 855 tsparmsp->ts_uprilim != TS_NOCHANGE) 856 return (EINVAL); 857 858 if ((tsparmsp->ts_upri > ts_maxupri || 859 tsparmsp->ts_upri < -ts_maxupri) && 860 tsparmsp->ts_upri != TS_NOCHANGE) 861 return (EINVAL); 862 863 return (0); 864 } 865 866 static int 867 ia_parmsin(void *parmsp) 868 { 869 iaparms_t *iaparmsp = (iaparms_t *)parmsp; 870 871 if ((iaparmsp->ia_uprilim > ia_maxupri || 872 iaparmsp->ia_uprilim < -ia_maxupri) && 873 iaparmsp->ia_uprilim != IA_NOCHANGE) { 874 return (EINVAL); 875 } 876 877 if ((iaparmsp->ia_upri > ia_maxupri || 878 iaparmsp->ia_upri < -ia_maxupri) && 879 iaparmsp->ia_upri != IA_NOCHANGE) { 880 return (EINVAL); 881 } 882 883 return (0); 884 } 885 886 887 /* 888 * Check the validity of the time-sharing parameters in the pc_vaparms_t 889 * structure vaparmsp and put them in the buffer pointed to by tsparmsp. 890 * pc_vaparms_t contains (key, value) pairs of parameter. 891 * ts_vaparmsin() is called for TS threads, and ia_vaparmsin() is called 892 * for IA threads. ts_vaparmsin() is the variable parameter version of 893 * ts_parmsin() and ia_vaparmsin() is the variable parameter version of 894 * ia_parmsin(). 895 */ 896 static int 897 ts_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp) 898 { 899 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 900 int priflag = 0; 901 int limflag = 0; 902 uint_t cnt; 903 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 904 905 906 /* 907 * TS_NOCHANGE (-32768) is outside of the range of values for 908 * ts_uprilim and ts_upri. If the structure tsparms_t is changed, 909 * TS_NOCHANGE should be replaced by a flag word (in the same manner 910 * as in rt.c). 911 */ 912 tsparmsp->ts_uprilim = TS_NOCHANGE; 913 tsparmsp->ts_upri = TS_NOCHANGE; 914 915 /* 916 * Get the varargs parameter and check validity of parameters. 917 */ 918 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 919 return (EINVAL); 920 921 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 922 923 switch (vpp->pc_key) { 924 case TS_KY_UPRILIM: 925 if (limflag++) 926 return (EINVAL); 927 tsparmsp->ts_uprilim = (pri_t)vpp->pc_parm; 928 if (tsparmsp->ts_uprilim > ts_maxupri || 929 tsparmsp->ts_uprilim < -ts_maxupri) 930 return (EINVAL); 931 break; 932 933 case TS_KY_UPRI: 934 if (priflag++) 935 return (EINVAL); 936 tsparmsp->ts_upri = (pri_t)vpp->pc_parm; 937 if (tsparmsp->ts_upri > ts_maxupri || 938 tsparmsp->ts_upri < -ts_maxupri) 939 return (EINVAL); 940 break; 941 942 default: 943 return (EINVAL); 944 } 945 } 946 947 if (vaparmsp->pc_vaparmscnt == 0) { 948 /* 949 * Use default parameters. 950 */ 951 tsparmsp->ts_upri = tsparmsp->ts_uprilim = 0; 952 } 953 954 return (0); 955 } 956 957 static int 958 ia_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp) 959 { 960 iaparms_t *iaparmsp = (iaparms_t *)parmsp; 961 int priflag = 0; 962 int limflag = 0; 963 int mflag = 0; 964 uint_t cnt; 965 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 966 967 /* 968 * IA_NOCHANGE (-32768) is outside of the range of values for 969 * ia_uprilim, ia_upri and ia_mode. If the structure iaparms_t is 970 * changed, IA_NOCHANGE should be replaced by a flag word (in the 971 * same manner as in rt.c). 972 */ 973 iaparmsp->ia_uprilim = IA_NOCHANGE; 974 iaparmsp->ia_upri = IA_NOCHANGE; 975 iaparmsp->ia_mode = IA_NOCHANGE; 976 977 /* 978 * Get the varargs parameter and check validity of parameters. 979 */ 980 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 981 return (EINVAL); 982 983 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 984 985 switch (vpp->pc_key) { 986 case IA_KY_UPRILIM: 987 if (limflag++) 988 return (EINVAL); 989 iaparmsp->ia_uprilim = (pri_t)vpp->pc_parm; 990 if (iaparmsp->ia_uprilim > ia_maxupri || 991 iaparmsp->ia_uprilim < -ia_maxupri) 992 return (EINVAL); 993 break; 994 995 case IA_KY_UPRI: 996 if (priflag++) 997 return (EINVAL); 998 iaparmsp->ia_upri = (pri_t)vpp->pc_parm; 999 if (iaparmsp->ia_upri > ia_maxupri || 1000 iaparmsp->ia_upri < -ia_maxupri) 1001 return (EINVAL); 1002 break; 1003 1004 case IA_KY_MODE: 1005 if (mflag++) 1006 return (EINVAL); 1007 iaparmsp->ia_mode = (int)vpp->pc_parm; 1008 if (iaparmsp->ia_mode != IA_SET_INTERACTIVE && 1009 iaparmsp->ia_mode != IA_INTERACTIVE_OFF) 1010 return (EINVAL); 1011 break; 1012 1013 default: 1014 return (EINVAL); 1015 } 1016 } 1017 1018 if (vaparmsp->pc_vaparmscnt == 0) { 1019 /* 1020 * Use default parameters. 1021 */ 1022 iaparmsp->ia_upri = iaparmsp->ia_uprilim = 0; 1023 iaparmsp->ia_mode = IA_SET_INTERACTIVE; 1024 } 1025 1026 return (0); 1027 } 1028 1029 /* 1030 * Nothing to do here but return success. 1031 */ 1032 /* ARGSUSED */ 1033 static int 1034 ts_parmsout(void *parmsp, pc_vaparms_t *vaparmsp) 1035 { 1036 return (0); 1037 } 1038 1039 1040 /* 1041 * Copy all selected time-sharing class parameters to the user. 1042 * The parameters are specified by a key. 1043 */ 1044 static int 1045 ts_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp) 1046 { 1047 tsparms_t *tsprmsp = (tsparms_t *)prmsp; 1048 int priflag = 0; 1049 int limflag = 0; 1050 uint_t cnt; 1051 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 1052 1053 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock)); 1054 1055 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 1056 return (EINVAL); 1057 1058 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 1059 1060 switch (vpp->pc_key) { 1061 case TS_KY_UPRILIM: 1062 if (limflag++) 1063 return (EINVAL); 1064 if (copyout(&tsprmsp->ts_uprilim, 1065 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1066 return (EFAULT); 1067 break; 1068 1069 case TS_KY_UPRI: 1070 if (priflag++) 1071 return (EINVAL); 1072 if (copyout(&tsprmsp->ts_upri, 1073 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1074 return (EFAULT); 1075 break; 1076 1077 default: 1078 return (EINVAL); 1079 } 1080 } 1081 1082 return (0); 1083 } 1084 1085 1086 /* 1087 * Copy all selected interactive class parameters to the user. 1088 * The parameters are specified by a key. 1089 */ 1090 static int 1091 ia_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp) 1092 { 1093 iaparms_t *iaprmsp = (iaparms_t *)prmsp; 1094 int priflag = 0; 1095 int limflag = 0; 1096 int mflag = 0; 1097 uint_t cnt; 1098 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 1099 1100 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock)); 1101 1102 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 1103 return (EINVAL); 1104 1105 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 1106 1107 switch (vpp->pc_key) { 1108 case IA_KY_UPRILIM: 1109 if (limflag++) 1110 return (EINVAL); 1111 if (copyout(&iaprmsp->ia_uprilim, 1112 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1113 return (EFAULT); 1114 break; 1115 1116 case IA_KY_UPRI: 1117 if (priflag++) 1118 return (EINVAL); 1119 if (copyout(&iaprmsp->ia_upri, 1120 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1121 return (EFAULT); 1122 break; 1123 1124 case IA_KY_MODE: 1125 if (mflag++) 1126 return (EINVAL); 1127 if (copyout(&iaprmsp->ia_mode, 1128 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (int))) 1129 return (EFAULT); 1130 break; 1131 1132 default: 1133 return (EINVAL); 1134 } 1135 } 1136 return (0); 1137 } 1138 1139 1140 /* 1141 * Set the scheduling parameters of the thread pointed to by tsprocp 1142 * to those specified in the buffer pointed to by tsparmsp. 1143 * ts_parmsset() is called for TS threads, and ia_parmsset() is 1144 * called for IA threads. 1145 */ 1146 /* ARGSUSED */ 1147 static int 1148 ts_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp) 1149 { 1150 char nice; 1151 pri_t reqtsuprilim; 1152 pri_t reqtsupri; 1153 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 1154 tsproc_t *tspp = (tsproc_t *)tx->t_cldata; 1155 1156 ASSERT(MUTEX_HELD(&(ttoproc(tx))->p_lock)); 1157 1158 if (tsparmsp->ts_uprilim == TS_NOCHANGE) 1159 reqtsuprilim = tspp->ts_uprilim; 1160 else 1161 reqtsuprilim = tsparmsp->ts_uprilim; 1162 1163 if (tsparmsp->ts_upri == TS_NOCHANGE) 1164 reqtsupri = tspp->ts_upri; 1165 else 1166 reqtsupri = tsparmsp->ts_upri; 1167 1168 /* 1169 * Make sure the user priority doesn't exceed the upri limit. 1170 */ 1171 if (reqtsupri > reqtsuprilim) 1172 reqtsupri = reqtsuprilim; 1173 1174 /* 1175 * Basic permissions enforced by generic kernel code 1176 * for all classes require that a thread attempting 1177 * to change the scheduling parameters of a target 1178 * thread be privileged or have a real or effective 1179 * UID matching that of the target thread. We are not 1180 * called unless these basic permission checks have 1181 * already passed. The time-sharing class requires in 1182 * addition that the calling thread be privileged if it 1183 * is attempting to raise the upri limit above its current 1184 * value This may have been checked previously but if our 1185 * caller passed us a non-NULL credential pointer we assume 1186 * it hasn't and we check it here. 1187 */ 1188 if (reqpcredp != NULL && 1189 reqtsuprilim > tspp->ts_uprilim && 1190 secpolicy_setpriority(reqpcredp) != 0) 1191 return (EPERM); 1192 1193 /* 1194 * Set ts_nice to the nice value corresponding to the user 1195 * priority we are setting. Note that setting the nice field 1196 * of the parameter struct won't affect upri or nice. 1197 */ 1198 nice = NZERO - (reqtsupri * NZERO) / ts_maxupri; 1199 if (nice >= 2 * NZERO) 1200 nice = 2 * NZERO - 1; 1201 1202 thread_lock(tx); 1203 1204 tspp->ts_uprilim = reqtsuprilim; 1205 tspp->ts_upri = reqtsupri; 1206 TS_NEWUMDPRI(tspp); 1207 tspp->ts_nice = nice; 1208 1209 if ((tspp->ts_flags & TSKPRI) != 0) { 1210 thread_unlock(tx); 1211 return (0); 1212 } 1213 1214 tspp->ts_dispwait = 0; 1215 ts_change_priority(tx, tspp); 1216 thread_unlock(tx); 1217 return (0); 1218 } 1219 1220 1221 static int 1222 ia_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp) 1223 { 1224 tsproc_t *tspp = (tsproc_t *)tx->t_cldata; 1225 iaparms_t *iaparmsp = (iaparms_t *)parmsp; 1226 proc_t *p; 1227 pid_t pid, pgid, sid; 1228 pid_t on, off; 1229 struct stdata *stp; 1230 int sess_held; 1231 1232 /* 1233 * Handle user priority changes 1234 */ 1235 if (iaparmsp->ia_mode == IA_NOCHANGE) 1236 return (ts_parmsset(tx, parmsp, reqpcid, reqpcredp)); 1237 1238 /* 1239 * Check permissions for changing modes. 1240 */ 1241 1242 if (reqpcredp != NULL && !groupmember(IA_gid, reqpcredp) && 1243 secpolicy_setpriority(reqpcredp) != 0) { 1244 /* 1245 * Silently fail in case this is just a priocntl 1246 * call with upri and uprilim set to IA_NOCHANGE. 1247 */ 1248 return (0); 1249 } 1250 1251 ASSERT(MUTEX_HELD(&pidlock)); 1252 if ((p = ttoproc(tx)) == NULL) { 1253 return (0); 1254 } 1255 ASSERT(MUTEX_HELD(&p->p_lock)); 1256 if (p->p_stat == SIDL) { 1257 return (0); 1258 } 1259 pid = p->p_pid; 1260 sid = p->p_sessp->s_sid; 1261 pgid = p->p_pgrp; 1262 if (iaparmsp->ia_mode == IA_SET_INTERACTIVE) { 1263 /* 1264 * session leaders must be turned on now so all processes 1265 * in the group controlling the tty will be turned on or off. 1266 * if the ia_mode is off for the session leader, 1267 * ia_set_process_group will return without setting the 1268 * processes in the group controlling the tty on. 1269 */ 1270 thread_lock(tx); 1271 tspp->ts_flags |= TSIASET; 1272 thread_unlock(tx); 1273 } 1274 mutex_enter(&p->p_sessp->s_lock); 1275 sess_held = 1; 1276 if ((pid == sid) && (p->p_sessp->s_vp != NULL) && 1277 ((stp = p->p_sessp->s_vp->v_stream) != NULL)) { 1278 if ((stp->sd_pgidp != NULL) && (stp->sd_sidp != NULL)) { 1279 pgid = stp->sd_pgidp->pid_id; 1280 sess_held = 0; 1281 mutex_exit(&p->p_sessp->s_lock); 1282 if (iaparmsp->ia_mode == 1283 IA_SET_INTERACTIVE) { 1284 off = 0; 1285 on = pgid; 1286 } else { 1287 off = pgid; 1288 on = 0; 1289 } 1290 TRACE_3(TR_FAC_IA, TR_ACTIVE_CHAIN, 1291 "active chain:pid %d gid %d %p", 1292 pid, pgid, p); 1293 ia_set_process_group(sid, off, on); 1294 } 1295 } 1296 if (sess_held) 1297 mutex_exit(&p->p_sessp->s_lock); 1298 1299 thread_lock(tx); 1300 1301 if (iaparmsp->ia_mode == IA_SET_INTERACTIVE) { 1302 tspp->ts_flags |= TSIASET; 1303 tspp->ts_boost = ia_boost; 1304 } else { 1305 tspp->ts_flags &= ~TSIASET; 1306 tspp->ts_boost = -ia_boost; 1307 } 1308 thread_unlock(tx); 1309 1310 return (ts_parmsset(tx, parmsp, reqpcid, reqpcredp)); 1311 } 1312 1313 static void 1314 ts_exit(kthread_t *t) 1315 { 1316 tsproc_t *tspp; 1317 1318 if (CPUCAPS_ON()) { 1319 /* 1320 * A thread could be exiting in between clock ticks, 1321 * so we need to calculate how much CPU time it used 1322 * since it was charged last time. 1323 * 1324 * CPU caps are not enforced on exiting processes - it is 1325 * usually desirable to exit as soon as possible to free 1326 * resources. 1327 */ 1328 thread_lock(t); 1329 tspp = (tsproc_t *)t->t_cldata; 1330 (void) cpucaps_charge(t, &tspp->ts_caps, CPUCAPS_CHARGE_ONLY); 1331 thread_unlock(t); 1332 } 1333 } 1334 1335 /* 1336 * Return the global scheduling priority that would be assigned 1337 * to a thread entering the time-sharing class with the ts_upri. 1338 */ 1339 static pri_t 1340 ts_globpri(kthread_t *t) 1341 { 1342 tsproc_t *tspp; 1343 pri_t tspri; 1344 1345 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 1346 tspp = (tsproc_t *)t->t_cldata; 1347 tspri = tsmedumdpri + tspp->ts_upri; 1348 if (tspri > ts_maxumdpri) 1349 tspri = ts_maxumdpri; 1350 else if (tspri < 0) 1351 tspri = 0; 1352 return (ts_dptbl[tspri].ts_globpri); 1353 } 1354 1355 /* 1356 * Arrange for thread to be placed in appropriate location 1357 * on dispatcher queue. 1358 * 1359 * This is called with the current thread in TS_ONPROC and locked. 1360 */ 1361 static void 1362 ts_preempt(kthread_t *t) 1363 { 1364 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1365 klwp_t *lwp = curthread->t_lwp; 1366 pri_t oldpri = t->t_pri; 1367 1368 ASSERT(t == curthread); 1369 ASSERT(THREAD_LOCK_HELD(curthread)); 1370 1371 /* 1372 * If preempted in the kernel, make sure the thread has 1373 * a kernel priority if needed. 1374 */ 1375 if (!(tspp->ts_flags & TSKPRI) && lwp != NULL && t->t_kpri_req) { 1376 tspp->ts_flags |= TSKPRI; 1377 THREAD_CHANGE_PRI(t, ts_kmdpris[0]); 1378 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1379 t->t_trapret = 1; /* so ts_trapret will run */ 1380 aston(t); 1381 } 1382 1383 /* 1384 * This thread may be placed on wait queue by CPU Caps. In this case we 1385 * do not need to do anything until it is removed from the wait queue. 1386 * Do not enforce CPU caps on threads running at a kernel priority 1387 */ 1388 if (CPUCAPS_ON()) { 1389 (void) cpucaps_charge(t, &tspp->ts_caps, 1390 CPUCAPS_CHARGE_ENFORCE); 1391 if (!(tspp->ts_flags & TSKPRI) && CPUCAPS_ENFORCE(t)) 1392 return; 1393 } 1394 1395 /* 1396 * If thread got preempted in the user-land then we know 1397 * it isn't holding any locks. Mark it as swappable. 1398 */ 1399 ASSERT(t->t_schedflag & TS_DONT_SWAP); 1400 if (lwp != NULL && lwp->lwp_state == LWP_USER) 1401 t->t_schedflag &= ~TS_DONT_SWAP; 1402 1403 /* 1404 * Check to see if we're doing "preemption control" here. If 1405 * we are, and if the user has requested that this thread not 1406 * be preempted, and if preemptions haven't been put off for 1407 * too long, let the preemption happen here but try to make 1408 * sure the thread is rescheduled as soon as possible. We do 1409 * this by putting it on the front of the highest priority run 1410 * queue in the TS class. If the preemption has been put off 1411 * for too long, clear the "nopreempt" bit and let the thread 1412 * be preempted. 1413 */ 1414 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 1415 if (tspp->ts_timeleft > -SC_MAX_TICKS) { 1416 DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t); 1417 if (!(tspp->ts_flags & TSKPRI)) { 1418 /* 1419 * If not already remembered, remember current 1420 * priority for restoration in ts_yield(). 1421 */ 1422 if (!(tspp->ts_flags & TSRESTORE)) { 1423 tspp->ts_scpri = t->t_pri; 1424 tspp->ts_flags |= TSRESTORE; 1425 } 1426 THREAD_CHANGE_PRI(t, ts_maxumdpri); 1427 t->t_schedflag |= TS_DONT_SWAP; 1428 } 1429 schedctl_set_yield(t, 1); 1430 setfrontdq(t); 1431 goto done; 1432 } else { 1433 if (tspp->ts_flags & TSRESTORE) { 1434 THREAD_CHANGE_PRI(t, tspp->ts_scpri); 1435 tspp->ts_flags &= ~TSRESTORE; 1436 } 1437 schedctl_set_nopreempt(t, 0); 1438 DTRACE_SCHED1(schedctl__preempt, kthread_t *, t); 1439 TNF_PROBE_2(schedctl_preempt, "schedctl TS ts_preempt", 1440 /* CSTYLED */, tnf_pid, pid, ttoproc(t)->p_pid, 1441 tnf_lwpid, lwpid, t->t_tid); 1442 /* 1443 * Fall through and be preempted below. 1444 */ 1445 } 1446 } 1447 1448 if ((tspp->ts_flags & (TSBACKQ|TSKPRI)) == TSBACKQ) { 1449 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1450 tspp->ts_dispwait = 0; 1451 tspp->ts_flags &= ~TSBACKQ; 1452 setbackdq(t); 1453 } else if ((tspp->ts_flags & (TSBACKQ|TSKPRI)) == (TSBACKQ|TSKPRI)) { 1454 tspp->ts_flags &= ~TSBACKQ; 1455 setbackdq(t); 1456 } else { 1457 setfrontdq(t); 1458 } 1459 1460 done: 1461 TRACE_2(TR_FAC_DISP, TR_PREEMPT, 1462 "preempt:tid %p old pri %d", t, oldpri); 1463 } 1464 1465 static void 1466 ts_setrun(kthread_t *t) 1467 { 1468 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1469 1470 ASSERT(THREAD_LOCK_HELD(t)); /* t should be in transition */ 1471 1472 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { 1473 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; 1474 TS_NEWUMDPRI(tspp); 1475 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1476 tspp->ts_dispwait = 0; 1477 if ((tspp->ts_flags & TSKPRI) == 0) { 1478 THREAD_CHANGE_PRI(t, 1479 ts_dptbl[tspp->ts_umdpri].ts_globpri); 1480 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1481 } 1482 } 1483 1484 tspp->ts_flags &= ~TSBACKQ; 1485 1486 if (tspp->ts_flags & TSIA) { 1487 if (tspp->ts_flags & TSIASET) 1488 setfrontdq(t); 1489 else 1490 setbackdq(t); 1491 } else { 1492 if (t->t_disp_time != lbolt) 1493 setbackdq(t); 1494 else 1495 setfrontdq(t); 1496 } 1497 } 1498 1499 1500 /* 1501 * Prepare thread for sleep. We reset the thread priority so it will 1502 * run at the kernel priority level when it wakes up. 1503 */ 1504 static void 1505 ts_sleep(kthread_t *t) 1506 { 1507 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1508 int flags; 1509 pri_t old_pri = t->t_pri; 1510 1511 ASSERT(t == curthread); 1512 ASSERT(THREAD_LOCK_HELD(t)); 1513 1514 /* 1515 * Account for time spent on CPU before going to sleep. 1516 */ 1517 (void) CPUCAPS_CHARGE(t, &tspp->ts_caps, CPUCAPS_CHARGE_ENFORCE); 1518 1519 flags = tspp->ts_flags; 1520 if (t->t_kpri_req) { 1521 tspp->ts_flags = flags | TSKPRI; 1522 THREAD_CHANGE_PRI(t, ts_kmdpris[0]); 1523 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1524 t->t_trapret = 1; /* so ts_trapret will run */ 1525 aston(t); 1526 } else if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { 1527 /* 1528 * If thread has blocked in the kernel (as opposed to 1529 * being merely preempted), recompute the user mode priority. 1530 */ 1531 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; 1532 TS_NEWUMDPRI(tspp); 1533 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1534 tspp->ts_dispwait = 0; 1535 1536 THREAD_CHANGE_PRI(curthread, 1537 ts_dptbl[tspp->ts_umdpri].ts_globpri); 1538 ASSERT(curthread->t_pri >= 0 && 1539 curthread->t_pri <= ts_maxglobpri); 1540 tspp->ts_flags = flags & ~TSKPRI; 1541 1542 if (DISP_MUST_SURRENDER(curthread)) 1543 cpu_surrender(curthread); 1544 } else if (flags & TSKPRI) { 1545 THREAD_CHANGE_PRI(curthread, 1546 ts_dptbl[tspp->ts_umdpri].ts_globpri); 1547 ASSERT(curthread->t_pri >= 0 && 1548 curthread->t_pri <= ts_maxglobpri); 1549 tspp->ts_flags = flags & ~TSKPRI; 1550 1551 if (DISP_MUST_SURRENDER(curthread)) 1552 cpu_surrender(curthread); 1553 } 1554 t->t_stime = lbolt; /* time stamp for the swapper */ 1555 TRACE_2(TR_FAC_DISP, TR_SLEEP, 1556 "sleep:tid %p old pri %d", t, old_pri); 1557 } 1558 1559 1560 /* 1561 * Return Values: 1562 * 1563 * -1 if the thread is loaded or is not eligible to be swapped in. 1564 * 1565 * effective priority of the specified thread based on swapout time 1566 * and size of process (epri >= 0 , epri <= SHRT_MAX). 1567 */ 1568 /* ARGSUSED */ 1569 static pri_t 1570 ts_swapin(kthread_t *t, int flags) 1571 { 1572 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1573 long epri = -1; 1574 proc_t *pp = ttoproc(t); 1575 1576 ASSERT(THREAD_LOCK_HELD(t)); 1577 1578 /* 1579 * We know that pri_t is a short. 1580 * Be sure not to overrun its range. 1581 */ 1582 if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) { 1583 time_t swapout_time; 1584 1585 swapout_time = (lbolt - t->t_stime) / hz; 1586 if (INHERITED(t) || (tspp->ts_flags & (TSKPRI | TSIASET))) 1587 epri = (long)DISP_PRIO(t) + swapout_time; 1588 else { 1589 /* 1590 * Threads which have been out for a long time, 1591 * have high user mode priority and are associated 1592 * with a small address space are more deserving 1593 */ 1594 epri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 1595 ASSERT(epri >= 0 && epri <= ts_maxumdpri); 1596 epri += swapout_time - pp->p_swrss / nz(maxpgio)/2; 1597 } 1598 /* 1599 * Scale epri so SHRT_MAX/2 represents zero priority. 1600 */ 1601 epri += SHRT_MAX/2; 1602 if (epri < 0) 1603 epri = 0; 1604 else if (epri > SHRT_MAX) 1605 epri = SHRT_MAX; 1606 } 1607 return ((pri_t)epri); 1608 } 1609 1610 /* 1611 * Return Values 1612 * -1 if the thread isn't loaded or is not eligible to be swapped out. 1613 * 1614 * effective priority of the specified thread based on if the swapper 1615 * is in softswap or hardswap mode. 1616 * 1617 * Softswap: Return a low effective priority for threads 1618 * sleeping for more than maxslp secs. 1619 * 1620 * Hardswap: Return an effective priority such that threads 1621 * which have been in memory for a while and are 1622 * associated with a small address space are swapped 1623 * in before others. 1624 * 1625 * (epri >= 0 , epri <= SHRT_MAX). 1626 */ 1627 time_t ts_minrun = 2; /* XXX - t_pri becomes 59 within 2 secs */ 1628 time_t ts_minslp = 2; /* min time on sleep queue for hardswap */ 1629 1630 static pri_t 1631 ts_swapout(kthread_t *t, int flags) 1632 { 1633 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1634 long epri = -1; 1635 proc_t *pp = ttoproc(t); 1636 time_t swapin_time; 1637 1638 ASSERT(THREAD_LOCK_HELD(t)); 1639 1640 if (INHERITED(t) || (tspp->ts_flags & (TSKPRI | TSIASET)) || 1641 (t->t_proc_flag & TP_LWPEXIT) || 1642 (t->t_state & (TS_ZOMB | TS_FREE | TS_STOPPED | 1643 TS_ONPROC | TS_WAIT)) || 1644 !(t->t_schedflag & TS_LOAD) || !SWAP_OK(t)) 1645 return (-1); 1646 1647 ASSERT(t->t_state & (TS_SLEEP | TS_RUN)); 1648 1649 /* 1650 * We know that pri_t is a short. 1651 * Be sure not to overrun its range. 1652 */ 1653 swapin_time = (lbolt - t->t_stime) / hz; 1654 if (flags == SOFTSWAP) { 1655 if (t->t_state == TS_SLEEP && swapin_time > maxslp) { 1656 epri = 0; 1657 } else { 1658 return ((pri_t)epri); 1659 } 1660 } else { 1661 pri_t pri; 1662 1663 if ((t->t_state == TS_SLEEP && swapin_time > ts_minslp) || 1664 (t->t_state == TS_RUN && swapin_time > ts_minrun)) { 1665 pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 1666 ASSERT(pri >= 0 && pri <= ts_maxumdpri); 1667 epri = swapin_time - 1668 (rm_asrss(pp->p_as) / nz(maxpgio)/2) - (long)pri; 1669 } else { 1670 return ((pri_t)epri); 1671 } 1672 } 1673 1674 /* 1675 * Scale epri so SHRT_MAX/2 represents zero priority. 1676 */ 1677 epri += SHRT_MAX/2; 1678 if (epri < 0) 1679 epri = 0; 1680 else if (epri > SHRT_MAX) 1681 epri = SHRT_MAX; 1682 1683 return ((pri_t)epri); 1684 } 1685 1686 /* 1687 * Check for time slice expiration. If time slice has expired 1688 * move thread to priority specified in tsdptbl for time slice expiration 1689 * and set runrun to cause preemption. 1690 */ 1691 static void 1692 ts_tick(kthread_t *t) 1693 { 1694 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1695 klwp_t *lwp; 1696 boolean_t call_cpu_surrender = B_FALSE; 1697 pri_t oldpri = t->t_pri; 1698 1699 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 1700 1701 thread_lock(t); 1702 1703 /* 1704 * Keep track of thread's project CPU usage. Note that projects 1705 * get charged even when threads are running in the kernel. 1706 */ 1707 if (CPUCAPS_ON()) { 1708 call_cpu_surrender = cpucaps_charge(t, &tspp->ts_caps, 1709 CPUCAPS_CHARGE_ENFORCE) && !(tspp->ts_flags & TSKPRI); 1710 } 1711 1712 if ((tspp->ts_flags & TSKPRI) == 0) { 1713 if (--tspp->ts_timeleft <= 0) { 1714 pri_t new_pri; 1715 1716 /* 1717 * If we're doing preemption control and trying to 1718 * avoid preempting this thread, just note that 1719 * the thread should yield soon and let it keep 1720 * running (unless it's been a while). 1721 */ 1722 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 1723 if (tspp->ts_timeleft > -SC_MAX_TICKS) { 1724 DTRACE_SCHED1(schedctl__nopreempt, 1725 kthread_t *, t); 1726 schedctl_set_yield(t, 1); 1727 thread_unlock_nopreempt(t); 1728 return; 1729 } 1730 1731 TNF_PROBE_2(schedctl_failsafe, 1732 "schedctl TS ts_tick", /* CSTYLED */, 1733 tnf_pid, pid, ttoproc(t)->p_pid, 1734 tnf_lwpid, lwpid, t->t_tid); 1735 } 1736 tspp->ts_flags &= ~TSRESTORE; 1737 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp; 1738 TS_NEWUMDPRI(tspp); 1739 tspp->ts_dispwait = 0; 1740 new_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 1741 ASSERT(new_pri >= 0 && new_pri <= ts_maxglobpri); 1742 /* 1743 * When the priority of a thread is changed, 1744 * it may be necessary to adjust its position 1745 * on a sleep queue or dispatch queue. 1746 * The function thread_change_pri accomplishes 1747 * this. 1748 */ 1749 if (thread_change_pri(t, new_pri, 0)) { 1750 if ((t->t_schedflag & TS_LOAD) && 1751 (lwp = t->t_lwp) && 1752 lwp->lwp_state == LWP_USER) 1753 t->t_schedflag &= ~TS_DONT_SWAP; 1754 tspp->ts_timeleft = 1755 ts_dptbl[tspp->ts_cpupri].ts_quantum; 1756 } else { 1757 call_cpu_surrender = B_TRUE; 1758 } 1759 TRACE_2(TR_FAC_DISP, TR_TICK, 1760 "tick:tid %p old pri %d", t, oldpri); 1761 } else if (t->t_state == TS_ONPROC && 1762 t->t_pri < t->t_disp_queue->disp_maxrunpri) { 1763 call_cpu_surrender = B_TRUE; 1764 } 1765 } 1766 1767 if (call_cpu_surrender) { 1768 tspp->ts_flags |= TSBACKQ; 1769 cpu_surrender(t); 1770 } 1771 1772 thread_unlock_nopreempt(t); /* clock thread can't be preempted */ 1773 } 1774 1775 1776 /* 1777 * If thread is currently at a kernel mode priority (has slept) 1778 * we assign it the appropriate user mode priority and time quantum 1779 * here. If we are lowering the thread's priority below that of 1780 * other runnable threads we will normally set runrun via cpu_surrender() to 1781 * cause preemption. 1782 */ 1783 static void 1784 ts_trapret(kthread_t *t) 1785 { 1786 tsproc_t *tspp = (tsproc_t *)t->t_cldata; 1787 cpu_t *cp = CPU; 1788 pri_t old_pri = curthread->t_pri; 1789 1790 ASSERT(THREAD_LOCK_HELD(t)); 1791 ASSERT(t == curthread); 1792 ASSERT(cp->cpu_dispthread == t); 1793 ASSERT(t->t_state == TS_ONPROC); 1794 1795 t->t_kpri_req = 0; 1796 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { 1797 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; 1798 TS_NEWUMDPRI(tspp); 1799 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1800 tspp->ts_dispwait = 0; 1801 1802 /* 1803 * If thread has blocked in the kernel (as opposed to 1804 * being merely preempted), recompute the user mode priority. 1805 */ 1806 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri); 1807 cp->cpu_dispatch_pri = DISP_PRIO(t); 1808 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1809 tspp->ts_flags &= ~TSKPRI; 1810 1811 if (DISP_MUST_SURRENDER(t)) 1812 cpu_surrender(t); 1813 } else if (tspp->ts_flags & TSKPRI) { 1814 /* 1815 * If thread has blocked in the kernel (as opposed to 1816 * being merely preempted), recompute the user mode priority. 1817 */ 1818 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri); 1819 cp->cpu_dispatch_pri = DISP_PRIO(t); 1820 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1821 tspp->ts_flags &= ~TSKPRI; 1822 1823 if (DISP_MUST_SURRENDER(t)) 1824 cpu_surrender(t); 1825 } 1826 1827 /* 1828 * Swapout lwp if the swapper is waiting for this thread to 1829 * reach a safe point. 1830 */ 1831 if ((t->t_schedflag & TS_SWAPENQ) && !(tspp->ts_flags & TSIASET)) { 1832 thread_unlock(t); 1833 swapout_lwp(ttolwp(t)); 1834 thread_lock(t); 1835 } 1836 1837 TRACE_2(TR_FAC_DISP, TR_TRAPRET, 1838 "trapret:tid %p old pri %d", t, old_pri); 1839 } 1840 1841 1842 /* 1843 * Update the ts_dispwait values of all time sharing threads that 1844 * are currently runnable at a user mode priority and bump the priority 1845 * if ts_dispwait exceeds ts_maxwait. Called once per second via 1846 * timeout which we reset here. 1847 * 1848 * There are several lists of time sharing threads broken up by a hash on 1849 * the thread pointer. Each list has its own lock. This avoids blocking 1850 * all ts_enterclass, ts_fork, and ts_exitclass operations while ts_update 1851 * runs. ts_update traverses each list in turn. 1852 * 1853 * If multiple threads have their priorities updated to the same value, 1854 * the system implicitly favors the one that is updated first (since it 1855 * winds up first on the run queue). To avoid this unfairness, the 1856 * traversal of threads starts at the list indicated by a marker. When 1857 * threads in more than one list have their priorities updated, the marker 1858 * is moved. This changes the order the threads will be placed on the run 1859 * queue the next time ts_update is called and preserves fairness over the 1860 * long run. The marker doesn't need to be protected by a lock since it's 1861 * only accessed by ts_update, which is inherently single-threaded (only 1862 * one instance can be running at a time). 1863 */ 1864 static void 1865 ts_update(void *arg) 1866 { 1867 int i; 1868 int new_marker = -1; 1869 static int ts_update_marker; 1870 1871 /* 1872 * Start with the ts_update_marker list, then do the rest. 1873 */ 1874 i = ts_update_marker; 1875 do { 1876 /* 1877 * If this is the first list after the current marker to 1878 * have threads with priorities updated, advance the marker 1879 * to this list for the next time ts_update runs. 1880 */ 1881 if (ts_update_list(i) && new_marker == -1 && 1882 i != ts_update_marker) { 1883 new_marker = i; 1884 } 1885 } while ((i = TS_LIST_NEXT(i)) != ts_update_marker); 1886 1887 /* advance marker for next ts_update call */ 1888 if (new_marker != -1) 1889 ts_update_marker = new_marker; 1890 1891 (void) timeout(ts_update, arg, hz); 1892 } 1893 1894 /* 1895 * Updates priority for a list of threads. Returns 1 if the priority of 1896 * one of the threads was actually updated, 0 if none were for various 1897 * reasons (thread is no longer in the TS or IA class, isn't runnable, 1898 * hasn't waited long enough, has the preemption control no-preempt bit 1899 * set, etc.) 1900 */ 1901 static int 1902 ts_update_list(int i) 1903 { 1904 tsproc_t *tspp; 1905 kthread_t *tx; 1906 int updated = 0; 1907 1908 mutex_enter(&ts_list_lock[i]); 1909 for (tspp = ts_plisthead[i].ts_next; tspp != &ts_plisthead[i]; 1910 tspp = tspp->ts_next) { 1911 tx = tspp->ts_tp; 1912 /* 1913 * Lock the thread and verify state. 1914 */ 1915 thread_lock(tx); 1916 /* 1917 * Skip the thread if it is no longer in the TS (or IA) class. 1918 */ 1919 if (tx->t_clfuncs != &ts_classfuncs.thread && 1920 tx->t_clfuncs != &ia_classfuncs.thread) 1921 goto next; 1922 tspp->ts_dispwait++; 1923 if ((tspp->ts_flags & TSKPRI) != 0) 1924 goto next; 1925 if (tspp->ts_dispwait <= ts_dptbl[tspp->ts_umdpri].ts_maxwait) 1926 goto next; 1927 if (tx->t_schedctl && schedctl_get_nopreempt(tx)) 1928 goto next; 1929 if (tx->t_state != TS_RUN && tx->t_state != TS_WAIT && 1930 (tx->t_state != TS_SLEEP || !ts_sleep_promote)) { 1931 /* make next syscall/trap do CL_TRAPRET */ 1932 tx->t_trapret = 1; 1933 aston(tx); 1934 goto next; 1935 } 1936 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_lwait; 1937 TS_NEWUMDPRI(tspp); 1938 tspp->ts_dispwait = 0; 1939 updated = 1; 1940 1941 /* 1942 * Only dequeue it if needs to move; otherwise it should 1943 * just round-robin here. 1944 */ 1945 if (tx->t_pri != ts_dptbl[tspp->ts_umdpri].ts_globpri) { 1946 pri_t oldpri = tx->t_pri; 1947 ts_change_priority(tx, tspp); 1948 TRACE_2(TR_FAC_DISP, TR_UPDATE, 1949 "update:tid %p old pri %d", tx, oldpri); 1950 } 1951 next: 1952 thread_unlock(tx); 1953 } 1954 mutex_exit(&ts_list_lock[i]); 1955 1956 return (updated); 1957 } 1958 1959 /* 1960 * Processes waking up go to the back of their queue. We don't 1961 * need to assign a time quantum here because thread is still 1962 * at a kernel mode priority and the time slicing is not done 1963 * for threads running in the kernel after sleeping. The proper 1964 * time quantum will be assigned by ts_trapret before the thread 1965 * returns to user mode. 1966 */ 1967 static void 1968 ts_wakeup(kthread_t *t) 1969 { 1970 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1971 1972 ASSERT(THREAD_LOCK_HELD(t)); 1973 1974 t->t_stime = lbolt; /* time stamp for the swapper */ 1975 1976 if (tspp->ts_flags & TSKPRI) { 1977 tspp->ts_flags &= ~TSBACKQ; 1978 if (tspp->ts_flags & TSIASET) 1979 setfrontdq(t); 1980 else 1981 setbackdq(t); 1982 } else if (t->t_kpri_req) { 1983 /* 1984 * Give thread a priority boost if we were asked. 1985 */ 1986 tspp->ts_flags |= TSKPRI; 1987 THREAD_CHANGE_PRI(t, ts_kmdpris[0]); 1988 setbackdq(t); 1989 t->t_trapret = 1; /* so that ts_trapret will run */ 1990 aston(t); 1991 } else { 1992 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { 1993 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; 1994 TS_NEWUMDPRI(tspp); 1995 tspp->ts_timeleft = 1996 ts_dptbl[tspp->ts_cpupri].ts_quantum; 1997 tspp->ts_dispwait = 0; 1998 THREAD_CHANGE_PRI(t, 1999 ts_dptbl[tspp->ts_umdpri].ts_globpri); 2000 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 2001 } 2002 2003 tspp->ts_flags &= ~TSBACKQ; 2004 2005 if (tspp->ts_flags & TSIA) { 2006 if (tspp->ts_flags & TSIASET) 2007 setfrontdq(t); 2008 else 2009 setbackdq(t); 2010 } else { 2011 if (t->t_disp_time != lbolt) 2012 setbackdq(t); 2013 else 2014 setfrontdq(t); 2015 } 2016 } 2017 } 2018 2019 2020 /* 2021 * When a thread yields, put it on the back of the run queue. 2022 */ 2023 static void 2024 ts_yield(kthread_t *t) 2025 { 2026 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 2027 2028 ASSERT(t == curthread); 2029 ASSERT(THREAD_LOCK_HELD(t)); 2030 2031 /* 2032 * Collect CPU usage spent before yielding 2033 */ 2034 (void) CPUCAPS_CHARGE(t, &tspp->ts_caps, CPUCAPS_CHARGE_ENFORCE); 2035 2036 /* 2037 * Clear the preemption control "yield" bit since the user is 2038 * doing a yield. 2039 */ 2040 if (t->t_schedctl) 2041 schedctl_set_yield(t, 0); 2042 /* 2043 * If ts_preempt() artifically increased the thread's priority 2044 * to avoid preemption, restore the original priority now. 2045 */ 2046 if (tspp->ts_flags & TSRESTORE) { 2047 THREAD_CHANGE_PRI(t, tspp->ts_scpri); 2048 tspp->ts_flags &= ~TSRESTORE; 2049 } 2050 if (tspp->ts_timeleft <= 0) { 2051 /* 2052 * Time slice was artificially extended to avoid 2053 * preemption, so pretend we're preempting it now. 2054 */ 2055 DTRACE_SCHED1(schedctl__yield, int, -tspp->ts_timeleft); 2056 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp; 2057 TS_NEWUMDPRI(tspp); 2058 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 2059 tspp->ts_dispwait = 0; 2060 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri); 2061 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 2062 } 2063 tspp->ts_flags &= ~TSBACKQ; 2064 setbackdq(t); 2065 } 2066 2067 2068 /* 2069 * Increment the nice value of the specified thread by incr and 2070 * return the new value in *retvalp. 2071 */ 2072 static int 2073 ts_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp) 2074 { 2075 int newnice; 2076 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 2077 tsparms_t tsparms; 2078 2079 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 2080 2081 /* If there's no change to priority, just return current setting */ 2082 if (incr == 0) { 2083 if (retvalp) { 2084 *retvalp = tspp->ts_nice - NZERO; 2085 } 2086 return (0); 2087 } 2088 2089 if ((incr < 0 || incr > 2 * NZERO) && 2090 secpolicy_setpriority(cr) != 0) 2091 return (EPERM); 2092 2093 /* 2094 * Specifying a nice increment greater than the upper limit of 2095 * 2 * NZERO - 1 will result in the thread's nice value being 2096 * set to the upper limit. We check for this before computing 2097 * the new value because otherwise we could get overflow 2098 * if a privileged process specified some ridiculous increment. 2099 */ 2100 if (incr > 2 * NZERO - 1) 2101 incr = 2 * NZERO - 1; 2102 2103 newnice = tspp->ts_nice + incr; 2104 if (newnice >= 2 * NZERO) 2105 newnice = 2 * NZERO - 1; 2106 else if (newnice < 0) 2107 newnice = 0; 2108 2109 tsparms.ts_uprilim = tsparms.ts_upri = 2110 -((newnice - NZERO) * ts_maxupri) / NZERO; 2111 /* 2112 * Reset the uprilim and upri values of the thread. 2113 * Call ts_parmsset even if thread is interactive since we're 2114 * not changing mode. 2115 */ 2116 (void) ts_parmsset(t, (void *)&tsparms, (id_t)0, (cred_t *)NULL); 2117 2118 /* 2119 * Although ts_parmsset already reset ts_nice it may 2120 * not have been set to precisely the value calculated above 2121 * because ts_parmsset determines the nice value from the 2122 * user priority and we may have truncated during the integer 2123 * conversion from nice value to user priority and back. 2124 * We reset ts_nice to the value we calculated above. 2125 */ 2126 tspp->ts_nice = (char)newnice; 2127 2128 if (retvalp) 2129 *retvalp = newnice - NZERO; 2130 return (0); 2131 } 2132 2133 2134 /* 2135 * ia_set_process_group marks foreground processes as interactive 2136 * and background processes as non-interactive iff the session 2137 * leader is interactive. This routine is called from two places: 2138 * strioctl:SPGRP when a new process group gets 2139 * control of the tty. 2140 * ia_parmsset-when the process in question is a session leader. 2141 * ia_set_process_group assumes that pidlock is held by the caller, 2142 * either strioctl or priocntlsys. If the caller is priocntlsys 2143 * (via ia_parmsset) then the p_lock of the session leader is held 2144 * and the code needs to be careful about acquiring other p_locks. 2145 */ 2146 static void 2147 ia_set_process_group(pid_t sid, pid_t bg_pgid, pid_t fg_pgid) 2148 { 2149 proc_t *leader, *fg, *bg; 2150 tsproc_t *tspp; 2151 kthread_t *tx; 2152 int plocked = 0; 2153 2154 ASSERT(MUTEX_HELD(&pidlock)); 2155 2156 /* 2157 * see if the session leader is interactive AND 2158 * if it is currently "on" AND controlling a tty 2159 * iff it is then make the processes in the foreground 2160 * group interactive and the processes in the background 2161 * group non-interactive. 2162 */ 2163 if ((leader = (proc_t *)prfind(sid)) == NULL) { 2164 return; 2165 } 2166 if (leader->p_stat == SIDL) { 2167 return; 2168 } 2169 if ((tx = proctot(leader)) == NULL) { 2170 return; 2171 } 2172 /* 2173 * XXX do all the threads in the leader 2174 */ 2175 if (tx->t_cid != ia_cid) { 2176 return; 2177 } 2178 tspp = tx->t_cldata; 2179 /* 2180 * session leaders that are not interactive need not have 2181 * any processing done for them. They are typically shells 2182 * that do not have focus and are changing the process group 2183 * attatched to the tty, e.g. a process that is exiting 2184 */ 2185 mutex_enter(&leader->p_sessp->s_lock); 2186 if (!(tspp->ts_flags & TSIASET) || 2187 (leader->p_sessp->s_vp == NULL) || 2188 (leader->p_sessp->s_vp->v_stream == NULL)) { 2189 mutex_exit(&leader->p_sessp->s_lock); 2190 return; 2191 } 2192 mutex_exit(&leader->p_sessp->s_lock); 2193 2194 /* 2195 * If we're already holding the leader's p_lock, we should use 2196 * mutex_tryenter instead of mutex_enter to avoid deadlocks from 2197 * lock ordering violations. 2198 */ 2199 if (mutex_owned(&leader->p_lock)) 2200 plocked = 1; 2201 2202 if (fg_pgid == 0) 2203 goto skip; 2204 /* 2205 * now look for all processes in the foreground group and 2206 * make them interactive 2207 */ 2208 for (fg = (proc_t *)pgfind(fg_pgid); fg != NULL; fg = fg->p_pglink) { 2209 /* 2210 * if the process is SIDL it's begin forked, ignore it 2211 */ 2212 if (fg->p_stat == SIDL) { 2213 continue; 2214 } 2215 /* 2216 * sesssion leaders must be turned on/off explicitly 2217 * not implicitly as happens to other members of 2218 * the process group. 2219 */ 2220 if (fg->p_pid == fg->p_sessp->s_sid) { 2221 continue; 2222 } 2223 2224 TRACE_1(TR_FAC_IA, TR_GROUP_ON, 2225 "group on:proc %p", fg); 2226 2227 if (plocked) { 2228 if (mutex_tryenter(&fg->p_lock) == 0) 2229 continue; 2230 } else { 2231 mutex_enter(&fg->p_lock); 2232 } 2233 2234 if ((tx = proctot(fg)) == NULL) { 2235 mutex_exit(&fg->p_lock); 2236 continue; 2237 } 2238 do { 2239 thread_lock(tx); 2240 /* 2241 * if this thread is not interactive continue 2242 */ 2243 if (tx->t_cid != ia_cid) { 2244 thread_unlock(tx); 2245 continue; 2246 } 2247 tspp = tx->t_cldata; 2248 tspp->ts_flags |= TSIASET; 2249 tspp->ts_boost = ia_boost; 2250 TS_NEWUMDPRI(tspp); 2251 if ((tspp->ts_flags & TSKPRI) != 0) { 2252 thread_unlock(tx); 2253 continue; 2254 } 2255 tspp->ts_dispwait = 0; 2256 ts_change_priority(tx, tspp); 2257 thread_unlock(tx); 2258 } while ((tx = tx->t_forw) != fg->p_tlist); 2259 mutex_exit(&fg->p_lock); 2260 } 2261 skip: 2262 if (bg_pgid == 0) 2263 return; 2264 for (bg = (proc_t *)pgfind(bg_pgid); bg != NULL; bg = bg->p_pglink) { 2265 if (bg->p_stat == SIDL) { 2266 continue; 2267 } 2268 /* 2269 * sesssion leaders must be turned off explicitly 2270 * not implicitly as happens to other members of 2271 * the process group. 2272 */ 2273 if (bg->p_pid == bg->p_sessp->s_sid) { 2274 continue; 2275 } 2276 2277 TRACE_1(TR_FAC_IA, TR_GROUP_OFF, 2278 "group off:proc %p", bg); 2279 2280 if (plocked) { 2281 if (mutex_tryenter(&bg->p_lock) == 0) 2282 continue; 2283 } else { 2284 mutex_enter(&bg->p_lock); 2285 } 2286 2287 if ((tx = proctot(bg)) == NULL) { 2288 mutex_exit(&bg->p_lock); 2289 continue; 2290 } 2291 do { 2292 thread_lock(tx); 2293 /* 2294 * if this thread is not interactive continue 2295 */ 2296 if (tx->t_cid != ia_cid) { 2297 thread_unlock(tx); 2298 continue; 2299 } 2300 tspp = tx->t_cldata; 2301 tspp->ts_flags &= ~TSIASET; 2302 tspp->ts_boost = -ia_boost; 2303 TS_NEWUMDPRI(tspp); 2304 if ((tspp->ts_flags & TSKPRI) != 0) { 2305 thread_unlock(tx); 2306 continue; 2307 } 2308 2309 tspp->ts_dispwait = 0; 2310 ts_change_priority(tx, tspp); 2311 thread_unlock(tx); 2312 } while ((tx = tx->t_forw) != bg->p_tlist); 2313 mutex_exit(&bg->p_lock); 2314 } 2315 } 2316 2317 2318 static void 2319 ts_change_priority(kthread_t *t, tsproc_t *tspp) 2320 { 2321 pri_t new_pri; 2322 2323 ASSERT(THREAD_LOCK_HELD(t)); 2324 new_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 2325 ASSERT(new_pri >= 0 && new_pri <= ts_maxglobpri); 2326 tspp->ts_flags &= ~TSRESTORE; 2327 if (t == curthread || t->t_state == TS_ONPROC) { 2328 /* curthread is always onproc */ 2329 cpu_t *cp = t->t_disp_queue->disp_cpu; 2330 THREAD_CHANGE_PRI(t, new_pri); 2331 if (t == cp->cpu_dispthread) 2332 cp->cpu_dispatch_pri = DISP_PRIO(t); 2333 if (DISP_MUST_SURRENDER(t)) { 2334 tspp->ts_flags |= TSBACKQ; 2335 cpu_surrender(t); 2336 } else { 2337 tspp->ts_timeleft = 2338 ts_dptbl[tspp->ts_cpupri].ts_quantum; 2339 } 2340 } else { 2341 int frontq; 2342 2343 frontq = (tspp->ts_flags & TSIASET) != 0; 2344 /* 2345 * When the priority of a thread is changed, 2346 * it may be necessary to adjust its position 2347 * on a sleep queue or dispatch queue. 2348 * The function thread_change_pri accomplishes 2349 * this. 2350 */ 2351 if (thread_change_pri(t, new_pri, frontq)) { 2352 /* 2353 * The thread was on a run queue. Reset 2354 * its CPU timeleft from the quantum 2355 * associated with the new priority. 2356 */ 2357 tspp->ts_timeleft = 2358 ts_dptbl[tspp->ts_cpupri].ts_quantum; 2359 } else { 2360 tspp->ts_flags |= TSBACKQ; 2361 } 2362 } 2363 } 2364 2365 static int 2366 ts_alloc(void **p, int flag) 2367 { 2368 void *bufp; 2369 bufp = kmem_alloc(sizeof (tsproc_t), flag); 2370 if (bufp == NULL) { 2371 return (ENOMEM); 2372 } else { 2373 *p = bufp; 2374 return (0); 2375 } 2376 } 2377 2378 static void 2379 ts_free(void *bufp) 2380 { 2381 if (bufp) 2382 kmem_free(bufp, sizeof (tsproc_t)); 2383 } 2384