1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 31 #pragma ident "%Z%%M% %I% %E% SMI" /* from SVr4.0 1.23 */ 32 33 #include <sys/types.h> 34 #include <sys/param.h> 35 #include <sys/sysmacros.h> 36 #include <sys/cred.h> 37 #include <sys/proc.h> 38 #include <sys/session.h> 39 #include <sys/strsubr.h> 40 #include <sys/signal.h> 41 #include <sys/user.h> 42 #include <sys/priocntl.h> 43 #include <sys/class.h> 44 #include <sys/disp.h> 45 #include <sys/procset.h> 46 #include <sys/debug.h> 47 #include <sys/ts.h> 48 #include <sys/tspriocntl.h> 49 #include <sys/iapriocntl.h> 50 #include <sys/kmem.h> 51 #include <sys/errno.h> 52 #include <sys/cpuvar.h> 53 #include <sys/systm.h> /* for lbolt */ 54 #include <sys/vtrace.h> 55 #include <sys/vmsystm.h> 56 #include <sys/schedctl.h> 57 #include <sys/tnf_probe.h> 58 #include <sys/atomic.h> 59 #include <sys/policy.h> 60 #include <sys/sdt.h> 61 #include <sys/cpupart.h> 62 #include <vm/rm.h> 63 #include <vm/seg_kmem.h> 64 #include <sys/modctl.h> 65 #include <sys/cpucaps.h> 66 67 static pri_t ts_init(id_t, int, classfuncs_t **); 68 69 static struct sclass csw = { 70 "TS", 71 ts_init, 72 0 73 }; 74 75 static struct modlsched modlsched = { 76 &mod_schedops, "time sharing sched class", &csw 77 }; 78 79 static struct modlinkage modlinkage = { 80 MODREV_1, (void *)&modlsched, NULL 81 }; 82 83 int 84 _init() 85 { 86 return (mod_install(&modlinkage)); 87 } 88 89 int 90 _fini() 91 { 92 return (EBUSY); /* don't remove TS for now */ 93 } 94 95 int 96 _info(struct modinfo *modinfop) 97 { 98 return (mod_info(&modlinkage, modinfop)); 99 } 100 101 /* 102 * Class specific code for the time-sharing class 103 */ 104 105 106 /* 107 * Extern declarations for variables defined in the ts master file 108 */ 109 #define TSMAXUPRI 60 110 111 pri_t ts_maxupri = TSMAXUPRI; /* max time-sharing user priority */ 112 pri_t ts_maxumdpri; /* maximum user mode ts priority */ 113 114 pri_t ia_maxupri = IAMAXUPRI; /* max interactive user priority */ 115 pri_t ia_boost = IA_BOOST; /* boost value for interactive */ 116 117 tsdpent_t *ts_dptbl; /* time-sharing disp parameter table */ 118 pri_t *ts_kmdpris; /* array of global pris used by ts procs when */ 119 /* sleeping or running in kernel after sleep */ 120 121 static id_t ia_cid; 122 123 int ts_sleep_promote = 1; 124 125 #define tsmedumdpri (ts_maxumdpri >> 1) 126 127 #define TS_NEWUMDPRI(tspp) \ 128 { \ 129 pri_t pri; \ 130 pri = (tspp)->ts_cpupri + (tspp)->ts_upri + (tspp)->ts_boost; \ 131 if (pri > ts_maxumdpri) \ 132 (tspp)->ts_umdpri = ts_maxumdpri; \ 133 else if (pri < 0) \ 134 (tspp)->ts_umdpri = 0; \ 135 else \ 136 (tspp)->ts_umdpri = pri; \ 137 ASSERT((tspp)->ts_umdpri >= 0 && (tspp)->ts_umdpri <= ts_maxumdpri); \ 138 } 139 140 /* 141 * The tsproc_t structures are kept in an array of circular doubly linked 142 * lists. A hash on the thread pointer is used to determine which list 143 * each thread should be placed. Each list has a dummy "head" which is 144 * never removed, so the list is never empty. ts_update traverses these 145 * lists to update the priorities of threads that have been waiting on 146 * the run queue. 147 */ 148 149 #define TS_LISTS 16 /* number of lists, must be power of 2 */ 150 151 /* hash function, argument is a thread pointer */ 152 #define TS_LIST_HASH(tp) (((uintptr_t)(tp) >> 9) & (TS_LISTS - 1)) 153 154 /* iterate to the next list */ 155 #define TS_LIST_NEXT(i) (((i) + 1) & (TS_LISTS - 1)) 156 157 /* 158 * Insert thread into the appropriate tsproc list. 159 */ 160 #define TS_LIST_INSERT(tspp) \ 161 { \ 162 int index = TS_LIST_HASH(tspp->ts_tp); \ 163 kmutex_t *lockp = &ts_list_lock[index]; \ 164 tsproc_t *headp = &ts_plisthead[index]; \ 165 mutex_enter(lockp); \ 166 tspp->ts_next = headp->ts_next; \ 167 tspp->ts_prev = headp; \ 168 headp->ts_next->ts_prev = tspp; \ 169 headp->ts_next = tspp; \ 170 mutex_exit(lockp); \ 171 } 172 173 /* 174 * Remove thread from tsproc list. 175 */ 176 #define TS_LIST_DELETE(tspp) \ 177 { \ 178 int index = TS_LIST_HASH(tspp->ts_tp); \ 179 kmutex_t *lockp = &ts_list_lock[index]; \ 180 mutex_enter(lockp); \ 181 tspp->ts_prev->ts_next = tspp->ts_next; \ 182 tspp->ts_next->ts_prev = tspp->ts_prev; \ 183 mutex_exit(lockp); \ 184 } 185 186 187 static int ts_admin(caddr_t, cred_t *); 188 static int ts_enterclass(kthread_t *, id_t, void *, cred_t *, void *); 189 static int ts_fork(kthread_t *, kthread_t *, void *); 190 static int ts_getclinfo(void *); 191 static int ts_getclpri(pcpri_t *); 192 static int ts_parmsin(void *); 193 static int ts_parmsout(void *, pc_vaparms_t *); 194 static int ts_vaparmsin(void *, pc_vaparms_t *); 195 static int ts_vaparmsout(void *, pc_vaparms_t *); 196 static int ts_parmsset(kthread_t *, void *, id_t, cred_t *); 197 static void ts_exit(kthread_t *); 198 static int ts_donice(kthread_t *, cred_t *, int, int *); 199 static void ts_exitclass(void *); 200 static int ts_canexit(kthread_t *, cred_t *); 201 static void ts_forkret(kthread_t *, kthread_t *); 202 static void ts_nullsys(); 203 static void ts_parmsget(kthread_t *, void *); 204 static void ts_preempt(kthread_t *); 205 static void ts_setrun(kthread_t *); 206 static void ts_sleep(kthread_t *); 207 static pri_t ts_swapin(kthread_t *, int); 208 static pri_t ts_swapout(kthread_t *, int); 209 static void ts_tick(kthread_t *); 210 static void ts_trapret(kthread_t *); 211 static void ts_update(void *); 212 static int ts_update_list(int); 213 static void ts_wakeup(kthread_t *); 214 static pri_t ts_globpri(kthread_t *); 215 static void ts_yield(kthread_t *); 216 extern tsdpent_t *ts_getdptbl(void); 217 extern pri_t *ts_getkmdpris(void); 218 extern pri_t td_getmaxumdpri(void); 219 static int ts_alloc(void **, int); 220 static void ts_free(void *); 221 222 pri_t ia_init(id_t, int, classfuncs_t **); 223 static int ia_getclinfo(void *); 224 static int ia_parmsin(void *); 225 static int ia_vaparmsin(void *, pc_vaparms_t *); 226 static int ia_vaparmsout(void *, pc_vaparms_t *); 227 static int ia_parmsset(kthread_t *, void *, id_t, cred_t *); 228 static void ia_parmsget(kthread_t *, void *); 229 static void ia_set_process_group(pid_t, pid_t, pid_t); 230 231 static void ts_change_priority(kthread_t *, tsproc_t *); 232 233 extern pri_t ts_maxkmdpri; /* maximum kernel mode ts priority */ 234 static pri_t ts_maxglobpri; /* maximum global priority used by ts class */ 235 static kmutex_t ts_dptblock; /* protects time sharing dispatch table */ 236 static kmutex_t ts_list_lock[TS_LISTS]; /* protects tsproc lists */ 237 static tsproc_t ts_plisthead[TS_LISTS]; /* dummy tsproc at head of lists */ 238 239 static gid_t IA_gid = 0; 240 241 static struct classfuncs ts_classfuncs = { 242 /* class functions */ 243 ts_admin, 244 ts_getclinfo, 245 ts_parmsin, 246 ts_parmsout, 247 ts_vaparmsin, 248 ts_vaparmsout, 249 ts_getclpri, 250 ts_alloc, 251 ts_free, 252 253 /* thread functions */ 254 ts_enterclass, 255 ts_exitclass, 256 ts_canexit, 257 ts_fork, 258 ts_forkret, 259 ts_parmsget, 260 ts_parmsset, 261 ts_nullsys, /* stop */ 262 ts_exit, 263 ts_nullsys, /* active */ 264 ts_nullsys, /* inactive */ 265 ts_swapin, 266 ts_swapout, 267 ts_trapret, 268 ts_preempt, 269 ts_setrun, 270 ts_sleep, 271 ts_tick, 272 ts_wakeup, 273 ts_donice, 274 ts_globpri, 275 ts_nullsys, /* set_process_group */ 276 ts_yield, 277 }; 278 279 /* 280 * ia_classfuncs is used for interactive class threads; IA threads are stored 281 * on the same class list as TS threads, and most of the class functions are 282 * identical, but a few have different enough functionality to require their 283 * own functions. 284 */ 285 static struct classfuncs ia_classfuncs = { 286 /* class functions */ 287 ts_admin, 288 ia_getclinfo, 289 ia_parmsin, 290 ts_parmsout, 291 ia_vaparmsin, 292 ia_vaparmsout, 293 ts_getclpri, 294 ts_alloc, 295 ts_free, 296 297 /* thread functions */ 298 ts_enterclass, 299 ts_exitclass, 300 ts_canexit, 301 ts_fork, 302 ts_forkret, 303 ia_parmsget, 304 ia_parmsset, 305 ts_nullsys, /* stop */ 306 ts_exit, 307 ts_nullsys, /* active */ 308 ts_nullsys, /* inactive */ 309 ts_swapin, 310 ts_swapout, 311 ts_trapret, 312 ts_preempt, 313 ts_setrun, 314 ts_sleep, 315 ts_tick, 316 ts_wakeup, 317 ts_donice, 318 ts_globpri, 319 ia_set_process_group, 320 ts_yield, 321 }; 322 323 324 /* 325 * Time sharing class initialization. Called by dispinit() at boot time. 326 * We can ignore the clparmsz argument since we know that the smallest 327 * possible parameter buffer is big enough for us. 328 */ 329 /* ARGSUSED */ 330 static pri_t 331 ts_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp) 332 { 333 int i; 334 extern pri_t ts_getmaxumdpri(void); 335 336 ts_dptbl = ts_getdptbl(); 337 ts_kmdpris = ts_getkmdpris(); 338 ts_maxumdpri = ts_getmaxumdpri(); 339 ts_maxglobpri = MAX(ts_kmdpris[0], ts_dptbl[ts_maxumdpri].ts_globpri); 340 341 /* 342 * Initialize the tsproc lists. 343 */ 344 for (i = 0; i < TS_LISTS; i++) { 345 ts_plisthead[i].ts_next = ts_plisthead[i].ts_prev = 346 &ts_plisthead[i]; 347 } 348 349 /* 350 * We're required to return a pointer to our classfuncs 351 * structure and the highest global priority value we use. 352 */ 353 *clfuncspp = &ts_classfuncs; 354 return (ts_maxglobpri); 355 } 356 357 358 /* 359 * Interactive class scheduler initialization 360 */ 361 /* ARGSUSED */ 362 pri_t 363 ia_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp) 364 { 365 /* 366 * We're required to return a pointer to our classfuncs 367 * structure and the highest global priority value we use. 368 */ 369 ia_cid = cid; 370 *clfuncspp = &ia_classfuncs; 371 return (ts_maxglobpri); 372 } 373 374 375 /* 376 * Get or reset the ts_dptbl values per the user's request. 377 */ 378 static int 379 ts_admin(caddr_t uaddr, cred_t *reqpcredp) 380 { 381 tsadmin_t tsadmin; 382 tsdpent_t *tmpdpp; 383 int userdpsz; 384 int i; 385 size_t tsdpsz; 386 387 if (get_udatamodel() == DATAMODEL_NATIVE) { 388 if (copyin(uaddr, &tsadmin, sizeof (tsadmin_t))) 389 return (EFAULT); 390 } 391 #ifdef _SYSCALL32_IMPL 392 else { 393 /* get tsadmin struct from ILP32 caller */ 394 tsadmin32_t tsadmin32; 395 if (copyin(uaddr, &tsadmin32, sizeof (tsadmin32_t))) 396 return (EFAULT); 397 tsadmin.ts_dpents = 398 (struct tsdpent *)(uintptr_t)tsadmin32.ts_dpents; 399 tsadmin.ts_ndpents = tsadmin32.ts_ndpents; 400 tsadmin.ts_cmd = tsadmin32.ts_cmd; 401 } 402 #endif /* _SYSCALL32_IMPL */ 403 404 tsdpsz = (ts_maxumdpri + 1) * sizeof (tsdpent_t); 405 406 switch (tsadmin.ts_cmd) { 407 case TS_GETDPSIZE: 408 tsadmin.ts_ndpents = ts_maxumdpri + 1; 409 410 if (get_udatamodel() == DATAMODEL_NATIVE) { 411 if (copyout(&tsadmin, uaddr, sizeof (tsadmin_t))) 412 return (EFAULT); 413 } 414 #ifdef _SYSCALL32_IMPL 415 else { 416 /* return tsadmin struct to ILP32 caller */ 417 tsadmin32_t tsadmin32; 418 tsadmin32.ts_dpents = 419 (caddr32_t)(uintptr_t)tsadmin.ts_dpents; 420 tsadmin32.ts_ndpents = tsadmin.ts_ndpents; 421 tsadmin32.ts_cmd = tsadmin.ts_cmd; 422 if (copyout(&tsadmin32, uaddr, sizeof (tsadmin32_t))) 423 return (EFAULT); 424 } 425 #endif /* _SYSCALL32_IMPL */ 426 break; 427 428 case TS_GETDPTBL: 429 userdpsz = MIN(tsadmin.ts_ndpents * sizeof (tsdpent_t), 430 tsdpsz); 431 if (copyout(ts_dptbl, tsadmin.ts_dpents, userdpsz)) 432 return (EFAULT); 433 434 tsadmin.ts_ndpents = userdpsz / sizeof (tsdpent_t); 435 436 if (get_udatamodel() == DATAMODEL_NATIVE) { 437 if (copyout(&tsadmin, uaddr, sizeof (tsadmin_t))) 438 return (EFAULT); 439 } 440 #ifdef _SYSCALL32_IMPL 441 else { 442 /* return tsadmin struct to ILP32 callers */ 443 tsadmin32_t tsadmin32; 444 tsadmin32.ts_dpents = 445 (caddr32_t)(uintptr_t)tsadmin.ts_dpents; 446 tsadmin32.ts_ndpents = tsadmin.ts_ndpents; 447 tsadmin32.ts_cmd = tsadmin.ts_cmd; 448 if (copyout(&tsadmin32, uaddr, sizeof (tsadmin32_t))) 449 return (EFAULT); 450 } 451 #endif /* _SYSCALL32_IMPL */ 452 break; 453 454 case TS_SETDPTBL: 455 /* 456 * We require that the requesting process has sufficient 457 * priveleges. We also require that the table supplied by 458 * the user exactly match the current ts_dptbl in size. 459 */ 460 if (secpolicy_dispadm(reqpcredp) != 0) 461 return (EPERM); 462 463 if (tsadmin.ts_ndpents * sizeof (tsdpent_t) != tsdpsz) { 464 return (EINVAL); 465 } 466 467 /* 468 * We read the user supplied table into a temporary buffer 469 * where it is validated before being copied over the 470 * ts_dptbl. 471 */ 472 tmpdpp = kmem_alloc(tsdpsz, KM_SLEEP); 473 if (copyin((caddr_t)tsadmin.ts_dpents, (caddr_t)tmpdpp, 474 tsdpsz)) { 475 kmem_free(tmpdpp, tsdpsz); 476 return (EFAULT); 477 } 478 for (i = 0; i < tsadmin.ts_ndpents; i++) { 479 480 /* 481 * Validate the user supplied values. All we are doing 482 * here is verifying that the values are within their 483 * allowable ranges and will not panic the system. We 484 * make no attempt to ensure that the resulting 485 * configuration makes sense or results in reasonable 486 * performance. 487 */ 488 if (tmpdpp[i].ts_quantum <= 0) { 489 kmem_free(tmpdpp, tsdpsz); 490 return (EINVAL); 491 } 492 if (tmpdpp[i].ts_tqexp > ts_maxumdpri || 493 tmpdpp[i].ts_tqexp < 0) { 494 kmem_free(tmpdpp, tsdpsz); 495 return (EINVAL); 496 } 497 if (tmpdpp[i].ts_slpret > ts_maxumdpri || 498 tmpdpp[i].ts_slpret < 0) { 499 kmem_free(tmpdpp, tsdpsz); 500 return (EINVAL); 501 } 502 if (tmpdpp[i].ts_maxwait < 0) { 503 kmem_free(tmpdpp, tsdpsz); 504 return (EINVAL); 505 } 506 if (tmpdpp[i].ts_lwait > ts_maxumdpri || 507 tmpdpp[i].ts_lwait < 0) { 508 kmem_free(tmpdpp, tsdpsz); 509 return (EINVAL); 510 } 511 } 512 513 /* 514 * Copy the user supplied values over the current ts_dptbl 515 * values. The ts_globpri member is read-only so we don't 516 * overwrite it. 517 */ 518 mutex_enter(&ts_dptblock); 519 for (i = 0; i < tsadmin.ts_ndpents; i++) { 520 ts_dptbl[i].ts_quantum = tmpdpp[i].ts_quantum; 521 ts_dptbl[i].ts_tqexp = tmpdpp[i].ts_tqexp; 522 ts_dptbl[i].ts_slpret = tmpdpp[i].ts_slpret; 523 ts_dptbl[i].ts_maxwait = tmpdpp[i].ts_maxwait; 524 ts_dptbl[i].ts_lwait = tmpdpp[i].ts_lwait; 525 } 526 mutex_exit(&ts_dptblock); 527 kmem_free(tmpdpp, tsdpsz); 528 break; 529 530 default: 531 return (EINVAL); 532 } 533 return (0); 534 } 535 536 537 /* 538 * Allocate a time-sharing class specific thread structure and 539 * initialize it with the parameters supplied. Also move the thread 540 * to specified time-sharing priority. 541 */ 542 static int 543 ts_enterclass(kthread_t *t, id_t cid, void *parmsp, 544 cred_t *reqpcredp, void *bufp) 545 { 546 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 547 tsproc_t *tspp; 548 pri_t reqtsuprilim; 549 pri_t reqtsupri; 550 static uint32_t tspexists = 0; /* set on first occurrence of */ 551 /* a time-sharing process */ 552 553 tspp = (tsproc_t *)bufp; 554 ASSERT(tspp != NULL); 555 556 /* 557 * Initialize the tsproc structure. 558 */ 559 tspp->ts_cpupri = tsmedumdpri; 560 if (cid == ia_cid) { 561 /* 562 * Check to make sure caller is either privileged or the 563 * window system. When the window system is converted 564 * to using privileges, the second check can go away. 565 */ 566 if (reqpcredp != NULL && !groupmember(IA_gid, reqpcredp) && 567 secpolicy_setpriority(reqpcredp) != 0) 568 return (EPERM); 569 /* 570 * Belongs to IA "class", so set appropriate flags. 571 * Mark as 'on' so it will not be a swap victim 572 * while forking. 573 */ 574 tspp->ts_flags = TSIA | TSIASET; 575 tspp->ts_boost = ia_boost; 576 } else { 577 tspp->ts_flags = 0; 578 tspp->ts_boost = 0; 579 } 580 581 if (tsparmsp == NULL) { 582 /* 583 * Use default values. 584 */ 585 tspp->ts_uprilim = tspp->ts_upri = 0; 586 tspp->ts_nice = NZERO; 587 } else { 588 /* 589 * Use supplied values. 590 */ 591 if (tsparmsp->ts_uprilim == TS_NOCHANGE) 592 reqtsuprilim = 0; 593 else { 594 if (tsparmsp->ts_uprilim > 0 && 595 secpolicy_setpriority(reqpcredp) != 0) 596 return (EPERM); 597 reqtsuprilim = tsparmsp->ts_uprilim; 598 } 599 600 if (tsparmsp->ts_upri == TS_NOCHANGE) { 601 reqtsupri = reqtsuprilim; 602 } else { 603 if (tsparmsp->ts_upri > 0 && 604 secpolicy_setpriority(reqpcredp) != 0) 605 return (EPERM); 606 /* 607 * Set the user priority to the requested value 608 * or the upri limit, whichever is lower. 609 */ 610 reqtsupri = tsparmsp->ts_upri; 611 if (reqtsupri > reqtsuprilim) 612 reqtsupri = reqtsuprilim; 613 } 614 615 616 tspp->ts_uprilim = reqtsuprilim; 617 tspp->ts_upri = reqtsupri; 618 tspp->ts_nice = NZERO - (NZERO * reqtsupri) 619 / ts_maxupri; 620 } 621 TS_NEWUMDPRI(tspp); 622 623 tspp->ts_dispwait = 0; 624 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 625 tspp->ts_tp = t; 626 cpucaps_sc_init(&tspp->ts_caps); 627 628 /* 629 * Reset priority. Process goes to a "user mode" priority 630 * here regardless of whether or not it has slept since 631 * entering the kernel. 632 */ 633 thread_lock(t); /* get dispatcher lock on thread */ 634 t->t_clfuncs = &(sclass[cid].cl_funcs->thread); 635 t->t_cid = cid; 636 t->t_cldata = (void *)tspp; 637 t->t_schedflag &= ~TS_RUNQMATCH; 638 ts_change_priority(t, tspp); 639 thread_unlock(t); 640 641 /* 642 * Link new structure into tsproc list. 643 */ 644 TS_LIST_INSERT(tspp); 645 646 /* 647 * If this is the first time-sharing thread to occur since 648 * boot we set up the initial call to ts_update() here. 649 * Use an atomic compare-and-swap since that's easier and 650 * faster than a mutex (but check with an ordinary load first 651 * since most of the time this will already be done). 652 */ 653 if (tspexists == 0 && cas32(&tspexists, 0, 1) == 0) 654 (void) timeout(ts_update, NULL, hz); 655 656 return (0); 657 } 658 659 660 /* 661 * Free tsproc structure of thread. 662 */ 663 static void 664 ts_exitclass(void *procp) 665 { 666 tsproc_t *tspp = (tsproc_t *)procp; 667 668 /* Remove tsproc_t structure from list */ 669 TS_LIST_DELETE(tspp); 670 kmem_free(tspp, sizeof (tsproc_t)); 671 } 672 673 /* ARGSUSED */ 674 static int 675 ts_canexit(kthread_t *t, cred_t *cred) 676 { 677 /* 678 * A thread can always leave a TS/IA class 679 */ 680 return (0); 681 } 682 683 static int 684 ts_fork(kthread_t *t, kthread_t *ct, void *bufp) 685 { 686 tsproc_t *ptspp; /* ptr to parent's tsproc structure */ 687 tsproc_t *ctspp; /* ptr to child's tsproc structure */ 688 689 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 690 691 ctspp = (tsproc_t *)bufp; 692 ASSERT(ctspp != NULL); 693 ptspp = (tsproc_t *)t->t_cldata; 694 /* 695 * Initialize child's tsproc structure. 696 */ 697 thread_lock(t); 698 ctspp->ts_timeleft = ts_dptbl[ptspp->ts_cpupri].ts_quantum; 699 ctspp->ts_cpupri = ptspp->ts_cpupri; 700 ctspp->ts_boost = ptspp->ts_boost; 701 ctspp->ts_uprilim = ptspp->ts_uprilim; 702 ctspp->ts_upri = ptspp->ts_upri; 703 TS_NEWUMDPRI(ctspp); 704 ctspp->ts_nice = ptspp->ts_nice; 705 ctspp->ts_dispwait = 0; 706 ctspp->ts_flags = ptspp->ts_flags & ~(TSKPRI | TSBACKQ | TSRESTORE); 707 ctspp->ts_tp = ct; 708 cpucaps_sc_init(&ctspp->ts_caps); 709 thread_unlock(t); 710 711 /* 712 * Link new structure into tsproc list. 713 */ 714 ct->t_cldata = (void *)ctspp; 715 TS_LIST_INSERT(ctspp); 716 return (0); 717 } 718 719 720 /* 721 * Child is placed at back of dispatcher queue and parent gives 722 * up processor so that the child runs first after the fork. 723 * This allows the child immediately execing to break the multiple 724 * use of copy on write pages with no disk home. The parent will 725 * get to steal them back rather than uselessly copying them. 726 */ 727 static void 728 ts_forkret(kthread_t *t, kthread_t *ct) 729 { 730 proc_t *pp = ttoproc(t); 731 proc_t *cp = ttoproc(ct); 732 tsproc_t *tspp; 733 734 ASSERT(t == curthread); 735 ASSERT(MUTEX_HELD(&pidlock)); 736 737 /* 738 * Grab the child's p_lock before dropping pidlock to ensure 739 * the process does not disappear before we set it running. 740 */ 741 mutex_enter(&cp->p_lock); 742 mutex_exit(&pidlock); 743 continuelwps(cp); 744 mutex_exit(&cp->p_lock); 745 746 mutex_enter(&pp->p_lock); 747 continuelwps(pp); 748 mutex_exit(&pp->p_lock); 749 750 thread_lock(t); 751 tspp = (tsproc_t *)(t->t_cldata); 752 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp; 753 TS_NEWUMDPRI(tspp); 754 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 755 tspp->ts_dispwait = 0; 756 t->t_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 757 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 758 tspp->ts_flags &= ~TSKPRI; 759 THREAD_TRANSITION(t); 760 ts_setrun(t); 761 thread_unlock(t); 762 763 swtch(); 764 } 765 766 767 /* 768 * Get information about the time-sharing class into the buffer 769 * pointed to by tsinfop. The maximum configured user priority 770 * is the only information we supply. ts_getclinfo() is called 771 * for TS threads, and ia_getclinfo() is called for IA threads. 772 */ 773 static int 774 ts_getclinfo(void *infop) 775 { 776 tsinfo_t *tsinfop = (tsinfo_t *)infop; 777 tsinfop->ts_maxupri = ts_maxupri; 778 return (0); 779 } 780 781 static int 782 ia_getclinfo(void *infop) 783 { 784 iainfo_t *iainfop = (iainfo_t *)infop; 785 iainfop->ia_maxupri = ia_maxupri; 786 return (0); 787 } 788 789 790 /* 791 * Return the global scheduling priority ranges for the timesharing 792 * class in pcpri_t structure. 793 */ 794 static int 795 ts_getclpri(pcpri_t *pcprip) 796 { 797 pcprip->pc_clpmax = ts_dptbl[ts_maxumdpri].ts_globpri; 798 pcprip->pc_clpmin = ts_dptbl[0].ts_globpri; 799 return (0); 800 } 801 802 803 static void 804 ts_nullsys() 805 {} 806 807 808 /* 809 * Get the time-sharing parameters of the thread pointed to by 810 * tsprocp into the buffer pointed to by tsparmsp. ts_parmsget() 811 * is called for TS threads, and ia_parmsget() is called for IA 812 * threads. 813 */ 814 static void 815 ts_parmsget(kthread_t *t, void *parmsp) 816 { 817 tsproc_t *tspp = (tsproc_t *)t->t_cldata; 818 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 819 820 tsparmsp->ts_uprilim = tspp->ts_uprilim; 821 tsparmsp->ts_upri = tspp->ts_upri; 822 } 823 824 static void 825 ia_parmsget(kthread_t *t, void *parmsp) 826 { 827 tsproc_t *tspp = (tsproc_t *)t->t_cldata; 828 iaparms_t *iaparmsp = (iaparms_t *)parmsp; 829 830 iaparmsp->ia_uprilim = tspp->ts_uprilim; 831 iaparmsp->ia_upri = tspp->ts_upri; 832 if (tspp->ts_flags & TSIASET) 833 iaparmsp->ia_mode = IA_SET_INTERACTIVE; 834 else 835 iaparmsp->ia_mode = IA_INTERACTIVE_OFF; 836 iaparmsp->ia_nice = tspp->ts_nice; 837 } 838 839 840 /* 841 * Check the validity of the time-sharing parameters in the buffer 842 * pointed to by tsparmsp. 843 * ts_parmsin() is called for TS threads, and ia_parmsin() is called 844 * for IA threads. 845 */ 846 static int 847 ts_parmsin(void *parmsp) 848 { 849 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 850 /* 851 * Check validity of parameters. 852 */ 853 if ((tsparmsp->ts_uprilim > ts_maxupri || 854 tsparmsp->ts_uprilim < -ts_maxupri) && 855 tsparmsp->ts_uprilim != TS_NOCHANGE) 856 return (EINVAL); 857 858 if ((tsparmsp->ts_upri > ts_maxupri || 859 tsparmsp->ts_upri < -ts_maxupri) && 860 tsparmsp->ts_upri != TS_NOCHANGE) 861 return (EINVAL); 862 863 return (0); 864 } 865 866 static int 867 ia_parmsin(void *parmsp) 868 { 869 iaparms_t *iaparmsp = (iaparms_t *)parmsp; 870 871 if ((iaparmsp->ia_uprilim > ia_maxupri || 872 iaparmsp->ia_uprilim < -ia_maxupri) && 873 iaparmsp->ia_uprilim != IA_NOCHANGE) { 874 return (EINVAL); 875 } 876 877 if ((iaparmsp->ia_upri > ia_maxupri || 878 iaparmsp->ia_upri < -ia_maxupri) && 879 iaparmsp->ia_upri != IA_NOCHANGE) { 880 return (EINVAL); 881 } 882 883 return (0); 884 } 885 886 887 /* 888 * Check the validity of the time-sharing parameters in the pc_vaparms_t 889 * structure vaparmsp and put them in the buffer pointed to by tsparmsp. 890 * pc_vaparms_t contains (key, value) pairs of parameter. 891 * ts_vaparmsin() is called for TS threads, and ia_vaparmsin() is called 892 * for IA threads. ts_vaparmsin() is the variable parameter version of 893 * ts_parmsin() and ia_vaparmsin() is the variable parameter version of 894 * ia_parmsin(). 895 */ 896 static int 897 ts_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp) 898 { 899 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 900 int priflag = 0; 901 int limflag = 0; 902 uint_t cnt; 903 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 904 905 906 /* 907 * TS_NOCHANGE (-32768) is outside of the range of values for 908 * ts_uprilim and ts_upri. If the structure tsparms_t is changed, 909 * TS_NOCHANGE should be replaced by a flag word (in the same manner 910 * as in rt.c). 911 */ 912 tsparmsp->ts_uprilim = TS_NOCHANGE; 913 tsparmsp->ts_upri = TS_NOCHANGE; 914 915 /* 916 * Get the varargs parameter and check validity of parameters. 917 */ 918 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 919 return (EINVAL); 920 921 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 922 923 switch (vpp->pc_key) { 924 case TS_KY_UPRILIM: 925 if (limflag++) 926 return (EINVAL); 927 tsparmsp->ts_uprilim = (pri_t)vpp->pc_parm; 928 if (tsparmsp->ts_uprilim > ts_maxupri || 929 tsparmsp->ts_uprilim < -ts_maxupri) 930 return (EINVAL); 931 break; 932 933 case TS_KY_UPRI: 934 if (priflag++) 935 return (EINVAL); 936 tsparmsp->ts_upri = (pri_t)vpp->pc_parm; 937 if (tsparmsp->ts_upri > ts_maxupri || 938 tsparmsp->ts_upri < -ts_maxupri) 939 return (EINVAL); 940 break; 941 942 default: 943 return (EINVAL); 944 } 945 } 946 947 if (vaparmsp->pc_vaparmscnt == 0) { 948 /* 949 * Use default parameters. 950 */ 951 tsparmsp->ts_upri = tsparmsp->ts_uprilim = 0; 952 } 953 954 return (0); 955 } 956 957 static int 958 ia_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp) 959 { 960 iaparms_t *iaparmsp = (iaparms_t *)parmsp; 961 int priflag = 0; 962 int limflag = 0; 963 int mflag = 0; 964 uint_t cnt; 965 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 966 967 /* 968 * IA_NOCHANGE (-32768) is outside of the range of values for 969 * ia_uprilim, ia_upri and ia_mode. If the structure iaparms_t is 970 * changed, IA_NOCHANGE should be replaced by a flag word (in the 971 * same manner as in rt.c). 972 */ 973 iaparmsp->ia_uprilim = IA_NOCHANGE; 974 iaparmsp->ia_upri = IA_NOCHANGE; 975 iaparmsp->ia_mode = IA_NOCHANGE; 976 977 /* 978 * Get the varargs parameter and check validity of parameters. 979 */ 980 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 981 return (EINVAL); 982 983 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 984 985 switch (vpp->pc_key) { 986 case IA_KY_UPRILIM: 987 if (limflag++) 988 return (EINVAL); 989 iaparmsp->ia_uprilim = (pri_t)vpp->pc_parm; 990 if (iaparmsp->ia_uprilim > ia_maxupri || 991 iaparmsp->ia_uprilim < -ia_maxupri) 992 return (EINVAL); 993 break; 994 995 case IA_KY_UPRI: 996 if (priflag++) 997 return (EINVAL); 998 iaparmsp->ia_upri = (pri_t)vpp->pc_parm; 999 if (iaparmsp->ia_upri > ia_maxupri || 1000 iaparmsp->ia_upri < -ia_maxupri) 1001 return (EINVAL); 1002 break; 1003 1004 case IA_KY_MODE: 1005 if (mflag++) 1006 return (EINVAL); 1007 iaparmsp->ia_mode = (int)vpp->pc_parm; 1008 if (iaparmsp->ia_mode != IA_SET_INTERACTIVE && 1009 iaparmsp->ia_mode != IA_INTERACTIVE_OFF) 1010 return (EINVAL); 1011 break; 1012 1013 default: 1014 return (EINVAL); 1015 } 1016 } 1017 1018 if (vaparmsp->pc_vaparmscnt == 0) { 1019 /* 1020 * Use default parameters. 1021 */ 1022 iaparmsp->ia_upri = iaparmsp->ia_uprilim = 0; 1023 iaparmsp->ia_mode = IA_SET_INTERACTIVE; 1024 } 1025 1026 return (0); 1027 } 1028 1029 /* 1030 * Nothing to do here but return success. 1031 */ 1032 /* ARGSUSED */ 1033 static int 1034 ts_parmsout(void *parmsp, pc_vaparms_t *vaparmsp) 1035 { 1036 return (0); 1037 } 1038 1039 1040 /* 1041 * Copy all selected time-sharing class parameters to the user. 1042 * The parameters are specified by a key. 1043 */ 1044 static int 1045 ts_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp) 1046 { 1047 tsparms_t *tsprmsp = (tsparms_t *)prmsp; 1048 int priflag = 0; 1049 int limflag = 0; 1050 uint_t cnt; 1051 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 1052 1053 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock)); 1054 1055 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 1056 return (EINVAL); 1057 1058 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 1059 1060 switch (vpp->pc_key) { 1061 case TS_KY_UPRILIM: 1062 if (limflag++) 1063 return (EINVAL); 1064 if (copyout(&tsprmsp->ts_uprilim, 1065 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1066 return (EFAULT); 1067 break; 1068 1069 case TS_KY_UPRI: 1070 if (priflag++) 1071 return (EINVAL); 1072 if (copyout(&tsprmsp->ts_upri, 1073 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1074 return (EFAULT); 1075 break; 1076 1077 default: 1078 return (EINVAL); 1079 } 1080 } 1081 1082 return (0); 1083 } 1084 1085 1086 /* 1087 * Copy all selected interactive class parameters to the user. 1088 * The parameters are specified by a key. 1089 */ 1090 static int 1091 ia_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp) 1092 { 1093 iaparms_t *iaprmsp = (iaparms_t *)prmsp; 1094 int priflag = 0; 1095 int limflag = 0; 1096 int mflag = 0; 1097 uint_t cnt; 1098 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 1099 1100 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock)); 1101 1102 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 1103 return (EINVAL); 1104 1105 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 1106 1107 switch (vpp->pc_key) { 1108 case IA_KY_UPRILIM: 1109 if (limflag++) 1110 return (EINVAL); 1111 if (copyout(&iaprmsp->ia_uprilim, 1112 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1113 return (EFAULT); 1114 break; 1115 1116 case IA_KY_UPRI: 1117 if (priflag++) 1118 return (EINVAL); 1119 if (copyout(&iaprmsp->ia_upri, 1120 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1121 return (EFAULT); 1122 break; 1123 1124 case IA_KY_MODE: 1125 if (mflag++) 1126 return (EINVAL); 1127 if (copyout(&iaprmsp->ia_mode, 1128 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (int))) 1129 return (EFAULT); 1130 break; 1131 1132 default: 1133 return (EINVAL); 1134 } 1135 } 1136 return (0); 1137 } 1138 1139 1140 /* 1141 * Set the scheduling parameters of the thread pointed to by tsprocp 1142 * to those specified in the buffer pointed to by tsparmsp. 1143 * ts_parmsset() is called for TS threads, and ia_parmsset() is 1144 * called for IA threads. 1145 */ 1146 /* ARGSUSED */ 1147 static int 1148 ts_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp) 1149 { 1150 char nice; 1151 pri_t reqtsuprilim; 1152 pri_t reqtsupri; 1153 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 1154 tsproc_t *tspp = (tsproc_t *)tx->t_cldata; 1155 1156 ASSERT(MUTEX_HELD(&(ttoproc(tx))->p_lock)); 1157 1158 if (tsparmsp->ts_uprilim == TS_NOCHANGE) 1159 reqtsuprilim = tspp->ts_uprilim; 1160 else 1161 reqtsuprilim = tsparmsp->ts_uprilim; 1162 1163 if (tsparmsp->ts_upri == TS_NOCHANGE) 1164 reqtsupri = tspp->ts_upri; 1165 else 1166 reqtsupri = tsparmsp->ts_upri; 1167 1168 /* 1169 * Make sure the user priority doesn't exceed the upri limit. 1170 */ 1171 if (reqtsupri > reqtsuprilim) 1172 reqtsupri = reqtsuprilim; 1173 1174 /* 1175 * Basic permissions enforced by generic kernel code 1176 * for all classes require that a thread attempting 1177 * to change the scheduling parameters of a target 1178 * thread be privileged or have a real or effective 1179 * UID matching that of the target thread. We are not 1180 * called unless these basic permission checks have 1181 * already passed. The time-sharing class requires in 1182 * addition that the calling thread be privileged if it 1183 * is attempting to raise the upri limit above its current 1184 * value This may have been checked previously but if our 1185 * caller passed us a non-NULL credential pointer we assume 1186 * it hasn't and we check it here. 1187 */ 1188 if (reqpcredp != NULL && 1189 reqtsuprilim > tspp->ts_uprilim && 1190 secpolicy_setpriority(reqpcredp) != 0) 1191 return (EPERM); 1192 1193 /* 1194 * Set ts_nice to the nice value corresponding to the user 1195 * priority we are setting. Note that setting the nice field 1196 * of the parameter struct won't affect upri or nice. 1197 */ 1198 nice = NZERO - (reqtsupri * NZERO) / ts_maxupri; 1199 if (nice >= 2 * NZERO) 1200 nice = 2 * NZERO - 1; 1201 1202 thread_lock(tx); 1203 1204 tspp->ts_uprilim = reqtsuprilim; 1205 tspp->ts_upri = reqtsupri; 1206 TS_NEWUMDPRI(tspp); 1207 tspp->ts_nice = nice; 1208 1209 if ((tspp->ts_flags & TSKPRI) != 0) { 1210 thread_unlock(tx); 1211 return (0); 1212 } 1213 1214 tspp->ts_dispwait = 0; 1215 ts_change_priority(tx, tspp); 1216 thread_unlock(tx); 1217 return (0); 1218 } 1219 1220 1221 static int 1222 ia_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp) 1223 { 1224 tsproc_t *tspp = (tsproc_t *)tx->t_cldata; 1225 iaparms_t *iaparmsp = (iaparms_t *)parmsp; 1226 proc_t *p; 1227 pid_t pid, pgid, sid; 1228 pid_t on, off; 1229 struct stdata *stp; 1230 int sess_held; 1231 1232 /* 1233 * Handle user priority changes 1234 */ 1235 if (iaparmsp->ia_mode == IA_NOCHANGE) 1236 return (ts_parmsset(tx, parmsp, reqpcid, reqpcredp)); 1237 1238 /* 1239 * Check permissions for changing modes. 1240 */ 1241 1242 if (reqpcredp != NULL && !groupmember(IA_gid, reqpcredp) && 1243 secpolicy_setpriority(reqpcredp) != 0) { 1244 /* 1245 * Silently fail in case this is just a priocntl 1246 * call with upri and uprilim set to IA_NOCHANGE. 1247 */ 1248 return (0); 1249 } 1250 1251 ASSERT(MUTEX_HELD(&pidlock)); 1252 if ((p = ttoproc(tx)) == NULL) { 1253 return (0); 1254 } 1255 ASSERT(MUTEX_HELD(&p->p_lock)); 1256 if (p->p_stat == SIDL) { 1257 return (0); 1258 } 1259 pid = p->p_pid; 1260 sid = p->p_sessp->s_sid; 1261 pgid = p->p_pgrp; 1262 if (iaparmsp->ia_mode == IA_SET_INTERACTIVE) { 1263 /* 1264 * session leaders must be turned on now so all processes 1265 * in the group controlling the tty will be turned on or off. 1266 * if the ia_mode is off for the session leader, 1267 * ia_set_process_group will return without setting the 1268 * processes in the group controlling the tty on. 1269 */ 1270 thread_lock(tx); 1271 tspp->ts_flags |= TSIASET; 1272 thread_unlock(tx); 1273 } 1274 mutex_enter(&p->p_sessp->s_lock); 1275 sess_held = 1; 1276 if ((pid == sid) && (p->p_sessp->s_vp != NULL) && 1277 ((stp = p->p_sessp->s_vp->v_stream) != NULL)) { 1278 if ((stp->sd_pgidp != NULL) && (stp->sd_sidp != NULL)) { 1279 pgid = stp->sd_pgidp->pid_id; 1280 sess_held = 0; 1281 mutex_exit(&p->p_sessp->s_lock); 1282 if (iaparmsp->ia_mode == 1283 IA_SET_INTERACTIVE) { 1284 off = 0; 1285 on = pgid; 1286 } else { 1287 off = pgid; 1288 on = 0; 1289 } 1290 TRACE_3(TR_FAC_IA, TR_ACTIVE_CHAIN, 1291 "active chain:pid %d gid %d %p", 1292 pid, pgid, p); 1293 ia_set_process_group(sid, off, on); 1294 } 1295 } 1296 if (sess_held) 1297 mutex_exit(&p->p_sessp->s_lock); 1298 1299 thread_lock(tx); 1300 1301 if (iaparmsp->ia_mode == IA_SET_INTERACTIVE) { 1302 tspp->ts_flags |= TSIASET; 1303 tspp->ts_boost = ia_boost; 1304 } else { 1305 tspp->ts_flags &= ~TSIASET; 1306 tspp->ts_boost = -ia_boost; 1307 } 1308 thread_unlock(tx); 1309 1310 return (ts_parmsset(tx, parmsp, reqpcid, reqpcredp)); 1311 } 1312 1313 static void 1314 ts_exit(kthread_t *t) 1315 { 1316 tsproc_t *tspp; 1317 1318 if (CPUCAPS_ON()) { 1319 /* 1320 * A thread could be exiting in between clock ticks, 1321 * so we need to calculate how much CPU time it used 1322 * since it was charged last time. 1323 */ 1324 thread_lock(t); 1325 tspp = (tsproc_t *)t->t_cldata; 1326 (void) cpucaps_charge(t, &tspp->ts_caps, CPUCAPS_CHARGE_ONLY); 1327 thread_unlock(t); 1328 } 1329 } 1330 1331 /* 1332 * Return the global scheduling priority that would be assigned 1333 * to a thread entering the time-sharing class with the ts_upri. 1334 */ 1335 static pri_t 1336 ts_globpri(kthread_t *t) 1337 { 1338 tsproc_t *tspp; 1339 pri_t tspri; 1340 1341 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 1342 tspp = (tsproc_t *)t->t_cldata; 1343 tspri = tsmedumdpri + tspp->ts_upri; 1344 if (tspri > ts_maxumdpri) 1345 tspri = ts_maxumdpri; 1346 else if (tspri < 0) 1347 tspri = 0; 1348 return (ts_dptbl[tspri].ts_globpri); 1349 } 1350 1351 /* 1352 * Arrange for thread to be placed in appropriate location 1353 * on dispatcher queue. 1354 * 1355 * This is called with the current thread in TS_ONPROC and locked. 1356 */ 1357 static void 1358 ts_preempt(kthread_t *t) 1359 { 1360 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1361 klwp_t *lwp = curthread->t_lwp; 1362 pri_t oldpri = t->t_pri; 1363 1364 ASSERT(t == curthread); 1365 ASSERT(THREAD_LOCK_HELD(curthread)); 1366 1367 /* 1368 * If preempted in the kernel, make sure the thread has 1369 * a kernel priority if needed. 1370 */ 1371 if (!(tspp->ts_flags & TSKPRI) && lwp != NULL && t->t_kpri_req) { 1372 tspp->ts_flags |= TSKPRI; 1373 THREAD_CHANGE_PRI(t, ts_kmdpris[0]); 1374 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1375 t->t_trapret = 1; /* so ts_trapret will run */ 1376 aston(t); 1377 } 1378 1379 /* 1380 * This thread may be placed on wait queue by CPU Caps. In this case we 1381 * do not need to do anything until it is removed from the wait queue. 1382 * Do not enforce CPU caps on threads running at a kernel priority 1383 */ 1384 if (CPUCAPS_ON()) { 1385 (void) cpucaps_charge(t, &tspp->ts_caps, CPUCAPS_CHARGE_ONLY); 1386 if (!(tspp->ts_flags & TSKPRI) && CPUCAPS_ENFORCE(t)) 1387 return; 1388 } 1389 1390 /* 1391 * If thread got preempted in the user-land then we know 1392 * it isn't holding any locks. Mark it as swappable. 1393 */ 1394 ASSERT(t->t_schedflag & TS_DONT_SWAP); 1395 if (lwp != NULL && lwp->lwp_state == LWP_USER) 1396 t->t_schedflag &= ~TS_DONT_SWAP; 1397 1398 /* 1399 * Check to see if we're doing "preemption control" here. If 1400 * we are, and if the user has requested that this thread not 1401 * be preempted, and if preemptions haven't been put off for 1402 * too long, let the preemption happen here but try to make 1403 * sure the thread is rescheduled as soon as possible. We do 1404 * this by putting it on the front of the highest priority run 1405 * queue in the TS class. If the preemption has been put off 1406 * for too long, clear the "nopreempt" bit and let the thread 1407 * be preempted. 1408 */ 1409 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 1410 if (tspp->ts_timeleft > -SC_MAX_TICKS) { 1411 DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t); 1412 if (!(tspp->ts_flags & TSKPRI)) { 1413 /* 1414 * If not already remembered, remember current 1415 * priority for restoration in ts_yield(). 1416 */ 1417 if (!(tspp->ts_flags & TSRESTORE)) { 1418 tspp->ts_scpri = t->t_pri; 1419 tspp->ts_flags |= TSRESTORE; 1420 } 1421 THREAD_CHANGE_PRI(t, ts_maxumdpri); 1422 t->t_schedflag |= TS_DONT_SWAP; 1423 } 1424 schedctl_set_yield(t, 1); 1425 setfrontdq(t); 1426 goto done; 1427 } else { 1428 if (tspp->ts_flags & TSRESTORE) { 1429 THREAD_CHANGE_PRI(t, tspp->ts_scpri); 1430 tspp->ts_flags &= ~TSRESTORE; 1431 } 1432 schedctl_set_nopreempt(t, 0); 1433 DTRACE_SCHED1(schedctl__preempt, kthread_t *, t); 1434 TNF_PROBE_2(schedctl_preempt, "schedctl TS ts_preempt", 1435 /* CSTYLED */, tnf_pid, pid, ttoproc(t)->p_pid, 1436 tnf_lwpid, lwpid, t->t_tid); 1437 /* 1438 * Fall through and be preempted below. 1439 */ 1440 } 1441 } 1442 1443 if ((tspp->ts_flags & (TSBACKQ|TSKPRI)) == TSBACKQ) { 1444 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1445 tspp->ts_dispwait = 0; 1446 tspp->ts_flags &= ~TSBACKQ; 1447 setbackdq(t); 1448 } else if ((tspp->ts_flags & (TSBACKQ|TSKPRI)) == (TSBACKQ|TSKPRI)) { 1449 tspp->ts_flags &= ~TSBACKQ; 1450 setbackdq(t); 1451 } else { 1452 setfrontdq(t); 1453 } 1454 1455 done: 1456 TRACE_2(TR_FAC_DISP, TR_PREEMPT, 1457 "preempt:tid %p old pri %d", t, oldpri); 1458 } 1459 1460 static void 1461 ts_setrun(kthread_t *t) 1462 { 1463 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1464 1465 ASSERT(THREAD_LOCK_HELD(t)); /* t should be in transition */ 1466 1467 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { 1468 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; 1469 TS_NEWUMDPRI(tspp); 1470 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1471 tspp->ts_dispwait = 0; 1472 if ((tspp->ts_flags & TSKPRI) == 0) { 1473 THREAD_CHANGE_PRI(t, 1474 ts_dptbl[tspp->ts_umdpri].ts_globpri); 1475 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1476 } 1477 } 1478 1479 tspp->ts_flags &= ~TSBACKQ; 1480 1481 if (tspp->ts_flags & TSIA) { 1482 if (tspp->ts_flags & TSIASET) 1483 setfrontdq(t); 1484 else 1485 setbackdq(t); 1486 } else { 1487 if (t->t_disp_time != lbolt) 1488 setbackdq(t); 1489 else 1490 setfrontdq(t); 1491 } 1492 } 1493 1494 1495 /* 1496 * Prepare thread for sleep. We reset the thread priority so it will 1497 * run at the kernel priority level when it wakes up. 1498 */ 1499 static void 1500 ts_sleep(kthread_t *t) 1501 { 1502 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1503 int flags; 1504 pri_t old_pri = t->t_pri; 1505 1506 ASSERT(t == curthread); 1507 ASSERT(THREAD_LOCK_HELD(t)); 1508 1509 /* 1510 * Account for time spent on CPU before going to sleep. 1511 */ 1512 (void) CPUCAPS_CHARGE(t, &tspp->ts_caps, CPUCAPS_CHARGE_ONLY); 1513 1514 flags = tspp->ts_flags; 1515 if (t->t_kpri_req) { 1516 tspp->ts_flags = flags | TSKPRI; 1517 THREAD_CHANGE_PRI(t, ts_kmdpris[0]); 1518 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1519 t->t_trapret = 1; /* so ts_trapret will run */ 1520 aston(t); 1521 } else if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { 1522 /* 1523 * If thread has blocked in the kernel (as opposed to 1524 * being merely preempted), recompute the user mode priority. 1525 */ 1526 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; 1527 TS_NEWUMDPRI(tspp); 1528 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1529 tspp->ts_dispwait = 0; 1530 1531 THREAD_CHANGE_PRI(curthread, 1532 ts_dptbl[tspp->ts_umdpri].ts_globpri); 1533 ASSERT(curthread->t_pri >= 0 && 1534 curthread->t_pri <= ts_maxglobpri); 1535 tspp->ts_flags = flags & ~TSKPRI; 1536 1537 if (DISP_MUST_SURRENDER(curthread)) 1538 cpu_surrender(curthread); 1539 } else if (flags & TSKPRI) { 1540 THREAD_CHANGE_PRI(curthread, 1541 ts_dptbl[tspp->ts_umdpri].ts_globpri); 1542 ASSERT(curthread->t_pri >= 0 && 1543 curthread->t_pri <= ts_maxglobpri); 1544 tspp->ts_flags = flags & ~TSKPRI; 1545 1546 if (DISP_MUST_SURRENDER(curthread)) 1547 cpu_surrender(curthread); 1548 } 1549 t->t_stime = lbolt; /* time stamp for the swapper */ 1550 TRACE_2(TR_FAC_DISP, TR_SLEEP, 1551 "sleep:tid %p old pri %d", t, old_pri); 1552 } 1553 1554 1555 /* 1556 * Return Values: 1557 * 1558 * -1 if the thread is loaded or is not eligible to be swapped in. 1559 * 1560 * effective priority of the specified thread based on swapout time 1561 * and size of process (epri >= 0 , epri <= SHRT_MAX). 1562 */ 1563 /* ARGSUSED */ 1564 static pri_t 1565 ts_swapin(kthread_t *t, int flags) 1566 { 1567 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1568 long epri = -1; 1569 proc_t *pp = ttoproc(t); 1570 1571 ASSERT(THREAD_LOCK_HELD(t)); 1572 1573 /* 1574 * We know that pri_t is a short. 1575 * Be sure not to overrun its range. 1576 */ 1577 if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) { 1578 time_t swapout_time; 1579 1580 swapout_time = (lbolt - t->t_stime) / hz; 1581 if (INHERITED(t) || (tspp->ts_flags & (TSKPRI | TSIASET))) 1582 epri = (long)DISP_PRIO(t) + swapout_time; 1583 else { 1584 /* 1585 * Threads which have been out for a long time, 1586 * have high user mode priority and are associated 1587 * with a small address space are more deserving 1588 */ 1589 epri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 1590 ASSERT(epri >= 0 && epri <= ts_maxumdpri); 1591 epri += swapout_time - pp->p_swrss / nz(maxpgio)/2; 1592 } 1593 /* 1594 * Scale epri so SHRT_MAX/2 represents zero priority. 1595 */ 1596 epri += SHRT_MAX/2; 1597 if (epri < 0) 1598 epri = 0; 1599 else if (epri > SHRT_MAX) 1600 epri = SHRT_MAX; 1601 } 1602 return ((pri_t)epri); 1603 } 1604 1605 /* 1606 * Return Values 1607 * -1 if the thread isn't loaded or is not eligible to be swapped out. 1608 * 1609 * effective priority of the specified thread based on if the swapper 1610 * is in softswap or hardswap mode. 1611 * 1612 * Softswap: Return a low effective priority for threads 1613 * sleeping for more than maxslp secs. 1614 * 1615 * Hardswap: Return an effective priority such that threads 1616 * which have been in memory for a while and are 1617 * associated with a small address space are swapped 1618 * in before others. 1619 * 1620 * (epri >= 0 , epri <= SHRT_MAX). 1621 */ 1622 time_t ts_minrun = 2; /* XXX - t_pri becomes 59 within 2 secs */ 1623 time_t ts_minslp = 2; /* min time on sleep queue for hardswap */ 1624 1625 static pri_t 1626 ts_swapout(kthread_t *t, int flags) 1627 { 1628 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1629 long epri = -1; 1630 proc_t *pp = ttoproc(t); 1631 time_t swapin_time; 1632 1633 ASSERT(THREAD_LOCK_HELD(t)); 1634 1635 if (INHERITED(t) || (tspp->ts_flags & (TSKPRI | TSIASET)) || 1636 (t->t_proc_flag & TP_LWPEXIT) || 1637 (t->t_state & (TS_ZOMB | TS_FREE | TS_STOPPED | 1638 TS_ONPROC | TS_WAIT)) || 1639 !(t->t_schedflag & TS_LOAD) || !SWAP_OK(t)) 1640 return (-1); 1641 1642 ASSERT(t->t_state & (TS_SLEEP | TS_RUN)); 1643 1644 /* 1645 * We know that pri_t is a short. 1646 * Be sure not to overrun its range. 1647 */ 1648 swapin_time = (lbolt - t->t_stime) / hz; 1649 if (flags == SOFTSWAP) { 1650 if (t->t_state == TS_SLEEP && swapin_time > maxslp) { 1651 epri = 0; 1652 } else { 1653 return ((pri_t)epri); 1654 } 1655 } else { 1656 pri_t pri; 1657 1658 if ((t->t_state == TS_SLEEP && swapin_time > ts_minslp) || 1659 (t->t_state == TS_RUN && swapin_time > ts_minrun)) { 1660 pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 1661 ASSERT(pri >= 0 && pri <= ts_maxumdpri); 1662 epri = swapin_time - 1663 (rm_asrss(pp->p_as) / nz(maxpgio)/2) - (long)pri; 1664 } else { 1665 return ((pri_t)epri); 1666 } 1667 } 1668 1669 /* 1670 * Scale epri so SHRT_MAX/2 represents zero priority. 1671 */ 1672 epri += SHRT_MAX/2; 1673 if (epri < 0) 1674 epri = 0; 1675 else if (epri > SHRT_MAX) 1676 epri = SHRT_MAX; 1677 1678 return ((pri_t)epri); 1679 } 1680 1681 /* 1682 * Check for time slice expiration. If time slice has expired 1683 * move thread to priority specified in tsdptbl for time slice expiration 1684 * and set runrun to cause preemption. 1685 */ 1686 static void 1687 ts_tick(kthread_t *t) 1688 { 1689 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1690 klwp_t *lwp; 1691 boolean_t call_cpu_surrender = B_FALSE; 1692 pri_t oldpri = t->t_pri; 1693 1694 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 1695 1696 thread_lock(t); 1697 1698 /* 1699 * Keep track of thread's project CPU usage. Note that projects 1700 * get charged even when threads are running in the kernel. 1701 */ 1702 if (CPUCAPS_ON()) { 1703 call_cpu_surrender = cpucaps_charge(t, &tspp->ts_caps, 1704 CPUCAPS_CHARGE_ENFORCE) && !(tspp->ts_flags & TSKPRI); 1705 } 1706 1707 if ((tspp->ts_flags & TSKPRI) == 0) { 1708 if (--tspp->ts_timeleft <= 0) { 1709 pri_t new_pri; 1710 1711 /* 1712 * If we're doing preemption control and trying to 1713 * avoid preempting this thread, just note that 1714 * the thread should yield soon and let it keep 1715 * running (unless it's been a while). 1716 */ 1717 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 1718 if (tspp->ts_timeleft > -SC_MAX_TICKS) { 1719 DTRACE_SCHED1(schedctl__nopreempt, 1720 kthread_t *, t); 1721 schedctl_set_yield(t, 1); 1722 thread_unlock_nopreempt(t); 1723 return; 1724 } 1725 1726 TNF_PROBE_2(schedctl_failsafe, 1727 "schedctl TS ts_tick", /* CSTYLED */, 1728 tnf_pid, pid, ttoproc(t)->p_pid, 1729 tnf_lwpid, lwpid, t->t_tid); 1730 } 1731 tspp->ts_flags &= ~TSRESTORE; 1732 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp; 1733 TS_NEWUMDPRI(tspp); 1734 tspp->ts_dispwait = 0; 1735 new_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 1736 ASSERT(new_pri >= 0 && new_pri <= ts_maxglobpri); 1737 /* 1738 * When the priority of a thread is changed, 1739 * it may be necessary to adjust its position 1740 * on a sleep queue or dispatch queue. 1741 * The function thread_change_pri accomplishes 1742 * this. 1743 */ 1744 if (thread_change_pri(t, new_pri, 0)) { 1745 if ((t->t_schedflag & TS_LOAD) && 1746 (lwp = t->t_lwp) && 1747 lwp->lwp_state == LWP_USER) 1748 t->t_schedflag &= ~TS_DONT_SWAP; 1749 tspp->ts_timeleft = 1750 ts_dptbl[tspp->ts_cpupri].ts_quantum; 1751 } else { 1752 call_cpu_surrender = B_TRUE; 1753 } 1754 TRACE_2(TR_FAC_DISP, TR_TICK, 1755 "tick:tid %p old pri %d", t, oldpri); 1756 } else if (t->t_state == TS_ONPROC && 1757 t->t_pri < t->t_disp_queue->disp_maxrunpri) { 1758 call_cpu_surrender = B_TRUE; 1759 } 1760 } 1761 1762 if (call_cpu_surrender) { 1763 tspp->ts_flags |= TSBACKQ; 1764 cpu_surrender(t); 1765 } 1766 1767 thread_unlock_nopreempt(t); /* clock thread can't be preempted */ 1768 } 1769 1770 1771 /* 1772 * If thread is currently at a kernel mode priority (has slept) 1773 * we assign it the appropriate user mode priority and time quantum 1774 * here. If we are lowering the thread's priority below that of 1775 * other runnable threads we will normally set runrun via cpu_surrender() to 1776 * cause preemption. 1777 */ 1778 static void 1779 ts_trapret(kthread_t *t) 1780 { 1781 tsproc_t *tspp = (tsproc_t *)t->t_cldata; 1782 cpu_t *cp = CPU; 1783 pri_t old_pri = curthread->t_pri; 1784 1785 ASSERT(THREAD_LOCK_HELD(t)); 1786 ASSERT(t == curthread); 1787 ASSERT(cp->cpu_dispthread == t); 1788 ASSERT(t->t_state == TS_ONPROC); 1789 1790 t->t_kpri_req = 0; 1791 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { 1792 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; 1793 TS_NEWUMDPRI(tspp); 1794 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1795 tspp->ts_dispwait = 0; 1796 1797 /* 1798 * If thread has blocked in the kernel (as opposed to 1799 * being merely preempted), recompute the user mode priority. 1800 */ 1801 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri); 1802 cp->cpu_dispatch_pri = DISP_PRIO(t); 1803 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1804 tspp->ts_flags &= ~TSKPRI; 1805 1806 if (DISP_MUST_SURRENDER(t)) 1807 cpu_surrender(t); 1808 } else if (tspp->ts_flags & TSKPRI) { 1809 /* 1810 * If thread has blocked in the kernel (as opposed to 1811 * being merely preempted), recompute the user mode priority. 1812 */ 1813 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri); 1814 cp->cpu_dispatch_pri = DISP_PRIO(t); 1815 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1816 tspp->ts_flags &= ~TSKPRI; 1817 1818 if (DISP_MUST_SURRENDER(t)) 1819 cpu_surrender(t); 1820 } 1821 1822 /* 1823 * Swapout lwp if the swapper is waiting for this thread to 1824 * reach a safe point. 1825 */ 1826 if ((t->t_schedflag & TS_SWAPENQ) && !(tspp->ts_flags & TSIASET)) { 1827 thread_unlock(t); 1828 swapout_lwp(ttolwp(t)); 1829 thread_lock(t); 1830 } 1831 1832 TRACE_2(TR_FAC_DISP, TR_TRAPRET, 1833 "trapret:tid %p old pri %d", t, old_pri); 1834 } 1835 1836 1837 /* 1838 * Update the ts_dispwait values of all time sharing threads that 1839 * are currently runnable at a user mode priority and bump the priority 1840 * if ts_dispwait exceeds ts_maxwait. Called once per second via 1841 * timeout which we reset here. 1842 * 1843 * There are several lists of time sharing threads broken up by a hash on 1844 * the thread pointer. Each list has its own lock. This avoids blocking 1845 * all ts_enterclass, ts_fork, and ts_exitclass operations while ts_update 1846 * runs. ts_update traverses each list in turn. 1847 * 1848 * If multiple threads have their priorities updated to the same value, 1849 * the system implicitly favors the one that is updated first (since it 1850 * winds up first on the run queue). To avoid this unfairness, the 1851 * traversal of threads starts at the list indicated by a marker. When 1852 * threads in more than one list have their priorities updated, the marker 1853 * is moved. This changes the order the threads will be placed on the run 1854 * queue the next time ts_update is called and preserves fairness over the 1855 * long run. The marker doesn't need to be protected by a lock since it's 1856 * only accessed by ts_update, which is inherently single-threaded (only 1857 * one instance can be running at a time). 1858 */ 1859 static void 1860 ts_update(void *arg) 1861 { 1862 int i; 1863 int new_marker = -1; 1864 static int ts_update_marker; 1865 1866 /* 1867 * Start with the ts_update_marker list, then do the rest. 1868 */ 1869 i = ts_update_marker; 1870 do { 1871 /* 1872 * If this is the first list after the current marker to 1873 * have threads with priorities updated, advance the marker 1874 * to this list for the next time ts_update runs. 1875 */ 1876 if (ts_update_list(i) && new_marker == -1 && 1877 i != ts_update_marker) { 1878 new_marker = i; 1879 } 1880 } while ((i = TS_LIST_NEXT(i)) != ts_update_marker); 1881 1882 /* advance marker for next ts_update call */ 1883 if (new_marker != -1) 1884 ts_update_marker = new_marker; 1885 1886 (void) timeout(ts_update, arg, hz); 1887 } 1888 1889 /* 1890 * Updates priority for a list of threads. Returns 1 if the priority of 1891 * one of the threads was actually updated, 0 if none were for various 1892 * reasons (thread is no longer in the TS or IA class, isn't runnable, 1893 * hasn't waited long enough, has the preemption control no-preempt bit 1894 * set, etc.) 1895 */ 1896 static int 1897 ts_update_list(int i) 1898 { 1899 tsproc_t *tspp; 1900 kthread_t *tx; 1901 int updated = 0; 1902 1903 mutex_enter(&ts_list_lock[i]); 1904 for (tspp = ts_plisthead[i].ts_next; tspp != &ts_plisthead[i]; 1905 tspp = tspp->ts_next) { 1906 tx = tspp->ts_tp; 1907 /* 1908 * Lock the thread and verify state. 1909 */ 1910 thread_lock(tx); 1911 /* 1912 * Skip the thread if it is no longer in the TS (or IA) class. 1913 */ 1914 if (tx->t_clfuncs != &ts_classfuncs.thread && 1915 tx->t_clfuncs != &ia_classfuncs.thread) 1916 goto next; 1917 tspp->ts_dispwait++; 1918 if ((tspp->ts_flags & TSKPRI) != 0) 1919 goto next; 1920 if (tspp->ts_dispwait <= ts_dptbl[tspp->ts_umdpri].ts_maxwait) 1921 goto next; 1922 if (tx->t_schedctl && schedctl_get_nopreempt(tx)) 1923 goto next; 1924 if (tx->t_state != TS_RUN && tx->t_state != TS_WAIT && 1925 (tx->t_state != TS_SLEEP || !ts_sleep_promote)) { 1926 /* make next syscall/trap do CL_TRAPRET */ 1927 tx->t_trapret = 1; 1928 aston(tx); 1929 goto next; 1930 } 1931 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_lwait; 1932 TS_NEWUMDPRI(tspp); 1933 tspp->ts_dispwait = 0; 1934 updated = 1; 1935 1936 /* 1937 * Only dequeue it if needs to move; otherwise it should 1938 * just round-robin here. 1939 */ 1940 if (tx->t_pri != ts_dptbl[tspp->ts_umdpri].ts_globpri) { 1941 pri_t oldpri = tx->t_pri; 1942 ts_change_priority(tx, tspp); 1943 TRACE_2(TR_FAC_DISP, TR_UPDATE, 1944 "update:tid %p old pri %d", tx, oldpri); 1945 } 1946 next: 1947 thread_unlock(tx); 1948 } 1949 mutex_exit(&ts_list_lock[i]); 1950 1951 return (updated); 1952 } 1953 1954 /* 1955 * Processes waking up go to the back of their queue. We don't 1956 * need to assign a time quantum here because thread is still 1957 * at a kernel mode priority and the time slicing is not done 1958 * for threads running in the kernel after sleeping. The proper 1959 * time quantum will be assigned by ts_trapret before the thread 1960 * returns to user mode. 1961 */ 1962 static void 1963 ts_wakeup(kthread_t *t) 1964 { 1965 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1966 1967 ASSERT(THREAD_LOCK_HELD(t)); 1968 1969 t->t_stime = lbolt; /* time stamp for the swapper */ 1970 1971 if (tspp->ts_flags & TSKPRI) { 1972 tspp->ts_flags &= ~TSBACKQ; 1973 if (tspp->ts_flags & TSIASET) 1974 setfrontdq(t); 1975 else 1976 setbackdq(t); 1977 } else if (t->t_kpri_req) { 1978 /* 1979 * Give thread a priority boost if we were asked. 1980 */ 1981 tspp->ts_flags |= TSKPRI; 1982 THREAD_CHANGE_PRI(t, ts_kmdpris[0]); 1983 setbackdq(t); 1984 t->t_trapret = 1; /* so that ts_trapret will run */ 1985 aston(t); 1986 } else { 1987 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { 1988 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; 1989 TS_NEWUMDPRI(tspp); 1990 tspp->ts_timeleft = 1991 ts_dptbl[tspp->ts_cpupri].ts_quantum; 1992 tspp->ts_dispwait = 0; 1993 THREAD_CHANGE_PRI(t, 1994 ts_dptbl[tspp->ts_umdpri].ts_globpri); 1995 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1996 } 1997 1998 tspp->ts_flags &= ~TSBACKQ; 1999 2000 if (tspp->ts_flags & TSIA) { 2001 if (tspp->ts_flags & TSIASET) 2002 setfrontdq(t); 2003 else 2004 setbackdq(t); 2005 } else { 2006 if (t->t_disp_time != lbolt) 2007 setbackdq(t); 2008 else 2009 setfrontdq(t); 2010 } 2011 } 2012 } 2013 2014 2015 /* 2016 * When a thread yields, put it on the back of the run queue. 2017 */ 2018 static void 2019 ts_yield(kthread_t *t) 2020 { 2021 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 2022 2023 ASSERT(t == curthread); 2024 ASSERT(THREAD_LOCK_HELD(t)); 2025 2026 /* 2027 * Collect CPU usage spent before yielding 2028 */ 2029 (void) CPUCAPS_CHARGE(t, &tspp->ts_caps, CPUCAPS_CHARGE_ONLY); 2030 2031 /* 2032 * Clear the preemption control "yield" bit since the user is 2033 * doing a yield. 2034 */ 2035 if (t->t_schedctl) 2036 schedctl_set_yield(t, 0); 2037 /* 2038 * If ts_preempt() artifically increased the thread's priority 2039 * to avoid preemption, restore the original priority now. 2040 */ 2041 if (tspp->ts_flags & TSRESTORE) { 2042 THREAD_CHANGE_PRI(t, tspp->ts_scpri); 2043 tspp->ts_flags &= ~TSRESTORE; 2044 } 2045 if (tspp->ts_timeleft <= 0) { 2046 /* 2047 * Time slice was artificially extended to avoid 2048 * preemption, so pretend we're preempting it now. 2049 */ 2050 DTRACE_SCHED1(schedctl__yield, int, -tspp->ts_timeleft); 2051 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp; 2052 TS_NEWUMDPRI(tspp); 2053 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 2054 tspp->ts_dispwait = 0; 2055 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri); 2056 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 2057 } 2058 tspp->ts_flags &= ~TSBACKQ; 2059 setbackdq(t); 2060 } 2061 2062 2063 /* 2064 * Increment the nice value of the specified thread by incr and 2065 * return the new value in *retvalp. 2066 */ 2067 static int 2068 ts_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp) 2069 { 2070 int newnice; 2071 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 2072 tsparms_t tsparms; 2073 2074 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 2075 2076 /* If there's no change to priority, just return current setting */ 2077 if (incr == 0) { 2078 if (retvalp) { 2079 *retvalp = tspp->ts_nice - NZERO; 2080 } 2081 return (0); 2082 } 2083 2084 if ((incr < 0 || incr > 2 * NZERO) && 2085 secpolicy_setpriority(cr) != 0) 2086 return (EPERM); 2087 2088 /* 2089 * Specifying a nice increment greater than the upper limit of 2090 * 2 * NZERO - 1 will result in the thread's nice value being 2091 * set to the upper limit. We check for this before computing 2092 * the new value because otherwise we could get overflow 2093 * if a privileged process specified some ridiculous increment. 2094 */ 2095 if (incr > 2 * NZERO - 1) 2096 incr = 2 * NZERO - 1; 2097 2098 newnice = tspp->ts_nice + incr; 2099 if (newnice >= 2 * NZERO) 2100 newnice = 2 * NZERO - 1; 2101 else if (newnice < 0) 2102 newnice = 0; 2103 2104 tsparms.ts_uprilim = tsparms.ts_upri = 2105 -((newnice - NZERO) * ts_maxupri) / NZERO; 2106 /* 2107 * Reset the uprilim and upri values of the thread. 2108 * Call ts_parmsset even if thread is interactive since we're 2109 * not changing mode. 2110 */ 2111 (void) ts_parmsset(t, (void *)&tsparms, (id_t)0, (cred_t *)NULL); 2112 2113 /* 2114 * Although ts_parmsset already reset ts_nice it may 2115 * not have been set to precisely the value calculated above 2116 * because ts_parmsset determines the nice value from the 2117 * user priority and we may have truncated during the integer 2118 * conversion from nice value to user priority and back. 2119 * We reset ts_nice to the value we calculated above. 2120 */ 2121 tspp->ts_nice = (char)newnice; 2122 2123 if (retvalp) 2124 *retvalp = newnice - NZERO; 2125 return (0); 2126 } 2127 2128 2129 /* 2130 * ia_set_process_group marks foreground processes as interactive 2131 * and background processes as non-interactive iff the session 2132 * leader is interactive. This routine is called from two places: 2133 * strioctl:SPGRP when a new process group gets 2134 * control of the tty. 2135 * ia_parmsset-when the process in question is a session leader. 2136 * ia_set_process_group assumes that pidlock is held by the caller, 2137 * either strioctl or priocntlsys. If the caller is priocntlsys 2138 * (via ia_parmsset) then the p_lock of the session leader is held 2139 * and the code needs to be careful about acquiring other p_locks. 2140 */ 2141 static void 2142 ia_set_process_group(pid_t sid, pid_t bg_pgid, pid_t fg_pgid) 2143 { 2144 proc_t *leader, *fg, *bg; 2145 tsproc_t *tspp; 2146 kthread_t *tx; 2147 int plocked = 0; 2148 2149 ASSERT(MUTEX_HELD(&pidlock)); 2150 2151 /* 2152 * see if the session leader is interactive AND 2153 * if it is currently "on" AND controlling a tty 2154 * iff it is then make the processes in the foreground 2155 * group interactive and the processes in the background 2156 * group non-interactive. 2157 */ 2158 if ((leader = (proc_t *)prfind(sid)) == NULL) { 2159 return; 2160 } 2161 if (leader->p_stat == SIDL) { 2162 return; 2163 } 2164 if ((tx = proctot(leader)) == NULL) { 2165 return; 2166 } 2167 /* 2168 * XXX do all the threads in the leader 2169 */ 2170 if (tx->t_cid != ia_cid) { 2171 return; 2172 } 2173 tspp = tx->t_cldata; 2174 /* 2175 * session leaders that are not interactive need not have 2176 * any processing done for them. They are typically shells 2177 * that do not have focus and are changing the process group 2178 * attatched to the tty, e.g. a process that is exiting 2179 */ 2180 mutex_enter(&leader->p_sessp->s_lock); 2181 if (!(tspp->ts_flags & TSIASET) || 2182 (leader->p_sessp->s_vp == NULL) || 2183 (leader->p_sessp->s_vp->v_stream == NULL)) { 2184 mutex_exit(&leader->p_sessp->s_lock); 2185 return; 2186 } 2187 mutex_exit(&leader->p_sessp->s_lock); 2188 2189 /* 2190 * If we're already holding the leader's p_lock, we should use 2191 * mutex_tryenter instead of mutex_enter to avoid deadlocks from 2192 * lock ordering violations. 2193 */ 2194 if (mutex_owned(&leader->p_lock)) 2195 plocked = 1; 2196 2197 if (fg_pgid == 0) 2198 goto skip; 2199 /* 2200 * now look for all processes in the foreground group and 2201 * make them interactive 2202 */ 2203 for (fg = (proc_t *)pgfind(fg_pgid); fg != NULL; fg = fg->p_pglink) { 2204 /* 2205 * if the process is SIDL it's begin forked, ignore it 2206 */ 2207 if (fg->p_stat == SIDL) { 2208 continue; 2209 } 2210 /* 2211 * sesssion leaders must be turned on/off explicitly 2212 * not implicitly as happens to other members of 2213 * the process group. 2214 */ 2215 if (fg->p_pid == fg->p_sessp->s_sid) { 2216 continue; 2217 } 2218 2219 TRACE_1(TR_FAC_IA, TR_GROUP_ON, 2220 "group on:proc %p", fg); 2221 2222 if (plocked) { 2223 if (mutex_tryenter(&fg->p_lock) == 0) 2224 continue; 2225 } else { 2226 mutex_enter(&fg->p_lock); 2227 } 2228 2229 if ((tx = proctot(fg)) == NULL) { 2230 mutex_exit(&fg->p_lock); 2231 continue; 2232 } 2233 do { 2234 thread_lock(tx); 2235 /* 2236 * if this thread is not interactive continue 2237 */ 2238 if (tx->t_cid != ia_cid) { 2239 thread_unlock(tx); 2240 continue; 2241 } 2242 tspp = tx->t_cldata; 2243 tspp->ts_flags |= TSIASET; 2244 tspp->ts_boost = ia_boost; 2245 TS_NEWUMDPRI(tspp); 2246 if ((tspp->ts_flags & TSKPRI) != 0) { 2247 thread_unlock(tx); 2248 continue; 2249 } 2250 tspp->ts_dispwait = 0; 2251 ts_change_priority(tx, tspp); 2252 thread_unlock(tx); 2253 } while ((tx = tx->t_forw) != fg->p_tlist); 2254 mutex_exit(&fg->p_lock); 2255 } 2256 skip: 2257 if (bg_pgid == 0) 2258 return; 2259 for (bg = (proc_t *)pgfind(bg_pgid); bg != NULL; bg = bg->p_pglink) { 2260 if (bg->p_stat == SIDL) { 2261 continue; 2262 } 2263 /* 2264 * sesssion leaders must be turned off explicitly 2265 * not implicitly as happens to other members of 2266 * the process group. 2267 */ 2268 if (bg->p_pid == bg->p_sessp->s_sid) { 2269 continue; 2270 } 2271 2272 TRACE_1(TR_FAC_IA, TR_GROUP_OFF, 2273 "group off:proc %p", bg); 2274 2275 if (plocked) { 2276 if (mutex_tryenter(&bg->p_lock) == 0) 2277 continue; 2278 } else { 2279 mutex_enter(&bg->p_lock); 2280 } 2281 2282 if ((tx = proctot(bg)) == NULL) { 2283 mutex_exit(&bg->p_lock); 2284 continue; 2285 } 2286 do { 2287 thread_lock(tx); 2288 /* 2289 * if this thread is not interactive continue 2290 */ 2291 if (tx->t_cid != ia_cid) { 2292 thread_unlock(tx); 2293 continue; 2294 } 2295 tspp = tx->t_cldata; 2296 tspp->ts_flags &= ~TSIASET; 2297 tspp->ts_boost = -ia_boost; 2298 TS_NEWUMDPRI(tspp); 2299 if ((tspp->ts_flags & TSKPRI) != 0) { 2300 thread_unlock(tx); 2301 continue; 2302 } 2303 2304 tspp->ts_dispwait = 0; 2305 ts_change_priority(tx, tspp); 2306 thread_unlock(tx); 2307 } while ((tx = tx->t_forw) != bg->p_tlist); 2308 mutex_exit(&bg->p_lock); 2309 } 2310 } 2311 2312 2313 static void 2314 ts_change_priority(kthread_t *t, tsproc_t *tspp) 2315 { 2316 pri_t new_pri; 2317 2318 ASSERT(THREAD_LOCK_HELD(t)); 2319 new_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 2320 ASSERT(new_pri >= 0 && new_pri <= ts_maxglobpri); 2321 tspp->ts_flags &= ~TSRESTORE; 2322 if (t == curthread || t->t_state == TS_ONPROC) { 2323 /* curthread is always onproc */ 2324 cpu_t *cp = t->t_disp_queue->disp_cpu; 2325 THREAD_CHANGE_PRI(t, new_pri); 2326 if (t == cp->cpu_dispthread) 2327 cp->cpu_dispatch_pri = DISP_PRIO(t); 2328 if (DISP_MUST_SURRENDER(t)) { 2329 tspp->ts_flags |= TSBACKQ; 2330 cpu_surrender(t); 2331 } else { 2332 tspp->ts_timeleft = 2333 ts_dptbl[tspp->ts_cpupri].ts_quantum; 2334 } 2335 } else { 2336 int frontq; 2337 2338 frontq = (tspp->ts_flags & TSIASET) != 0; 2339 /* 2340 * When the priority of a thread is changed, 2341 * it may be necessary to adjust its position 2342 * on a sleep queue or dispatch queue. 2343 * The function thread_change_pri accomplishes 2344 * this. 2345 */ 2346 if (thread_change_pri(t, new_pri, frontq)) { 2347 /* 2348 * The thread was on a run queue. Reset 2349 * its CPU timeleft from the quantum 2350 * associated with the new priority. 2351 */ 2352 tspp->ts_timeleft = 2353 ts_dptbl[tspp->ts_cpupri].ts_quantum; 2354 } else { 2355 tspp->ts_flags |= TSBACKQ; 2356 } 2357 } 2358 } 2359 2360 static int 2361 ts_alloc(void **p, int flag) 2362 { 2363 void *bufp; 2364 bufp = kmem_alloc(sizeof (tsproc_t), flag); 2365 if (bufp == NULL) { 2366 return (ENOMEM); 2367 } else { 2368 *p = bufp; 2369 return (0); 2370 } 2371 } 2372 2373 static void 2374 ts_free(void *bufp) 2375 { 2376 if (bufp) 2377 kmem_free(bufp, sizeof (tsproc_t)); 2378 } 2379