1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 31 #pragma ident "%Z%%M% %I% %E% SMI" /* from SVr4.0 1.23 */ 32 33 #include <sys/types.h> 34 #include <sys/param.h> 35 #include <sys/sysmacros.h> 36 #include <sys/cred.h> 37 #include <sys/proc.h> 38 #include <sys/session.h> 39 #include <sys/strsubr.h> 40 #include <sys/signal.h> 41 #include <sys/user.h> 42 #include <sys/priocntl.h> 43 #include <sys/class.h> 44 #include <sys/disp.h> 45 #include <sys/procset.h> 46 #include <sys/debug.h> 47 #include <sys/ts.h> 48 #include <sys/tspriocntl.h> 49 #include <sys/iapriocntl.h> 50 #include <sys/kmem.h> 51 #include <sys/errno.h> 52 #include <sys/cpuvar.h> 53 #include <sys/systm.h> /* for lbolt */ 54 #include <sys/vtrace.h> 55 #include <sys/vmsystm.h> 56 #include <sys/schedctl.h> 57 #include <sys/tnf_probe.h> 58 #include <sys/atomic.h> 59 #include <sys/policy.h> 60 #include <sys/sdt.h> 61 #include <sys/cpupart.h> 62 63 #include <vm/rm.h> 64 #include <vm/seg_kmem.h> 65 #include <sys/modctl.h> 66 67 static pri_t ts_init(id_t, int, classfuncs_t **); 68 69 static struct sclass csw = { 70 "TS", 71 ts_init, 72 0 73 }; 74 75 static struct modlsched modlsched = { 76 &mod_schedops, "time sharing sched class", &csw 77 }; 78 79 static struct modlinkage modlinkage = { 80 MODREV_1, (void *)&modlsched, NULL 81 }; 82 83 int 84 _init() 85 { 86 return (mod_install(&modlinkage)); 87 } 88 89 int 90 _fini() 91 { 92 return (EBUSY); /* don't remove TS for now */ 93 } 94 95 int 96 _info(struct modinfo *modinfop) 97 { 98 return (mod_info(&modlinkage, modinfop)); 99 } 100 101 /* 102 * Class specific code for the time-sharing class 103 */ 104 105 106 /* 107 * Extern declarations for variables defined in the ts master file 108 */ 109 #define TSMAXUPRI 60 110 111 pri_t ts_maxupri = TSMAXUPRI; /* max time-sharing user priority */ 112 pri_t ts_maxumdpri; /* maximum user mode ts priority */ 113 114 pri_t ia_maxupri = IAMAXUPRI; /* max interactive user priority */ 115 pri_t ia_boost = IA_BOOST; /* boost value for interactive */ 116 117 tsdpent_t *ts_dptbl; /* time-sharing disp parameter table */ 118 pri_t *ts_kmdpris; /* array of global pris used by ts procs when */ 119 /* sleeping or running in kernel after sleep */ 120 121 static id_t ia_cid; 122 123 int ts_sleep_promote = 1; 124 125 #define tsmedumdpri (ts_maxumdpri >> 1) 126 127 #define TS_NEWUMDPRI(tspp) \ 128 { \ 129 pri_t pri; \ 130 pri = (tspp)->ts_cpupri + (tspp)->ts_upri + (tspp)->ts_boost; \ 131 if (pri > ts_maxumdpri) \ 132 (tspp)->ts_umdpri = ts_maxumdpri; \ 133 else if (pri < 0) \ 134 (tspp)->ts_umdpri = 0; \ 135 else \ 136 (tspp)->ts_umdpri = pri; \ 137 ASSERT((tspp)->ts_umdpri >= 0 && (tspp)->ts_umdpri <= ts_maxumdpri); \ 138 } 139 140 /* 141 * The tsproc_t structures are kept in an array of circular doubly linked 142 * lists. A hash on the thread pointer is used to determine which list 143 * each thread should be placed. Each list has a dummy "head" which is 144 * never removed, so the list is never empty. ts_update traverses these 145 * lists to update the priorities of threads that have been waiting on 146 * the run queue. 147 */ 148 149 #define TS_LISTS 16 /* number of lists, must be power of 2 */ 150 151 /* hash function, argument is a thread pointer */ 152 #define TS_LIST_HASH(tp) (((uintptr_t)(tp) >> 9) & (TS_LISTS - 1)) 153 154 /* iterate to the next list */ 155 #define TS_LIST_NEXT(i) (((i) + 1) & (TS_LISTS - 1)) 156 157 /* 158 * Insert thread into the appropriate tsproc list. 159 */ 160 #define TS_LIST_INSERT(tspp) \ 161 { \ 162 int index = TS_LIST_HASH(tspp->ts_tp); \ 163 kmutex_t *lockp = &ts_list_lock[index]; \ 164 tsproc_t *headp = &ts_plisthead[index]; \ 165 mutex_enter(lockp); \ 166 tspp->ts_next = headp->ts_next; \ 167 tspp->ts_prev = headp; \ 168 headp->ts_next->ts_prev = tspp; \ 169 headp->ts_next = tspp; \ 170 mutex_exit(lockp); \ 171 } 172 173 /* 174 * Remove thread from tsproc list. 175 */ 176 #define TS_LIST_DELETE(tspp) \ 177 { \ 178 int index = TS_LIST_HASH(tspp->ts_tp); \ 179 kmutex_t *lockp = &ts_list_lock[index]; \ 180 mutex_enter(lockp); \ 181 tspp->ts_prev->ts_next = tspp->ts_next; \ 182 tspp->ts_next->ts_prev = tspp->ts_prev; \ 183 mutex_exit(lockp); \ 184 } 185 186 187 static int ts_admin(caddr_t, cred_t *); 188 static int ts_enterclass(kthread_t *, id_t, void *, cred_t *, void *); 189 static int ts_fork(kthread_t *, kthread_t *, void *); 190 static int ts_getclinfo(void *); 191 static int ts_getclpri(pcpri_t *); 192 static int ts_parmsin(void *); 193 static int ts_parmsout(void *, pc_vaparms_t *); 194 static int ts_vaparmsin(void *, pc_vaparms_t *); 195 static int ts_vaparmsout(void *, pc_vaparms_t *); 196 static int ts_parmsset(kthread_t *, void *, id_t, cred_t *); 197 static int ts_donice(kthread_t *, cred_t *, int, int *); 198 static void ts_exitclass(void *); 199 static int ts_canexit(kthread_t *, cred_t *); 200 static void ts_forkret(kthread_t *, kthread_t *); 201 static void ts_nullsys(); 202 static void ts_parmsget(kthread_t *, void *); 203 static void ts_preempt(kthread_t *); 204 static void ts_setrun(kthread_t *); 205 static void ts_sleep(kthread_t *); 206 static pri_t ts_swapin(kthread_t *, int); 207 static pri_t ts_swapout(kthread_t *, int); 208 static void ts_tick(kthread_t *); 209 static void ts_trapret(kthread_t *); 210 static void ts_update(void *); 211 static int ts_update_list(int); 212 static void ts_wakeup(kthread_t *); 213 static pri_t ts_globpri(kthread_t *); 214 static void ts_yield(kthread_t *); 215 extern tsdpent_t *ts_getdptbl(void); 216 extern pri_t *ts_getkmdpris(void); 217 extern pri_t td_getmaxumdpri(void); 218 static int ts_alloc(void **, int); 219 static void ts_free(void *); 220 221 pri_t ia_init(id_t, int, classfuncs_t **); 222 static int ia_getclinfo(void *); 223 static int ia_parmsin(void *); 224 static int ia_vaparmsin(void *, pc_vaparms_t *); 225 static int ia_vaparmsout(void *, pc_vaparms_t *); 226 static int ia_parmsset(kthread_t *, void *, id_t, cred_t *); 227 static void ia_parmsget(kthread_t *, void *); 228 static void ia_set_process_group(pid_t, pid_t, pid_t); 229 230 static void ts_change_priority(kthread_t *, tsproc_t *); 231 232 extern pri_t ts_maxkmdpri; /* maximum kernel mode ts priority */ 233 static pri_t ts_maxglobpri; /* maximum global priority used by ts class */ 234 static kmutex_t ts_dptblock; /* protects time sharing dispatch table */ 235 static kmutex_t ts_list_lock[TS_LISTS]; /* protects tsproc lists */ 236 static tsproc_t ts_plisthead[TS_LISTS]; /* dummy tsproc at head of lists */ 237 238 static gid_t IA_gid = 0; 239 240 static struct classfuncs ts_classfuncs = { 241 /* class functions */ 242 ts_admin, 243 ts_getclinfo, 244 ts_parmsin, 245 ts_parmsout, 246 ts_vaparmsin, 247 ts_vaparmsout, 248 ts_getclpri, 249 ts_alloc, 250 ts_free, 251 252 /* thread functions */ 253 ts_enterclass, 254 ts_exitclass, 255 ts_canexit, 256 ts_fork, 257 ts_forkret, 258 ts_parmsget, 259 ts_parmsset, 260 ts_nullsys, /* stop */ 261 ts_nullsys, /* exit */ 262 ts_nullsys, /* active */ 263 ts_nullsys, /* inactive */ 264 ts_swapin, 265 ts_swapout, 266 ts_trapret, 267 ts_preempt, 268 ts_setrun, 269 ts_sleep, 270 ts_tick, 271 ts_wakeup, 272 ts_donice, 273 ts_globpri, 274 ts_nullsys, /* set_process_group */ 275 ts_yield, 276 }; 277 278 /* 279 * ia_classfuncs is used for interactive class threads; IA threads are stored 280 * on the same class list as TS threads, and most of the class functions are 281 * identical, but a few have different enough functionality to require their 282 * own functions. 283 */ 284 static struct classfuncs ia_classfuncs = { 285 /* class functions */ 286 ts_admin, 287 ia_getclinfo, 288 ia_parmsin, 289 ts_parmsout, 290 ia_vaparmsin, 291 ia_vaparmsout, 292 ts_getclpri, 293 ts_alloc, 294 ts_free, 295 296 /* thread functions */ 297 ts_enterclass, 298 ts_exitclass, 299 ts_canexit, 300 ts_fork, 301 ts_forkret, 302 ia_parmsget, 303 ia_parmsset, 304 ts_nullsys, /* stop */ 305 ts_nullsys, /* exit */ 306 ts_nullsys, /* active */ 307 ts_nullsys, /* inactive */ 308 ts_swapin, 309 ts_swapout, 310 ts_trapret, 311 ts_preempt, 312 ts_setrun, 313 ts_sleep, 314 ts_tick, 315 ts_wakeup, 316 ts_donice, 317 ts_globpri, 318 ia_set_process_group, 319 ts_yield, 320 }; 321 322 323 /* 324 * Time sharing class initialization. Called by dispinit() at boot time. 325 * We can ignore the clparmsz argument since we know that the smallest 326 * possible parameter buffer is big enough for us. 327 */ 328 /* ARGSUSED */ 329 static pri_t 330 ts_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp) 331 { 332 int i; 333 extern pri_t ts_getmaxumdpri(void); 334 335 ts_dptbl = ts_getdptbl(); 336 ts_kmdpris = ts_getkmdpris(); 337 ts_maxumdpri = ts_getmaxumdpri(); 338 ts_maxglobpri = MAX(ts_kmdpris[0], ts_dptbl[ts_maxumdpri].ts_globpri); 339 340 /* 341 * Initialize the tsproc lists. 342 */ 343 for (i = 0; i < TS_LISTS; i++) { 344 ts_plisthead[i].ts_next = ts_plisthead[i].ts_prev = 345 &ts_plisthead[i]; 346 } 347 348 /* 349 * We're required to return a pointer to our classfuncs 350 * structure and the highest global priority value we use. 351 */ 352 *clfuncspp = &ts_classfuncs; 353 return (ts_maxglobpri); 354 } 355 356 357 /* 358 * Interactive class scheduler initialization 359 */ 360 /* ARGSUSED */ 361 pri_t 362 ia_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp) 363 { 364 /* 365 * We're required to return a pointer to our classfuncs 366 * structure and the highest global priority value we use. 367 */ 368 ia_cid = cid; 369 *clfuncspp = &ia_classfuncs; 370 return (ts_maxglobpri); 371 } 372 373 374 /* 375 * Get or reset the ts_dptbl values per the user's request. 376 */ 377 static int 378 ts_admin(caddr_t uaddr, cred_t *reqpcredp) 379 { 380 tsadmin_t tsadmin; 381 tsdpent_t *tmpdpp; 382 int userdpsz; 383 int i; 384 size_t tsdpsz; 385 386 if (get_udatamodel() == DATAMODEL_NATIVE) { 387 if (copyin(uaddr, &tsadmin, sizeof (tsadmin_t))) 388 return (EFAULT); 389 } 390 #ifdef _SYSCALL32_IMPL 391 else { 392 /* get tsadmin struct from ILP32 caller */ 393 tsadmin32_t tsadmin32; 394 if (copyin(uaddr, &tsadmin32, sizeof (tsadmin32_t))) 395 return (EFAULT); 396 tsadmin.ts_dpents = 397 (struct tsdpent *)(uintptr_t)tsadmin32.ts_dpents; 398 tsadmin.ts_ndpents = tsadmin32.ts_ndpents; 399 tsadmin.ts_cmd = tsadmin32.ts_cmd; 400 } 401 #endif /* _SYSCALL32_IMPL */ 402 403 tsdpsz = (ts_maxumdpri + 1) * sizeof (tsdpent_t); 404 405 switch (tsadmin.ts_cmd) { 406 case TS_GETDPSIZE: 407 tsadmin.ts_ndpents = ts_maxumdpri + 1; 408 409 if (get_udatamodel() == DATAMODEL_NATIVE) { 410 if (copyout(&tsadmin, uaddr, sizeof (tsadmin_t))) 411 return (EFAULT); 412 } 413 #ifdef _SYSCALL32_IMPL 414 else { 415 /* return tsadmin struct to ILP32 caller */ 416 tsadmin32_t tsadmin32; 417 tsadmin32.ts_dpents = 418 (caddr32_t)(uintptr_t)tsadmin.ts_dpents; 419 tsadmin32.ts_ndpents = tsadmin.ts_ndpents; 420 tsadmin32.ts_cmd = tsadmin.ts_cmd; 421 if (copyout(&tsadmin32, uaddr, sizeof (tsadmin32_t))) 422 return (EFAULT); 423 } 424 #endif /* _SYSCALL32_IMPL */ 425 break; 426 427 case TS_GETDPTBL: 428 userdpsz = MIN(tsadmin.ts_ndpents * sizeof (tsdpent_t), 429 tsdpsz); 430 if (copyout(ts_dptbl, tsadmin.ts_dpents, userdpsz)) 431 return (EFAULT); 432 433 tsadmin.ts_ndpents = userdpsz / sizeof (tsdpent_t); 434 435 if (get_udatamodel() == DATAMODEL_NATIVE) { 436 if (copyout(&tsadmin, uaddr, sizeof (tsadmin_t))) 437 return (EFAULT); 438 } 439 #ifdef _SYSCALL32_IMPL 440 else { 441 /* return tsadmin struct to ILP32 callers */ 442 tsadmin32_t tsadmin32; 443 tsadmin32.ts_dpents = 444 (caddr32_t)(uintptr_t)tsadmin.ts_dpents; 445 tsadmin32.ts_ndpents = tsadmin.ts_ndpents; 446 tsadmin32.ts_cmd = tsadmin.ts_cmd; 447 if (copyout(&tsadmin32, uaddr, sizeof (tsadmin32_t))) 448 return (EFAULT); 449 } 450 #endif /* _SYSCALL32_IMPL */ 451 break; 452 453 case TS_SETDPTBL: 454 /* 455 * We require that the requesting process has sufficient 456 * priveleges. We also require that the table supplied by 457 * the user exactly match the current ts_dptbl in size. 458 */ 459 if (secpolicy_dispadm(reqpcredp) != 0) 460 return (EPERM); 461 462 if (tsadmin.ts_ndpents * sizeof (tsdpent_t) != tsdpsz) { 463 return (EINVAL); 464 } 465 466 /* 467 * We read the user supplied table into a temporary buffer 468 * where it is validated before being copied over the 469 * ts_dptbl. 470 */ 471 tmpdpp = kmem_alloc(tsdpsz, KM_SLEEP); 472 if (copyin((caddr_t)tsadmin.ts_dpents, (caddr_t)tmpdpp, 473 tsdpsz)) { 474 kmem_free(tmpdpp, tsdpsz); 475 return (EFAULT); 476 } 477 for (i = 0; i < tsadmin.ts_ndpents; i++) { 478 479 /* 480 * Validate the user supplied values. All we are doing 481 * here is verifying that the values are within their 482 * allowable ranges and will not panic the system. We 483 * make no attempt to ensure that the resulting 484 * configuration makes sense or results in reasonable 485 * performance. 486 */ 487 if (tmpdpp[i].ts_quantum <= 0) { 488 kmem_free(tmpdpp, tsdpsz); 489 return (EINVAL); 490 } 491 if (tmpdpp[i].ts_tqexp > ts_maxumdpri || 492 tmpdpp[i].ts_tqexp < 0) { 493 kmem_free(tmpdpp, tsdpsz); 494 return (EINVAL); 495 } 496 if (tmpdpp[i].ts_slpret > ts_maxumdpri || 497 tmpdpp[i].ts_slpret < 0) { 498 kmem_free(tmpdpp, tsdpsz); 499 return (EINVAL); 500 } 501 if (tmpdpp[i].ts_maxwait < 0) { 502 kmem_free(tmpdpp, tsdpsz); 503 return (EINVAL); 504 } 505 if (tmpdpp[i].ts_lwait > ts_maxumdpri || 506 tmpdpp[i].ts_lwait < 0) { 507 kmem_free(tmpdpp, tsdpsz); 508 return (EINVAL); 509 } 510 } 511 512 /* 513 * Copy the user supplied values over the current ts_dptbl 514 * values. The ts_globpri member is read-only so we don't 515 * overwrite it. 516 */ 517 mutex_enter(&ts_dptblock); 518 for (i = 0; i < tsadmin.ts_ndpents; i++) { 519 ts_dptbl[i].ts_quantum = tmpdpp[i].ts_quantum; 520 ts_dptbl[i].ts_tqexp = tmpdpp[i].ts_tqexp; 521 ts_dptbl[i].ts_slpret = tmpdpp[i].ts_slpret; 522 ts_dptbl[i].ts_maxwait = tmpdpp[i].ts_maxwait; 523 ts_dptbl[i].ts_lwait = tmpdpp[i].ts_lwait; 524 } 525 mutex_exit(&ts_dptblock); 526 kmem_free(tmpdpp, tsdpsz); 527 break; 528 529 default: 530 return (EINVAL); 531 } 532 return (0); 533 } 534 535 536 /* 537 * Allocate a time-sharing class specific thread structure and 538 * initialize it with the parameters supplied. Also move the thread 539 * to specified time-sharing priority. 540 */ 541 static int 542 ts_enterclass(kthread_t *t, id_t cid, void *parmsp, 543 cred_t *reqpcredp, void *bufp) 544 { 545 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 546 tsproc_t *tspp; 547 pri_t reqtsuprilim; 548 pri_t reqtsupri; 549 static uint32_t tspexists = 0; /* set on first occurrence of */ 550 /* a time-sharing process */ 551 552 tspp = (tsproc_t *)bufp; 553 ASSERT(tspp != NULL); 554 555 /* 556 * Initialize the tsproc structure. 557 */ 558 tspp->ts_cpupri = tsmedumdpri; 559 if (cid == ia_cid) { 560 /* 561 * Check to make sure caller is either privileged or the 562 * window system. When the window system is converted 563 * to using privileges, the second check can go away. 564 */ 565 if (reqpcredp != NULL && !groupmember(IA_gid, reqpcredp) && 566 secpolicy_setpriority(reqpcredp) != 0) 567 return (EPERM); 568 /* 569 * Belongs to IA "class", so set appropriate flags. 570 * Mark as 'on' so it will not be a swap victim 571 * while forking. 572 */ 573 tspp->ts_flags = TSIA | TSIASET; 574 tspp->ts_boost = ia_boost; 575 } else { 576 tspp->ts_flags = 0; 577 tspp->ts_boost = 0; 578 } 579 580 if (tsparmsp == NULL) { 581 /* 582 * Use default values. 583 */ 584 tspp->ts_uprilim = tspp->ts_upri = 0; 585 tspp->ts_nice = NZERO; 586 } else { 587 /* 588 * Use supplied values. 589 */ 590 if (tsparmsp->ts_uprilim == TS_NOCHANGE) 591 reqtsuprilim = 0; 592 else { 593 if (tsparmsp->ts_uprilim > 0 && 594 secpolicy_setpriority(reqpcredp) != 0) 595 return (EPERM); 596 reqtsuprilim = tsparmsp->ts_uprilim; 597 } 598 599 if (tsparmsp->ts_upri == TS_NOCHANGE) { 600 reqtsupri = reqtsuprilim; 601 } else { 602 if (tsparmsp->ts_upri > 0 && 603 secpolicy_setpriority(reqpcredp) != 0) 604 return (EPERM); 605 /* 606 * Set the user priority to the requested value 607 * or the upri limit, whichever is lower. 608 */ 609 reqtsupri = tsparmsp->ts_upri; 610 if (reqtsupri > reqtsuprilim) 611 reqtsupri = reqtsuprilim; 612 } 613 614 615 tspp->ts_uprilim = reqtsuprilim; 616 tspp->ts_upri = reqtsupri; 617 tspp->ts_nice = NZERO - (NZERO * reqtsupri) 618 / ts_maxupri; 619 } 620 TS_NEWUMDPRI(tspp); 621 622 tspp->ts_dispwait = 0; 623 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 624 tspp->ts_tp = t; 625 626 /* 627 * Reset priority. Process goes to a "user mode" priority 628 * here regardless of whether or not it has slept since 629 * entering the kernel. 630 */ 631 thread_lock(t); /* get dispatcher lock on thread */ 632 t->t_clfuncs = &(sclass[cid].cl_funcs->thread); 633 t->t_cid = cid; 634 t->t_cldata = (void *)tspp; 635 t->t_schedflag &= ~TS_RUNQMATCH; 636 ts_change_priority(t, tspp); 637 thread_unlock(t); 638 639 /* 640 * Link new structure into tsproc list. 641 */ 642 TS_LIST_INSERT(tspp); 643 644 /* 645 * If this is the first time-sharing thread to occur since 646 * boot we set up the initial call to ts_update() here. 647 * Use an atomic compare-and-swap since that's easier and 648 * faster than a mutex (but check with an ordinary load first 649 * since most of the time this will already be done). 650 */ 651 if (tspexists == 0 && cas32(&tspexists, 0, 1) == 0) 652 (void) timeout(ts_update, NULL, hz); 653 654 return (0); 655 } 656 657 658 /* 659 * Free tsproc structure of thread. 660 */ 661 static void 662 ts_exitclass(void *procp) 663 { 664 tsproc_t *tspp = (tsproc_t *)procp; 665 666 /* Remove tsproc_t structure from list */ 667 TS_LIST_DELETE(tspp); 668 kmem_free(tspp, sizeof (tsproc_t)); 669 } 670 671 /* ARGSUSED */ 672 static int 673 ts_canexit(kthread_t *t, cred_t *cred) 674 { 675 /* 676 * A thread can always leave a TS/IA class 677 */ 678 return (0); 679 } 680 681 static int 682 ts_fork(kthread_t *t, kthread_t *ct, void *bufp) 683 { 684 tsproc_t *ptspp; /* ptr to parent's tsproc structure */ 685 tsproc_t *ctspp; /* ptr to child's tsproc structure */ 686 687 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 688 689 ctspp = (tsproc_t *)bufp; 690 ASSERT(ctspp != NULL); 691 ptspp = (tsproc_t *)t->t_cldata; 692 /* 693 * Initialize child's tsproc structure. 694 */ 695 thread_lock(t); 696 ctspp->ts_timeleft = ts_dptbl[ptspp->ts_cpupri].ts_quantum; 697 ctspp->ts_cpupri = ptspp->ts_cpupri; 698 ctspp->ts_boost = ptspp->ts_boost; 699 ctspp->ts_uprilim = ptspp->ts_uprilim; 700 ctspp->ts_upri = ptspp->ts_upri; 701 TS_NEWUMDPRI(ctspp); 702 ctspp->ts_nice = ptspp->ts_nice; 703 ctspp->ts_dispwait = 0; 704 ctspp->ts_flags = ptspp->ts_flags & ~(TSKPRI | TSBACKQ | TSRESTORE); 705 ctspp->ts_tp = ct; 706 thread_unlock(t); 707 708 /* 709 * Link new structure into tsproc list. 710 */ 711 ct->t_cldata = (void *)ctspp; 712 TS_LIST_INSERT(ctspp); 713 return (0); 714 } 715 716 717 /* 718 * Child is placed at back of dispatcher queue and parent gives 719 * up processor so that the child runs first after the fork. 720 * This allows the child immediately execing to break the multiple 721 * use of copy on write pages with no disk home. The parent will 722 * get to steal them back rather than uselessly copying them. 723 */ 724 static void 725 ts_forkret(kthread_t *t, kthread_t *ct) 726 { 727 proc_t *pp = ttoproc(t); 728 proc_t *cp = ttoproc(ct); 729 tsproc_t *tspp; 730 731 ASSERT(t == curthread); 732 ASSERT(MUTEX_HELD(&pidlock)); 733 734 /* 735 * Grab the child's p_lock before dropping pidlock to ensure 736 * the process does not disappear before we set it running. 737 */ 738 mutex_enter(&cp->p_lock); 739 mutex_exit(&pidlock); 740 continuelwps(cp); 741 mutex_exit(&cp->p_lock); 742 743 mutex_enter(&pp->p_lock); 744 continuelwps(pp); 745 mutex_exit(&pp->p_lock); 746 747 thread_lock(t); 748 tspp = (tsproc_t *)(t->t_cldata); 749 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp; 750 TS_NEWUMDPRI(tspp); 751 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 752 tspp->ts_dispwait = 0; 753 t->t_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 754 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 755 tspp->ts_flags &= ~TSKPRI; 756 THREAD_TRANSITION(t); 757 ts_setrun(t); 758 thread_unlock(t); 759 760 swtch(); 761 } 762 763 764 /* 765 * Get information about the time-sharing class into the buffer 766 * pointed to by tsinfop. The maximum configured user priority 767 * is the only information we supply. ts_getclinfo() is called 768 * for TS threads, and ia_getclinfo() is called for IA threads. 769 */ 770 static int 771 ts_getclinfo(void *infop) 772 { 773 tsinfo_t *tsinfop = (tsinfo_t *)infop; 774 tsinfop->ts_maxupri = ts_maxupri; 775 return (0); 776 } 777 778 static int 779 ia_getclinfo(void *infop) 780 { 781 iainfo_t *iainfop = (iainfo_t *)infop; 782 iainfop->ia_maxupri = ia_maxupri; 783 return (0); 784 } 785 786 787 /* 788 * Return the global scheduling priority ranges for the timesharing 789 * class in pcpri_t structure. 790 */ 791 static int 792 ts_getclpri(pcpri_t *pcprip) 793 { 794 pcprip->pc_clpmax = ts_dptbl[ts_maxumdpri].ts_globpri; 795 pcprip->pc_clpmin = ts_dptbl[0].ts_globpri; 796 return (0); 797 } 798 799 800 static void 801 ts_nullsys() 802 {} 803 804 805 /* 806 * Get the time-sharing parameters of the thread pointed to by 807 * tsprocp into the buffer pointed to by tsparmsp. ts_parmsget() 808 * is called for TS threads, and ia_parmsget() is called for IA 809 * threads. 810 */ 811 static void 812 ts_parmsget(kthread_t *t, void *parmsp) 813 { 814 tsproc_t *tspp = (tsproc_t *)t->t_cldata; 815 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 816 817 tsparmsp->ts_uprilim = tspp->ts_uprilim; 818 tsparmsp->ts_upri = tspp->ts_upri; 819 } 820 821 static void 822 ia_parmsget(kthread_t *t, void *parmsp) 823 { 824 tsproc_t *tspp = (tsproc_t *)t->t_cldata; 825 iaparms_t *iaparmsp = (iaparms_t *)parmsp; 826 827 iaparmsp->ia_uprilim = tspp->ts_uprilim; 828 iaparmsp->ia_upri = tspp->ts_upri; 829 if (tspp->ts_flags & TSIASET) 830 iaparmsp->ia_mode = IA_SET_INTERACTIVE; 831 else 832 iaparmsp->ia_mode = IA_INTERACTIVE_OFF; 833 iaparmsp->ia_nice = tspp->ts_nice; 834 } 835 836 837 /* 838 * Check the validity of the time-sharing parameters in the buffer 839 * pointed to by tsparmsp. 840 * ts_parmsin() is called for TS threads, and ia_parmsin() is called 841 * for IA threads. 842 */ 843 static int 844 ts_parmsin(void *parmsp) 845 { 846 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 847 /* 848 * Check validity of parameters. 849 */ 850 if ((tsparmsp->ts_uprilim > ts_maxupri || 851 tsparmsp->ts_uprilim < -ts_maxupri) && 852 tsparmsp->ts_uprilim != TS_NOCHANGE) 853 return (EINVAL); 854 855 if ((tsparmsp->ts_upri > ts_maxupri || 856 tsparmsp->ts_upri < -ts_maxupri) && 857 tsparmsp->ts_upri != TS_NOCHANGE) 858 return (EINVAL); 859 860 return (0); 861 } 862 863 static int 864 ia_parmsin(void *parmsp) 865 { 866 iaparms_t *iaparmsp = (iaparms_t *)parmsp; 867 868 if ((iaparmsp->ia_uprilim > ia_maxupri || 869 iaparmsp->ia_uprilim < -ia_maxupri) && 870 iaparmsp->ia_uprilim != IA_NOCHANGE) { 871 return (EINVAL); 872 } 873 874 if ((iaparmsp->ia_upri > ia_maxupri || 875 iaparmsp->ia_upri < -ia_maxupri) && 876 iaparmsp->ia_upri != IA_NOCHANGE) { 877 return (EINVAL); 878 } 879 880 return (0); 881 } 882 883 884 /* 885 * Check the validity of the time-sharing parameters in the pc_vaparms_t 886 * structure vaparmsp and put them in the buffer pointed to by tsparmsp. 887 * pc_vaparms_t contains (key, value) pairs of parameter. 888 * ts_vaparmsin() is called for TS threads, and ia_vaparmsin() is called 889 * for IA threads. ts_vaparmsin() is the variable parameter version of 890 * ts_parmsin() and ia_vaparmsin() is the variable parameter version of 891 * ia_parmsin(). 892 */ 893 static int 894 ts_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp) 895 { 896 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 897 int priflag = 0; 898 int limflag = 0; 899 uint_t cnt; 900 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 901 902 903 /* 904 * TS_NOCHANGE (-32768) is outside of the range of values for 905 * ts_uprilim and ts_upri. If the structure tsparms_t is changed, 906 * TS_NOCHANGE should be replaced by a flag word (in the same manner 907 * as in rt.c). 908 */ 909 tsparmsp->ts_uprilim = TS_NOCHANGE; 910 tsparmsp->ts_upri = TS_NOCHANGE; 911 912 /* 913 * Get the varargs parameter and check validity of parameters. 914 */ 915 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 916 return (EINVAL); 917 918 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 919 920 switch (vpp->pc_key) { 921 case TS_KY_UPRILIM: 922 if (limflag++) 923 return (EINVAL); 924 tsparmsp->ts_uprilim = (pri_t)vpp->pc_parm; 925 if (tsparmsp->ts_uprilim > ts_maxupri || 926 tsparmsp->ts_uprilim < -ts_maxupri) 927 return (EINVAL); 928 break; 929 930 case TS_KY_UPRI: 931 if (priflag++) 932 return (EINVAL); 933 tsparmsp->ts_upri = (pri_t)vpp->pc_parm; 934 if (tsparmsp->ts_upri > ts_maxupri || 935 tsparmsp->ts_upri < -ts_maxupri) 936 return (EINVAL); 937 break; 938 939 default: 940 return (EINVAL); 941 } 942 } 943 944 if (vaparmsp->pc_vaparmscnt == 0) { 945 /* 946 * Use default parameters. 947 */ 948 tsparmsp->ts_upri = tsparmsp->ts_uprilim = 0; 949 } 950 951 return (0); 952 } 953 954 static int 955 ia_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp) 956 { 957 iaparms_t *iaparmsp = (iaparms_t *)parmsp; 958 int priflag = 0; 959 int limflag = 0; 960 int mflag = 0; 961 uint_t cnt; 962 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 963 964 /* 965 * IA_NOCHANGE (-32768) is outside of the range of values for 966 * ia_uprilim, ia_upri and ia_mode. If the structure iaparms_t is 967 * changed, IA_NOCHANGE should be replaced by a flag word (in the 968 * same manner as in rt.c). 969 */ 970 iaparmsp->ia_uprilim = IA_NOCHANGE; 971 iaparmsp->ia_upri = IA_NOCHANGE; 972 iaparmsp->ia_mode = IA_NOCHANGE; 973 974 /* 975 * Get the varargs parameter and check validity of parameters. 976 */ 977 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 978 return (EINVAL); 979 980 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 981 982 switch (vpp->pc_key) { 983 case IA_KY_UPRILIM: 984 if (limflag++) 985 return (EINVAL); 986 iaparmsp->ia_uprilim = (pri_t)vpp->pc_parm; 987 if (iaparmsp->ia_uprilim > ia_maxupri || 988 iaparmsp->ia_uprilim < -ia_maxupri) 989 return (EINVAL); 990 break; 991 992 case IA_KY_UPRI: 993 if (priflag++) 994 return (EINVAL); 995 iaparmsp->ia_upri = (pri_t)vpp->pc_parm; 996 if (iaparmsp->ia_upri > ia_maxupri || 997 iaparmsp->ia_upri < -ia_maxupri) 998 return (EINVAL); 999 break; 1000 1001 case IA_KY_MODE: 1002 if (mflag++) 1003 return (EINVAL); 1004 iaparmsp->ia_mode = (int)vpp->pc_parm; 1005 if (iaparmsp->ia_mode != IA_SET_INTERACTIVE && 1006 iaparmsp->ia_mode != IA_INTERACTIVE_OFF) 1007 return (EINVAL); 1008 break; 1009 1010 default: 1011 return (EINVAL); 1012 } 1013 } 1014 1015 if (vaparmsp->pc_vaparmscnt == 0) { 1016 /* 1017 * Use default parameters. 1018 */ 1019 iaparmsp->ia_upri = iaparmsp->ia_uprilim = 0; 1020 iaparmsp->ia_mode = IA_SET_INTERACTIVE; 1021 } 1022 1023 return (0); 1024 } 1025 1026 /* 1027 * Nothing to do here but return success. 1028 */ 1029 /* ARGSUSED */ 1030 static int 1031 ts_parmsout(void *parmsp, pc_vaparms_t *vaparmsp) 1032 { 1033 return (0); 1034 } 1035 1036 1037 /* 1038 * Copy all selected time-sharing class parameters to the user. 1039 * The parameters are specified by a key. 1040 */ 1041 static int 1042 ts_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp) 1043 { 1044 tsparms_t *tsprmsp = (tsparms_t *)prmsp; 1045 int priflag = 0; 1046 int limflag = 0; 1047 uint_t cnt; 1048 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 1049 1050 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock)); 1051 1052 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 1053 return (EINVAL); 1054 1055 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 1056 1057 switch (vpp->pc_key) { 1058 case TS_KY_UPRILIM: 1059 if (limflag++) 1060 return (EINVAL); 1061 if (copyout(&tsprmsp->ts_uprilim, 1062 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1063 return (EFAULT); 1064 break; 1065 1066 case TS_KY_UPRI: 1067 if (priflag++) 1068 return (EINVAL); 1069 if (copyout(&tsprmsp->ts_upri, 1070 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1071 return (EFAULT); 1072 break; 1073 1074 default: 1075 return (EINVAL); 1076 } 1077 } 1078 1079 return (0); 1080 } 1081 1082 1083 /* 1084 * Copy all selected interactive class parameters to the user. 1085 * The parameters are specified by a key. 1086 */ 1087 static int 1088 ia_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp) 1089 { 1090 iaparms_t *iaprmsp = (iaparms_t *)prmsp; 1091 int priflag = 0; 1092 int limflag = 0; 1093 int mflag = 0; 1094 uint_t cnt; 1095 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 1096 1097 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock)); 1098 1099 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 1100 return (EINVAL); 1101 1102 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 1103 1104 switch (vpp->pc_key) { 1105 case IA_KY_UPRILIM: 1106 if (limflag++) 1107 return (EINVAL); 1108 if (copyout(&iaprmsp->ia_uprilim, 1109 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1110 return (EFAULT); 1111 break; 1112 1113 case IA_KY_UPRI: 1114 if (priflag++) 1115 return (EINVAL); 1116 if (copyout(&iaprmsp->ia_upri, 1117 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1118 return (EFAULT); 1119 break; 1120 1121 case IA_KY_MODE: 1122 if (mflag++) 1123 return (EINVAL); 1124 if (copyout(&iaprmsp->ia_mode, 1125 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (int))) 1126 return (EFAULT); 1127 break; 1128 1129 default: 1130 return (EINVAL); 1131 } 1132 } 1133 return (0); 1134 } 1135 1136 1137 /* 1138 * Set the scheduling parameters of the thread pointed to by tsprocp 1139 * to those specified in the buffer pointed to by tsparmsp. 1140 * ts_parmsset() is called for TS threads, and ia_parmsset() is 1141 * called for IA threads. 1142 */ 1143 /* ARGSUSED */ 1144 static int 1145 ts_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp) 1146 { 1147 char nice; 1148 pri_t reqtsuprilim; 1149 pri_t reqtsupri; 1150 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 1151 tsproc_t *tspp = (tsproc_t *)tx->t_cldata; 1152 1153 ASSERT(MUTEX_HELD(&(ttoproc(tx))->p_lock)); 1154 1155 if (tsparmsp->ts_uprilim == TS_NOCHANGE) 1156 reqtsuprilim = tspp->ts_uprilim; 1157 else 1158 reqtsuprilim = tsparmsp->ts_uprilim; 1159 1160 if (tsparmsp->ts_upri == TS_NOCHANGE) 1161 reqtsupri = tspp->ts_upri; 1162 else 1163 reqtsupri = tsparmsp->ts_upri; 1164 1165 /* 1166 * Make sure the user priority doesn't exceed the upri limit. 1167 */ 1168 if (reqtsupri > reqtsuprilim) 1169 reqtsupri = reqtsuprilim; 1170 1171 /* 1172 * Basic permissions enforced by generic kernel code 1173 * for all classes require that a thread attempting 1174 * to change the scheduling parameters of a target 1175 * thread be privileged or have a real or effective 1176 * UID matching that of the target thread. We are not 1177 * called unless these basic permission checks have 1178 * already passed. The time-sharing class requires in 1179 * addition that the calling thread be privileged if it 1180 * is attempting to raise the upri limit above its current 1181 * value This may have been checked previously but if our 1182 * caller passed us a non-NULL credential pointer we assume 1183 * it hasn't and we check it here. 1184 */ 1185 if (reqpcredp != NULL && 1186 reqtsuprilim > tspp->ts_uprilim && 1187 secpolicy_setpriority(reqpcredp) != 0) 1188 return (EPERM); 1189 1190 /* 1191 * Set ts_nice to the nice value corresponding to the user 1192 * priority we are setting. Note that setting the nice field 1193 * of the parameter struct won't affect upri or nice. 1194 */ 1195 nice = NZERO - (reqtsupri * NZERO) / ts_maxupri; 1196 if (nice >= 2 * NZERO) 1197 nice = 2 * NZERO - 1; 1198 1199 thread_lock(tx); 1200 1201 tspp->ts_uprilim = reqtsuprilim; 1202 tspp->ts_upri = reqtsupri; 1203 TS_NEWUMDPRI(tspp); 1204 tspp->ts_nice = nice; 1205 1206 if ((tspp->ts_flags & TSKPRI) != 0) { 1207 thread_unlock(tx); 1208 return (0); 1209 } 1210 1211 tspp->ts_dispwait = 0; 1212 ts_change_priority(tx, tspp); 1213 thread_unlock(tx); 1214 return (0); 1215 } 1216 1217 1218 static int 1219 ia_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp) 1220 { 1221 tsproc_t *tspp = (tsproc_t *)tx->t_cldata; 1222 iaparms_t *iaparmsp = (iaparms_t *)parmsp; 1223 proc_t *p; 1224 pid_t pid, pgid, sid; 1225 pid_t on, off; 1226 struct stdata *stp; 1227 int sess_held; 1228 1229 /* 1230 * Handle user priority changes 1231 */ 1232 if (iaparmsp->ia_mode == IA_NOCHANGE) 1233 return (ts_parmsset(tx, parmsp, reqpcid, reqpcredp)); 1234 1235 /* 1236 * Check permissions for changing modes. 1237 */ 1238 1239 if (reqpcredp != NULL && !groupmember(IA_gid, reqpcredp) && 1240 secpolicy_setpriority(reqpcredp) != 0) { 1241 /* 1242 * Silently fail in case this is just a priocntl 1243 * call with upri and uprilim set to IA_NOCHANGE. 1244 */ 1245 return (0); 1246 } 1247 1248 ASSERT(MUTEX_HELD(&pidlock)); 1249 if ((p = ttoproc(tx)) == NULL) { 1250 return (0); 1251 } 1252 ASSERT(MUTEX_HELD(&p->p_lock)); 1253 if (p->p_stat == SIDL) { 1254 return (0); 1255 } 1256 pid = p->p_pid; 1257 sid = p->p_sessp->s_sid; 1258 pgid = p->p_pgrp; 1259 if (iaparmsp->ia_mode == IA_SET_INTERACTIVE) { 1260 /* 1261 * session leaders must be turned on now so all processes 1262 * in the group controlling the tty will be turned on or off. 1263 * if the ia_mode is off for the session leader, 1264 * ia_set_process_group will return without setting the 1265 * processes in the group controlling the tty on. 1266 */ 1267 thread_lock(tx); 1268 tspp->ts_flags |= TSIASET; 1269 thread_unlock(tx); 1270 } 1271 mutex_enter(&p->p_sessp->s_lock); 1272 sess_held = 1; 1273 if ((pid == sid) && (p->p_sessp->s_vp != NULL) && 1274 ((stp = p->p_sessp->s_vp->v_stream) != NULL)) { 1275 if ((stp->sd_pgidp != NULL) && (stp->sd_sidp != NULL)) { 1276 pgid = stp->sd_pgidp->pid_id; 1277 sess_held = 0; 1278 mutex_exit(&p->p_sessp->s_lock); 1279 if (iaparmsp->ia_mode == 1280 IA_SET_INTERACTIVE) { 1281 off = 0; 1282 on = pgid; 1283 } else { 1284 off = pgid; 1285 on = 0; 1286 } 1287 TRACE_3(TR_FAC_IA, TR_ACTIVE_CHAIN, 1288 "active chain:pid %d gid %d %p", 1289 pid, pgid, p); 1290 ia_set_process_group(sid, off, on); 1291 } 1292 } 1293 if (sess_held) 1294 mutex_exit(&p->p_sessp->s_lock); 1295 1296 thread_lock(tx); 1297 1298 if (iaparmsp->ia_mode == IA_SET_INTERACTIVE) { 1299 tspp->ts_flags |= TSIASET; 1300 tspp->ts_boost = ia_boost; 1301 } else { 1302 tspp->ts_flags &= ~TSIASET; 1303 tspp->ts_boost = -ia_boost; 1304 } 1305 thread_unlock(tx); 1306 1307 return (ts_parmsset(tx, parmsp, reqpcid, reqpcredp)); 1308 } 1309 1310 /* 1311 * Return the global scheduling priority that would be assigned 1312 * to a thread entering the time-sharing class with the ts_upri. 1313 */ 1314 static pri_t 1315 ts_globpri(kthread_t *t) 1316 { 1317 tsproc_t *tspp; 1318 pri_t tspri; 1319 1320 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 1321 tspp = (tsproc_t *)t->t_cldata; 1322 tspri = tsmedumdpri + tspp->ts_upri; 1323 if (tspri > ts_maxumdpri) 1324 tspri = ts_maxumdpri; 1325 else if (tspri < 0) 1326 tspri = 0; 1327 return (ts_dptbl[tspri].ts_globpri); 1328 } 1329 1330 /* 1331 * Arrange for thread to be placed in appropriate location 1332 * on dispatcher queue. 1333 * 1334 * This is called with the current thread in TS_ONPROC and locked. 1335 */ 1336 static void 1337 ts_preempt(kthread_t *t) 1338 { 1339 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1340 klwp_t *lwp; 1341 #ifdef KSLICE 1342 extern int kslice; 1343 #endif 1344 pri_t oldpri = t->t_pri; 1345 1346 ASSERT(t == curthread); 1347 ASSERT(THREAD_LOCK_HELD(curthread)); 1348 1349 /* 1350 * If preempted in the kernel, make sure the thread has 1351 * a kernel priority if needed. 1352 */ 1353 lwp = curthread->t_lwp; 1354 if (!(tspp->ts_flags & TSKPRI) && lwp != NULL && t->t_kpri_req) { 1355 tspp->ts_flags |= TSKPRI; 1356 THREAD_CHANGE_PRI(t, ts_kmdpris[0]); 1357 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1358 t->t_trapret = 1; /* so ts_trapret will run */ 1359 aston(t); 1360 } 1361 /* 1362 * If preempted in user-land mark the thread 1363 * as swappable because I know it isn't holding any locks. 1364 */ 1365 ASSERT(t->t_schedflag & TS_DONT_SWAP); 1366 if (lwp != NULL && lwp->lwp_state == LWP_USER) 1367 t->t_schedflag &= ~TS_DONT_SWAP; 1368 1369 /* 1370 * Check to see if we're doing "preemption control" here. If 1371 * we are, and if the user has requested that this thread not 1372 * be preempted, and if preemptions haven't been put off for 1373 * too long, let the preemption happen here but try to make 1374 * sure the thread is rescheduled as soon as possible. We do 1375 * this by putting it on the front of the highest priority run 1376 * queue in the TS class. If the preemption has been put off 1377 * for too long, clear the "nopreempt" bit and let the thread 1378 * be preempted. 1379 */ 1380 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 1381 if (tspp->ts_timeleft > -SC_MAX_TICKS) { 1382 DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t); 1383 if (!(tspp->ts_flags & TSKPRI)) { 1384 /* 1385 * If not already remembered, remember current 1386 * priority for restoration in ts_yield(). 1387 */ 1388 if (!(tspp->ts_flags & TSRESTORE)) { 1389 tspp->ts_scpri = t->t_pri; 1390 tspp->ts_flags |= TSRESTORE; 1391 } 1392 THREAD_CHANGE_PRI(t, ts_maxumdpri); 1393 t->t_schedflag |= TS_DONT_SWAP; 1394 } 1395 schedctl_set_yield(t, 1); 1396 setfrontdq(t); 1397 goto done; 1398 } else { 1399 if (tspp->ts_flags & TSRESTORE) { 1400 THREAD_CHANGE_PRI(t, tspp->ts_scpri); 1401 tspp->ts_flags &= ~TSRESTORE; 1402 } 1403 schedctl_set_nopreempt(t, 0); 1404 DTRACE_SCHED1(schedctl__preempt, kthread_t *, t); 1405 TNF_PROBE_2(schedctl_preempt, "schedctl TS ts_preempt", 1406 /* CSTYLED */, tnf_pid, pid, ttoproc(t)->p_pid, 1407 tnf_lwpid, lwpid, t->t_tid); 1408 /* 1409 * Fall through and be preempted below. 1410 */ 1411 } 1412 } 1413 1414 if ((tspp->ts_flags & (TSBACKQ|TSKPRI)) == TSBACKQ) { 1415 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1416 tspp->ts_dispwait = 0; 1417 tspp->ts_flags &= ~TSBACKQ; 1418 setbackdq(t); 1419 } else if ((tspp->ts_flags & (TSBACKQ|TSKPRI)) == (TSBACKQ|TSKPRI)) { 1420 tspp->ts_flags &= ~TSBACKQ; 1421 setbackdq(t); 1422 } else { 1423 #ifdef KSLICE 1424 if (kslice) 1425 setbackdq(t); 1426 else 1427 #endif 1428 setfrontdq(t); 1429 } 1430 1431 done: 1432 TRACE_2(TR_FAC_DISP, TR_PREEMPT, 1433 "preempt:tid %p old pri %d", t, oldpri); 1434 } 1435 1436 static void 1437 ts_setrun(kthread_t *t) 1438 { 1439 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1440 1441 ASSERT(THREAD_LOCK_HELD(t)); /* t should be in transition */ 1442 1443 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { 1444 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; 1445 TS_NEWUMDPRI(tspp); 1446 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1447 tspp->ts_dispwait = 0; 1448 if ((tspp->ts_flags & TSKPRI) == 0) { 1449 THREAD_CHANGE_PRI(t, 1450 ts_dptbl[tspp->ts_umdpri].ts_globpri); 1451 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1452 } 1453 } 1454 1455 tspp->ts_flags &= ~TSBACKQ; 1456 1457 if (tspp->ts_flags & TSIA) { 1458 if (tspp->ts_flags & TSIASET) 1459 setfrontdq(t); 1460 else 1461 setbackdq(t); 1462 } else { 1463 if (t->t_disp_time != lbolt) 1464 setbackdq(t); 1465 else 1466 setfrontdq(t); 1467 } 1468 } 1469 1470 1471 /* 1472 * Prepare thread for sleep. We reset the thread priority so it will 1473 * run at the kernel priority level when it wakes up. 1474 */ 1475 static void 1476 ts_sleep(kthread_t *t) 1477 { 1478 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1479 int flags; 1480 pri_t old_pri = t->t_pri; 1481 1482 ASSERT(t == curthread); 1483 ASSERT(THREAD_LOCK_HELD(t)); 1484 1485 flags = tspp->ts_flags; 1486 if (t->t_kpri_req) { 1487 tspp->ts_flags = flags | TSKPRI; 1488 THREAD_CHANGE_PRI(t, ts_kmdpris[0]); 1489 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1490 t->t_trapret = 1; /* so ts_trapret will run */ 1491 aston(t); 1492 } else if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { 1493 /* 1494 * If thread has blocked in the kernel (as opposed to 1495 * being merely preempted), recompute the user mode priority. 1496 */ 1497 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; 1498 TS_NEWUMDPRI(tspp); 1499 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1500 tspp->ts_dispwait = 0; 1501 1502 THREAD_CHANGE_PRI(curthread, 1503 ts_dptbl[tspp->ts_umdpri].ts_globpri); 1504 ASSERT(curthread->t_pri >= 0 && 1505 curthread->t_pri <= ts_maxglobpri); 1506 tspp->ts_flags = flags & ~TSKPRI; 1507 1508 if (DISP_MUST_SURRENDER(curthread)) 1509 cpu_surrender(curthread); 1510 } else if (flags & TSKPRI) { 1511 THREAD_CHANGE_PRI(curthread, 1512 ts_dptbl[tspp->ts_umdpri].ts_globpri); 1513 ASSERT(curthread->t_pri >= 0 && 1514 curthread->t_pri <= ts_maxglobpri); 1515 tspp->ts_flags = flags & ~TSKPRI; 1516 1517 if (DISP_MUST_SURRENDER(curthread)) 1518 cpu_surrender(curthread); 1519 } 1520 t->t_stime = lbolt; /* time stamp for the swapper */ 1521 TRACE_2(TR_FAC_DISP, TR_SLEEP, 1522 "sleep:tid %p old pri %d", t, old_pri); 1523 } 1524 1525 1526 /* 1527 * Return Values: 1528 * 1529 * -1 if the thread is loaded or is not eligible to be swapped in. 1530 * 1531 * effective priority of the specified thread based on swapout time 1532 * and size of process (epri >= 0 , epri <= SHRT_MAX). 1533 */ 1534 /* ARGSUSED */ 1535 static pri_t 1536 ts_swapin(kthread_t *t, int flags) 1537 { 1538 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1539 long epri = -1; 1540 proc_t *pp = ttoproc(t); 1541 1542 ASSERT(THREAD_LOCK_HELD(t)); 1543 1544 /* 1545 * We know that pri_t is a short. 1546 * Be sure not to overrun its range. 1547 */ 1548 if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) { 1549 time_t swapout_time; 1550 1551 swapout_time = (lbolt - t->t_stime) / hz; 1552 if (INHERITED(t) || (tspp->ts_flags & (TSKPRI | TSIASET))) 1553 epri = (long)DISP_PRIO(t) + swapout_time; 1554 else { 1555 /* 1556 * Threads which have been out for a long time, 1557 * have high user mode priority and are associated 1558 * with a small address space are more deserving 1559 */ 1560 epri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 1561 ASSERT(epri >= 0 && epri <= ts_maxumdpri); 1562 epri += swapout_time - pp->p_swrss / nz(maxpgio)/2; 1563 } 1564 /* 1565 * Scale epri so SHRT_MAX/2 represents zero priority. 1566 */ 1567 epri += SHRT_MAX/2; 1568 if (epri < 0) 1569 epri = 0; 1570 else if (epri > SHRT_MAX) 1571 epri = SHRT_MAX; 1572 } 1573 return ((pri_t)epri); 1574 } 1575 1576 /* 1577 * Return Values 1578 * -1 if the thread isn't loaded or is not eligible to be swapped out. 1579 * 1580 * effective priority of the specified thread based on if the swapper 1581 * is in softswap or hardswap mode. 1582 * 1583 * Softswap: Return a low effective priority for threads 1584 * sleeping for more than maxslp secs. 1585 * 1586 * Hardswap: Return an effective priority such that threads 1587 * which have been in memory for a while and are 1588 * associated with a small address space are swapped 1589 * in before others. 1590 * 1591 * (epri >= 0 , epri <= SHRT_MAX). 1592 */ 1593 time_t ts_minrun = 2; /* XXX - t_pri becomes 59 within 2 secs */ 1594 time_t ts_minslp = 2; /* min time on sleep queue for hardswap */ 1595 1596 static pri_t 1597 ts_swapout(kthread_t *t, int flags) 1598 { 1599 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1600 long epri = -1; 1601 proc_t *pp = ttoproc(t); 1602 time_t swapin_time; 1603 1604 ASSERT(THREAD_LOCK_HELD(t)); 1605 1606 if (INHERITED(t) || (tspp->ts_flags & (TSKPRI | TSIASET)) || 1607 (t->t_proc_flag & TP_LWPEXIT) || 1608 (t->t_state & (TS_ZOMB | TS_FREE | TS_STOPPED | TS_ONPROC)) || 1609 !(t->t_schedflag & TS_LOAD) || !SWAP_OK(t)) 1610 return (-1); 1611 1612 ASSERT(t->t_state & (TS_SLEEP | TS_RUN)); 1613 1614 /* 1615 * We know that pri_t is a short. 1616 * Be sure not to overrun its range. 1617 */ 1618 swapin_time = (lbolt - t->t_stime) / hz; 1619 if (flags == SOFTSWAP) { 1620 if (t->t_state == TS_SLEEP && swapin_time > maxslp) { 1621 epri = 0; 1622 } else { 1623 return ((pri_t)epri); 1624 } 1625 } else { 1626 pri_t pri; 1627 1628 if ((t->t_state == TS_SLEEP && swapin_time > ts_minslp) || 1629 (t->t_state == TS_RUN && swapin_time > ts_minrun)) { 1630 pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 1631 ASSERT(pri >= 0 && pri <= ts_maxumdpri); 1632 epri = swapin_time - 1633 (rm_asrss(pp->p_as) / nz(maxpgio)/2) - (long)pri; 1634 } else { 1635 return ((pri_t)epri); 1636 } 1637 } 1638 1639 /* 1640 * Scale epri so SHRT_MAX/2 represents zero priority. 1641 */ 1642 epri += SHRT_MAX/2; 1643 if (epri < 0) 1644 epri = 0; 1645 else if (epri > SHRT_MAX) 1646 epri = SHRT_MAX; 1647 1648 return ((pri_t)epri); 1649 } 1650 1651 /* 1652 * Check for time slice expiration. If time slice has expired 1653 * move thread to priority specified in tsdptbl for time slice expiration 1654 * and set runrun to cause preemption. 1655 */ 1656 1657 static void 1658 ts_tick(kthread_t *t) 1659 { 1660 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1661 klwp_t *lwp; 1662 pri_t oldpri = t->t_pri; 1663 1664 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 1665 1666 thread_lock(t); 1667 if ((tspp->ts_flags & TSKPRI) == 0) { 1668 if (--tspp->ts_timeleft <= 0) { 1669 pri_t new_pri; 1670 1671 /* 1672 * If we're doing preemption control and trying to 1673 * avoid preempting this thread, just note that 1674 * the thread should yield soon and let it keep 1675 * running (unless it's been a while). 1676 */ 1677 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 1678 if (tspp->ts_timeleft > -SC_MAX_TICKS) { 1679 DTRACE_SCHED1(schedctl__nopreempt, 1680 kthread_t *, t); 1681 schedctl_set_yield(t, 1); 1682 thread_unlock_nopreempt(t); 1683 return; 1684 } 1685 1686 TNF_PROBE_2(schedctl_failsafe, 1687 "schedctl TS ts_tick", /* CSTYLED */, 1688 tnf_pid, pid, ttoproc(t)->p_pid, 1689 tnf_lwpid, lwpid, t->t_tid); 1690 } 1691 tspp->ts_flags &= ~TSRESTORE; 1692 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp; 1693 TS_NEWUMDPRI(tspp); 1694 tspp->ts_dispwait = 0; 1695 new_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 1696 ASSERT(new_pri >= 0 && new_pri <= ts_maxglobpri); 1697 /* 1698 * When the priority of a thread is changed, 1699 * it may be necessary to adjust its position 1700 * on a sleep queue or dispatch queue. 1701 * The function thread_change_pri accomplishes 1702 * this. 1703 */ 1704 if (thread_change_pri(t, new_pri, 0)) { 1705 if ((t->t_schedflag & TS_LOAD) && 1706 (lwp = t->t_lwp) && 1707 lwp->lwp_state == LWP_USER) 1708 t->t_schedflag &= ~TS_DONT_SWAP; 1709 tspp->ts_timeleft = 1710 ts_dptbl[tspp->ts_cpupri].ts_quantum; 1711 } else { 1712 tspp->ts_flags |= TSBACKQ; 1713 cpu_surrender(t); 1714 } 1715 TRACE_2(TR_FAC_DISP, TR_TICK, 1716 "tick:tid %p old pri %d", t, oldpri); 1717 } else if (t->t_state == TS_ONPROC && 1718 t->t_pri < t->t_disp_queue->disp_maxrunpri) { 1719 tspp->ts_flags |= TSBACKQ; 1720 cpu_surrender(t); 1721 } 1722 } 1723 thread_unlock_nopreempt(t); /* clock thread can't be preempted */ 1724 } 1725 1726 1727 /* 1728 * If thread is currently at a kernel mode priority (has slept) 1729 * we assign it the appropriate user mode priority and time quantum 1730 * here. If we are lowering the thread's priority below that of 1731 * other runnable threads we will normally set runrun via cpu_surrender() to 1732 * cause preemption. 1733 */ 1734 static void 1735 ts_trapret(kthread_t *t) 1736 { 1737 tsproc_t *tspp = (tsproc_t *)t->t_cldata; 1738 cpu_t *cp = CPU; 1739 pri_t old_pri = curthread->t_pri; 1740 1741 ASSERT(THREAD_LOCK_HELD(t)); 1742 ASSERT(t == curthread); 1743 ASSERT(cp->cpu_dispthread == t); 1744 ASSERT(t->t_state == TS_ONPROC); 1745 1746 t->t_kpri_req = 0; 1747 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { 1748 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; 1749 TS_NEWUMDPRI(tspp); 1750 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1751 tspp->ts_dispwait = 0; 1752 1753 /* 1754 * If thread has blocked in the kernel (as opposed to 1755 * being merely preempted), recompute the user mode priority. 1756 */ 1757 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri); 1758 cp->cpu_dispatch_pri = DISP_PRIO(t); 1759 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1760 tspp->ts_flags &= ~TSKPRI; 1761 1762 if (DISP_MUST_SURRENDER(t)) 1763 cpu_surrender(t); 1764 } else if (tspp->ts_flags & TSKPRI) { 1765 /* 1766 * If thread has blocked in the kernel (as opposed to 1767 * being merely preempted), recompute the user mode priority. 1768 */ 1769 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri); 1770 cp->cpu_dispatch_pri = DISP_PRIO(t); 1771 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1772 tspp->ts_flags &= ~TSKPRI; 1773 1774 if (DISP_MUST_SURRENDER(t)) 1775 cpu_surrender(t); 1776 } 1777 1778 /* 1779 * Swapout lwp if the swapper is waiting for this thread to 1780 * reach a safe point. 1781 */ 1782 if ((t->t_schedflag & TS_SWAPENQ) && !(tspp->ts_flags & TSIASET)) { 1783 thread_unlock(t); 1784 swapout_lwp(ttolwp(t)); 1785 thread_lock(t); 1786 } 1787 1788 TRACE_2(TR_FAC_DISP, TR_TRAPRET, 1789 "trapret:tid %p old pri %d", t, old_pri); 1790 } 1791 1792 1793 /* 1794 * Update the ts_dispwait values of all time sharing threads that 1795 * are currently runnable at a user mode priority and bump the priority 1796 * if ts_dispwait exceeds ts_maxwait. Called once per second via 1797 * timeout which we reset here. 1798 * 1799 * There are several lists of time sharing threads broken up by a hash on 1800 * the thread pointer. Each list has its own lock. This avoids blocking 1801 * all ts_enterclass, ts_fork, and ts_exitclass operations while ts_update 1802 * runs. ts_update traverses each list in turn. 1803 * 1804 * If multiple threads have their priorities updated to the same value, 1805 * the system implicitly favors the one that is updated first (since it 1806 * winds up first on the run queue). To avoid this unfairness, the 1807 * traversal of threads starts at the list indicated by a marker. When 1808 * threads in more than one list have their priorities updated, the marker 1809 * is moved. This changes the order the threads will be placed on the run 1810 * queue the next time ts_update is called and preserves fairness over the 1811 * long run. The marker doesn't need to be protected by a lock since it's 1812 * only accessed by ts_update, which is inherently single-threaded (only 1813 * one instance can be running at a time). 1814 */ 1815 static void 1816 ts_update(void *arg) 1817 { 1818 int i; 1819 int new_marker = -1; 1820 static int ts_update_marker; 1821 1822 /* 1823 * Start with the ts_update_marker list, then do the rest. 1824 */ 1825 i = ts_update_marker; 1826 do { 1827 /* 1828 * If this is the first list after the current marker to 1829 * have threads with priorities updated, advance the marker 1830 * to this list for the next time ts_update runs. 1831 */ 1832 if (ts_update_list(i) && new_marker == -1 && 1833 i != ts_update_marker) { 1834 new_marker = i; 1835 } 1836 } while ((i = TS_LIST_NEXT(i)) != ts_update_marker); 1837 1838 /* advance marker for next ts_update call */ 1839 if (new_marker != -1) 1840 ts_update_marker = new_marker; 1841 1842 (void) timeout(ts_update, arg, hz); 1843 } 1844 1845 /* 1846 * Updates priority for a list of threads. Returns 1 if the priority of 1847 * one of the threads was actually updated, 0 if none were for various 1848 * reasons (thread is no longer in the TS or IA class, isn't runnable, 1849 * hasn't waited long enough, has the preemption control no-preempt bit 1850 * set, etc.) 1851 */ 1852 static int 1853 ts_update_list(int i) 1854 { 1855 tsproc_t *tspp; 1856 kthread_t *tx; 1857 int updated = 0; 1858 1859 mutex_enter(&ts_list_lock[i]); 1860 for (tspp = ts_plisthead[i].ts_next; tspp != &ts_plisthead[i]; 1861 tspp = tspp->ts_next) { 1862 tx = tspp->ts_tp; 1863 /* 1864 * Lock the thread and verify state. 1865 */ 1866 thread_lock(tx); 1867 /* 1868 * Skip the thread if it is no longer in the TS (or IA) class. 1869 */ 1870 if (tx->t_clfuncs != &ts_classfuncs.thread && 1871 tx->t_clfuncs != &ia_classfuncs.thread) 1872 goto next; 1873 tspp->ts_dispwait++; 1874 if ((tspp->ts_flags & TSKPRI) != 0) 1875 goto next; 1876 if (tspp->ts_dispwait <= ts_dptbl[tspp->ts_umdpri].ts_maxwait) 1877 goto next; 1878 if (tx->t_schedctl && schedctl_get_nopreempt(tx)) 1879 goto next; 1880 if (tx->t_state != TS_RUN && (tx->t_state != TS_SLEEP || 1881 !ts_sleep_promote)) { 1882 /* make next syscall/trap do CL_TRAPRET */ 1883 tx->t_trapret = 1; 1884 aston(tx); 1885 goto next; 1886 } 1887 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_lwait; 1888 TS_NEWUMDPRI(tspp); 1889 tspp->ts_dispwait = 0; 1890 updated = 1; 1891 1892 /* 1893 * Only dequeue it if needs to move; otherwise it should 1894 * just round-robin here. 1895 */ 1896 if (tx->t_pri != ts_dptbl[tspp->ts_umdpri].ts_globpri) { 1897 pri_t oldpri = tx->t_pri; 1898 ts_change_priority(tx, tspp); 1899 TRACE_2(TR_FAC_DISP, TR_UPDATE, 1900 "update:tid %p old pri %d", tx, oldpri); 1901 } 1902 next: 1903 thread_unlock(tx); 1904 } 1905 mutex_exit(&ts_list_lock[i]); 1906 1907 return (updated); 1908 } 1909 1910 1911 /* 1912 * Processes waking up go to the back of their queue. We don't 1913 * need to assign a time quantum here because thread is still 1914 * at a kernel mode priority and the time slicing is not done 1915 * for threads running in the kernel after sleeping. The proper 1916 * time quantum will be assigned by ts_trapret before the thread 1917 * returns to user mode. 1918 */ 1919 static void 1920 ts_wakeup(kthread_t *t) 1921 { 1922 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1923 1924 ASSERT(THREAD_LOCK_HELD(t)); 1925 1926 t->t_stime = lbolt; /* time stamp for the swapper */ 1927 1928 if (tspp->ts_flags & TSKPRI) { 1929 tspp->ts_flags &= ~TSBACKQ; 1930 if (tspp->ts_flags & TSIASET) 1931 setfrontdq(t); 1932 else 1933 setbackdq(t); 1934 } else if (t->t_kpri_req) { 1935 /* 1936 * Give thread a priority boost if we were asked. 1937 */ 1938 tspp->ts_flags |= TSKPRI; 1939 THREAD_CHANGE_PRI(t, ts_kmdpris[0]); 1940 setbackdq(t); 1941 t->t_trapret = 1; /* so that ts_trapret will run */ 1942 aston(t); 1943 } else { 1944 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { 1945 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; 1946 TS_NEWUMDPRI(tspp); 1947 tspp->ts_timeleft = 1948 ts_dptbl[tspp->ts_cpupri].ts_quantum; 1949 tspp->ts_dispwait = 0; 1950 THREAD_CHANGE_PRI(t, 1951 ts_dptbl[tspp->ts_umdpri].ts_globpri); 1952 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1953 } 1954 1955 tspp->ts_flags &= ~TSBACKQ; 1956 1957 if (tspp->ts_flags & TSIA) { 1958 if (tspp->ts_flags & TSIASET) 1959 setfrontdq(t); 1960 else 1961 setbackdq(t); 1962 } else { 1963 if (t->t_disp_time != lbolt) 1964 setbackdq(t); 1965 else 1966 setfrontdq(t); 1967 } 1968 } 1969 } 1970 1971 1972 /* 1973 * When a thread yields, put it on the back of the run queue. 1974 */ 1975 static void 1976 ts_yield(kthread_t *t) 1977 { 1978 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1979 1980 ASSERT(t == curthread); 1981 ASSERT(THREAD_LOCK_HELD(t)); 1982 1983 /* 1984 * Clear the preemption control "yield" bit since the user is 1985 * doing a yield. 1986 */ 1987 if (t->t_schedctl) 1988 schedctl_set_yield(t, 0); 1989 /* 1990 * If ts_preempt() artifically increased the thread's priority 1991 * to avoid preemption, restore the original priority now. 1992 */ 1993 if (tspp->ts_flags & TSRESTORE) { 1994 THREAD_CHANGE_PRI(t, tspp->ts_scpri); 1995 tspp->ts_flags &= ~TSRESTORE; 1996 } 1997 if (tspp->ts_timeleft <= 0) { 1998 /* 1999 * Time slice was artificially extended to avoid 2000 * preemption, so pretend we're preempting it now. 2001 */ 2002 DTRACE_SCHED1(schedctl__yield, int, -tspp->ts_timeleft); 2003 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp; 2004 TS_NEWUMDPRI(tspp); 2005 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 2006 tspp->ts_dispwait = 0; 2007 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri); 2008 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 2009 } 2010 tspp->ts_flags &= ~TSBACKQ; 2011 setbackdq(t); 2012 } 2013 2014 2015 /* 2016 * Increment the nice value of the specified thread by incr and 2017 * return the new value in *retvalp. 2018 */ 2019 static int 2020 ts_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp) 2021 { 2022 int newnice; 2023 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 2024 tsparms_t tsparms; 2025 2026 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 2027 2028 /* If there's no change to priority, just return current setting */ 2029 if (incr == 0) { 2030 if (retvalp) { 2031 *retvalp = tspp->ts_nice - NZERO; 2032 } 2033 return (0); 2034 } 2035 2036 if ((incr < 0 || incr > 2 * NZERO) && 2037 secpolicy_setpriority(cr) != 0) 2038 return (EPERM); 2039 2040 /* 2041 * Specifying a nice increment greater than the upper limit of 2042 * 2 * NZERO - 1 will result in the thread's nice value being 2043 * set to the upper limit. We check for this before computing 2044 * the new value because otherwise we could get overflow 2045 * if a privileged process specified some ridiculous increment. 2046 */ 2047 if (incr > 2 * NZERO - 1) 2048 incr = 2 * NZERO - 1; 2049 2050 newnice = tspp->ts_nice + incr; 2051 if (newnice >= 2 * NZERO) 2052 newnice = 2 * NZERO - 1; 2053 else if (newnice < 0) 2054 newnice = 0; 2055 2056 tsparms.ts_uprilim = tsparms.ts_upri = 2057 -((newnice - NZERO) * ts_maxupri) / NZERO; 2058 /* 2059 * Reset the uprilim and upri values of the thread. 2060 * Call ts_parmsset even if thread is interactive since we're 2061 * not changing mode. 2062 */ 2063 (void) ts_parmsset(t, (void *)&tsparms, (id_t)0, (cred_t *)NULL); 2064 2065 /* 2066 * Although ts_parmsset already reset ts_nice it may 2067 * not have been set to precisely the value calculated above 2068 * because ts_parmsset determines the nice value from the 2069 * user priority and we may have truncated during the integer 2070 * conversion from nice value to user priority and back. 2071 * We reset ts_nice to the value we calculated above. 2072 */ 2073 tspp->ts_nice = (char)newnice; 2074 2075 if (retvalp) 2076 *retvalp = newnice - NZERO; 2077 return (0); 2078 } 2079 2080 2081 /* 2082 * ia_set_process_group marks foreground processes as interactive 2083 * and background processes as non-interactive iff the session 2084 * leader is interactive. This routine is called from two places: 2085 * strioctl:SPGRP when a new process group gets 2086 * control of the tty. 2087 * ia_parmsset-when the process in question is a session leader. 2088 * ia_set_process_group assumes that pidlock is held by the caller, 2089 * either strioctl or priocntlsys. If the caller is priocntlsys 2090 * (via ia_parmsset) then the p_lock of the session leader is held 2091 * and the code needs to be careful about acquiring other p_locks. 2092 */ 2093 static void 2094 ia_set_process_group(pid_t sid, pid_t bg_pgid, pid_t fg_pgid) 2095 { 2096 proc_t *leader, *fg, *bg; 2097 tsproc_t *tspp; 2098 kthread_t *tx; 2099 int plocked = 0; 2100 2101 ASSERT(MUTEX_HELD(&pidlock)); 2102 2103 /* 2104 * see if the session leader is interactive AND 2105 * if it is currently "on" AND controlling a tty 2106 * iff it is then make the processes in the foreground 2107 * group interactive and the processes in the background 2108 * group non-interactive. 2109 */ 2110 if ((leader = (proc_t *)prfind(sid)) == NULL) { 2111 return; 2112 } 2113 if (leader->p_stat == SIDL) { 2114 return; 2115 } 2116 if ((tx = proctot(leader)) == NULL) { 2117 return; 2118 } 2119 /* 2120 * XXX do all the threads in the leader 2121 */ 2122 if (tx->t_cid != ia_cid) { 2123 return; 2124 } 2125 tspp = tx->t_cldata; 2126 /* 2127 * session leaders that are not interactive need not have 2128 * any processing done for them. They are typically shells 2129 * that do not have focus and are changing the process group 2130 * attatched to the tty, e.g. a process that is exiting 2131 */ 2132 mutex_enter(&leader->p_sessp->s_lock); 2133 if (!(tspp->ts_flags & TSIASET) || 2134 (leader->p_sessp->s_vp == NULL) || 2135 (leader->p_sessp->s_vp->v_stream == NULL)) { 2136 mutex_exit(&leader->p_sessp->s_lock); 2137 return; 2138 } 2139 mutex_exit(&leader->p_sessp->s_lock); 2140 2141 /* 2142 * If we're already holding the leader's p_lock, we should use 2143 * mutex_tryenter instead of mutex_enter to avoid deadlocks from 2144 * lock ordering violations. 2145 */ 2146 if (mutex_owned(&leader->p_lock)) 2147 plocked = 1; 2148 2149 if (fg_pgid == 0) 2150 goto skip; 2151 /* 2152 * now look for all processes in the foreground group and 2153 * make them interactive 2154 */ 2155 for (fg = (proc_t *)pgfind(fg_pgid); fg != NULL; fg = fg->p_pglink) { 2156 /* 2157 * if the process is SIDL it's begin forked, ignore it 2158 */ 2159 if (fg->p_stat == SIDL) { 2160 continue; 2161 } 2162 /* 2163 * sesssion leaders must be turned on/off explicitly 2164 * not implicitly as happens to other members of 2165 * the process group. 2166 */ 2167 if (fg->p_pid == fg->p_sessp->s_sid) { 2168 continue; 2169 } 2170 2171 TRACE_1(TR_FAC_IA, TR_GROUP_ON, 2172 "group on:proc %p", fg); 2173 2174 if (plocked) { 2175 if (mutex_tryenter(&fg->p_lock) == 0) 2176 continue; 2177 } else { 2178 mutex_enter(&fg->p_lock); 2179 } 2180 2181 if ((tx = proctot(fg)) == NULL) { 2182 mutex_exit(&fg->p_lock); 2183 continue; 2184 } 2185 do { 2186 thread_lock(tx); 2187 /* 2188 * if this thread is not interactive continue 2189 */ 2190 if (tx->t_cid != ia_cid) { 2191 thread_unlock(tx); 2192 continue; 2193 } 2194 tspp = tx->t_cldata; 2195 tspp->ts_flags |= TSIASET; 2196 tspp->ts_boost = ia_boost; 2197 TS_NEWUMDPRI(tspp); 2198 if ((tspp->ts_flags & TSKPRI) != 0) { 2199 thread_unlock(tx); 2200 continue; 2201 } 2202 tspp->ts_dispwait = 0; 2203 ts_change_priority(tx, tspp); 2204 thread_unlock(tx); 2205 } while ((tx = tx->t_forw) != fg->p_tlist); 2206 mutex_exit(&fg->p_lock); 2207 } 2208 skip: 2209 if (bg_pgid == 0) 2210 return; 2211 for (bg = (proc_t *)pgfind(bg_pgid); bg != NULL; bg = bg->p_pglink) { 2212 if (bg->p_stat == SIDL) { 2213 continue; 2214 } 2215 /* 2216 * sesssion leaders must be turned off explicitly 2217 * not implicitly as happens to other members of 2218 * the process group. 2219 */ 2220 if (bg->p_pid == bg->p_sessp->s_sid) { 2221 continue; 2222 } 2223 2224 TRACE_1(TR_FAC_IA, TR_GROUP_OFF, 2225 "group off:proc %p", bg); 2226 2227 if (plocked) { 2228 if (mutex_tryenter(&bg->p_lock) == 0) 2229 continue; 2230 } else { 2231 mutex_enter(&bg->p_lock); 2232 } 2233 2234 if ((tx = proctot(bg)) == NULL) { 2235 mutex_exit(&bg->p_lock); 2236 continue; 2237 } 2238 do { 2239 thread_lock(tx); 2240 /* 2241 * if this thread is not interactive continue 2242 */ 2243 if (tx->t_cid != ia_cid) { 2244 thread_unlock(tx); 2245 continue; 2246 } 2247 tspp = tx->t_cldata; 2248 tspp->ts_flags &= ~TSIASET; 2249 tspp->ts_boost = -ia_boost; 2250 TS_NEWUMDPRI(tspp); 2251 if ((tspp->ts_flags & TSKPRI) != 0) { 2252 thread_unlock(tx); 2253 continue; 2254 } 2255 2256 tspp->ts_dispwait = 0; 2257 ts_change_priority(tx, tspp); 2258 thread_unlock(tx); 2259 } while ((tx = tx->t_forw) != bg->p_tlist); 2260 mutex_exit(&bg->p_lock); 2261 } 2262 } 2263 2264 2265 static void 2266 ts_change_priority(kthread_t *t, tsproc_t *tspp) 2267 { 2268 pri_t new_pri; 2269 2270 ASSERT(THREAD_LOCK_HELD(t)); 2271 new_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 2272 ASSERT(new_pri >= 0 && new_pri <= ts_maxglobpri); 2273 tspp->ts_flags &= ~TSRESTORE; 2274 if (t == curthread || t->t_state == TS_ONPROC) { 2275 /* curthread is always onproc */ 2276 cpu_t *cp = t->t_disp_queue->disp_cpu; 2277 THREAD_CHANGE_PRI(t, new_pri); 2278 if (t == cp->cpu_dispthread) 2279 cp->cpu_dispatch_pri = DISP_PRIO(t); 2280 if (DISP_MUST_SURRENDER(t)) { 2281 tspp->ts_flags |= TSBACKQ; 2282 cpu_surrender(t); 2283 } else { 2284 tspp->ts_timeleft = 2285 ts_dptbl[tspp->ts_cpupri].ts_quantum; 2286 } 2287 } else { 2288 int frontq; 2289 2290 frontq = (tspp->ts_flags & TSIASET) != 0; 2291 /* 2292 * When the priority of a thread is changed, 2293 * it may be necessary to adjust its position 2294 * on a sleep queue or dispatch queue. 2295 * The function thread_change_pri accomplishes 2296 * this. 2297 */ 2298 if (thread_change_pri(t, new_pri, frontq)) { 2299 /* 2300 * The thread was on a run queue. Reset 2301 * its CPU timeleft from the quantum 2302 * associated with the new priority. 2303 */ 2304 tspp->ts_timeleft = 2305 ts_dptbl[tspp->ts_cpupri].ts_quantum; 2306 } else { 2307 tspp->ts_flags |= TSBACKQ; 2308 } 2309 } 2310 } 2311 2312 static int 2313 ts_alloc(void **p, int flag) 2314 { 2315 void *bufp; 2316 bufp = kmem_alloc(sizeof (tsproc_t), flag); 2317 if (bufp == NULL) { 2318 return (ENOMEM); 2319 } else { 2320 *p = bufp; 2321 return (0); 2322 } 2323 } 2324 2325 static void 2326 ts_free(void *bufp) 2327 { 2328 if (bufp) 2329 kmem_free(bufp, sizeof (tsproc_t)); 2330 } 2331