1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 25 * Use is subject to license terms. 26 */ 27 28 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 29 /* All Rights Reserved */ 30 31 32 #pragma ident "%Z%%M% %I% %E% SMI" /* from SVr4.0 1.23 */ 33 34 #include <sys/types.h> 35 #include <sys/param.h> 36 #include <sys/sysmacros.h> 37 #include <sys/cred.h> 38 #include <sys/proc.h> 39 #include <sys/session.h> 40 #include <sys/strsubr.h> 41 #include <sys/signal.h> 42 #include <sys/user.h> 43 #include <sys/priocntl.h> 44 #include <sys/class.h> 45 #include <sys/disp.h> 46 #include <sys/procset.h> 47 #include <sys/debug.h> 48 #include <sys/ts.h> 49 #include <sys/tspriocntl.h> 50 #include <sys/iapriocntl.h> 51 #include <sys/kmem.h> 52 #include <sys/errno.h> 53 #include <sys/cpuvar.h> 54 #include <sys/systm.h> /* for lbolt */ 55 #include <sys/vtrace.h> 56 #include <sys/vmsystm.h> 57 #include <sys/schedctl.h> 58 #include <sys/tnf_probe.h> 59 #include <sys/atomic.h> 60 #include <sys/policy.h> 61 #include <sys/sdt.h> 62 #include <sys/cpupart.h> 63 64 #include <vm/rm.h> 65 #include <vm/seg_kmem.h> 66 #include <sys/modctl.h> 67 68 static pri_t ts_init(id_t, int, classfuncs_t **); 69 70 static struct sclass csw = { 71 "TS", 72 ts_init, 73 0 74 }; 75 76 static struct modlsched modlsched = { 77 &mod_schedops, "time sharing sched class", &csw 78 }; 79 80 static struct modlinkage modlinkage = { 81 MODREV_1, (void *)&modlsched, NULL 82 }; 83 84 int 85 _init() 86 { 87 return (mod_install(&modlinkage)); 88 } 89 90 int 91 _fini() 92 { 93 return (EBUSY); /* don't remove TS for now */ 94 } 95 96 int 97 _info(struct modinfo *modinfop) 98 { 99 return (mod_info(&modlinkage, modinfop)); 100 } 101 102 /* 103 * Class specific code for the time-sharing class 104 */ 105 106 107 /* 108 * Extern declarations for variables defined in the ts master file 109 */ 110 #define TSMAXUPRI 60 111 112 pri_t ts_maxupri = TSMAXUPRI; /* max time-sharing user priority */ 113 pri_t ts_maxumdpri; /* maximum user mode ts priority */ 114 115 pri_t ia_maxupri = IAMAXUPRI; /* max interactive user priority */ 116 pri_t ia_boost = IA_BOOST; /* boost value for interactive */ 117 118 tsdpent_t *ts_dptbl; /* time-sharing disp parameter table */ 119 pri_t *ts_kmdpris; /* array of global pris used by ts procs when */ 120 /* sleeping or running in kernel after sleep */ 121 122 static id_t ia_cid; 123 124 int ts_sleep_promote = 1; 125 126 #define tsmedumdpri (ts_maxumdpri >> 1) 127 128 #define TS_NEWUMDPRI(tspp) \ 129 { \ 130 pri_t pri; \ 131 pri = (tspp)->ts_cpupri + (tspp)->ts_upri + (tspp)->ts_boost; \ 132 if (pri > ts_maxumdpri) \ 133 (tspp)->ts_umdpri = ts_maxumdpri; \ 134 else if (pri < 0) \ 135 (tspp)->ts_umdpri = 0; \ 136 else \ 137 (tspp)->ts_umdpri = pri; \ 138 ASSERT((tspp)->ts_umdpri >= 0 && (tspp)->ts_umdpri <= ts_maxumdpri); \ 139 } 140 141 /* 142 * The tsproc_t structures are kept in an array of circular doubly linked 143 * lists. A hash on the thread pointer is used to determine which list 144 * each thread should be placed. Each list has a dummy "head" which is 145 * never removed, so the list is never empty. ts_update traverses these 146 * lists to update the priorities of threads that have been waiting on 147 * the run queue. 148 */ 149 150 #define TS_LISTS 16 /* number of lists, must be power of 2 */ 151 152 /* hash function, argument is a thread pointer */ 153 #define TS_LIST_HASH(tp) (((uintptr_t)(tp) >> 9) & (TS_LISTS - 1)) 154 155 /* iterate to the next list */ 156 #define TS_LIST_NEXT(i) (((i) + 1) & (TS_LISTS - 1)) 157 158 /* 159 * Insert thread into the appropriate tsproc list. 160 */ 161 #define TS_LIST_INSERT(tspp) \ 162 { \ 163 int index = TS_LIST_HASH(tspp->ts_tp); \ 164 kmutex_t *lockp = &ts_list_lock[index]; \ 165 tsproc_t *headp = &ts_plisthead[index]; \ 166 mutex_enter(lockp); \ 167 tspp->ts_next = headp->ts_next; \ 168 tspp->ts_prev = headp; \ 169 headp->ts_next->ts_prev = tspp; \ 170 headp->ts_next = tspp; \ 171 mutex_exit(lockp); \ 172 } 173 174 /* 175 * Remove thread from tsproc list. 176 */ 177 #define TS_LIST_DELETE(tspp) \ 178 { \ 179 int index = TS_LIST_HASH(tspp->ts_tp); \ 180 kmutex_t *lockp = &ts_list_lock[index]; \ 181 mutex_enter(lockp); \ 182 tspp->ts_prev->ts_next = tspp->ts_next; \ 183 tspp->ts_next->ts_prev = tspp->ts_prev; \ 184 mutex_exit(lockp); \ 185 } 186 187 188 static int ts_admin(caddr_t, cred_t *); 189 static int ts_enterclass(kthread_t *, id_t, void *, cred_t *, void *); 190 static int ts_fork(kthread_t *, kthread_t *, void *); 191 static int ts_getclinfo(void *); 192 static int ts_getclpri(pcpri_t *); 193 static int ts_parmsin(void *); 194 static int ts_parmsout(void *, pc_vaparms_t *); 195 static int ts_vaparmsin(void *, pc_vaparms_t *); 196 static int ts_vaparmsout(void *, pc_vaparms_t *); 197 static int ts_parmsset(kthread_t *, void *, id_t, cred_t *); 198 static int ts_donice(kthread_t *, cred_t *, int, int *); 199 static void ts_exitclass(void *); 200 static int ts_canexit(kthread_t *, cred_t *); 201 static void ts_forkret(kthread_t *, kthread_t *); 202 static void ts_nullsys(); 203 static void ts_parmsget(kthread_t *, void *); 204 static void ts_preempt(kthread_t *); 205 static void ts_setrun(kthread_t *); 206 static void ts_sleep(kthread_t *); 207 static pri_t ts_swapin(kthread_t *, int); 208 static pri_t ts_swapout(kthread_t *, int); 209 static void ts_tick(kthread_t *); 210 static void ts_trapret(kthread_t *); 211 static void ts_update(void *); 212 static int ts_update_list(int); 213 static void ts_wakeup(kthread_t *); 214 static pri_t ts_globpri(kthread_t *); 215 static void ts_yield(kthread_t *); 216 extern tsdpent_t *ts_getdptbl(void); 217 extern pri_t *ts_getkmdpris(void); 218 extern pri_t td_getmaxumdpri(void); 219 static int ts_alloc(void **, int); 220 static void ts_free(void *); 221 222 pri_t ia_init(id_t, int, classfuncs_t **); 223 static int ia_getclinfo(void *); 224 static int ia_parmsin(void *); 225 static int ia_vaparmsin(void *, pc_vaparms_t *); 226 static int ia_vaparmsout(void *, pc_vaparms_t *); 227 static int ia_parmsset(kthread_t *, void *, id_t, cred_t *); 228 static void ia_parmsget(kthread_t *, void *); 229 static void ia_set_process_group(pid_t, pid_t, pid_t); 230 231 static void ts_change_priority(kthread_t *, tsproc_t *); 232 233 extern pri_t ts_maxkmdpri; /* maximum kernel mode ts priority */ 234 static pri_t ts_maxglobpri; /* maximum global priority used by ts class */ 235 static kmutex_t ts_dptblock; /* protects time sharing dispatch table */ 236 static kmutex_t ts_list_lock[TS_LISTS]; /* protects tsproc lists */ 237 static tsproc_t ts_plisthead[TS_LISTS]; /* dummy tsproc at head of lists */ 238 239 static gid_t IA_gid = 0; 240 241 static struct classfuncs ts_classfuncs = { 242 /* class functions */ 243 ts_admin, 244 ts_getclinfo, 245 ts_parmsin, 246 ts_parmsout, 247 ts_vaparmsin, 248 ts_vaparmsout, 249 ts_getclpri, 250 ts_alloc, 251 ts_free, 252 253 /* thread functions */ 254 ts_enterclass, 255 ts_exitclass, 256 ts_canexit, 257 ts_fork, 258 ts_forkret, 259 ts_parmsget, 260 ts_parmsset, 261 ts_nullsys, /* stop */ 262 ts_nullsys, /* exit */ 263 ts_nullsys, /* active */ 264 ts_nullsys, /* inactive */ 265 ts_swapin, 266 ts_swapout, 267 ts_trapret, 268 ts_preempt, 269 ts_setrun, 270 ts_sleep, 271 ts_tick, 272 ts_wakeup, 273 ts_donice, 274 ts_globpri, 275 ts_nullsys, /* set_process_group */ 276 ts_yield, 277 }; 278 279 /* 280 * ia_classfuncs is used for interactive class threads; IA threads are stored 281 * on the same class list as TS threads, and most of the class functions are 282 * identical, but a few have different enough functionality to require their 283 * own functions. 284 */ 285 static struct classfuncs ia_classfuncs = { 286 /* class functions */ 287 ts_admin, 288 ia_getclinfo, 289 ia_parmsin, 290 ts_parmsout, 291 ia_vaparmsin, 292 ia_vaparmsout, 293 ts_getclpri, 294 ts_alloc, 295 ts_free, 296 297 /* thread functions */ 298 ts_enterclass, 299 ts_exitclass, 300 ts_canexit, 301 ts_fork, 302 ts_forkret, 303 ia_parmsget, 304 ia_parmsset, 305 ts_nullsys, /* stop */ 306 ts_nullsys, /* exit */ 307 ts_nullsys, /* active */ 308 ts_nullsys, /* inactive */ 309 ts_swapin, 310 ts_swapout, 311 ts_trapret, 312 ts_preempt, 313 ts_setrun, 314 ts_sleep, 315 ts_tick, 316 ts_wakeup, 317 ts_donice, 318 ts_globpri, 319 ia_set_process_group, 320 ts_yield, 321 }; 322 323 324 /* 325 * Time sharing class initialization. Called by dispinit() at boot time. 326 * We can ignore the clparmsz argument since we know that the smallest 327 * possible parameter buffer is big enough for us. 328 */ 329 /* ARGSUSED */ 330 static pri_t 331 ts_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp) 332 { 333 int i; 334 extern pri_t ts_getmaxumdpri(void); 335 336 ts_dptbl = ts_getdptbl(); 337 ts_kmdpris = ts_getkmdpris(); 338 ts_maxumdpri = ts_getmaxumdpri(); 339 ts_maxglobpri = MAX(ts_kmdpris[0], ts_dptbl[ts_maxumdpri].ts_globpri); 340 341 /* 342 * Initialize the tsproc lists. 343 */ 344 for (i = 0; i < TS_LISTS; i++) { 345 ts_plisthead[i].ts_next = ts_plisthead[i].ts_prev = 346 &ts_plisthead[i]; 347 } 348 349 /* 350 * We're required to return a pointer to our classfuncs 351 * structure and the highest global priority value we use. 352 */ 353 *clfuncspp = &ts_classfuncs; 354 return (ts_maxglobpri); 355 } 356 357 358 /* 359 * Interactive class scheduler initialization 360 */ 361 /* ARGSUSED */ 362 pri_t 363 ia_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp) 364 { 365 /* 366 * We're required to return a pointer to our classfuncs 367 * structure and the highest global priority value we use. 368 */ 369 ia_cid = cid; 370 *clfuncspp = &ia_classfuncs; 371 return (ts_maxglobpri); 372 } 373 374 375 /* 376 * Get or reset the ts_dptbl values per the user's request. 377 */ 378 static int 379 ts_admin(caddr_t uaddr, cred_t *reqpcredp) 380 { 381 tsadmin_t tsadmin; 382 tsdpent_t *tmpdpp; 383 int userdpsz; 384 int i; 385 size_t tsdpsz; 386 387 if (get_udatamodel() == DATAMODEL_NATIVE) { 388 if (copyin(uaddr, &tsadmin, sizeof (tsadmin_t))) 389 return (EFAULT); 390 } 391 #ifdef _SYSCALL32_IMPL 392 else { 393 /* get tsadmin struct from ILP32 caller */ 394 tsadmin32_t tsadmin32; 395 if (copyin(uaddr, &tsadmin32, sizeof (tsadmin32_t))) 396 return (EFAULT); 397 tsadmin.ts_dpents = 398 (struct tsdpent *)(uintptr_t)tsadmin32.ts_dpents; 399 tsadmin.ts_ndpents = tsadmin32.ts_ndpents; 400 tsadmin.ts_cmd = tsadmin32.ts_cmd; 401 } 402 #endif /* _SYSCALL32_IMPL */ 403 404 tsdpsz = (ts_maxumdpri + 1) * sizeof (tsdpent_t); 405 406 switch (tsadmin.ts_cmd) { 407 case TS_GETDPSIZE: 408 tsadmin.ts_ndpents = ts_maxumdpri + 1; 409 410 if (get_udatamodel() == DATAMODEL_NATIVE) { 411 if (copyout(&tsadmin, uaddr, sizeof (tsadmin_t))) 412 return (EFAULT); 413 } 414 #ifdef _SYSCALL32_IMPL 415 else { 416 /* return tsadmin struct to ILP32 caller */ 417 tsadmin32_t tsadmin32; 418 tsadmin32.ts_dpents = 419 (caddr32_t)(uintptr_t)tsadmin.ts_dpents; 420 tsadmin32.ts_ndpents = tsadmin.ts_ndpents; 421 tsadmin32.ts_cmd = tsadmin.ts_cmd; 422 if (copyout(&tsadmin32, uaddr, sizeof (tsadmin32_t))) 423 return (EFAULT); 424 } 425 #endif /* _SYSCALL32_IMPL */ 426 break; 427 428 case TS_GETDPTBL: 429 userdpsz = MIN(tsadmin.ts_ndpents * sizeof (tsdpent_t), 430 tsdpsz); 431 if (copyout(ts_dptbl, tsadmin.ts_dpents, userdpsz)) 432 return (EFAULT); 433 434 tsadmin.ts_ndpents = userdpsz / sizeof (tsdpent_t); 435 436 if (get_udatamodel() == DATAMODEL_NATIVE) { 437 if (copyout(&tsadmin, uaddr, sizeof (tsadmin_t))) 438 return (EFAULT); 439 } 440 #ifdef _SYSCALL32_IMPL 441 else { 442 /* return tsadmin struct to ILP32 callers */ 443 tsadmin32_t tsadmin32; 444 tsadmin32.ts_dpents = 445 (caddr32_t)(uintptr_t)tsadmin.ts_dpents; 446 tsadmin32.ts_ndpents = tsadmin.ts_ndpents; 447 tsadmin32.ts_cmd = tsadmin.ts_cmd; 448 if (copyout(&tsadmin32, uaddr, sizeof (tsadmin32_t))) 449 return (EFAULT); 450 } 451 #endif /* _SYSCALL32_IMPL */ 452 break; 453 454 case TS_SETDPTBL: 455 /* 456 * We require that the requesting process has sufficient 457 * priveleges. We also require that the table supplied by 458 * the user exactly match the current ts_dptbl in size. 459 */ 460 if (secpolicy_dispadm(reqpcredp) != 0) 461 return (EPERM); 462 463 if (tsadmin.ts_ndpents * sizeof (tsdpent_t) != tsdpsz) { 464 return (EINVAL); 465 } 466 467 /* 468 * We read the user supplied table into a temporary buffer 469 * where it is validated before being copied over the 470 * ts_dptbl. 471 */ 472 tmpdpp = kmem_alloc(tsdpsz, KM_SLEEP); 473 if (copyin((caddr_t)tsadmin.ts_dpents, (caddr_t)tmpdpp, 474 tsdpsz)) { 475 kmem_free(tmpdpp, tsdpsz); 476 return (EFAULT); 477 } 478 for (i = 0; i < tsadmin.ts_ndpents; i++) { 479 480 /* 481 * Validate the user supplied values. All we are doing 482 * here is verifying that the values are within their 483 * allowable ranges and will not panic the system. We 484 * make no attempt to ensure that the resulting 485 * configuration makes sense or results in reasonable 486 * performance. 487 */ 488 if (tmpdpp[i].ts_quantum <= 0) { 489 kmem_free(tmpdpp, tsdpsz); 490 return (EINVAL); 491 } 492 if (tmpdpp[i].ts_tqexp > ts_maxumdpri || 493 tmpdpp[i].ts_tqexp < 0) { 494 kmem_free(tmpdpp, tsdpsz); 495 return (EINVAL); 496 } 497 if (tmpdpp[i].ts_slpret > ts_maxumdpri || 498 tmpdpp[i].ts_slpret < 0) { 499 kmem_free(tmpdpp, tsdpsz); 500 return (EINVAL); 501 } 502 if (tmpdpp[i].ts_maxwait < 0) { 503 kmem_free(tmpdpp, tsdpsz); 504 return (EINVAL); 505 } 506 if (tmpdpp[i].ts_lwait > ts_maxumdpri || 507 tmpdpp[i].ts_lwait < 0) { 508 kmem_free(tmpdpp, tsdpsz); 509 return (EINVAL); 510 } 511 } 512 513 /* 514 * Copy the user supplied values over the current ts_dptbl 515 * values. The ts_globpri member is read-only so we don't 516 * overwrite it. 517 */ 518 mutex_enter(&ts_dptblock); 519 for (i = 0; i < tsadmin.ts_ndpents; i++) { 520 ts_dptbl[i].ts_quantum = tmpdpp[i].ts_quantum; 521 ts_dptbl[i].ts_tqexp = tmpdpp[i].ts_tqexp; 522 ts_dptbl[i].ts_slpret = tmpdpp[i].ts_slpret; 523 ts_dptbl[i].ts_maxwait = tmpdpp[i].ts_maxwait; 524 ts_dptbl[i].ts_lwait = tmpdpp[i].ts_lwait; 525 } 526 mutex_exit(&ts_dptblock); 527 kmem_free(tmpdpp, tsdpsz); 528 break; 529 530 default: 531 return (EINVAL); 532 } 533 return (0); 534 } 535 536 537 /* 538 * Allocate a time-sharing class specific thread structure and 539 * initialize it with the parameters supplied. Also move the thread 540 * to specified time-sharing priority. 541 */ 542 static int 543 ts_enterclass(kthread_t *t, id_t cid, void *parmsp, 544 cred_t *reqpcredp, void *bufp) 545 { 546 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 547 tsproc_t *tspp; 548 pri_t reqtsuprilim; 549 pri_t reqtsupri; 550 static uint32_t tspexists = 0; /* set on first occurrence of */ 551 /* a time-sharing process */ 552 553 tspp = (tsproc_t *)bufp; 554 ASSERT(tspp != NULL); 555 556 /* 557 * Initialize the tsproc structure. 558 */ 559 tspp->ts_cpupri = tsmedumdpri; 560 if (cid == ia_cid) { 561 /* 562 * Check to make sure caller is either privileged or the 563 * window system. When the window system is converted 564 * to using privileges, the second check can go away. 565 */ 566 if (reqpcredp != NULL && !groupmember(IA_gid, reqpcredp) && 567 secpolicy_setpriority(reqpcredp) != 0) 568 return (EPERM); 569 /* 570 * Belongs to IA "class", so set appropriate flags. 571 * Mark as 'on' so it will not be a swap victim 572 * while forking. 573 */ 574 tspp->ts_flags = TSIA | TSIASET; 575 tspp->ts_boost = ia_boost; 576 } else { 577 tspp->ts_flags = 0; 578 tspp->ts_boost = 0; 579 } 580 581 if (tsparmsp == NULL) { 582 /* 583 * Use default values. 584 */ 585 tspp->ts_uprilim = tspp->ts_upri = 0; 586 tspp->ts_nice = NZERO; 587 } else { 588 /* 589 * Use supplied values. 590 */ 591 if (tsparmsp->ts_uprilim == TS_NOCHANGE) 592 reqtsuprilim = 0; 593 else { 594 if (tsparmsp->ts_uprilim > 0 && 595 secpolicy_setpriority(reqpcredp) != 0) 596 return (EPERM); 597 reqtsuprilim = tsparmsp->ts_uprilim; 598 } 599 600 if (tsparmsp->ts_upri == TS_NOCHANGE) { 601 reqtsupri = reqtsuprilim; 602 } else { 603 if (tsparmsp->ts_upri > 0 && 604 secpolicy_setpriority(reqpcredp) != 0) 605 return (EPERM); 606 /* 607 * Set the user priority to the requested value 608 * or the upri limit, whichever is lower. 609 */ 610 reqtsupri = tsparmsp->ts_upri; 611 if (reqtsupri > reqtsuprilim) 612 reqtsupri = reqtsuprilim; 613 } 614 615 616 tspp->ts_uprilim = reqtsuprilim; 617 tspp->ts_upri = reqtsupri; 618 tspp->ts_nice = NZERO - (NZERO * reqtsupri) 619 / ts_maxupri; 620 } 621 TS_NEWUMDPRI(tspp); 622 623 tspp->ts_dispwait = 0; 624 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 625 tspp->ts_tp = t; 626 627 /* 628 * Reset priority. Process goes to a "user mode" priority 629 * here regardless of whether or not it has slept since 630 * entering the kernel. 631 */ 632 thread_lock(t); /* get dispatcher lock on thread */ 633 t->t_clfuncs = &(sclass[cid].cl_funcs->thread); 634 t->t_cid = cid; 635 t->t_cldata = (void *)tspp; 636 t->t_schedflag &= ~TS_RUNQMATCH; 637 ts_change_priority(t, tspp); 638 thread_unlock(t); 639 640 /* 641 * Link new structure into tsproc list. 642 */ 643 TS_LIST_INSERT(tspp); 644 645 /* 646 * If this is the first time-sharing thread to occur since 647 * boot we set up the initial call to ts_update() here. 648 * Use an atomic compare-and-swap since that's easier and 649 * faster than a mutex (but check with an ordinary load first 650 * since most of the time this will already be done). 651 */ 652 if (tspexists == 0 && cas32(&tspexists, 0, 1) == 0) 653 (void) timeout(ts_update, NULL, hz); 654 655 return (0); 656 } 657 658 659 /* 660 * Free tsproc structure of thread. 661 */ 662 static void 663 ts_exitclass(void *procp) 664 { 665 tsproc_t *tspp = (tsproc_t *)procp; 666 667 /* Remove tsproc_t structure from list */ 668 TS_LIST_DELETE(tspp); 669 kmem_free(tspp, sizeof (tsproc_t)); 670 } 671 672 /* ARGSUSED */ 673 static int 674 ts_canexit(kthread_t *t, cred_t *cred) 675 { 676 /* 677 * A thread can always leave a TS/IA class 678 */ 679 return (0); 680 } 681 682 static int 683 ts_fork(kthread_t *t, kthread_t *ct, void *bufp) 684 { 685 tsproc_t *ptspp; /* ptr to parent's tsproc structure */ 686 tsproc_t *ctspp; /* ptr to child's tsproc structure */ 687 688 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 689 690 ctspp = (tsproc_t *)bufp; 691 ASSERT(ctspp != NULL); 692 ptspp = (tsproc_t *)t->t_cldata; 693 /* 694 * Initialize child's tsproc structure. 695 */ 696 thread_lock(t); 697 ctspp->ts_timeleft = ts_dptbl[ptspp->ts_cpupri].ts_quantum; 698 ctspp->ts_cpupri = ptspp->ts_cpupri; 699 ctspp->ts_boost = ptspp->ts_boost; 700 ctspp->ts_uprilim = ptspp->ts_uprilim; 701 ctspp->ts_upri = ptspp->ts_upri; 702 TS_NEWUMDPRI(ctspp); 703 ctspp->ts_nice = ptspp->ts_nice; 704 ctspp->ts_dispwait = 0; 705 ctspp->ts_flags = ptspp->ts_flags & ~(TSKPRI | TSBACKQ | TSRESTORE); 706 ctspp->ts_tp = ct; 707 thread_unlock(t); 708 709 /* 710 * Link new structure into tsproc list. 711 */ 712 ct->t_cldata = (void *)ctspp; 713 TS_LIST_INSERT(ctspp); 714 return (0); 715 } 716 717 718 /* 719 * Child is placed at back of dispatcher queue and parent gives 720 * up processor so that the child runs first after the fork. 721 * This allows the child immediately execing to break the multiple 722 * use of copy on write pages with no disk home. The parent will 723 * get to steal them back rather than uselessly copying them. 724 */ 725 static void 726 ts_forkret(kthread_t *t, kthread_t *ct) 727 { 728 proc_t *pp = ttoproc(t); 729 proc_t *cp = ttoproc(ct); 730 tsproc_t *tspp; 731 732 ASSERT(t == curthread); 733 ASSERT(MUTEX_HELD(&pidlock)); 734 735 /* 736 * Grab the child's p_lock before dropping pidlock to ensure 737 * the process does not disappear before we set it running. 738 */ 739 mutex_enter(&cp->p_lock); 740 mutex_exit(&pidlock); 741 continuelwps(cp); 742 mutex_exit(&cp->p_lock); 743 744 mutex_enter(&pp->p_lock); 745 continuelwps(pp); 746 mutex_exit(&pp->p_lock); 747 748 thread_lock(t); 749 tspp = (tsproc_t *)(t->t_cldata); 750 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp; 751 TS_NEWUMDPRI(tspp); 752 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 753 tspp->ts_dispwait = 0; 754 t->t_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 755 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 756 tspp->ts_flags &= ~TSKPRI; 757 THREAD_TRANSITION(t); 758 ts_setrun(t); 759 thread_unlock(t); 760 761 swtch(); 762 } 763 764 765 /* 766 * Get information about the time-sharing class into the buffer 767 * pointed to by tsinfop. The maximum configured user priority 768 * is the only information we supply. ts_getclinfo() is called 769 * for TS threads, and ia_getclinfo() is called for IA threads. 770 */ 771 static int 772 ts_getclinfo(void *infop) 773 { 774 tsinfo_t *tsinfop = (tsinfo_t *)infop; 775 tsinfop->ts_maxupri = ts_maxupri; 776 return (0); 777 } 778 779 static int 780 ia_getclinfo(void *infop) 781 { 782 iainfo_t *iainfop = (iainfo_t *)infop; 783 iainfop->ia_maxupri = ia_maxupri; 784 return (0); 785 } 786 787 788 /* 789 * Return the global scheduling priority ranges for the timesharing 790 * class in pcpri_t structure. 791 */ 792 static int 793 ts_getclpri(pcpri_t *pcprip) 794 { 795 pcprip->pc_clpmax = ts_dptbl[ts_maxumdpri].ts_globpri; 796 pcprip->pc_clpmin = ts_dptbl[0].ts_globpri; 797 return (0); 798 } 799 800 801 static void 802 ts_nullsys() 803 {} 804 805 806 /* 807 * Get the time-sharing parameters of the thread pointed to by 808 * tsprocp into the buffer pointed to by tsparmsp. ts_parmsget() 809 * is called for TS threads, and ia_parmsget() is called for IA 810 * threads. 811 */ 812 static void 813 ts_parmsget(kthread_t *t, void *parmsp) 814 { 815 tsproc_t *tspp = (tsproc_t *)t->t_cldata; 816 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 817 818 tsparmsp->ts_uprilim = tspp->ts_uprilim; 819 tsparmsp->ts_upri = tspp->ts_upri; 820 } 821 822 static void 823 ia_parmsget(kthread_t *t, void *parmsp) 824 { 825 tsproc_t *tspp = (tsproc_t *)t->t_cldata; 826 iaparms_t *iaparmsp = (iaparms_t *)parmsp; 827 828 iaparmsp->ia_uprilim = tspp->ts_uprilim; 829 iaparmsp->ia_upri = tspp->ts_upri; 830 if (tspp->ts_flags & TSIASET) 831 iaparmsp->ia_mode = IA_SET_INTERACTIVE; 832 else 833 iaparmsp->ia_mode = IA_INTERACTIVE_OFF; 834 iaparmsp->ia_nice = tspp->ts_nice; 835 } 836 837 838 /* 839 * Check the validity of the time-sharing parameters in the buffer 840 * pointed to by tsparmsp. 841 * ts_parmsin() is called for TS threads, and ia_parmsin() is called 842 * for IA threads. 843 */ 844 static int 845 ts_parmsin(void *parmsp) 846 { 847 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 848 /* 849 * Check validity of parameters. 850 */ 851 if ((tsparmsp->ts_uprilim > ts_maxupri || 852 tsparmsp->ts_uprilim < -ts_maxupri) && 853 tsparmsp->ts_uprilim != TS_NOCHANGE) 854 return (EINVAL); 855 856 if ((tsparmsp->ts_upri > ts_maxupri || 857 tsparmsp->ts_upri < -ts_maxupri) && 858 tsparmsp->ts_upri != TS_NOCHANGE) 859 return (EINVAL); 860 861 return (0); 862 } 863 864 static int 865 ia_parmsin(void *parmsp) 866 { 867 iaparms_t *iaparmsp = (iaparms_t *)parmsp; 868 869 if ((iaparmsp->ia_uprilim > ia_maxupri || 870 iaparmsp->ia_uprilim < -ia_maxupri) && 871 iaparmsp->ia_uprilim != IA_NOCHANGE) { 872 return (EINVAL); 873 } 874 875 if ((iaparmsp->ia_upri > ia_maxupri || 876 iaparmsp->ia_upri < -ia_maxupri) && 877 iaparmsp->ia_upri != IA_NOCHANGE) { 878 return (EINVAL); 879 } 880 881 return (0); 882 } 883 884 885 /* 886 * Check the validity of the time-sharing parameters in the pc_vaparms_t 887 * structure vaparmsp and put them in the buffer pointed to by tsparmsp. 888 * pc_vaparms_t contains (key, value) pairs of parameter. 889 * ts_vaparmsin() is called for TS threads, and ia_vaparmsin() is called 890 * for IA threads. ts_vaparmsin() is the variable parameter version of 891 * ts_parmsin() and ia_vaparmsin() is the variable parameter version of 892 * ia_parmsin(). 893 */ 894 static int 895 ts_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp) 896 { 897 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 898 int priflag = 0; 899 int limflag = 0; 900 uint_t cnt; 901 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 902 903 904 /* 905 * TS_NOCHANGE (-32768) is outside of the range of values for 906 * ts_uprilim and ts_upri. If the structure tsparms_t is changed, 907 * TS_NOCHANGE should be replaced by a flag word (in the same manner 908 * as in rt.c). 909 */ 910 tsparmsp->ts_uprilim = TS_NOCHANGE; 911 tsparmsp->ts_upri = TS_NOCHANGE; 912 913 /* 914 * Get the varargs parameter and check validity of parameters. 915 */ 916 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 917 return (EINVAL); 918 919 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 920 921 switch (vpp->pc_key) { 922 case TS_KY_UPRILIM: 923 if (limflag++) 924 return (EINVAL); 925 tsparmsp->ts_uprilim = (pri_t)vpp->pc_parm; 926 if (tsparmsp->ts_uprilim > ts_maxupri || 927 tsparmsp->ts_uprilim < -ts_maxupri) 928 return (EINVAL); 929 break; 930 931 case TS_KY_UPRI: 932 if (priflag++) 933 return (EINVAL); 934 tsparmsp->ts_upri = (pri_t)vpp->pc_parm; 935 if (tsparmsp->ts_upri > ts_maxupri || 936 tsparmsp->ts_upri < -ts_maxupri) 937 return (EINVAL); 938 break; 939 940 default: 941 return (EINVAL); 942 } 943 } 944 945 if (vaparmsp->pc_vaparmscnt == 0) { 946 /* 947 * Use default parameters. 948 */ 949 tsparmsp->ts_upri = tsparmsp->ts_uprilim = 0; 950 } 951 952 return (0); 953 } 954 955 static int 956 ia_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp) 957 { 958 iaparms_t *iaparmsp = (iaparms_t *)parmsp; 959 int priflag = 0; 960 int limflag = 0; 961 int mflag = 0; 962 uint_t cnt; 963 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 964 965 /* 966 * IA_NOCHANGE (-32768) is outside of the range of values for 967 * ia_uprilim, ia_upri and ia_mode. If the structure iaparms_t is 968 * changed, IA_NOCHANGE should be replaced by a flag word (in the 969 * same manner as in rt.c). 970 */ 971 iaparmsp->ia_uprilim = IA_NOCHANGE; 972 iaparmsp->ia_upri = IA_NOCHANGE; 973 iaparmsp->ia_mode = IA_NOCHANGE; 974 975 /* 976 * Get the varargs parameter and check validity of parameters. 977 */ 978 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 979 return (EINVAL); 980 981 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 982 983 switch (vpp->pc_key) { 984 case IA_KY_UPRILIM: 985 if (limflag++) 986 return (EINVAL); 987 iaparmsp->ia_uprilim = (pri_t)vpp->pc_parm; 988 if (iaparmsp->ia_uprilim > ia_maxupri || 989 iaparmsp->ia_uprilim < -ia_maxupri) 990 return (EINVAL); 991 break; 992 993 case IA_KY_UPRI: 994 if (priflag++) 995 return (EINVAL); 996 iaparmsp->ia_upri = (pri_t)vpp->pc_parm; 997 if (iaparmsp->ia_upri > ia_maxupri || 998 iaparmsp->ia_upri < -ia_maxupri) 999 return (EINVAL); 1000 break; 1001 1002 case IA_KY_MODE: 1003 if (mflag++) 1004 return (EINVAL); 1005 iaparmsp->ia_mode = (int)vpp->pc_parm; 1006 if (iaparmsp->ia_mode != IA_SET_INTERACTIVE && 1007 iaparmsp->ia_mode != IA_INTERACTIVE_OFF) 1008 return (EINVAL); 1009 break; 1010 1011 default: 1012 return (EINVAL); 1013 } 1014 } 1015 1016 if (vaparmsp->pc_vaparmscnt == 0) { 1017 /* 1018 * Use default parameters. 1019 */ 1020 iaparmsp->ia_upri = iaparmsp->ia_uprilim = 0; 1021 iaparmsp->ia_mode = IA_SET_INTERACTIVE; 1022 } 1023 1024 return (0); 1025 } 1026 1027 /* 1028 * Nothing to do here but return success. 1029 */ 1030 /* ARGSUSED */ 1031 static int 1032 ts_parmsout(void *parmsp, pc_vaparms_t *vaparmsp) 1033 { 1034 return (0); 1035 } 1036 1037 1038 /* 1039 * Copy all selected time-sharing class parameters to the user. 1040 * The parameters are specified by a key. 1041 */ 1042 static int 1043 ts_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp) 1044 { 1045 tsparms_t *tsprmsp = (tsparms_t *)prmsp; 1046 int priflag = 0; 1047 int limflag = 0; 1048 uint_t cnt; 1049 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 1050 1051 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock)); 1052 1053 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 1054 return (EINVAL); 1055 1056 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 1057 1058 switch (vpp->pc_key) { 1059 case TS_KY_UPRILIM: 1060 if (limflag++) 1061 return (EINVAL); 1062 if (copyout(&tsprmsp->ts_uprilim, 1063 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1064 return (EFAULT); 1065 break; 1066 1067 case TS_KY_UPRI: 1068 if (priflag++) 1069 return (EINVAL); 1070 if (copyout(&tsprmsp->ts_upri, 1071 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1072 return (EFAULT); 1073 break; 1074 1075 default: 1076 return (EINVAL); 1077 } 1078 } 1079 1080 return (0); 1081 } 1082 1083 1084 /* 1085 * Copy all selected interactive class parameters to the user. 1086 * The parameters are specified by a key. 1087 */ 1088 static int 1089 ia_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp) 1090 { 1091 iaparms_t *iaprmsp = (iaparms_t *)prmsp; 1092 int priflag = 0; 1093 int limflag = 0; 1094 int mflag = 0; 1095 uint_t cnt; 1096 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 1097 1098 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock)); 1099 1100 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 1101 return (EINVAL); 1102 1103 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 1104 1105 switch (vpp->pc_key) { 1106 case IA_KY_UPRILIM: 1107 if (limflag++) 1108 return (EINVAL); 1109 if (copyout(&iaprmsp->ia_uprilim, 1110 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1111 return (EFAULT); 1112 break; 1113 1114 case IA_KY_UPRI: 1115 if (priflag++) 1116 return (EINVAL); 1117 if (copyout(&iaprmsp->ia_upri, 1118 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1119 return (EFAULT); 1120 break; 1121 1122 case IA_KY_MODE: 1123 if (mflag++) 1124 return (EINVAL); 1125 if (copyout(&iaprmsp->ia_mode, 1126 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (int))) 1127 return (EFAULT); 1128 break; 1129 1130 default: 1131 return (EINVAL); 1132 } 1133 } 1134 return (0); 1135 } 1136 1137 1138 /* 1139 * Set the scheduling parameters of the thread pointed to by tsprocp 1140 * to those specified in the buffer pointed to by tsparmsp. 1141 * ts_parmsset() is called for TS threads, and ia_parmsset() is 1142 * called for IA threads. 1143 */ 1144 /* ARGSUSED */ 1145 static int 1146 ts_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp) 1147 { 1148 char nice; 1149 pri_t reqtsuprilim; 1150 pri_t reqtsupri; 1151 tsparms_t *tsparmsp = (tsparms_t *)parmsp; 1152 tsproc_t *tspp = (tsproc_t *)tx->t_cldata; 1153 1154 ASSERT(MUTEX_HELD(&(ttoproc(tx))->p_lock)); 1155 1156 if (tsparmsp->ts_uprilim == TS_NOCHANGE) 1157 reqtsuprilim = tspp->ts_uprilim; 1158 else 1159 reqtsuprilim = tsparmsp->ts_uprilim; 1160 1161 if (tsparmsp->ts_upri == TS_NOCHANGE) 1162 reqtsupri = tspp->ts_upri; 1163 else 1164 reqtsupri = tsparmsp->ts_upri; 1165 1166 /* 1167 * Make sure the user priority doesn't exceed the upri limit. 1168 */ 1169 if (reqtsupri > reqtsuprilim) 1170 reqtsupri = reqtsuprilim; 1171 1172 /* 1173 * Basic permissions enforced by generic kernel code 1174 * for all classes require that a thread attempting 1175 * to change the scheduling parameters of a target 1176 * thread be privileged or have a real or effective 1177 * UID matching that of the target thread. We are not 1178 * called unless these basic permission checks have 1179 * already passed. The time-sharing class requires in 1180 * addition that the calling thread be privileged if it 1181 * is attempting to raise the upri limit above its current 1182 * value This may have been checked previously but if our 1183 * caller passed us a non-NULL credential pointer we assume 1184 * it hasn't and we check it here. 1185 */ 1186 if (reqpcredp != NULL && 1187 reqtsuprilim > tspp->ts_uprilim && 1188 secpolicy_setpriority(reqpcredp) != 0) 1189 return (EPERM); 1190 1191 /* 1192 * Set ts_nice to the nice value corresponding to the user 1193 * priority we are setting. Note that setting the nice field 1194 * of the parameter struct won't affect upri or nice. 1195 */ 1196 nice = NZERO - (reqtsupri * NZERO) / ts_maxupri; 1197 if (nice >= 2 * NZERO) 1198 nice = 2 * NZERO - 1; 1199 1200 thread_lock(tx); 1201 1202 tspp->ts_uprilim = reqtsuprilim; 1203 tspp->ts_upri = reqtsupri; 1204 TS_NEWUMDPRI(tspp); 1205 tspp->ts_nice = nice; 1206 1207 if ((tspp->ts_flags & TSKPRI) != 0) { 1208 thread_unlock(tx); 1209 return (0); 1210 } 1211 1212 tspp->ts_dispwait = 0; 1213 ts_change_priority(tx, tspp); 1214 thread_unlock(tx); 1215 return (0); 1216 } 1217 1218 1219 static int 1220 ia_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp) 1221 { 1222 tsproc_t *tspp = (tsproc_t *)tx->t_cldata; 1223 iaparms_t *iaparmsp = (iaparms_t *)parmsp; 1224 proc_t *p; 1225 pid_t pid, pgid, sid; 1226 pid_t on, off; 1227 struct stdata *stp; 1228 int sess_held; 1229 1230 /* 1231 * Handle user priority changes 1232 */ 1233 if (iaparmsp->ia_mode == IA_NOCHANGE) 1234 return (ts_parmsset(tx, parmsp, reqpcid, reqpcredp)); 1235 1236 /* 1237 * Check permissions for changing modes. 1238 */ 1239 1240 if (reqpcredp != NULL && !groupmember(IA_gid, reqpcredp) && 1241 secpolicy_setpriority(reqpcredp) != 0) { 1242 /* 1243 * Silently fail in case this is just a priocntl 1244 * call with upri and uprilim set to IA_NOCHANGE. 1245 */ 1246 return (0); 1247 } 1248 1249 ASSERT(MUTEX_HELD(&pidlock)); 1250 if ((p = ttoproc(tx)) == NULL) { 1251 return (0); 1252 } 1253 ASSERT(MUTEX_HELD(&p->p_lock)); 1254 if (p->p_stat == SIDL) { 1255 return (0); 1256 } 1257 pid = p->p_pid; 1258 sid = p->p_sessp->s_sid; 1259 pgid = p->p_pgrp; 1260 if (iaparmsp->ia_mode == IA_SET_INTERACTIVE) { 1261 /* 1262 * session leaders must be turned on now so all processes 1263 * in the group controlling the tty will be turned on or off. 1264 * if the ia_mode is off for the session leader, 1265 * ia_set_process_group will return without setting the 1266 * processes in the group controlling the tty on. 1267 */ 1268 thread_lock(tx); 1269 tspp->ts_flags |= TSIASET; 1270 thread_unlock(tx); 1271 } 1272 TTY_HOLD(p->p_sessp); 1273 sess_held = 1; 1274 if ((pid == sid) && (p->p_sessp->s_vp != NULL) && 1275 ((stp = p->p_sessp->s_vp->v_stream) != NULL)) { 1276 if ((stp->sd_pgidp != NULL) && (stp->sd_sidp != NULL)) { 1277 pgid = stp->sd_pgidp->pid_id; 1278 sess_held = 0; 1279 TTY_RELE(p->p_sessp); 1280 if (iaparmsp->ia_mode == 1281 IA_SET_INTERACTIVE) { 1282 off = 0; 1283 on = pgid; 1284 } else { 1285 off = pgid; 1286 on = 0; 1287 } 1288 TRACE_3(TR_FAC_IA, TR_ACTIVE_CHAIN, 1289 "active chain:pid %d gid %d %p", 1290 pid, pgid, p); 1291 ia_set_process_group(sid, off, on); 1292 } 1293 } 1294 if (sess_held) 1295 TTY_RELE(p->p_sessp); 1296 1297 thread_lock(tx); 1298 1299 if (iaparmsp->ia_mode == IA_SET_INTERACTIVE) { 1300 tspp->ts_flags |= TSIASET; 1301 tspp->ts_boost = ia_boost; 1302 } else { 1303 tspp->ts_flags &= ~TSIASET; 1304 tspp->ts_boost = -ia_boost; 1305 } 1306 thread_unlock(tx); 1307 1308 return (ts_parmsset(tx, parmsp, reqpcid, reqpcredp)); 1309 } 1310 1311 /* 1312 * Return the global scheduling priority that would be assigned 1313 * to a thread entering the time-sharing class with the ts_upri. 1314 */ 1315 static pri_t 1316 ts_globpri(kthread_t *t) 1317 { 1318 tsproc_t *tspp; 1319 pri_t tspri; 1320 1321 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 1322 tspp = (tsproc_t *)t->t_cldata; 1323 tspri = tsmedumdpri + tspp->ts_upri; 1324 if (tspri > ts_maxumdpri) 1325 tspri = ts_maxumdpri; 1326 else if (tspri < 0) 1327 tspri = 0; 1328 return (ts_dptbl[tspri].ts_globpri); 1329 } 1330 1331 /* 1332 * Arrange for thread to be placed in appropriate location 1333 * on dispatcher queue. 1334 * 1335 * This is called with the current thread in TS_ONPROC and locked. 1336 */ 1337 static void 1338 ts_preempt(kthread_t *t) 1339 { 1340 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1341 klwp_t *lwp; 1342 #ifdef KSLICE 1343 extern int kslice; 1344 #endif 1345 pri_t oldpri = t->t_pri; 1346 1347 ASSERT(t == curthread); 1348 ASSERT(THREAD_LOCK_HELD(curthread)); 1349 1350 /* 1351 * If preempted in the kernel, make sure the thread has 1352 * a kernel priority if needed. 1353 */ 1354 lwp = curthread->t_lwp; 1355 if (!(tspp->ts_flags & TSKPRI) && lwp != NULL && t->t_kpri_req) { 1356 tspp->ts_flags |= TSKPRI; 1357 THREAD_CHANGE_PRI(t, ts_kmdpris[0]); 1358 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1359 t->t_trapret = 1; /* so ts_trapret will run */ 1360 aston(t); 1361 } 1362 /* 1363 * If preempted in user-land mark the thread 1364 * as swappable because I know it isn't holding any locks. 1365 */ 1366 ASSERT(t->t_schedflag & TS_DONT_SWAP); 1367 if (lwp != NULL && lwp->lwp_state == LWP_USER) 1368 t->t_schedflag &= ~TS_DONT_SWAP; 1369 1370 /* 1371 * Check to see if we're doing "preemption control" here. If 1372 * we are, and if the user has requested that this thread not 1373 * be preempted, and if preemptions haven't been put off for 1374 * too long, let the preemption happen here but try to make 1375 * sure the thread is rescheduled as soon as possible. We do 1376 * this by putting it on the front of the highest priority run 1377 * queue in the TS class. If the preemption has been put off 1378 * for too long, clear the "nopreempt" bit and let the thread 1379 * be preempted. 1380 */ 1381 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 1382 if (tspp->ts_timeleft > -SC_MAX_TICKS) { 1383 DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t); 1384 if (!(tspp->ts_flags & TSKPRI)) { 1385 /* 1386 * If not already remembered, remember current 1387 * priority for restoration in ts_yield(). 1388 */ 1389 if (!(tspp->ts_flags & TSRESTORE)) { 1390 tspp->ts_scpri = t->t_pri; 1391 tspp->ts_flags |= TSRESTORE; 1392 } 1393 THREAD_CHANGE_PRI(t, ts_maxumdpri); 1394 t->t_schedflag |= TS_DONT_SWAP; 1395 } 1396 schedctl_set_yield(t, 1); 1397 setfrontdq(t); 1398 goto done; 1399 } else { 1400 if (tspp->ts_flags & TSRESTORE) { 1401 THREAD_CHANGE_PRI(t, tspp->ts_scpri); 1402 tspp->ts_flags &= ~TSRESTORE; 1403 } 1404 schedctl_set_nopreempt(t, 0); 1405 DTRACE_SCHED1(schedctl__preempt, kthread_t *, t); 1406 TNF_PROBE_2(schedctl_preempt, "schedctl TS ts_preempt", 1407 /* CSTYLED */, tnf_pid, pid, ttoproc(t)->p_pid, 1408 tnf_lwpid, lwpid, t->t_tid); 1409 /* 1410 * Fall through and be preempted below. 1411 */ 1412 } 1413 } 1414 1415 if ((tspp->ts_flags & (TSBACKQ|TSKPRI)) == TSBACKQ) { 1416 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1417 tspp->ts_dispwait = 0; 1418 tspp->ts_flags &= ~TSBACKQ; 1419 setbackdq(t); 1420 } else if ((tspp->ts_flags & (TSBACKQ|TSKPRI)) == (TSBACKQ|TSKPRI)) { 1421 tspp->ts_flags &= ~TSBACKQ; 1422 setbackdq(t); 1423 } else { 1424 #ifdef KSLICE 1425 if (kslice) 1426 setbackdq(t); 1427 else 1428 #endif 1429 setfrontdq(t); 1430 } 1431 1432 done: 1433 TRACE_2(TR_FAC_DISP, TR_PREEMPT, 1434 "preempt:tid %p old pri %d", t, oldpri); 1435 } 1436 1437 static void 1438 ts_setrun(kthread_t *t) 1439 { 1440 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1441 1442 ASSERT(THREAD_LOCK_HELD(t)); /* t should be in transition */ 1443 1444 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { 1445 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; 1446 TS_NEWUMDPRI(tspp); 1447 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1448 tspp->ts_dispwait = 0; 1449 if ((tspp->ts_flags & TSKPRI) == 0) { 1450 THREAD_CHANGE_PRI(t, 1451 ts_dptbl[tspp->ts_umdpri].ts_globpri); 1452 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1453 } 1454 } 1455 1456 tspp->ts_flags &= ~TSBACKQ; 1457 1458 if (tspp->ts_flags & TSIA) { 1459 if (tspp->ts_flags & TSIASET) 1460 setfrontdq(t); 1461 else 1462 setbackdq(t); 1463 } else { 1464 if (t->t_disp_time != lbolt) 1465 setbackdq(t); 1466 else 1467 setfrontdq(t); 1468 } 1469 } 1470 1471 1472 /* 1473 * Prepare thread for sleep. We reset the thread priority so it will 1474 * run at the kernel priority level when it wakes up. 1475 */ 1476 static void 1477 ts_sleep(kthread_t *t) 1478 { 1479 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1480 int flags; 1481 pri_t old_pri = t->t_pri; 1482 1483 ASSERT(t == curthread); 1484 ASSERT(THREAD_LOCK_HELD(t)); 1485 1486 flags = tspp->ts_flags; 1487 if (t->t_kpri_req) { 1488 tspp->ts_flags = flags | TSKPRI; 1489 THREAD_CHANGE_PRI(t, ts_kmdpris[0]); 1490 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1491 t->t_trapret = 1; /* so ts_trapret will run */ 1492 aston(t); 1493 } else if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { 1494 /* 1495 * If thread has blocked in the kernel (as opposed to 1496 * being merely preempted), recompute the user mode priority. 1497 */ 1498 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; 1499 TS_NEWUMDPRI(tspp); 1500 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1501 tspp->ts_dispwait = 0; 1502 1503 THREAD_CHANGE_PRI(curthread, 1504 ts_dptbl[tspp->ts_umdpri].ts_globpri); 1505 ASSERT(curthread->t_pri >= 0 && 1506 curthread->t_pri <= ts_maxglobpri); 1507 tspp->ts_flags = flags & ~TSKPRI; 1508 1509 if (DISP_MUST_SURRENDER(curthread)) 1510 cpu_surrender(curthread); 1511 } else if (flags & TSKPRI) { 1512 THREAD_CHANGE_PRI(curthread, 1513 ts_dptbl[tspp->ts_umdpri].ts_globpri); 1514 ASSERT(curthread->t_pri >= 0 && 1515 curthread->t_pri <= ts_maxglobpri); 1516 tspp->ts_flags = flags & ~TSKPRI; 1517 1518 if (DISP_MUST_SURRENDER(curthread)) 1519 cpu_surrender(curthread); 1520 } 1521 t->t_stime = lbolt; /* time stamp for the swapper */ 1522 TRACE_2(TR_FAC_DISP, TR_SLEEP, 1523 "sleep:tid %p old pri %d", t, old_pri); 1524 } 1525 1526 1527 /* 1528 * Return Values: 1529 * 1530 * -1 if the thread is loaded or is not eligible to be swapped in. 1531 * 1532 * effective priority of the specified thread based on swapout time 1533 * and size of process (epri >= 0 , epri <= SHRT_MAX). 1534 */ 1535 /* ARGSUSED */ 1536 static pri_t 1537 ts_swapin(kthread_t *t, int flags) 1538 { 1539 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1540 long epri = -1; 1541 proc_t *pp = ttoproc(t); 1542 1543 ASSERT(THREAD_LOCK_HELD(t)); 1544 1545 /* 1546 * We know that pri_t is a short. 1547 * Be sure not to overrun its range. 1548 */ 1549 if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) { 1550 time_t swapout_time; 1551 1552 swapout_time = (lbolt - t->t_stime) / hz; 1553 if (INHERITED(t) || (tspp->ts_flags & (TSKPRI | TSIASET))) 1554 epri = (long)DISP_PRIO(t) + swapout_time; 1555 else { 1556 /* 1557 * Threads which have been out for a long time, 1558 * have high user mode priority and are associated 1559 * with a small address space are more deserving 1560 */ 1561 epri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 1562 ASSERT(epri >= 0 && epri <= ts_maxumdpri); 1563 epri += swapout_time - pp->p_swrss / nz(maxpgio)/2; 1564 } 1565 /* 1566 * Scale epri so SHRT_MAX/2 represents zero priority. 1567 */ 1568 epri += SHRT_MAX/2; 1569 if (epri < 0) 1570 epri = 0; 1571 else if (epri > SHRT_MAX) 1572 epri = SHRT_MAX; 1573 } 1574 return ((pri_t)epri); 1575 } 1576 1577 /* 1578 * Return Values 1579 * -1 if the thread isn't loaded or is not eligible to be swapped out. 1580 * 1581 * effective priority of the specified thread based on if the swapper 1582 * is in softswap or hardswap mode. 1583 * 1584 * Softswap: Return a low effective priority for threads 1585 * sleeping for more than maxslp secs. 1586 * 1587 * Hardswap: Return an effective priority such that threads 1588 * which have been in memory for a while and are 1589 * associated with a small address space are swapped 1590 * in before others. 1591 * 1592 * (epri >= 0 , epri <= SHRT_MAX). 1593 */ 1594 time_t ts_minrun = 2; /* XXX - t_pri becomes 59 within 2 secs */ 1595 time_t ts_minslp = 2; /* min time on sleep queue for hardswap */ 1596 1597 static pri_t 1598 ts_swapout(kthread_t *t, int flags) 1599 { 1600 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1601 long epri = -1; 1602 proc_t *pp = ttoproc(t); 1603 time_t swapin_time; 1604 1605 ASSERT(THREAD_LOCK_HELD(t)); 1606 1607 if (INHERITED(t) || (tspp->ts_flags & (TSKPRI | TSIASET)) || 1608 (t->t_proc_flag & TP_LWPEXIT) || 1609 (t->t_state & (TS_ZOMB | TS_FREE | TS_STOPPED | TS_ONPROC)) || 1610 !(t->t_schedflag & TS_LOAD) || !SWAP_OK(t)) 1611 return (-1); 1612 1613 ASSERT(t->t_state & (TS_SLEEP | TS_RUN)); 1614 1615 /* 1616 * We know that pri_t is a short. 1617 * Be sure not to overrun its range. 1618 */ 1619 swapin_time = (lbolt - t->t_stime) / hz; 1620 if (flags == SOFTSWAP) { 1621 if (t->t_state == TS_SLEEP && swapin_time > maxslp) { 1622 epri = 0; 1623 } else { 1624 return ((pri_t)epri); 1625 } 1626 } else { 1627 pri_t pri; 1628 1629 if ((t->t_state == TS_SLEEP && swapin_time > ts_minslp) || 1630 (t->t_state == TS_RUN && swapin_time > ts_minrun)) { 1631 pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 1632 ASSERT(pri >= 0 && pri <= ts_maxumdpri); 1633 epri = swapin_time - 1634 (rm_asrss(pp->p_as) / nz(maxpgio)/2) - (long)pri; 1635 } else { 1636 return ((pri_t)epri); 1637 } 1638 } 1639 1640 /* 1641 * Scale epri so SHRT_MAX/2 represents zero priority. 1642 */ 1643 epri += SHRT_MAX/2; 1644 if (epri < 0) 1645 epri = 0; 1646 else if (epri > SHRT_MAX) 1647 epri = SHRT_MAX; 1648 1649 return ((pri_t)epri); 1650 } 1651 1652 /* 1653 * Check for time slice expiration. If time slice has expired 1654 * move thread to priority specified in tsdptbl for time slice expiration 1655 * and set runrun to cause preemption. 1656 */ 1657 1658 static void 1659 ts_tick(kthread_t *t) 1660 { 1661 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1662 klwp_t *lwp; 1663 pri_t oldpri = t->t_pri; 1664 1665 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 1666 1667 thread_lock(t); 1668 if ((tspp->ts_flags & TSKPRI) == 0) { 1669 if (--tspp->ts_timeleft <= 0) { 1670 pri_t new_pri; 1671 1672 /* 1673 * If we're doing preemption control and trying to 1674 * avoid preempting this thread, just note that 1675 * the thread should yield soon and let it keep 1676 * running (unless it's been a while). 1677 */ 1678 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 1679 if (tspp->ts_timeleft > -SC_MAX_TICKS) { 1680 DTRACE_SCHED1(schedctl__nopreempt, 1681 kthread_t *, t); 1682 schedctl_set_yield(t, 1); 1683 thread_unlock_nopreempt(t); 1684 return; 1685 } 1686 1687 TNF_PROBE_2(schedctl_failsafe, 1688 "schedctl TS ts_tick", /* CSTYLED */, 1689 tnf_pid, pid, ttoproc(t)->p_pid, 1690 tnf_lwpid, lwpid, t->t_tid); 1691 } 1692 tspp->ts_flags &= ~TSRESTORE; 1693 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp; 1694 TS_NEWUMDPRI(tspp); 1695 tspp->ts_dispwait = 0; 1696 new_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 1697 ASSERT(new_pri >= 0 && new_pri <= ts_maxglobpri); 1698 /* 1699 * When the priority of a thread is changed, 1700 * it may be necessary to adjust its position 1701 * on a sleep queue or dispatch queue. 1702 * The function thread_change_pri accomplishes 1703 * this. 1704 */ 1705 if (thread_change_pri(t, new_pri, 0)) { 1706 if ((t->t_schedflag & TS_LOAD) && 1707 (lwp = t->t_lwp) && 1708 lwp->lwp_state == LWP_USER) 1709 t->t_schedflag &= ~TS_DONT_SWAP; 1710 tspp->ts_timeleft = 1711 ts_dptbl[tspp->ts_cpupri].ts_quantum; 1712 } else { 1713 tspp->ts_flags |= TSBACKQ; 1714 cpu_surrender(t); 1715 } 1716 TRACE_2(TR_FAC_DISP, TR_TICK, 1717 "tick:tid %p old pri %d", t, oldpri); 1718 } else if (t->t_state == TS_ONPROC && 1719 t->t_pri < t->t_disp_queue->disp_maxrunpri) { 1720 tspp->ts_flags |= TSBACKQ; 1721 cpu_surrender(t); 1722 } 1723 } 1724 thread_unlock_nopreempt(t); /* clock thread can't be preempted */ 1725 } 1726 1727 1728 /* 1729 * If thread is currently at a kernel mode priority (has slept) 1730 * we assign it the appropriate user mode priority and time quantum 1731 * here. If we are lowering the thread's priority below that of 1732 * other runnable threads we will normally set runrun via cpu_surrender() to 1733 * cause preemption. 1734 */ 1735 static void 1736 ts_trapret(kthread_t *t) 1737 { 1738 tsproc_t *tspp = (tsproc_t *)t->t_cldata; 1739 cpu_t *cp = CPU; 1740 pri_t old_pri = curthread->t_pri; 1741 1742 ASSERT(THREAD_LOCK_HELD(t)); 1743 ASSERT(t == curthread); 1744 ASSERT(cp->cpu_dispthread == t); 1745 ASSERT(t->t_state == TS_ONPROC); 1746 1747 t->t_kpri_req = 0; 1748 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { 1749 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; 1750 TS_NEWUMDPRI(tspp); 1751 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 1752 tspp->ts_dispwait = 0; 1753 1754 /* 1755 * If thread has blocked in the kernel (as opposed to 1756 * being merely preempted), recompute the user mode priority. 1757 */ 1758 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri); 1759 cp->cpu_dispatch_pri = DISP_PRIO(t); 1760 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1761 tspp->ts_flags &= ~TSKPRI; 1762 1763 if (DISP_MUST_SURRENDER(t)) 1764 cpu_surrender(t); 1765 } else if (tspp->ts_flags & TSKPRI) { 1766 /* 1767 * If thread has blocked in the kernel (as opposed to 1768 * being merely preempted), recompute the user mode priority. 1769 */ 1770 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri); 1771 cp->cpu_dispatch_pri = DISP_PRIO(t); 1772 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1773 tspp->ts_flags &= ~TSKPRI; 1774 1775 if (DISP_MUST_SURRENDER(t)) 1776 cpu_surrender(t); 1777 } 1778 1779 /* 1780 * Swapout lwp if the swapper is waiting for this thread to 1781 * reach a safe point. 1782 */ 1783 if ((t->t_schedflag & TS_SWAPENQ) && !(tspp->ts_flags & TSIASET)) { 1784 thread_unlock(t); 1785 swapout_lwp(ttolwp(t)); 1786 thread_lock(t); 1787 } 1788 1789 TRACE_2(TR_FAC_DISP, TR_TRAPRET, 1790 "trapret:tid %p old pri %d", t, old_pri); 1791 } 1792 1793 1794 /* 1795 * Update the ts_dispwait values of all time sharing threads that 1796 * are currently runnable at a user mode priority and bump the priority 1797 * if ts_dispwait exceeds ts_maxwait. Called once per second via 1798 * timeout which we reset here. 1799 * 1800 * There are several lists of time sharing threads broken up by a hash on 1801 * the thread pointer. Each list has its own lock. This avoids blocking 1802 * all ts_enterclass, ts_fork, and ts_exitclass operations while ts_update 1803 * runs. ts_update traverses each list in turn. 1804 * 1805 * If multiple threads have their priorities updated to the same value, 1806 * the system implicitly favors the one that is updated first (since it 1807 * winds up first on the run queue). To avoid this unfairness, the 1808 * traversal of threads starts at the list indicated by a marker. When 1809 * threads in more than one list have their priorities updated, the marker 1810 * is moved. This changes the order the threads will be placed on the run 1811 * queue the next time ts_update is called and preserves fairness over the 1812 * long run. The marker doesn't need to be protected by a lock since it's 1813 * only accessed by ts_update, which is inherently single-threaded (only 1814 * one instance can be running at a time). 1815 */ 1816 static void 1817 ts_update(void *arg) 1818 { 1819 int i; 1820 int new_marker = -1; 1821 static int ts_update_marker; 1822 1823 /* 1824 * Start with the ts_update_marker list, then do the rest. 1825 */ 1826 i = ts_update_marker; 1827 do { 1828 /* 1829 * If this is the first list after the current marker to 1830 * have threads with priorities updated, advance the marker 1831 * to this list for the next time ts_update runs. 1832 */ 1833 if (ts_update_list(i) && new_marker == -1 && 1834 i != ts_update_marker) { 1835 new_marker = i; 1836 } 1837 } while ((i = TS_LIST_NEXT(i)) != ts_update_marker); 1838 1839 /* advance marker for next ts_update call */ 1840 if (new_marker != -1) 1841 ts_update_marker = new_marker; 1842 1843 (void) timeout(ts_update, arg, hz); 1844 } 1845 1846 /* 1847 * Updates priority for a list of threads. Returns 1 if the priority of 1848 * one of the threads was actually updated, 0 if none were for various 1849 * reasons (thread is no longer in the TS or IA class, isn't runnable, 1850 * hasn't waited long enough, has the preemption control no-preempt bit 1851 * set, etc.) 1852 */ 1853 static int 1854 ts_update_list(int i) 1855 { 1856 tsproc_t *tspp; 1857 kthread_t *tx; 1858 int updated = 0; 1859 1860 mutex_enter(&ts_list_lock[i]); 1861 for (tspp = ts_plisthead[i].ts_next; tspp != &ts_plisthead[i]; 1862 tspp = tspp->ts_next) { 1863 tx = tspp->ts_tp; 1864 /* 1865 * Lock the thread and verify state. 1866 */ 1867 thread_lock(tx); 1868 /* 1869 * Skip the thread if it is no longer in the TS (or IA) class. 1870 */ 1871 if (tx->t_clfuncs != &ts_classfuncs.thread && 1872 tx->t_clfuncs != &ia_classfuncs.thread) 1873 goto next; 1874 tspp->ts_dispwait++; 1875 if ((tspp->ts_flags & TSKPRI) != 0) 1876 goto next; 1877 if (tspp->ts_dispwait <= ts_dptbl[tspp->ts_umdpri].ts_maxwait) 1878 goto next; 1879 if (tx->t_schedctl && schedctl_get_nopreempt(tx)) 1880 goto next; 1881 if (tx->t_state != TS_RUN && (tx->t_state != TS_SLEEP || 1882 !ts_sleep_promote)) { 1883 /* make next syscall/trap do CL_TRAPRET */ 1884 tx->t_trapret = 1; 1885 aston(tx); 1886 goto next; 1887 } 1888 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_lwait; 1889 TS_NEWUMDPRI(tspp); 1890 tspp->ts_dispwait = 0; 1891 updated = 1; 1892 1893 /* 1894 * Only dequeue it if needs to move; otherwise it should 1895 * just round-robin here. 1896 */ 1897 if (tx->t_pri != ts_dptbl[tspp->ts_umdpri].ts_globpri) { 1898 pri_t oldpri = tx->t_pri; 1899 ts_change_priority(tx, tspp); 1900 TRACE_2(TR_FAC_DISP, TR_UPDATE, 1901 "update:tid %p old pri %d", tx, oldpri); 1902 } 1903 next: 1904 thread_unlock(tx); 1905 } 1906 mutex_exit(&ts_list_lock[i]); 1907 1908 return (updated); 1909 } 1910 1911 1912 /* 1913 * Processes waking up go to the back of their queue. We don't 1914 * need to assign a time quantum here because thread is still 1915 * at a kernel mode priority and the time slicing is not done 1916 * for threads running in the kernel after sleeping. The proper 1917 * time quantum will be assigned by ts_trapret before the thread 1918 * returns to user mode. 1919 */ 1920 static void 1921 ts_wakeup(kthread_t *t) 1922 { 1923 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1924 1925 ASSERT(THREAD_LOCK_HELD(t)); 1926 1927 t->t_stime = lbolt; /* time stamp for the swapper */ 1928 1929 if (tspp->ts_flags & TSKPRI) { 1930 tspp->ts_flags &= ~TSBACKQ; 1931 if (tspp->ts_flags & TSIASET) 1932 setfrontdq(t); 1933 else 1934 setbackdq(t); 1935 } else if (t->t_kpri_req) { 1936 /* 1937 * Give thread a priority boost if we were asked. 1938 */ 1939 tspp->ts_flags |= TSKPRI; 1940 THREAD_CHANGE_PRI(t, ts_kmdpris[0]); 1941 setbackdq(t); 1942 t->t_trapret = 1; /* so that ts_trapret will run */ 1943 aston(t); 1944 } else { 1945 if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { 1946 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; 1947 TS_NEWUMDPRI(tspp); 1948 tspp->ts_timeleft = 1949 ts_dptbl[tspp->ts_cpupri].ts_quantum; 1950 tspp->ts_dispwait = 0; 1951 THREAD_CHANGE_PRI(t, 1952 ts_dptbl[tspp->ts_umdpri].ts_globpri); 1953 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 1954 } 1955 1956 tspp->ts_flags &= ~TSBACKQ; 1957 1958 if (tspp->ts_flags & TSIA) { 1959 if (tspp->ts_flags & TSIASET) 1960 setfrontdq(t); 1961 else 1962 setbackdq(t); 1963 } else { 1964 if (t->t_disp_time != lbolt) 1965 setbackdq(t); 1966 else 1967 setfrontdq(t); 1968 } 1969 } 1970 } 1971 1972 1973 /* 1974 * When a thread yields, put it on the back of the run queue. 1975 */ 1976 static void 1977 ts_yield(kthread_t *t) 1978 { 1979 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 1980 1981 ASSERT(t == curthread); 1982 ASSERT(THREAD_LOCK_HELD(t)); 1983 1984 /* 1985 * Clear the preemption control "yield" bit since the user is 1986 * doing a yield. 1987 */ 1988 if (t->t_schedctl) 1989 schedctl_set_yield(t, 0); 1990 /* 1991 * If ts_preempt() artifically increased the thread's priority 1992 * to avoid preemption, restore the original priority now. 1993 */ 1994 if (tspp->ts_flags & TSRESTORE) { 1995 THREAD_CHANGE_PRI(t, tspp->ts_scpri); 1996 tspp->ts_flags &= ~TSRESTORE; 1997 } 1998 if (tspp->ts_timeleft <= 0) { 1999 /* 2000 * Time slice was artificially extended to avoid 2001 * preemption, so pretend we're preempting it now. 2002 */ 2003 DTRACE_SCHED1(schedctl__yield, int, -tspp->ts_timeleft); 2004 tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp; 2005 TS_NEWUMDPRI(tspp); 2006 tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; 2007 tspp->ts_dispwait = 0; 2008 THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri); 2009 ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); 2010 } 2011 tspp->ts_flags &= ~TSBACKQ; 2012 setbackdq(t); 2013 } 2014 2015 2016 /* 2017 * Increment the nice value of the specified thread by incr and 2018 * return the new value in *retvalp. 2019 */ 2020 static int 2021 ts_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp) 2022 { 2023 int newnice; 2024 tsproc_t *tspp = (tsproc_t *)(t->t_cldata); 2025 tsparms_t tsparms; 2026 2027 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 2028 2029 /* If there's no change to priority, just return current setting */ 2030 if (incr == 0) { 2031 if (retvalp) { 2032 *retvalp = tspp->ts_nice - NZERO; 2033 } 2034 return (0); 2035 } 2036 2037 if ((incr < 0 || incr > 2 * NZERO) && 2038 secpolicy_setpriority(cr) != 0) 2039 return (EPERM); 2040 2041 /* 2042 * Specifying a nice increment greater than the upper limit of 2043 * 2 * NZERO - 1 will result in the thread's nice value being 2044 * set to the upper limit. We check for this before computing 2045 * the new value because otherwise we could get overflow 2046 * if a privileged process specified some ridiculous increment. 2047 */ 2048 if (incr > 2 * NZERO - 1) 2049 incr = 2 * NZERO - 1; 2050 2051 newnice = tspp->ts_nice + incr; 2052 if (newnice >= 2 * NZERO) 2053 newnice = 2 * NZERO - 1; 2054 else if (newnice < 0) 2055 newnice = 0; 2056 2057 tsparms.ts_uprilim = tsparms.ts_upri = 2058 -((newnice - NZERO) * ts_maxupri) / NZERO; 2059 /* 2060 * Reset the uprilim and upri values of the thread. 2061 * Call ts_parmsset even if thread is interactive since we're 2062 * not changing mode. 2063 */ 2064 (void) ts_parmsset(t, (void *)&tsparms, (id_t)0, (cred_t *)NULL); 2065 2066 /* 2067 * Although ts_parmsset already reset ts_nice it may 2068 * not have been set to precisely the value calculated above 2069 * because ts_parmsset determines the nice value from the 2070 * user priority and we may have truncated during the integer 2071 * conversion from nice value to user priority and back. 2072 * We reset ts_nice to the value we calculated above. 2073 */ 2074 tspp->ts_nice = (char)newnice; 2075 2076 if (retvalp) 2077 *retvalp = newnice - NZERO; 2078 return (0); 2079 } 2080 2081 2082 /* 2083 * ia_set_process_group marks foreground processes as interactive 2084 * and background processes as non-interactive iff the session 2085 * leader is interactive. This routine is called from two places: 2086 * strioctl:SPGRP when a new process group gets 2087 * control of the tty. 2088 * ia_parmsset-when the process in question is a session leader. 2089 * ia_set_process_group assumes that pidlock is held by the caller, 2090 * either strioctl or priocntlsys. If the caller is priocntlsys 2091 * (via ia_parmsset) then the p_lock of the session leader is held 2092 * and the code needs to be careful about acquiring other p_locks. 2093 */ 2094 static void 2095 ia_set_process_group(pid_t sid, pid_t bg_pgid, pid_t fg_pgid) 2096 { 2097 proc_t *leader, *fg, *bg; 2098 tsproc_t *tspp; 2099 kthread_t *tx; 2100 int plocked = 0; 2101 2102 ASSERT(MUTEX_HELD(&pidlock)); 2103 2104 /* 2105 * see if the session leader is interactive AND 2106 * if it is currently "on" AND controlling a tty 2107 * iff it is then make the processes in the foreground 2108 * group interactive and the processes in the background 2109 * group non-interactive. 2110 */ 2111 if ((leader = (proc_t *)prfind(sid)) == NULL) { 2112 return; 2113 } 2114 if (leader->p_stat == SIDL) { 2115 return; 2116 } 2117 if ((tx = proctot(leader)) == NULL) { 2118 return; 2119 } 2120 /* 2121 * XXX do all the threads in the leader 2122 */ 2123 if (tx->t_cid != ia_cid) { 2124 return; 2125 } 2126 tspp = tx->t_cldata; 2127 /* 2128 * session leaders that are not interactive need not have 2129 * any processing done for them. They are typically shells 2130 * that do not have focus and are changing the process group 2131 * attatched to the tty, e.g. a process that is exiting 2132 */ 2133 TTY_HOLD(leader->p_sessp); 2134 if (!(tspp->ts_flags & TSIASET) || 2135 (leader->p_sessp->s_vp == NULL) || 2136 (leader->p_sessp->s_vp->v_stream == NULL)) { 2137 TTY_RELE(leader->p_sessp); 2138 return; 2139 } 2140 TTY_RELE(leader->p_sessp); 2141 2142 /* 2143 * If we're already holding the leader's p_lock, we should use 2144 * mutex_tryenter instead of mutex_enter to avoid deadlocks from 2145 * lock ordering violations. 2146 */ 2147 if (mutex_owned(&leader->p_lock)) 2148 plocked = 1; 2149 2150 if (fg_pgid == 0) 2151 goto skip; 2152 /* 2153 * now look for all processes in the foreground group and 2154 * make them interactive 2155 */ 2156 for (fg = (proc_t *)pgfind(fg_pgid); fg != NULL; fg = fg->p_pglink) { 2157 /* 2158 * if the process is SIDL it's begin forked, ignore it 2159 */ 2160 if (fg->p_stat == SIDL) { 2161 continue; 2162 } 2163 /* 2164 * sesssion leaders must be turned on/off explicitly 2165 * not implicitly as happens to other members of 2166 * the process group. 2167 */ 2168 if (fg->p_pid == fg->p_sessp->s_sid) { 2169 continue; 2170 } 2171 2172 TRACE_1(TR_FAC_IA, TR_GROUP_ON, 2173 "group on:proc %p", fg); 2174 2175 if (plocked) { 2176 if (mutex_tryenter(&fg->p_lock) == 0) 2177 continue; 2178 } else { 2179 mutex_enter(&fg->p_lock); 2180 } 2181 2182 if ((tx = proctot(fg)) == NULL) { 2183 mutex_exit(&fg->p_lock); 2184 continue; 2185 } 2186 do { 2187 thread_lock(tx); 2188 /* 2189 * if this thread is not interactive continue 2190 */ 2191 if (tx->t_cid != ia_cid) { 2192 thread_unlock(tx); 2193 continue; 2194 } 2195 tspp = tx->t_cldata; 2196 tspp->ts_flags |= TSIASET; 2197 tspp->ts_boost = ia_boost; 2198 TS_NEWUMDPRI(tspp); 2199 if ((tspp->ts_flags & TSKPRI) != 0) { 2200 thread_unlock(tx); 2201 continue; 2202 } 2203 tspp->ts_dispwait = 0; 2204 ts_change_priority(tx, tspp); 2205 thread_unlock(tx); 2206 } while ((tx = tx->t_forw) != fg->p_tlist); 2207 mutex_exit(&fg->p_lock); 2208 } 2209 skip: 2210 if (bg_pgid == 0) 2211 return; 2212 for (bg = (proc_t *)pgfind(bg_pgid); bg != NULL; bg = bg->p_pglink) { 2213 if (bg->p_stat == SIDL) { 2214 continue; 2215 } 2216 /* 2217 * sesssion leaders must be turned off explicitly 2218 * not implicitly as happens to other members of 2219 * the process group. 2220 */ 2221 if (bg->p_pid == bg->p_sessp->s_sid) { 2222 continue; 2223 } 2224 2225 TRACE_1(TR_FAC_IA, TR_GROUP_OFF, 2226 "group off:proc %p", bg); 2227 2228 if (plocked) { 2229 if (mutex_tryenter(&bg->p_lock) == 0) 2230 continue; 2231 } else { 2232 mutex_enter(&bg->p_lock); 2233 } 2234 2235 if ((tx = proctot(bg)) == NULL) { 2236 mutex_exit(&bg->p_lock); 2237 continue; 2238 } 2239 do { 2240 thread_lock(tx); 2241 /* 2242 * if this thread is not interactive continue 2243 */ 2244 if (tx->t_cid != ia_cid) { 2245 thread_unlock(tx); 2246 continue; 2247 } 2248 tspp = tx->t_cldata; 2249 tspp->ts_flags &= ~TSIASET; 2250 tspp->ts_boost = -ia_boost; 2251 TS_NEWUMDPRI(tspp); 2252 if ((tspp->ts_flags & TSKPRI) != 0) { 2253 thread_unlock(tx); 2254 continue; 2255 } 2256 2257 tspp->ts_dispwait = 0; 2258 ts_change_priority(tx, tspp); 2259 thread_unlock(tx); 2260 } while ((tx = tx->t_forw) != bg->p_tlist); 2261 mutex_exit(&bg->p_lock); 2262 } 2263 } 2264 2265 2266 static void 2267 ts_change_priority(kthread_t *t, tsproc_t *tspp) 2268 { 2269 pri_t new_pri; 2270 2271 ASSERT(THREAD_LOCK_HELD(t)); 2272 new_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; 2273 ASSERT(new_pri >= 0 && new_pri <= ts_maxglobpri); 2274 tspp->ts_flags &= ~TSRESTORE; 2275 if (t == curthread || t->t_state == TS_ONPROC) { 2276 /* curthread is always onproc */ 2277 cpu_t *cp = t->t_disp_queue->disp_cpu; 2278 THREAD_CHANGE_PRI(t, new_pri); 2279 if (t == cp->cpu_dispthread) 2280 cp->cpu_dispatch_pri = DISP_PRIO(t); 2281 if (DISP_MUST_SURRENDER(t)) { 2282 tspp->ts_flags |= TSBACKQ; 2283 cpu_surrender(t); 2284 } else { 2285 tspp->ts_timeleft = 2286 ts_dptbl[tspp->ts_cpupri].ts_quantum; 2287 } 2288 } else { 2289 int frontq; 2290 2291 frontq = (tspp->ts_flags & TSIASET) != 0; 2292 /* 2293 * When the priority of a thread is changed, 2294 * it may be necessary to adjust its position 2295 * on a sleep queue or dispatch queue. 2296 * The function thread_change_pri accomplishes 2297 * this. 2298 */ 2299 if (thread_change_pri(t, new_pri, frontq)) { 2300 /* 2301 * The thread was on a run queue. Reset 2302 * its CPU timeleft from the quantum 2303 * associated with the new priority. 2304 */ 2305 tspp->ts_timeleft = 2306 ts_dptbl[tspp->ts_cpupri].ts_quantum; 2307 } else { 2308 tspp->ts_flags |= TSBACKQ; 2309 } 2310 } 2311 } 2312 2313 static int 2314 ts_alloc(void **p, int flag) 2315 { 2316 void *bufp; 2317 bufp = kmem_alloc(sizeof (tsproc_t), flag); 2318 if (bufp == NULL) { 2319 return (ENOMEM); 2320 } else { 2321 *p = bufp; 2322 return (0); 2323 } 2324 } 2325 2326 static void 2327 ts_free(void *bufp) 2328 { 2329 if (bufp) 2330 kmem_free(bufp, sizeof (tsproc_t)); 2331 } 2332