1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/sysmacros.h> 31 #include <sys/signal.h> 32 #include <sys/stack.h> 33 #include <sys/pcb.h> 34 #include <sys/user.h> 35 #include <sys/systm.h> 36 #include <sys/sysinfo.h> 37 #include <sys/var.h> 38 #include <sys/errno.h> 39 #include <sys/cmn_err.h> 40 #include <sys/cred.h> 41 #include <sys/resource.h> 42 #include <sys/task.h> 43 #include <sys/project.h> 44 #include <sys/proc.h> 45 #include <sys/debug.h> 46 #include <sys/inline.h> 47 #include <sys/disp.h> 48 #include <sys/class.h> 49 #include <vm/seg_kmem.h> 50 #include <vm/seg_kp.h> 51 #include <sys/machlock.h> 52 #include <sys/kmem.h> 53 #include <sys/varargs.h> 54 #include <sys/turnstile.h> 55 #include <sys/poll.h> 56 #include <sys/vtrace.h> 57 #include <sys/callb.h> 58 #include <c2/audit.h> 59 #include <sys/tnf.h> 60 #include <sys/sobject.h> 61 #include <sys/cpupart.h> 62 #include <sys/pset.h> 63 #include <sys/door.h> 64 #include <sys/spl.h> 65 #include <sys/copyops.h> 66 #include <sys/rctl.h> 67 #include <sys/brand.h> 68 #include <sys/pool.h> 69 #include <sys/zone.h> 70 #include <sys/tsol/label.h> 71 #include <sys/tsol/tndb.h> 72 #include <sys/cpc_impl.h> 73 #include <sys/sdt.h> 74 #include <sys/reboot.h> 75 #include <sys/kdi.h> 76 77 struct kmem_cache *thread_cache; /* cache of free threads */ 78 struct kmem_cache *lwp_cache; /* cache of free lwps */ 79 struct kmem_cache *turnstile_cache; /* cache of free turnstiles */ 80 81 /* 82 * allthreads is only for use by kmem_readers. All kernel loops can use 83 * the current thread as a start/end point. 84 */ 85 static kthread_t *allthreads = &t0; /* circular list of all threads */ 86 87 static kcondvar_t reaper_cv; /* synchronization var */ 88 kthread_t *thread_deathrow; /* circular list of reapable threads */ 89 kthread_t *lwp_deathrow; /* circular list of reapable threads */ 90 kmutex_t reaplock; /* protects lwp and thread deathrows */ 91 kmutex_t thread_free_lock; /* protects clock from reaper */ 92 int thread_reapcnt = 0; /* number of threads on deathrow */ 93 int lwp_reapcnt = 0; /* number of lwps on deathrow */ 94 int reaplimit = 16; /* delay reaping until reaplimit */ 95 96 extern int nthread; 97 98 id_t syscid; /* system scheduling class ID */ 99 void *segkp_thread; /* cookie for segkp pool */ 100 101 int lwp_cache_sz = 32; 102 int t_cache_sz = 8; 103 static kt_did_t next_t_id = 1; 104 105 /* 106 * Min/Max stack sizes for stack size parameters 107 */ 108 #define MAX_STKSIZE (32 * DEFAULTSTKSZ) 109 #define MIN_STKSIZE DEFAULTSTKSZ 110 111 /* 112 * default_stksize overrides lwp_default_stksize if it is set. 113 */ 114 int default_stksize; 115 int lwp_default_stksize; 116 117 static zone_key_t zone_thread_key; 118 119 /* 120 * forward declarations for internal thread specific data (tsd) 121 */ 122 static void *tsd_realloc(void *, size_t, size_t); 123 124 /*ARGSUSED*/ 125 static int 126 turnstile_constructor(void *buf, void *cdrarg, int kmflags) 127 { 128 bzero(buf, sizeof (turnstile_t)); 129 return (0); 130 } 131 132 /*ARGSUSED*/ 133 static void 134 turnstile_destructor(void *buf, void *cdrarg) 135 { 136 turnstile_t *ts = buf; 137 138 ASSERT(ts->ts_free == NULL); 139 ASSERT(ts->ts_waiters == 0); 140 ASSERT(ts->ts_inheritor == NULL); 141 ASSERT(ts->ts_sleepq[0].sq_first == NULL); 142 ASSERT(ts->ts_sleepq[1].sq_first == NULL); 143 } 144 145 void 146 thread_init(void) 147 { 148 kthread_t *tp; 149 extern char sys_name[]; 150 extern void idle(); 151 struct cpu *cpu = CPU; 152 153 mutex_init(&reaplock, NULL, MUTEX_SPIN, (void *)ipltospl(DISP_LEVEL)); 154 155 #if defined(__i386) || defined(__amd64) 156 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 157 PTR24_ALIGN, NULL, NULL, NULL, NULL, NULL, 0); 158 159 /* 160 * "struct _klwp" includes a "struct pcb", which includes a 161 * "struct fpu", which needs to be 16-byte aligned on amd64 162 * (and even on i386 for fxsave/fxrstor). 163 */ 164 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 165 16, NULL, NULL, NULL, NULL, NULL, 0); 166 #else 167 /* 168 * Allocate thread structures from static_arena. This prevents 169 * issues where a thread tries to relocate its own thread 170 * structure and touches it after the mapping has been suspended. 171 */ 172 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 173 PTR24_ALIGN, NULL, NULL, NULL, NULL, static_arena, 0); 174 175 lwp_stk_cache_init(); 176 177 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 178 0, NULL, NULL, NULL, NULL, NULL, 0); 179 #endif 180 181 turnstile_cache = kmem_cache_create("turnstile_cache", 182 sizeof (turnstile_t), 0, 183 turnstile_constructor, turnstile_destructor, NULL, NULL, NULL, 0); 184 185 label_init(); 186 cred_init(); 187 188 rctl_init(); 189 project_init(); 190 brand_init(); 191 zone_init(); 192 task_init(); 193 tcache_init(); 194 pool_init(); 195 196 curthread->t_ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 197 198 /* 199 * Originally, we had two parameters to set default stack 200 * size: one for lwp's (lwp_default_stksize), and one for 201 * kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz). 202 * Now we have a third parameter that overrides both if it is 203 * set to a legal stack size, called default_stksize. 204 */ 205 206 if (default_stksize == 0) { 207 default_stksize = DEFAULTSTKSZ; 208 } else if (default_stksize % PAGESIZE != 0 || 209 default_stksize > MAX_STKSIZE || 210 default_stksize < MIN_STKSIZE) { 211 cmn_err(CE_WARN, "Illegal stack size. Using %d", 212 (int)DEFAULTSTKSZ); 213 default_stksize = DEFAULTSTKSZ; 214 } else { 215 lwp_default_stksize = default_stksize; 216 } 217 218 if (lwp_default_stksize == 0) { 219 lwp_default_stksize = default_stksize; 220 } else if (lwp_default_stksize % PAGESIZE != 0 || 221 lwp_default_stksize > MAX_STKSIZE || 222 lwp_default_stksize < MIN_STKSIZE) { 223 cmn_err(CE_WARN, "Illegal stack size. Using %d", 224 default_stksize); 225 lwp_default_stksize = default_stksize; 226 } 227 228 segkp_lwp = segkp_cache_init(segkp, lwp_cache_sz, 229 lwp_default_stksize, 230 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED)); 231 232 segkp_thread = segkp_cache_init(segkp, t_cache_sz, 233 default_stksize, KPD_HASREDZONE | KPD_LOCKED | KPD_NO_ANON); 234 235 (void) getcid(sys_name, &syscid); 236 curthread->t_cid = syscid; /* current thread is t0 */ 237 238 /* 239 * Set up the first CPU's idle thread. 240 * It runs whenever the CPU has nothing worthwhile to do. 241 */ 242 tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_STOPPED, -1); 243 cpu->cpu_idle_thread = tp; 244 tp->t_preempt = 1; 245 tp->t_disp_queue = cpu->cpu_disp; 246 ASSERT(tp->t_disp_queue != NULL); 247 tp->t_bound_cpu = cpu; 248 tp->t_affinitycnt = 1; 249 250 /* 251 * Registering a thread in the callback table is usually 252 * done in the initialization code of the thread. In this 253 * case, we do it right after thread creation to avoid 254 * blocking idle thread while registering itself. It also 255 * avoids the possibility of reregistration in case a CPU 256 * restarts its idle thread. 257 */ 258 CALLB_CPR_INIT_SAFE(tp, "idle"); 259 260 /* 261 * Finish initializing the kernel memory allocator now that 262 * thread_create() is available. 263 */ 264 kmem_thread_init(); 265 266 if (boothowto & RB_DEBUG) 267 kdi_dvec_thravail(); 268 } 269 270 /* 271 * Create a thread. 272 * 273 * thread_create() blocks for memory if necessary. It never fails. 274 * 275 * If stk is NULL, the thread is created at the base of the stack 276 * and cannot be swapped. 277 */ 278 kthread_t * 279 thread_create( 280 caddr_t stk, 281 size_t stksize, 282 void (*proc)(), 283 void *arg, 284 size_t len, 285 proc_t *pp, 286 int state, 287 pri_t pri) 288 { 289 kthread_t *t; 290 extern struct classfuncs sys_classfuncs; 291 turnstile_t *ts; 292 293 /* 294 * Every thread keeps a turnstile around in case it needs to block. 295 * The only reason the turnstile is not simply part of the thread 296 * structure is that we may have to break the association whenever 297 * more than one thread blocks on a given synchronization object. 298 * From a memory-management standpoint, turnstiles are like the 299 * "attached mblks" that hang off dblks in the streams allocator. 300 */ 301 ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 302 303 if (stk == NULL) { 304 /* 305 * alloc both thread and stack in segkp chunk 306 */ 307 308 if (stksize < default_stksize) 309 stksize = default_stksize; 310 311 if (stksize == default_stksize) { 312 stk = (caddr_t)segkp_cache_get(segkp_thread); 313 } else { 314 stksize = roundup(stksize, PAGESIZE); 315 stk = (caddr_t)segkp_get(segkp, stksize, 316 (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED)); 317 } 318 319 ASSERT(stk != NULL); 320 321 /* 322 * The machine-dependent mutex code may require that 323 * thread pointers (since they may be used for mutex owner 324 * fields) have certain alignment requirements. 325 * PTR24_ALIGN is the size of the alignment quanta. 326 * XXX - assumes stack grows toward low addresses. 327 */ 328 if (stksize <= sizeof (kthread_t) + PTR24_ALIGN) 329 cmn_err(CE_PANIC, "thread_create: proposed stack size" 330 " too small to hold thread."); 331 #ifdef STACK_GROWTH_DOWN 332 stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1); 333 stksize &= -PTR24_ALIGN; /* make thread aligned */ 334 t = (kthread_t *)(stk + stksize); 335 bzero(t, sizeof (kthread_t)); 336 #ifdef C2_AUDIT 337 if (audit_active) 338 audit_thread_create(t); 339 #endif 340 t->t_stk = stk + stksize; 341 t->t_stkbase = stk; 342 #else /* stack grows to larger addresses */ 343 stksize -= SA(sizeof (kthread_t)); 344 t = (kthread_t *)(stk); 345 bzero(t, sizeof (kthread_t)); 346 t->t_stk = stk + sizeof (kthread_t); 347 t->t_stkbase = stk + stksize + sizeof (kthread_t); 348 #endif /* STACK_GROWTH_DOWN */ 349 t->t_flag |= T_TALLOCSTK; 350 t->t_swap = stk; 351 } else { 352 t = kmem_cache_alloc(thread_cache, KM_SLEEP); 353 bzero(t, sizeof (kthread_t)); 354 ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0); 355 #ifdef C2_AUDIT 356 if (audit_active) 357 audit_thread_create(t); 358 #endif 359 /* 360 * Initialize t_stk to the kernel stack pointer to use 361 * upon entry to the kernel 362 */ 363 #ifdef STACK_GROWTH_DOWN 364 t->t_stk = stk + stksize; 365 t->t_stkbase = stk; 366 #else 367 t->t_stk = stk; /* 3b2-like */ 368 t->t_stkbase = stk + stksize; 369 #endif /* STACK_GROWTH_DOWN */ 370 } 371 372 /* set default stack flag */ 373 if (stksize == lwp_default_stksize) 374 t->t_flag |= T_DFLTSTK; 375 376 t->t_ts = ts; 377 378 /* 379 * p_cred could be NULL if it thread_create is called before cred_init 380 * is called in main. 381 */ 382 mutex_enter(&pp->p_crlock); 383 if (pp->p_cred) 384 crhold(t->t_cred = pp->p_cred); 385 mutex_exit(&pp->p_crlock); 386 t->t_start = gethrestime_sec(); 387 t->t_startpc = proc; 388 t->t_procp = pp; 389 t->t_clfuncs = &sys_classfuncs.thread; 390 t->t_cid = syscid; 391 t->t_pri = pri; 392 t->t_stime = lbolt; 393 t->t_schedflag = TS_LOAD | TS_DONT_SWAP; 394 t->t_bind_cpu = PBIND_NONE; 395 t->t_bind_pset = PS_NONE; 396 t->t_plockp = &pp->p_lock; 397 t->t_copyops = NULL; 398 t->t_taskq = NULL; 399 t->t_anttime = 0; 400 t->t_hatdepth = 0; 401 402 t->t_dtrace_vtime = 1; /* assure vtimestamp is always non-zero */ 403 404 CPU_STATS_ADDQ(CPU, sys, nthreads, 1); 405 #ifndef NPROBE 406 /* Kernel probe */ 407 tnf_thread_create(t); 408 #endif /* NPROBE */ 409 LOCK_INIT_CLEAR(&t->t_lock); 410 411 /* 412 * Callers who give us a NULL proc must do their own 413 * stack initialization. e.g. lwp_create() 414 */ 415 if (proc != NULL) { 416 t->t_stk = thread_stk_init(t->t_stk); 417 thread_load(t, proc, arg, len); 418 } 419 420 /* 421 * Put a hold on project0. If this thread is actually in a 422 * different project, then t_proj will be changed later in 423 * lwp_create(). All kernel-only threads must be in project 0. 424 */ 425 t->t_proj = project_hold(proj0p); 426 427 lgrp_affinity_init(&t->t_lgrp_affinity); 428 429 mutex_enter(&pidlock); 430 nthread++; 431 t->t_did = next_t_id++; 432 t->t_prev = curthread->t_prev; 433 t->t_next = curthread; 434 435 /* 436 * Add the thread to the list of all threads, and initialize 437 * its t_cpu pointer. We need to block preemption since 438 * cpu_offline walks the thread list looking for threads 439 * with t_cpu pointing to the CPU being offlined. We want 440 * to make sure that the list is consistent and that if t_cpu 441 * is set, the thread is on the list. 442 */ 443 kpreempt_disable(); 444 curthread->t_prev->t_next = t; 445 curthread->t_prev = t; 446 447 /* 448 * Threads should never have a NULL t_cpu pointer so assign it 449 * here. If the thread is being created with state TS_RUN a 450 * better CPU may be chosen when it is placed on the run queue. 451 * 452 * We need to keep kernel preemption disabled when setting all 453 * three fields to keep them in sync. Also, always create in 454 * the default partition since that's where kernel threads go 455 * (if this isn't a kernel thread, t_cpupart will be changed 456 * in lwp_create before setting the thread runnable). 457 */ 458 t->t_cpupart = &cp_default; 459 460 /* 461 * For now, affiliate this thread with the root lgroup. 462 * Since the kernel does not (presently) allocate its memory 463 * in a locality aware fashion, the root is an appropriate home. 464 * If this thread is later associated with an lwp, it will have 465 * it's lgroup re-assigned at that time. 466 */ 467 lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1); 468 469 /* 470 * Inherit the current cpu. If this cpu isn't part of the chosen 471 * lgroup, a new cpu will be chosen by cpu_choose when the thread 472 * is ready to run. 473 */ 474 if (CPU->cpu_part == &cp_default) 475 t->t_cpu = CPU; 476 else 477 t->t_cpu = disp_lowpri_cpu(cp_default.cp_cpulist, t->t_lpl, 478 t->t_pri, NULL); 479 480 t->t_disp_queue = t->t_cpu->cpu_disp; 481 kpreempt_enable(); 482 483 /* 484 * Initialize thread state and the dispatcher lock pointer. 485 * Need to hold onto pidlock to block allthreads walkers until 486 * the state is set. 487 */ 488 switch (state) { 489 case TS_RUN: 490 curthread->t_oldspl = splhigh(); /* get dispatcher spl */ 491 THREAD_SET_STATE(t, TS_STOPPED, &transition_lock); 492 CL_SETRUN(t); 493 thread_unlock(t); 494 break; 495 496 case TS_ONPROC: 497 THREAD_ONPROC(t, t->t_cpu); 498 break; 499 500 case TS_FREE: 501 /* 502 * Free state will be used for intr threads. 503 * The interrupt routine must set the thread dispatcher 504 * lock pointer (t_lockp) if starting on a CPU 505 * other than the current one. 506 */ 507 THREAD_FREEINTR(t, CPU); 508 break; 509 510 case TS_STOPPED: 511 THREAD_SET_STATE(t, TS_STOPPED, &stop_lock); 512 break; 513 514 default: /* TS_SLEEP, TS_ZOMB or TS_TRANS */ 515 cmn_err(CE_PANIC, "thread_create: invalid state %d", state); 516 } 517 mutex_exit(&pidlock); 518 return (t); 519 } 520 521 /* 522 * Move thread to project0 and take care of project reference counters. 523 */ 524 void 525 thread_rele(kthread_t *t) 526 { 527 kproject_t *kpj; 528 529 thread_lock(t); 530 531 ASSERT(t == curthread || t->t_state == TS_FREE || t->t_procp == &p0); 532 kpj = ttoproj(t); 533 t->t_proj = proj0p; 534 535 thread_unlock(t); 536 537 if (kpj != proj0p) { 538 project_rele(kpj); 539 (void) project_hold(proj0p); 540 } 541 } 542 543 544 void (*ip_cleanup_func)(void); 545 546 void 547 thread_exit() 548 { 549 kthread_t *t = curthread; 550 551 if ((t->t_proc_flag & TP_ZTHREAD) != 0) 552 cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called"); 553 554 if (ip_cleanup_func != NULL) 555 (*ip_cleanup_func)(); 556 557 tsd_exit(); /* Clean up this thread's TSD */ 558 559 kcpc_passivate(); /* clean up performance counter state */ 560 561 /* 562 * No kernel thread should have called poll() without arranging 563 * calling pollcleanup() here. 564 */ 565 ASSERT(t->t_pollstate == NULL); 566 ASSERT(t->t_schedctl == NULL); 567 if (t->t_door) 568 door_slam(); /* in case thread did an upcall */ 569 570 #ifndef NPROBE 571 /* Kernel probe */ 572 if (t->t_tnf_tpdp) 573 tnf_thread_exit(); 574 #endif /* NPROBE */ 575 576 thread_rele(t); 577 t->t_preempt++; 578 579 /* 580 * remove thread from the all threads list so that 581 * death-row can use the same pointers. 582 */ 583 mutex_enter(&pidlock); 584 t->t_next->t_prev = t->t_prev; 585 t->t_prev->t_next = t->t_next; 586 ASSERT(allthreads != t); /* t0 never exits */ 587 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 588 mutex_exit(&pidlock); 589 590 if (t->t_ctx != NULL) 591 exitctx(t); 592 if (t->t_procp->p_pctx != NULL) 593 exitpctx(t->t_procp); 594 595 t->t_state = TS_ZOMB; /* set zombie thread */ 596 597 swtch_from_zombie(); /* give up the CPU */ 598 /* NOTREACHED */ 599 } 600 601 /* 602 * Check to see if the specified thread is active (defined as being on 603 * the thread list). This is certainly a slow way to do this; if there's 604 * ever a reason to speed it up, we could maintain a hash table of active 605 * threads indexed by their t_did. 606 */ 607 static kthread_t * 608 did_to_thread(kt_did_t tid) 609 { 610 kthread_t *t; 611 612 ASSERT(MUTEX_HELD(&pidlock)); 613 for (t = curthread->t_next; t != curthread; t = t->t_next) { 614 if (t->t_did == tid) 615 break; 616 } 617 if (t->t_did == tid) 618 return (t); 619 else 620 return (NULL); 621 } 622 623 /* 624 * Wait for specified thread to exit. Returns immediately if the thread 625 * could not be found, meaning that it has either already exited or never 626 * existed. 627 */ 628 void 629 thread_join(kt_did_t tid) 630 { 631 kthread_t *t; 632 633 ASSERT(tid != curthread->t_did); 634 ASSERT(tid != t0.t_did); 635 636 mutex_enter(&pidlock); 637 /* 638 * Make sure we check that the thread is on the thread list 639 * before blocking on it; otherwise we could end up blocking on 640 * a cv that's already been freed. In other words, don't cache 641 * the thread pointer across calls to cv_wait. 642 * 643 * The choice of loop invariant means that whenever a thread 644 * is taken off the allthreads list, a cv_broadcast must be 645 * performed on that thread's t_joincv to wake up any waiters. 646 * The broadcast doesn't have to happen right away, but it 647 * shouldn't be postponed indefinitely (e.g., by doing it in 648 * thread_free which may only be executed when the deathrow 649 * queue is processed. 650 */ 651 while (t = did_to_thread(tid)) 652 cv_wait(&t->t_joincv, &pidlock); 653 mutex_exit(&pidlock); 654 } 655 656 void 657 thread_free(kthread_t *t) 658 { 659 ASSERT(t != &t0 && t->t_state == TS_FREE); 660 ASSERT(t->t_door == NULL); 661 ASSERT(t->t_schedctl == NULL); 662 ASSERT(t->t_pollstate == NULL); 663 664 t->t_pri = 0; 665 t->t_pc = 0; 666 t->t_sp = 0; 667 t->t_wchan0 = NULL; 668 t->t_wchan = NULL; 669 if (t->t_cred != NULL) { 670 crfree(t->t_cred); 671 t->t_cred = 0; 672 } 673 if (t->t_pdmsg) { 674 kmem_free(t->t_pdmsg, strlen(t->t_pdmsg) + 1); 675 t->t_pdmsg = NULL; 676 } 677 #ifdef C2_AUDIT 678 if (audit_active) 679 audit_thread_free(t); 680 #endif 681 #ifndef NPROBE 682 if (t->t_tnf_tpdp) 683 tnf_thread_free(t); 684 #endif /* NPROBE */ 685 if (t->t_cldata) { 686 CL_EXITCLASS(t->t_cid, (caddr_t *)t->t_cldata); 687 } 688 if (t->t_rprof != NULL) { 689 kmem_free(t->t_rprof, sizeof (*t->t_rprof)); 690 t->t_rprof = NULL; 691 } 692 t->t_lockp = NULL; /* nothing should try to lock this thread now */ 693 if (t->t_lwp) 694 lwp_freeregs(t->t_lwp, 0); 695 if (t->t_ctx) 696 freectx(t, 0); 697 if (t->t_procp->p_pctx) 698 freepctx(t->t_procp, 0); 699 t->t_stk = NULL; 700 if (t->t_lwp) 701 lwp_stk_fini(t->t_lwp); 702 lock_clear(&t->t_lock); 703 704 if (t->t_ts->ts_waiters > 0) 705 panic("thread_free: turnstile still active"); 706 707 kmem_cache_free(turnstile_cache, t->t_ts); 708 709 free_afd(&t->t_activefd); 710 711 /* 712 * Barrier for clock thread. The clock holds this lock to 713 * keep the thread from going away while it's looking at it. 714 */ 715 mutex_enter(&thread_free_lock); 716 mutex_exit(&thread_free_lock); 717 718 ASSERT(ttoproj(t) == proj0p); 719 project_rele(ttoproj(t)); 720 721 lgrp_affinity_free(&t->t_lgrp_affinity); 722 723 /* 724 * Free thread struct and its stack. 725 */ 726 if (t->t_flag & T_TALLOCSTK) { 727 /* thread struct is embedded in stack */ 728 segkp_release(segkp, t->t_swap); 729 mutex_enter(&pidlock); 730 nthread--; 731 mutex_exit(&pidlock); 732 } else { 733 if (t->t_swap) { 734 segkp_release(segkp, t->t_swap); 735 t->t_swap = NULL; 736 } 737 if (t->t_lwp) { 738 kmem_cache_free(lwp_cache, t->t_lwp); 739 t->t_lwp = NULL; 740 } 741 mutex_enter(&pidlock); 742 nthread--; 743 mutex_exit(&pidlock); 744 kmem_cache_free(thread_cache, t); 745 } 746 } 747 748 /* 749 * Removes threads associated with the given zone from a deathrow queue. 750 * tp is a pointer to the head of the deathrow queue, and countp is a 751 * pointer to the current deathrow count. Returns a linked list of 752 * threads removed from the list. 753 */ 754 static kthread_t * 755 thread_zone_cleanup(kthread_t **tp, int *countp, zoneid_t zoneid) 756 { 757 kthread_t *tmp, *list = NULL; 758 cred_t *cr; 759 760 ASSERT(MUTEX_HELD(&reaplock)); 761 while (*tp != NULL) { 762 if ((cr = (*tp)->t_cred) != NULL && crgetzoneid(cr) == zoneid) { 763 tmp = *tp; 764 *tp = tmp->t_forw; 765 tmp->t_forw = list; 766 list = tmp; 767 (*countp)--; 768 } else { 769 tp = &(*tp)->t_forw; 770 } 771 } 772 return (list); 773 } 774 775 static void 776 thread_reap_list(kthread_t *t) 777 { 778 kthread_t *next; 779 780 while (t != NULL) { 781 next = t->t_forw; 782 thread_free(t); 783 t = next; 784 } 785 } 786 787 /* ARGSUSED */ 788 static void 789 thread_zone_destroy(zoneid_t zoneid, void *unused) 790 { 791 kthread_t *t, *l; 792 793 mutex_enter(&reaplock); 794 /* 795 * Pull threads and lwps associated with zone off deathrow lists. 796 */ 797 t = thread_zone_cleanup(&thread_deathrow, &thread_reapcnt, zoneid); 798 l = thread_zone_cleanup(&lwp_deathrow, &lwp_reapcnt, zoneid); 799 mutex_exit(&reaplock); 800 801 /* 802 * Reap threads 803 */ 804 thread_reap_list(t); 805 806 /* 807 * Reap lwps 808 */ 809 thread_reap_list(l); 810 } 811 812 /* 813 * cleanup zombie threads that are on deathrow. 814 */ 815 void 816 thread_reaper() 817 { 818 kthread_t *t, *l; 819 callb_cpr_t cprinfo; 820 821 /* 822 * Register callback to clean up threads when zone is destroyed. 823 */ 824 zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy); 825 826 CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper"); 827 for (;;) { 828 mutex_enter(&reaplock); 829 while (thread_deathrow == NULL && lwp_deathrow == NULL) { 830 CALLB_CPR_SAFE_BEGIN(&cprinfo); 831 cv_wait(&reaper_cv, &reaplock); 832 CALLB_CPR_SAFE_END(&cprinfo, &reaplock); 833 } 834 t = thread_deathrow; 835 l = lwp_deathrow; 836 thread_deathrow = NULL; 837 lwp_deathrow = NULL; 838 thread_reapcnt = 0; 839 lwp_reapcnt = 0; 840 mutex_exit(&reaplock); 841 842 /* 843 * Reap threads 844 */ 845 thread_reap_list(t); 846 847 /* 848 * Reap lwps 849 */ 850 thread_reap_list(l); 851 } 852 } 853 854 /* 855 * This is called by resume() to put a zombie thread onto deathrow. 856 * The thread's state is changed to TS_FREE to indicate that is reapable. 857 * This is called from the idle thread so it must not block (just spin). 858 */ 859 void 860 reapq_add(kthread_t *t) 861 { 862 mutex_enter(&reaplock); 863 864 /* 865 * lwp_deathrow contains only threads with lwp linkage 866 * that are of the default stacksize. Anything else goes 867 * on thread_deathrow. 868 */ 869 if (ttolwp(t) && (t->t_flag & T_DFLTSTK)) { 870 t->t_forw = lwp_deathrow; 871 lwp_deathrow = t; 872 lwp_reapcnt++; 873 } else { 874 t->t_forw = thread_deathrow; 875 thread_deathrow = t; 876 thread_reapcnt++; 877 } 878 if (lwp_reapcnt + thread_reapcnt > reaplimit) 879 cv_signal(&reaper_cv); /* wake the reaper */ 880 t->t_state = TS_FREE; 881 lock_clear(&t->t_lock); 882 mutex_exit(&reaplock); 883 } 884 885 /* 886 * Install thread context ops for the current thread. 887 */ 888 void 889 installctx( 890 kthread_t *t, 891 void *arg, 892 void (*save)(void *), 893 void (*restore)(void *), 894 void (*fork)(void *, void *), 895 void (*lwp_create)(void *, void *), 896 void (*exit)(void *), 897 void (*free)(void *, int)) 898 { 899 struct ctxop *ctx; 900 901 ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP); 902 ctx->save_op = save; 903 ctx->restore_op = restore; 904 ctx->fork_op = fork; 905 ctx->lwp_create_op = lwp_create; 906 ctx->exit_op = exit; 907 ctx->free_op = free; 908 ctx->arg = arg; 909 ctx->next = t->t_ctx; 910 t->t_ctx = ctx; 911 } 912 913 /* 914 * Remove the thread context ops from a thread. 915 */ 916 int 917 removectx( 918 kthread_t *t, 919 void *arg, 920 void (*save)(void *), 921 void (*restore)(void *), 922 void (*fork)(void *, void *), 923 void (*lwp_create)(void *, void *), 924 void (*exit)(void *), 925 void (*free)(void *, int)) 926 { 927 struct ctxop *ctx, *prev_ctx; 928 929 /* 930 * The incoming kthread_t (which is the thread for which the 931 * context ops will be removed) should be one of the following: 932 * 933 * a) the current thread, 934 * 935 * b) a thread of a process that's being forked (SIDL), 936 * 937 * c) a thread that belongs to the same process as the current 938 * thread and for which the current thread is the agent thread, 939 * 940 * d) a thread that is TS_STOPPED which is indicative of it 941 * being (if curthread is not an agent) a thread being created 942 * as part of an lwp creation. 943 */ 944 ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL || 945 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 946 947 /* 948 * Serialize modifications to t->t_ctx to prevent the agent thread 949 * and the target thread from racing with each other during lwp exit. 950 */ 951 mutex_enter(&t->t_ctx_lock); 952 prev_ctx = NULL; 953 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) { 954 if (ctx->save_op == save && ctx->restore_op == restore && 955 ctx->fork_op == fork && ctx->lwp_create_op == lwp_create && 956 ctx->exit_op == exit && ctx->free_op == free && 957 ctx->arg == arg) { 958 if (prev_ctx) 959 prev_ctx->next = ctx->next; 960 else 961 t->t_ctx = ctx->next; 962 mutex_exit(&t->t_ctx_lock); 963 if (ctx->free_op != NULL) 964 (ctx->free_op)(ctx->arg, 0); 965 kmem_free(ctx, sizeof (struct ctxop)); 966 return (1); 967 } 968 prev_ctx = ctx; 969 } 970 mutex_exit(&t->t_ctx_lock); 971 972 return (0); 973 } 974 975 void 976 savectx(kthread_t *t) 977 { 978 struct ctxop *ctx; 979 980 ASSERT(t == curthread); 981 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 982 if (ctx->save_op != NULL) 983 (ctx->save_op)(ctx->arg); 984 } 985 986 void 987 restorectx(kthread_t *t) 988 { 989 struct ctxop *ctx; 990 991 ASSERT(t == curthread); 992 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 993 if (ctx->restore_op != NULL) 994 (ctx->restore_op)(ctx->arg); 995 } 996 997 void 998 forkctx(kthread_t *t, kthread_t *ct) 999 { 1000 struct ctxop *ctx; 1001 1002 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1003 if (ctx->fork_op != NULL) 1004 (ctx->fork_op)(t, ct); 1005 } 1006 1007 /* 1008 * Note that this operator is only invoked via the _lwp_create 1009 * system call. The system may have other reasons to create lwps 1010 * e.g. the agent lwp or the doors unreferenced lwp. 1011 */ 1012 void 1013 lwp_createctx(kthread_t *t, kthread_t *ct) 1014 { 1015 struct ctxop *ctx; 1016 1017 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1018 if (ctx->lwp_create_op != NULL) 1019 (ctx->lwp_create_op)(t, ct); 1020 } 1021 1022 /* 1023 * exitctx is called from thread_exit() and lwp_exit() to perform any actions 1024 * needed when the thread/LWP leaves the processor for the last time. This 1025 * routine is not intended to deal with freeing memory; freectx() is used for 1026 * that purpose during thread_free(). This routine is provided to allow for 1027 * clean-up that can't wait until thread_free(). 1028 */ 1029 void 1030 exitctx(kthread_t *t) 1031 { 1032 struct ctxop *ctx; 1033 1034 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1035 if (ctx->exit_op != NULL) 1036 (ctx->exit_op)(t); 1037 } 1038 1039 /* 1040 * freectx is called from thread_free() and exec() to get 1041 * rid of old thread context ops. 1042 */ 1043 void 1044 freectx(kthread_t *t, int isexec) 1045 { 1046 struct ctxop *ctx; 1047 1048 while ((ctx = t->t_ctx) != NULL) { 1049 t->t_ctx = ctx->next; 1050 if (ctx->free_op != NULL) 1051 (ctx->free_op)(ctx->arg, isexec); 1052 kmem_free(ctx, sizeof (struct ctxop)); 1053 } 1054 } 1055 1056 /* 1057 * Set the thread running; arrange for it to be swapped in if necessary. 1058 */ 1059 void 1060 setrun_locked(kthread_t *t) 1061 { 1062 ASSERT(THREAD_LOCK_HELD(t)); 1063 if (t->t_state == TS_SLEEP) { 1064 /* 1065 * Take off sleep queue. 1066 */ 1067 SOBJ_UNSLEEP(t->t_sobj_ops, t); 1068 } else if (t->t_state & (TS_RUN | TS_ONPROC)) { 1069 /* 1070 * Already on dispatcher queue. 1071 */ 1072 return; 1073 } else if (t->t_state == TS_STOPPED) { 1074 /* 1075 * All of the sending of SIGCONT (TC_XSTART) and /proc 1076 * (TC_PSTART) and lwp_continue() (TC_CSTART) must have 1077 * requested that the thread be run. 1078 * Just calling setrun() is not sufficient to set a stopped 1079 * thread running. TP_TXSTART is always set if the thread 1080 * is not stopped by a jobcontrol stop signal. 1081 * TP_TPSTART is always set if /proc is not controlling it. 1082 * TP_TCSTART is always set if lwp_suspend() didn't stop it. 1083 * The thread won't be stopped unless one of these 1084 * three mechanisms did it. 1085 * 1086 * These flags must be set before calling setrun_locked(t). 1087 * They can't be passed as arguments because the streams 1088 * code calls setrun() indirectly and the mechanism for 1089 * doing so admits only one argument. Note that the 1090 * thread must be locked in order to change t_schedflags. 1091 */ 1092 if ((t->t_schedflag & TS_ALLSTART) != TS_ALLSTART) 1093 return; 1094 /* 1095 * Process is no longer stopped (a thread is running). 1096 */ 1097 t->t_whystop = 0; 1098 t->t_whatstop = 0; 1099 /* 1100 * Strictly speaking, we do not have to clear these 1101 * flags here; they are cleared on entry to stop(). 1102 * However, they are confusing when doing kernel 1103 * debugging or when they are revealed by ps(1). 1104 */ 1105 t->t_schedflag &= ~TS_ALLSTART; 1106 THREAD_TRANSITION(t); /* drop stopped-thread lock */ 1107 ASSERT(t->t_lockp == &transition_lock); 1108 ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL); 1109 /* 1110 * Let the class put the process on the dispatcher queue. 1111 */ 1112 CL_SETRUN(t); 1113 } 1114 1115 1116 } 1117 1118 void 1119 setrun(kthread_t *t) 1120 { 1121 thread_lock(t); 1122 setrun_locked(t); 1123 thread_unlock(t); 1124 } 1125 1126 /* 1127 * Unpin an interrupted thread. 1128 * When an interrupt occurs, the interrupt is handled on the stack 1129 * of an interrupt thread, taken from a pool linked to the CPU structure. 1130 * 1131 * When swtch() is switching away from an interrupt thread because it 1132 * blocked or was preempted, this routine is called to complete the 1133 * saving of the interrupted thread state, and returns the interrupted 1134 * thread pointer so it may be resumed. 1135 * 1136 * Called by swtch() only at high spl. 1137 */ 1138 kthread_t * 1139 thread_unpin() 1140 { 1141 kthread_t *t = curthread; /* current thread */ 1142 kthread_t *itp; /* interrupted thread */ 1143 int i; /* interrupt level */ 1144 extern int intr_passivate(); 1145 1146 ASSERT(t->t_intr != NULL); 1147 1148 itp = t->t_intr; /* interrupted thread */ 1149 t->t_intr = NULL; /* clear interrupt ptr */ 1150 1151 /* 1152 * Get state from interrupt thread for the one 1153 * it interrupted. 1154 */ 1155 1156 i = intr_passivate(t, itp); 1157 1158 TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE, 1159 "intr_passivate:level %d curthread %p (%T) ithread %p (%T)", 1160 i, t, t, itp, itp); 1161 1162 /* 1163 * Dissociate the current thread from the interrupted thread's LWP. 1164 */ 1165 t->t_lwp = NULL; 1166 1167 /* 1168 * Interrupt handlers above the level that spinlocks block must 1169 * not block. 1170 */ 1171 #if DEBUG 1172 if (i < 0 || i > LOCK_LEVEL) 1173 cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i); 1174 #endif 1175 1176 /* 1177 * Compute the CPU's base interrupt level based on the active 1178 * interrupts. 1179 */ 1180 ASSERT(CPU->cpu_intr_actv & (1 << i)); 1181 set_base_spl(); 1182 1183 return (itp); 1184 } 1185 1186 /* 1187 * Create and initialize an interrupt thread. 1188 * Returns non-zero on error. 1189 * Called at spl7() or better. 1190 */ 1191 void 1192 thread_create_intr(struct cpu *cp) 1193 { 1194 kthread_t *tp; 1195 1196 tp = thread_create(NULL, 0, 1197 (void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0); 1198 1199 /* 1200 * Set the thread in the TS_FREE state. The state will change 1201 * to TS_ONPROC only while the interrupt is active. Think of these 1202 * as being on a private free list for the CPU. Being TS_FREE keeps 1203 * inactive interrupt threads out of debugger thread lists. 1204 * 1205 * We cannot call thread_create with TS_FREE because of the current 1206 * checks there for ONPROC. Fix this when thread_create takes flags. 1207 */ 1208 THREAD_FREEINTR(tp, cp); 1209 1210 /* 1211 * Nobody should ever reference the credentials of an interrupt 1212 * thread so make it NULL to catch any such references. 1213 */ 1214 tp->t_cred = NULL; 1215 tp->t_flag |= T_INTR_THREAD; 1216 tp->t_cpu = cp; 1217 tp->t_bound_cpu = cp; 1218 tp->t_disp_queue = cp->cpu_disp; 1219 tp->t_affinitycnt = 1; 1220 tp->t_preempt = 1; 1221 1222 /* 1223 * Don't make a user-requested binding on this thread so that 1224 * the processor can be offlined. 1225 */ 1226 tp->t_bind_cpu = PBIND_NONE; /* no USER-requested binding */ 1227 tp->t_bind_pset = PS_NONE; 1228 1229 #if defined(__i386) || defined(__amd64) 1230 tp->t_stk -= STACK_ALIGN; 1231 *(tp->t_stk) = 0; /* terminate intr thread stack */ 1232 #endif 1233 1234 /* 1235 * Link onto CPU's interrupt pool. 1236 */ 1237 tp->t_link = cp->cpu_intr_thread; 1238 cp->cpu_intr_thread = tp; 1239 } 1240 1241 /* 1242 * TSD -- THREAD SPECIFIC DATA 1243 */ 1244 static kmutex_t tsd_mutex; /* linked list spin lock */ 1245 static uint_t tsd_nkeys; /* size of destructor array */ 1246 /* per-key destructor funcs */ 1247 static void (**tsd_destructor)(void *); 1248 /* list of tsd_thread's */ 1249 static struct tsd_thread *tsd_list; 1250 1251 /* 1252 * Default destructor 1253 * Needed because NULL destructor means that the key is unused 1254 */ 1255 /* ARGSUSED */ 1256 void 1257 tsd_defaultdestructor(void *value) 1258 {} 1259 1260 /* 1261 * Create a key (index into per thread array) 1262 * Locks out tsd_create, tsd_destroy, and tsd_exit 1263 * May allocate memory with lock held 1264 */ 1265 void 1266 tsd_create(uint_t *keyp, void (*destructor)(void *)) 1267 { 1268 int i; 1269 uint_t nkeys; 1270 1271 /* 1272 * if key is allocated, do nothing 1273 */ 1274 mutex_enter(&tsd_mutex); 1275 if (*keyp) { 1276 mutex_exit(&tsd_mutex); 1277 return; 1278 } 1279 /* 1280 * find an unused key 1281 */ 1282 if (destructor == NULL) 1283 destructor = tsd_defaultdestructor; 1284 1285 for (i = 0; i < tsd_nkeys; ++i) 1286 if (tsd_destructor[i] == NULL) 1287 break; 1288 1289 /* 1290 * if no unused keys, increase the size of the destructor array 1291 */ 1292 if (i == tsd_nkeys) { 1293 if ((nkeys = (tsd_nkeys << 1)) == 0) 1294 nkeys = 1; 1295 tsd_destructor = 1296 (void (**)(void *))tsd_realloc((void *)tsd_destructor, 1297 (size_t)(tsd_nkeys * sizeof (void (*)(void *))), 1298 (size_t)(nkeys * sizeof (void (*)(void *)))); 1299 tsd_nkeys = nkeys; 1300 } 1301 1302 /* 1303 * allocate the next available unused key 1304 */ 1305 tsd_destructor[i] = destructor; 1306 *keyp = i + 1; 1307 mutex_exit(&tsd_mutex); 1308 } 1309 1310 /* 1311 * Destroy a key -- this is for unloadable modules 1312 * 1313 * Assumes that the caller is preventing tsd_set and tsd_get 1314 * Locks out tsd_create, tsd_destroy, and tsd_exit 1315 * May free memory with lock held 1316 */ 1317 void 1318 tsd_destroy(uint_t *keyp) 1319 { 1320 uint_t key; 1321 struct tsd_thread *tsd; 1322 1323 /* 1324 * protect the key namespace and our destructor lists 1325 */ 1326 mutex_enter(&tsd_mutex); 1327 key = *keyp; 1328 *keyp = 0; 1329 1330 ASSERT(key <= tsd_nkeys); 1331 1332 /* 1333 * if the key is valid 1334 */ 1335 if (key != 0) { 1336 uint_t k = key - 1; 1337 /* 1338 * for every thread with TSD, call key's destructor 1339 */ 1340 for (tsd = tsd_list; tsd; tsd = tsd->ts_next) { 1341 /* 1342 * no TSD for key in this thread 1343 */ 1344 if (key > tsd->ts_nkeys) 1345 continue; 1346 /* 1347 * call destructor for key 1348 */ 1349 if (tsd->ts_value[k] && tsd_destructor[k]) 1350 (*tsd_destructor[k])(tsd->ts_value[k]); 1351 /* 1352 * reset value for key 1353 */ 1354 tsd->ts_value[k] = NULL; 1355 } 1356 /* 1357 * actually free the key (NULL destructor == unused) 1358 */ 1359 tsd_destructor[k] = NULL; 1360 } 1361 1362 mutex_exit(&tsd_mutex); 1363 } 1364 1365 /* 1366 * Quickly return the per thread value that was stored with the specified key 1367 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1368 */ 1369 void * 1370 tsd_get(uint_t key) 1371 { 1372 return (tsd_agent_get(curthread, key)); 1373 } 1374 1375 /* 1376 * Set a per thread value indexed with the specified key 1377 */ 1378 int 1379 tsd_set(uint_t key, void *value) 1380 { 1381 return (tsd_agent_set(curthread, key, value)); 1382 } 1383 1384 /* 1385 * Like tsd_get(), except that the agent lwp can get the tsd of 1386 * another thread in the same process (the agent thread only runs when the 1387 * process is completely stopped by /proc), or syslwp is creating a new lwp. 1388 */ 1389 void * 1390 tsd_agent_get(kthread_t *t, uint_t key) 1391 { 1392 struct tsd_thread *tsd = t->t_tsd; 1393 1394 ASSERT(t == curthread || 1395 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1396 1397 if (key && tsd != NULL && key <= tsd->ts_nkeys) 1398 return (tsd->ts_value[key - 1]); 1399 return (NULL); 1400 } 1401 1402 /* 1403 * Like tsd_set(), except that the agent lwp can set the tsd of 1404 * another thread in the same process, or syslwp can set the tsd 1405 * of a thread it's in the middle of creating. 1406 * 1407 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1408 * May lock out tsd_destroy (and tsd_create), may allocate memory with 1409 * lock held 1410 */ 1411 int 1412 tsd_agent_set(kthread_t *t, uint_t key, void *value) 1413 { 1414 struct tsd_thread *tsd = t->t_tsd; 1415 1416 ASSERT(t == curthread || 1417 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1418 1419 if (key == 0) 1420 return (EINVAL); 1421 if (tsd == NULL) 1422 tsd = t->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1423 if (key <= tsd->ts_nkeys) { 1424 tsd->ts_value[key - 1] = value; 1425 return (0); 1426 } 1427 1428 ASSERT(key <= tsd_nkeys); 1429 1430 /* 1431 * lock out tsd_destroy() 1432 */ 1433 mutex_enter(&tsd_mutex); 1434 if (tsd->ts_nkeys == 0) { 1435 /* 1436 * Link onto list of threads with TSD 1437 */ 1438 if ((tsd->ts_next = tsd_list) != NULL) 1439 tsd_list->ts_prev = tsd; 1440 tsd_list = tsd; 1441 } 1442 1443 /* 1444 * Allocate thread local storage and set the value for key 1445 */ 1446 tsd->ts_value = tsd_realloc(tsd->ts_value, 1447 tsd->ts_nkeys * sizeof (void *), 1448 key * sizeof (void *)); 1449 tsd->ts_nkeys = key; 1450 tsd->ts_value[key - 1] = value; 1451 mutex_exit(&tsd_mutex); 1452 1453 return (0); 1454 } 1455 1456 1457 /* 1458 * Return the per thread value that was stored with the specified key 1459 * If necessary, create the key and the value 1460 * Assumes the caller is protecting *keyp from tsd_destroy 1461 */ 1462 void * 1463 tsd_getcreate(uint_t *keyp, void (*destroy)(void *), void *(*allocate)(void)) 1464 { 1465 void *value; 1466 uint_t key = *keyp; 1467 struct tsd_thread *tsd = curthread->t_tsd; 1468 1469 if (tsd == NULL) 1470 tsd = curthread->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1471 if (key && key <= tsd->ts_nkeys && (value = tsd->ts_value[key - 1])) 1472 return (value); 1473 if (key == 0) 1474 tsd_create(keyp, destroy); 1475 (void) tsd_set(*keyp, value = (*allocate)()); 1476 1477 return (value); 1478 } 1479 1480 /* 1481 * Called from thread_exit() to run the destructor function for each tsd 1482 * Locks out tsd_create and tsd_destroy 1483 * Assumes that the destructor *DOES NOT* use tsd 1484 */ 1485 void 1486 tsd_exit(void) 1487 { 1488 int i; 1489 struct tsd_thread *tsd = curthread->t_tsd; 1490 1491 if (tsd == NULL) 1492 return; 1493 1494 if (tsd->ts_nkeys == 0) { 1495 kmem_free(tsd, sizeof (*tsd)); 1496 curthread->t_tsd = NULL; 1497 return; 1498 } 1499 1500 /* 1501 * lock out tsd_create and tsd_destroy, call 1502 * the destructor, and mark the value as destroyed. 1503 */ 1504 mutex_enter(&tsd_mutex); 1505 1506 for (i = 0; i < tsd->ts_nkeys; i++) { 1507 if (tsd->ts_value[i] && tsd_destructor[i]) 1508 (*tsd_destructor[i])(tsd->ts_value[i]); 1509 tsd->ts_value[i] = NULL; 1510 } 1511 1512 /* 1513 * remove from linked list of threads with TSD 1514 */ 1515 if (tsd->ts_next) 1516 tsd->ts_next->ts_prev = tsd->ts_prev; 1517 if (tsd->ts_prev) 1518 tsd->ts_prev->ts_next = tsd->ts_next; 1519 if (tsd_list == tsd) 1520 tsd_list = tsd->ts_next; 1521 1522 mutex_exit(&tsd_mutex); 1523 1524 /* 1525 * free up the TSD 1526 */ 1527 kmem_free(tsd->ts_value, tsd->ts_nkeys * sizeof (void *)); 1528 kmem_free(tsd, sizeof (struct tsd_thread)); 1529 curthread->t_tsd = NULL; 1530 } 1531 1532 /* 1533 * realloc 1534 */ 1535 static void * 1536 tsd_realloc(void *old, size_t osize, size_t nsize) 1537 { 1538 void *new; 1539 1540 new = kmem_zalloc(nsize, KM_SLEEP); 1541 if (old) { 1542 bcopy(old, new, osize); 1543 kmem_free(old, osize); 1544 } 1545 return (new); 1546 } 1547 1548 /* 1549 * Check to see if an interrupt thread might be active at a given ipl. 1550 * If so return true. 1551 * We must be conservative--it is ok to give a false yes, but a false no 1552 * will cause disaster. (But if the situation changes after we check it is 1553 * ok--the caller is trying to ensure that an interrupt routine has been 1554 * exited). 1555 * This is used when trying to remove an interrupt handler from an autovector 1556 * list in avintr.c. 1557 */ 1558 int 1559 intr_active(struct cpu *cp, int level) 1560 { 1561 if (level <= LOCK_LEVEL) 1562 return (cp->cpu_thread != cp->cpu_dispthread); 1563 else 1564 return (CPU_ON_INTR(cp)); 1565 } 1566 1567 /* 1568 * Return non-zero if an interrupt is being serviced. 1569 */ 1570 int 1571 servicing_interrupt() 1572 { 1573 int onintr = 0; 1574 1575 /* Are we an interrupt thread */ 1576 if (curthread->t_flag & T_INTR_THREAD) 1577 return (1); 1578 /* Are we servicing a high level interrupt? */ 1579 if (CPU_ON_INTR(CPU)) { 1580 kpreempt_disable(); 1581 onintr = CPU_ON_INTR(CPU); 1582 kpreempt_enable(); 1583 } 1584 return (onintr); 1585 } 1586 1587 1588 /* 1589 * Change the dispatch priority of a thread in the system. 1590 * Used when raising or lowering a thread's priority. 1591 * (E.g., priority inheritance) 1592 * 1593 * Since threads are queued according to their priority, we 1594 * we must check the thread's state to determine whether it 1595 * is on a queue somewhere. If it is, we've got to: 1596 * 1597 * o Dequeue the thread. 1598 * o Change its effective priority. 1599 * o Enqueue the thread. 1600 * 1601 * Assumptions: The thread whose priority we wish to change 1602 * must be locked before we call thread_change_(e)pri(). 1603 * The thread_change(e)pri() function doesn't drop the thread 1604 * lock--that must be done by its caller. 1605 */ 1606 void 1607 thread_change_epri(kthread_t *t, pri_t disp_pri) 1608 { 1609 uint_t state; 1610 1611 ASSERT(THREAD_LOCK_HELD(t)); 1612 1613 /* 1614 * If the inherited priority hasn't actually changed, 1615 * just return. 1616 */ 1617 if (t->t_epri == disp_pri) 1618 return; 1619 1620 state = t->t_state; 1621 1622 /* 1623 * If it's not on a queue, change the priority with 1624 * impunity. 1625 */ 1626 if ((state & (TS_SLEEP | TS_RUN)) == 0) { 1627 t->t_epri = disp_pri; 1628 1629 if (state == TS_ONPROC) { 1630 cpu_t *cp = t->t_disp_queue->disp_cpu; 1631 1632 if (t == cp->cpu_dispthread) 1633 cp->cpu_dispatch_pri = DISP_PRIO(t); 1634 } 1635 return; 1636 } 1637 1638 /* 1639 * It's either on a sleep queue or a run queue. 1640 */ 1641 if (state == TS_SLEEP) { 1642 1643 /* 1644 * Take the thread out of its sleep queue. 1645 * Change the inherited priority. 1646 * Re-enqueue the thread. 1647 * Each synchronization object exports a function 1648 * to do this in an appropriate manner. 1649 */ 1650 SOBJ_CHANGE_EPRI(t->t_sobj_ops, t, disp_pri); 1651 } else { 1652 /* 1653 * The thread is on a run queue. 1654 * Note: setbackdq() may not put the thread 1655 * back on the same run queue where it originally 1656 * resided. 1657 */ 1658 (void) dispdeq(t); 1659 t->t_epri = disp_pri; 1660 setbackdq(t); 1661 } 1662 } /* end of thread_change_epri */ 1663 1664 /* 1665 * Function: Change the t_pri field of a thread. 1666 * Side Effects: Adjust the thread ordering on a run queue 1667 * or sleep queue, if necessary. 1668 * Returns: 1 if the thread was on a run queue, else 0. 1669 */ 1670 int 1671 thread_change_pri(kthread_t *t, pri_t disp_pri, int front) 1672 { 1673 uint_t state; 1674 int on_rq = 0; 1675 1676 ASSERT(THREAD_LOCK_HELD(t)); 1677 1678 state = t->t_state; 1679 THREAD_WILLCHANGE_PRI(t, disp_pri); 1680 1681 /* 1682 * If it's not on a queue, change the priority with 1683 * impunity. 1684 */ 1685 if ((state & (TS_SLEEP | TS_RUN)) == 0) { 1686 t->t_pri = disp_pri; 1687 1688 if (state == TS_ONPROC) { 1689 cpu_t *cp = t->t_disp_queue->disp_cpu; 1690 1691 if (t == cp->cpu_dispthread) 1692 cp->cpu_dispatch_pri = DISP_PRIO(t); 1693 } 1694 return (0); 1695 } 1696 1697 /* 1698 * It's either on a sleep queue or a run queue. 1699 */ 1700 if (state == TS_SLEEP) { 1701 /* 1702 * If the priority has changed, take the thread out of 1703 * its sleep queue and change the priority. 1704 * Re-enqueue the thread. 1705 * Each synchronization object exports a function 1706 * to do this in an appropriate manner. 1707 */ 1708 if (disp_pri != t->t_pri) 1709 SOBJ_CHANGE_PRI(t->t_sobj_ops, t, disp_pri); 1710 } else { 1711 /* 1712 * The thread is on a run queue. 1713 * Note: setbackdq() may not put the thread 1714 * back on the same run queue where it originally 1715 * resided. 1716 * 1717 * We still requeue the thread even if the priority 1718 * is unchanged to preserve round-robin (and other) 1719 * effects between threads of the same priority. 1720 */ 1721 on_rq = dispdeq(t); 1722 ASSERT(on_rq); 1723 t->t_pri = disp_pri; 1724 if (front) { 1725 setfrontdq(t); 1726 } else { 1727 setbackdq(t); 1728 } 1729 } 1730 return (on_rq); 1731 } 1732