1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/sysmacros.h> 31 #include <sys/signal.h> 32 #include <sys/stack.h> 33 #include <sys/pcb.h> 34 #include <sys/user.h> 35 #include <sys/systm.h> 36 #include <sys/sysinfo.h> 37 #include <sys/var.h> 38 #include <sys/errno.h> 39 #include <sys/cmn_err.h> 40 #include <sys/cred.h> 41 #include <sys/resource.h> 42 #include <sys/task.h> 43 #include <sys/project.h> 44 #include <sys/proc.h> 45 #include <sys/debug.h> 46 #include <sys/inline.h> 47 #include <sys/disp.h> 48 #include <sys/class.h> 49 #include <vm/seg_kmem.h> 50 #include <vm/seg_kp.h> 51 #include <sys/machlock.h> 52 #include <sys/kmem.h> 53 #include <sys/varargs.h> 54 #include <sys/turnstile.h> 55 #include <sys/poll.h> 56 #include <sys/vtrace.h> 57 #include <sys/callb.h> 58 #include <c2/audit.h> 59 #include <sys/tnf.h> 60 #include <sys/sobject.h> 61 #include <sys/cpupart.h> 62 #include <sys/pset.h> 63 #include <sys/door.h> 64 #include <sys/spl.h> 65 #include <sys/copyops.h> 66 #include <sys/rctl.h> 67 #include <sys/pool.h> 68 #include <sys/zone.h> 69 #include <sys/tsol/label.h> 70 #include <sys/tsol/tndb.h> 71 #include <sys/cpc_impl.h> 72 #include <sys/sdt.h> 73 #include <sys/reboot.h> 74 #include <sys/kdi.h> 75 76 struct kmem_cache *thread_cache; /* cache of free threads */ 77 struct kmem_cache *lwp_cache; /* cache of free lwps */ 78 struct kmem_cache *turnstile_cache; /* cache of free turnstiles */ 79 80 /* 81 * allthreads is only for use by kmem_readers. All kernel loops can use 82 * the current thread as a start/end point. 83 */ 84 static kthread_t *allthreads = &t0; /* circular list of all threads */ 85 86 static kcondvar_t reaper_cv; /* synchronization var */ 87 kthread_t *thread_deathrow; /* circular list of reapable threads */ 88 kthread_t *lwp_deathrow; /* circular list of reapable threads */ 89 kmutex_t reaplock; /* protects lwp and thread deathrows */ 90 kmutex_t thread_free_lock; /* protects clock from reaper */ 91 int thread_reapcnt = 0; /* number of threads on deathrow */ 92 int lwp_reapcnt = 0; /* number of lwps on deathrow */ 93 int reaplimit = 16; /* delay reaping until reaplimit */ 94 95 extern int nthread; 96 97 id_t syscid; /* system scheduling class ID */ 98 void *segkp_thread; /* cookie for segkp pool */ 99 100 int lwp_cache_sz = 32; 101 int t_cache_sz = 8; 102 static kt_did_t next_t_id = 1; 103 104 /* 105 * Min/Max stack sizes for stack size parameters 106 */ 107 #define MAX_STKSIZE (32 * DEFAULTSTKSZ) 108 #define MIN_STKSIZE DEFAULTSTKSZ 109 110 /* 111 * default_stksize overrides lwp_default_stksize if it is set. 112 */ 113 int default_stksize; 114 int lwp_default_stksize; 115 116 static zone_key_t zone_thread_key; 117 118 /* 119 * forward declarations for internal thread specific data (tsd) 120 */ 121 static void *tsd_realloc(void *, size_t, size_t); 122 123 /*ARGSUSED*/ 124 static int 125 turnstile_constructor(void *buf, void *cdrarg, int kmflags) 126 { 127 bzero(buf, sizeof (turnstile_t)); 128 return (0); 129 } 130 131 /*ARGSUSED*/ 132 static void 133 turnstile_destructor(void *buf, void *cdrarg) 134 { 135 turnstile_t *ts = buf; 136 137 ASSERT(ts->ts_free == NULL); 138 ASSERT(ts->ts_waiters == 0); 139 ASSERT(ts->ts_inheritor == NULL); 140 ASSERT(ts->ts_sleepq[0].sq_first == NULL); 141 ASSERT(ts->ts_sleepq[1].sq_first == NULL); 142 } 143 144 void 145 thread_init(void) 146 { 147 kthread_t *tp; 148 extern char sys_name[]; 149 extern void idle(); 150 struct cpu *cpu = CPU; 151 152 mutex_init(&reaplock, NULL, MUTEX_SPIN, (void *)ipltospl(DISP_LEVEL)); 153 154 #if defined(__i386) || defined(__amd64) 155 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 156 PTR24_ALIGN, NULL, NULL, NULL, NULL, NULL, 0); 157 158 /* 159 * "struct _klwp" includes a "struct pcb", which includes a 160 * "struct fpu", which needs to be 16-byte aligned on amd64 161 * (and even on i386 for fxsave/fxrstor). 162 */ 163 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 164 16, NULL, NULL, NULL, NULL, NULL, 0); 165 #else 166 /* 167 * Allocate thread structures from static_arena. This prevents 168 * issues where a thread tries to relocate its own thread 169 * structure and touches it after the mapping has been suspended. 170 */ 171 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 172 PTR24_ALIGN, NULL, NULL, NULL, NULL, static_arena, 0); 173 174 lwp_stk_cache_init(); 175 176 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 177 0, NULL, NULL, NULL, NULL, NULL, 0); 178 #endif 179 180 turnstile_cache = kmem_cache_create("turnstile_cache", 181 sizeof (turnstile_t), 0, 182 turnstile_constructor, turnstile_destructor, NULL, NULL, NULL, 0); 183 184 label_init(); 185 cred_init(); 186 187 rctl_init(); 188 project_init(); 189 zone_init(); 190 task_init(); 191 tcache_init(); 192 pool_init(); 193 194 curthread->t_ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 195 196 /* 197 * Originally, we had two parameters to set default stack 198 * size: one for lwp's (lwp_default_stksize), and one for 199 * kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz). 200 * Now we have a third parameter that overrides both if it is 201 * set to a legal stack size, called default_stksize. 202 */ 203 204 if (default_stksize == 0) { 205 default_stksize = DEFAULTSTKSZ; 206 } else if (default_stksize % PAGESIZE != 0 || 207 default_stksize > MAX_STKSIZE || 208 default_stksize < MIN_STKSIZE) { 209 cmn_err(CE_WARN, "Illegal stack size. Using %d", 210 (int)DEFAULTSTKSZ); 211 default_stksize = DEFAULTSTKSZ; 212 } else { 213 lwp_default_stksize = default_stksize; 214 } 215 216 if (lwp_default_stksize == 0) { 217 lwp_default_stksize = default_stksize; 218 } else if (lwp_default_stksize % PAGESIZE != 0 || 219 lwp_default_stksize > MAX_STKSIZE || 220 lwp_default_stksize < MIN_STKSIZE) { 221 cmn_err(CE_WARN, "Illegal stack size. Using %d", 222 default_stksize); 223 lwp_default_stksize = default_stksize; 224 } 225 226 segkp_lwp = segkp_cache_init(segkp, lwp_cache_sz, 227 lwp_default_stksize, 228 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED)); 229 230 segkp_thread = segkp_cache_init(segkp, t_cache_sz, 231 default_stksize, KPD_HASREDZONE | KPD_LOCKED | KPD_NO_ANON); 232 233 (void) getcid(sys_name, &syscid); 234 curthread->t_cid = syscid; /* current thread is t0 */ 235 236 /* 237 * Set up the first CPU's idle thread. 238 * It runs whenever the CPU has nothing worthwhile to do. 239 */ 240 tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_STOPPED, -1); 241 cpu->cpu_idle_thread = tp; 242 tp->t_preempt = 1; 243 tp->t_disp_queue = cpu->cpu_disp; 244 ASSERT(tp->t_disp_queue != NULL); 245 tp->t_bound_cpu = cpu; 246 tp->t_affinitycnt = 1; 247 248 /* 249 * Registering a thread in the callback table is usually 250 * done in the initialization code of the thread. In this 251 * case, we do it right after thread creation to avoid 252 * blocking idle thread while registering itself. It also 253 * avoids the possibility of reregistration in case a CPU 254 * restarts its idle thread. 255 */ 256 CALLB_CPR_INIT_SAFE(tp, "idle"); 257 258 /* 259 * Finish initializing the kernel memory allocator now that 260 * thread_create() is available. 261 */ 262 kmem_thread_init(); 263 264 if (boothowto & RB_DEBUG) 265 kdi_dvec_thravail(); 266 } 267 268 /* 269 * Create a thread. 270 * 271 * thread_create() blocks for memory if necessary. It never fails. 272 * 273 * If stk is NULL, the thread is created at the base of the stack 274 * and cannot be swapped. 275 */ 276 kthread_t * 277 thread_create( 278 caddr_t stk, 279 size_t stksize, 280 void (*proc)(), 281 void *arg, 282 size_t len, 283 proc_t *pp, 284 int state, 285 pri_t pri) 286 { 287 kthread_t *t; 288 extern struct classfuncs sys_classfuncs; 289 turnstile_t *ts; 290 291 /* 292 * Every thread keeps a turnstile around in case it needs to block. 293 * The only reason the turnstile is not simply part of the thread 294 * structure is that we may have to break the association whenever 295 * more than one thread blocks on a given synchronization object. 296 * From a memory-management standpoint, turnstiles are like the 297 * "attached mblks" that hang off dblks in the streams allocator. 298 */ 299 ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 300 301 if (stk == NULL) { 302 /* 303 * alloc both thread and stack in segkp chunk 304 */ 305 306 if (stksize < default_stksize) 307 stksize = default_stksize; 308 309 if (stksize == default_stksize) { 310 stk = (caddr_t)segkp_cache_get(segkp_thread); 311 } else { 312 stksize = roundup(stksize, PAGESIZE); 313 stk = (caddr_t)segkp_get(segkp, stksize, 314 (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED)); 315 } 316 317 ASSERT(stk != NULL); 318 319 /* 320 * The machine-dependent mutex code may require that 321 * thread pointers (since they may be used for mutex owner 322 * fields) have certain alignment requirements. 323 * PTR24_ALIGN is the size of the alignment quanta. 324 * XXX - assumes stack grows toward low addresses. 325 */ 326 if (stksize <= sizeof (kthread_t) + PTR24_ALIGN) 327 cmn_err(CE_PANIC, "thread_create: proposed stack size" 328 " too small to hold thread."); 329 #ifdef STACK_GROWTH_DOWN 330 stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1); 331 stksize &= -PTR24_ALIGN; /* make thread aligned */ 332 t = (kthread_t *)(stk + stksize); 333 bzero(t, sizeof (kthread_t)); 334 #ifdef C2_AUDIT 335 if (audit_active) 336 audit_thread_create(t); 337 #endif 338 t->t_stk = stk + stksize; 339 t->t_stkbase = stk; 340 #else /* stack grows to larger addresses */ 341 stksize -= SA(sizeof (kthread_t)); 342 t = (kthread_t *)(stk); 343 bzero(t, sizeof (kthread_t)); 344 t->t_stk = stk + sizeof (kthread_t); 345 t->t_stkbase = stk + stksize + sizeof (kthread_t); 346 #endif /* STACK_GROWTH_DOWN */ 347 t->t_flag |= T_TALLOCSTK; 348 t->t_swap = stk; 349 } else { 350 t = kmem_cache_alloc(thread_cache, KM_SLEEP); 351 bzero(t, sizeof (kthread_t)); 352 ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0); 353 #ifdef C2_AUDIT 354 if (audit_active) 355 audit_thread_create(t); 356 #endif 357 /* 358 * Initialize t_stk to the kernel stack pointer to use 359 * upon entry to the kernel 360 */ 361 #ifdef STACK_GROWTH_DOWN 362 t->t_stk = stk + stksize; 363 t->t_stkbase = stk; 364 #else 365 t->t_stk = stk; /* 3b2-like */ 366 t->t_stkbase = stk + stksize; 367 #endif /* STACK_GROWTH_DOWN */ 368 } 369 370 /* set default stack flag */ 371 if (stksize == lwp_default_stksize) 372 t->t_flag |= T_DFLTSTK; 373 374 t->t_ts = ts; 375 376 /* 377 * p_cred could be NULL if it thread_create is called before cred_init 378 * is called in main. 379 */ 380 mutex_enter(&pp->p_crlock); 381 if (pp->p_cred) 382 crhold(t->t_cred = pp->p_cred); 383 mutex_exit(&pp->p_crlock); 384 t->t_start = gethrestime_sec(); 385 t->t_startpc = proc; 386 t->t_procp = pp; 387 t->t_clfuncs = &sys_classfuncs.thread; 388 t->t_cid = syscid; 389 t->t_pri = pri; 390 t->t_stime = lbolt; 391 t->t_schedflag = TS_LOAD | TS_DONT_SWAP; 392 t->t_bind_cpu = PBIND_NONE; 393 t->t_bind_pset = PS_NONE; 394 t->t_plockp = &pp->p_lock; 395 t->t_copyops = NULL; 396 t->t_taskq = NULL; 397 t->t_anttime = 0; 398 t->t_hatdepth = 0; 399 400 t->t_dtrace_vtime = 1; /* assure vtimestamp is always non-zero */ 401 402 CPU_STATS_ADDQ(CPU, sys, nthreads, 1); 403 #ifndef NPROBE 404 /* Kernel probe */ 405 tnf_thread_create(t); 406 #endif /* NPROBE */ 407 LOCK_INIT_CLEAR(&t->t_lock); 408 409 /* 410 * Callers who give us a NULL proc must do their own 411 * stack initialization. e.g. lwp_create() 412 */ 413 if (proc != NULL) { 414 t->t_stk = thread_stk_init(t->t_stk); 415 thread_load(t, proc, arg, len); 416 } 417 418 /* 419 * Put a hold on project0. If this thread is actually in a 420 * different project, then t_proj will be changed later in 421 * lwp_create(). All kernel-only threads must be in project 0. 422 */ 423 t->t_proj = project_hold(proj0p); 424 425 lgrp_affinity_init(&t->t_lgrp_affinity); 426 427 mutex_enter(&pidlock); 428 nthread++; 429 t->t_did = next_t_id++; 430 t->t_prev = curthread->t_prev; 431 t->t_next = curthread; 432 433 /* 434 * Add the thread to the list of all threads, and initialize 435 * its t_cpu pointer. We need to block preemption since 436 * cpu_offline walks the thread list looking for threads 437 * with t_cpu pointing to the CPU being offlined. We want 438 * to make sure that the list is consistent and that if t_cpu 439 * is set, the thread is on the list. 440 */ 441 kpreempt_disable(); 442 curthread->t_prev->t_next = t; 443 curthread->t_prev = t; 444 445 /* 446 * Threads should never have a NULL t_cpu pointer so assign it 447 * here. If the thread is being created with state TS_RUN a 448 * better CPU may be chosen when it is placed on the run queue. 449 * 450 * We need to keep kernel preemption disabled when setting all 451 * three fields to keep them in sync. Also, always create in 452 * the default partition since that's where kernel threads go 453 * (if this isn't a kernel thread, t_cpupart will be changed 454 * in lwp_create before setting the thread runnable). 455 */ 456 t->t_cpupart = &cp_default; 457 458 /* 459 * For now, affiliate this thread with the root lgroup. 460 * Since the kernel does not (presently) allocate its memory 461 * in a locality aware fashion, the root is an appropriate home. 462 * If this thread is later associated with an lwp, it will have 463 * it's lgroup re-assigned at that time. 464 */ 465 lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1); 466 467 /* 468 * Inherit the current cpu. If this cpu isn't part of the chosen 469 * lgroup, a new cpu will be chosen by cpu_choose when the thread 470 * is ready to run. 471 */ 472 if (CPU->cpu_part == &cp_default) 473 t->t_cpu = CPU; 474 else 475 t->t_cpu = disp_lowpri_cpu(cp_default.cp_cpulist, t->t_lpl, 476 t->t_pri, NULL); 477 478 t->t_disp_queue = t->t_cpu->cpu_disp; 479 kpreempt_enable(); 480 481 /* 482 * Initialize thread state and the dispatcher lock pointer. 483 * Need to hold onto pidlock to block allthreads walkers until 484 * the state is set. 485 */ 486 switch (state) { 487 case TS_RUN: 488 curthread->t_oldspl = splhigh(); /* get dispatcher spl */ 489 THREAD_SET_STATE(t, TS_STOPPED, &transition_lock); 490 CL_SETRUN(t); 491 thread_unlock(t); 492 break; 493 494 case TS_ONPROC: 495 THREAD_ONPROC(t, t->t_cpu); 496 break; 497 498 case TS_FREE: 499 /* 500 * Free state will be used for intr threads. 501 * The interrupt routine must set the thread dispatcher 502 * lock pointer (t_lockp) if starting on a CPU 503 * other than the current one. 504 */ 505 THREAD_FREEINTR(t, CPU); 506 break; 507 508 case TS_STOPPED: 509 THREAD_SET_STATE(t, TS_STOPPED, &stop_lock); 510 break; 511 512 default: /* TS_SLEEP, TS_ZOMB or TS_TRANS */ 513 cmn_err(CE_PANIC, "thread_create: invalid state %d", state); 514 } 515 mutex_exit(&pidlock); 516 return (t); 517 } 518 519 /* 520 * Move thread to project0 and take care of project reference counters. 521 */ 522 void 523 thread_rele(kthread_t *t) 524 { 525 kproject_t *kpj; 526 527 thread_lock(t); 528 529 ASSERT(t == curthread || t->t_state == TS_FREE || t->t_procp == &p0); 530 kpj = ttoproj(t); 531 t->t_proj = proj0p; 532 533 thread_unlock(t); 534 535 if (kpj != proj0p) { 536 project_rele(kpj); 537 (void) project_hold(proj0p); 538 } 539 } 540 541 542 void (*ip_cleanup_func)(void); 543 544 void 545 thread_exit() 546 { 547 kthread_t *t = curthread; 548 549 if ((t->t_proc_flag & TP_ZTHREAD) != 0) 550 cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called"); 551 552 if (ip_cleanup_func != NULL) 553 (*ip_cleanup_func)(); 554 555 tsd_exit(); /* Clean up this thread's TSD */ 556 557 kcpc_passivate(); /* clean up performance counter state */ 558 559 /* 560 * No kernel thread should have called poll() without arranging 561 * calling pollcleanup() here. 562 */ 563 ASSERT(t->t_pollstate == NULL); 564 ASSERT(t->t_schedctl == NULL); 565 if (t->t_door) 566 door_slam(); /* in case thread did an upcall */ 567 568 #ifndef NPROBE 569 /* Kernel probe */ 570 if (t->t_tnf_tpdp) 571 tnf_thread_exit(); 572 #endif /* NPROBE */ 573 574 thread_rele(t); 575 t->t_preempt++; 576 577 /* 578 * remove thread from the all threads list so that 579 * death-row can use the same pointers. 580 */ 581 mutex_enter(&pidlock); 582 t->t_next->t_prev = t->t_prev; 583 t->t_prev->t_next = t->t_next; 584 ASSERT(allthreads != t); /* t0 never exits */ 585 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 586 mutex_exit(&pidlock); 587 588 if (t->t_ctx != NULL) 589 exitctx(t); 590 if (t->t_procp->p_pctx != NULL) 591 exitpctx(t->t_procp); 592 593 t->t_state = TS_ZOMB; /* set zombie thread */ 594 595 swtch_from_zombie(); /* give up the CPU */ 596 /* NOTREACHED */ 597 } 598 599 /* 600 * Check to see if the specified thread is active (defined as being on 601 * the thread list). This is certainly a slow way to do this; if there's 602 * ever a reason to speed it up, we could maintain a hash table of active 603 * threads indexed by their t_did. 604 */ 605 static kthread_t * 606 did_to_thread(kt_did_t tid) 607 { 608 kthread_t *t; 609 610 ASSERT(MUTEX_HELD(&pidlock)); 611 for (t = curthread->t_next; t != curthread; t = t->t_next) { 612 if (t->t_did == tid) 613 break; 614 } 615 if (t->t_did == tid) 616 return (t); 617 else 618 return (NULL); 619 } 620 621 /* 622 * Wait for specified thread to exit. Returns immediately if the thread 623 * could not be found, meaning that it has either already exited or never 624 * existed. 625 */ 626 void 627 thread_join(kt_did_t tid) 628 { 629 kthread_t *t; 630 631 ASSERT(tid != curthread->t_did); 632 ASSERT(tid != t0.t_did); 633 634 mutex_enter(&pidlock); 635 /* 636 * Make sure we check that the thread is on the thread list 637 * before blocking on it; otherwise we could end up blocking on 638 * a cv that's already been freed. In other words, don't cache 639 * the thread pointer across calls to cv_wait. 640 * 641 * The choice of loop invariant means that whenever a thread 642 * is taken off the allthreads list, a cv_broadcast must be 643 * performed on that thread's t_joincv to wake up any waiters. 644 * The broadcast doesn't have to happen right away, but it 645 * shouldn't be postponed indefinitely (e.g., by doing it in 646 * thread_free which may only be executed when the deathrow 647 * queue is processed. 648 */ 649 while (t = did_to_thread(tid)) 650 cv_wait(&t->t_joincv, &pidlock); 651 mutex_exit(&pidlock); 652 } 653 654 void 655 thread_free(kthread_t *t) 656 { 657 ASSERT(t != &t0 && t->t_state == TS_FREE); 658 ASSERT(t->t_door == NULL); 659 ASSERT(t->t_schedctl == NULL); 660 ASSERT(t->t_pollstate == NULL); 661 662 t->t_pri = 0; 663 t->t_pc = 0; 664 t->t_sp = 0; 665 t->t_wchan0 = NULL; 666 t->t_wchan = NULL; 667 if (t->t_cred != NULL) { 668 crfree(t->t_cred); 669 t->t_cred = 0; 670 } 671 if (t->t_pdmsg) { 672 kmem_free(t->t_pdmsg, strlen(t->t_pdmsg) + 1); 673 t->t_pdmsg = NULL; 674 } 675 #ifdef C2_AUDIT 676 if (audit_active) 677 audit_thread_free(t); 678 #endif 679 #ifndef NPROBE 680 if (t->t_tnf_tpdp) 681 tnf_thread_free(t); 682 #endif /* NPROBE */ 683 if (t->t_cldata) { 684 CL_EXITCLASS(t->t_cid, (caddr_t *)t->t_cldata); 685 } 686 if (t->t_rprof != NULL) { 687 kmem_free(t->t_rprof, sizeof (*t->t_rprof)); 688 t->t_rprof = NULL; 689 } 690 t->t_lockp = NULL; /* nothing should try to lock this thread now */ 691 if (t->t_lwp) 692 lwp_freeregs(t->t_lwp, 0); 693 if (t->t_ctx) 694 freectx(t, 0); 695 if (t->t_procp->p_pctx) 696 freepctx(t->t_procp, 0); 697 t->t_stk = NULL; 698 if (t->t_lwp) 699 lwp_stk_fini(t->t_lwp); 700 lock_clear(&t->t_lock); 701 702 if (t->t_ts->ts_waiters > 0) 703 panic("thread_free: turnstile still active"); 704 705 kmem_cache_free(turnstile_cache, t->t_ts); 706 707 free_afd(&t->t_activefd); 708 709 /* 710 * Barrier for clock thread. The clock holds this lock to 711 * keep the thread from going away while it's looking at it. 712 */ 713 mutex_enter(&thread_free_lock); 714 mutex_exit(&thread_free_lock); 715 716 ASSERT(ttoproj(t) == proj0p); 717 project_rele(ttoproj(t)); 718 719 lgrp_affinity_free(&t->t_lgrp_affinity); 720 721 /* 722 * Free thread struct and its stack. 723 */ 724 if (t->t_flag & T_TALLOCSTK) { 725 /* thread struct is embedded in stack */ 726 segkp_release(segkp, t->t_swap); 727 mutex_enter(&pidlock); 728 nthread--; 729 mutex_exit(&pidlock); 730 } else { 731 if (t->t_swap) { 732 segkp_release(segkp, t->t_swap); 733 t->t_swap = NULL; 734 } 735 if (t->t_lwp) { 736 kmem_cache_free(lwp_cache, t->t_lwp); 737 t->t_lwp = NULL; 738 } 739 mutex_enter(&pidlock); 740 nthread--; 741 mutex_exit(&pidlock); 742 kmem_cache_free(thread_cache, t); 743 } 744 } 745 746 /* 747 * Removes threads associated with the given zone from a deathrow queue. 748 * tp is a pointer to the head of the deathrow queue, and countp is a 749 * pointer to the current deathrow count. Returns a linked list of 750 * threads removed from the list. 751 */ 752 static kthread_t * 753 thread_zone_cleanup(kthread_t **tp, int *countp, zoneid_t zoneid) 754 { 755 kthread_t *tmp, *list = NULL; 756 cred_t *cr; 757 758 ASSERT(MUTEX_HELD(&reaplock)); 759 while (*tp != NULL) { 760 if ((cr = (*tp)->t_cred) != NULL && crgetzoneid(cr) == zoneid) { 761 tmp = *tp; 762 *tp = tmp->t_forw; 763 tmp->t_forw = list; 764 list = tmp; 765 (*countp)--; 766 } else { 767 tp = &(*tp)->t_forw; 768 } 769 } 770 return (list); 771 } 772 773 static void 774 thread_reap_list(kthread_t *t) 775 { 776 kthread_t *next; 777 778 while (t != NULL) { 779 next = t->t_forw; 780 thread_free(t); 781 t = next; 782 } 783 } 784 785 /* ARGSUSED */ 786 static void 787 thread_zone_destroy(zoneid_t zoneid, void *unused) 788 { 789 kthread_t *t, *l; 790 791 mutex_enter(&reaplock); 792 /* 793 * Pull threads and lwps associated with zone off deathrow lists. 794 */ 795 t = thread_zone_cleanup(&thread_deathrow, &thread_reapcnt, zoneid); 796 l = thread_zone_cleanup(&lwp_deathrow, &lwp_reapcnt, zoneid); 797 mutex_exit(&reaplock); 798 799 /* 800 * Reap threads 801 */ 802 thread_reap_list(t); 803 804 /* 805 * Reap lwps 806 */ 807 thread_reap_list(l); 808 } 809 810 /* 811 * cleanup zombie threads that are on deathrow. 812 */ 813 void 814 thread_reaper() 815 { 816 kthread_t *t, *l; 817 callb_cpr_t cprinfo; 818 819 /* 820 * Register callback to clean up threads when zone is destroyed. 821 */ 822 zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy); 823 824 CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper"); 825 for (;;) { 826 mutex_enter(&reaplock); 827 while (thread_deathrow == NULL && lwp_deathrow == NULL) { 828 CALLB_CPR_SAFE_BEGIN(&cprinfo); 829 cv_wait(&reaper_cv, &reaplock); 830 CALLB_CPR_SAFE_END(&cprinfo, &reaplock); 831 } 832 t = thread_deathrow; 833 l = lwp_deathrow; 834 thread_deathrow = NULL; 835 lwp_deathrow = NULL; 836 thread_reapcnt = 0; 837 lwp_reapcnt = 0; 838 mutex_exit(&reaplock); 839 840 /* 841 * Reap threads 842 */ 843 thread_reap_list(t); 844 845 /* 846 * Reap lwps 847 */ 848 thread_reap_list(l); 849 } 850 } 851 852 /* 853 * This is called by resume() to put a zombie thread onto deathrow. 854 * The thread's state is changed to TS_FREE to indicate that is reapable. 855 * This is called from the idle thread so it must not block (just spin). 856 */ 857 void 858 reapq_add(kthread_t *t) 859 { 860 mutex_enter(&reaplock); 861 862 /* 863 * lwp_deathrow contains only threads with lwp linkage 864 * that are of the default stacksize. Anything else goes 865 * on thread_deathrow. 866 */ 867 if (ttolwp(t) && (t->t_flag & T_DFLTSTK)) { 868 t->t_forw = lwp_deathrow; 869 lwp_deathrow = t; 870 lwp_reapcnt++; 871 } else { 872 t->t_forw = thread_deathrow; 873 thread_deathrow = t; 874 thread_reapcnt++; 875 } 876 if (lwp_reapcnt + thread_reapcnt > reaplimit) 877 cv_signal(&reaper_cv); /* wake the reaper */ 878 t->t_state = TS_FREE; 879 lock_clear(&t->t_lock); 880 mutex_exit(&reaplock); 881 } 882 883 /* 884 * Install thread context ops for the current thread. 885 */ 886 void 887 installctx( 888 kthread_t *t, 889 void *arg, 890 void (*save)(void *), 891 void (*restore)(void *), 892 void (*fork)(void *, void *), 893 void (*lwp_create)(void *, void *), 894 void (*exit)(void *), 895 void (*free)(void *, int)) 896 { 897 struct ctxop *ctx; 898 899 ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP); 900 ctx->save_op = save; 901 ctx->restore_op = restore; 902 ctx->fork_op = fork; 903 ctx->lwp_create_op = lwp_create; 904 ctx->exit_op = exit; 905 ctx->free_op = free; 906 ctx->arg = arg; 907 ctx->next = t->t_ctx; 908 t->t_ctx = ctx; 909 } 910 911 /* 912 * Remove thread context ops from the current thread. 913 * (Or allow the agent thread to remove thread context ops from another 914 * thread in the same, stopped, process) 915 */ 916 int 917 removectx( 918 kthread_t *t, 919 void *arg, 920 void (*save)(void *), 921 void (*restore)(void *), 922 void (*fork)(void *, void *), 923 void (*lwp_create)(void *, void *), 924 void (*exit)(void *), 925 void (*free)(void *, int)) 926 { 927 struct ctxop *ctx, *prev_ctx; 928 929 ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL || 930 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 931 932 prev_ctx = NULL; 933 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) { 934 if (ctx->save_op == save && ctx->restore_op == restore && 935 ctx->fork_op == fork && ctx->lwp_create_op == lwp_create && 936 ctx->exit_op == exit && ctx->free_op == free && 937 ctx->arg == arg) { 938 if (prev_ctx) 939 prev_ctx->next = ctx->next; 940 else 941 t->t_ctx = ctx->next; 942 if (ctx->free_op != NULL) 943 (ctx->free_op)(ctx->arg, 0); 944 kmem_free(ctx, sizeof (struct ctxop)); 945 return (1); 946 } 947 prev_ctx = ctx; 948 } 949 return (0); 950 } 951 952 void 953 savectx(kthread_t *t) 954 { 955 struct ctxop *ctx; 956 957 ASSERT(t == curthread); 958 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 959 if (ctx->save_op != NULL) 960 (ctx->save_op)(ctx->arg); 961 } 962 963 void 964 restorectx(kthread_t *t) 965 { 966 struct ctxop *ctx; 967 968 ASSERT(t == curthread); 969 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 970 if (ctx->restore_op != NULL) 971 (ctx->restore_op)(ctx->arg); 972 } 973 974 void 975 forkctx(kthread_t *t, kthread_t *ct) 976 { 977 struct ctxop *ctx; 978 979 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 980 if (ctx->fork_op != NULL) 981 (ctx->fork_op)(t, ct); 982 } 983 984 /* 985 * Note that this operator is only invoked via the _lwp_create 986 * system call. The system may have other reasons to create lwps 987 * e.g. the agent lwp or the doors unreferenced lwp. 988 */ 989 void 990 lwp_createctx(kthread_t *t, kthread_t *ct) 991 { 992 struct ctxop *ctx; 993 994 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 995 if (ctx->lwp_create_op != NULL) 996 (ctx->lwp_create_op)(t, ct); 997 } 998 999 /* 1000 * exitctx is called from thread_exit() and lwp_exit() to perform any actions 1001 * needed when the thread/LWP leaves the processor for the last time. This 1002 * routine is not intended to deal with freeing memory; freectx() is used for 1003 * that purpose during thread_free(). This routine is provided to allow for 1004 * clean-up that can't wait until thread_free(). 1005 */ 1006 void 1007 exitctx(kthread_t *t) 1008 { 1009 struct ctxop *ctx; 1010 1011 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1012 if (ctx->exit_op != NULL) 1013 (ctx->exit_op)(t); 1014 } 1015 1016 /* 1017 * freectx is called from thread_free() and exec() to get 1018 * rid of old thread context ops. 1019 */ 1020 void 1021 freectx(kthread_t *t, int isexec) 1022 { 1023 struct ctxop *ctx; 1024 1025 while ((ctx = t->t_ctx) != NULL) { 1026 t->t_ctx = ctx->next; 1027 if (ctx->free_op != NULL) 1028 (ctx->free_op)(ctx->arg, isexec); 1029 kmem_free(ctx, sizeof (struct ctxop)); 1030 } 1031 } 1032 1033 /* 1034 * Set the thread running; arrange for it to be swapped in if necessary. 1035 */ 1036 void 1037 setrun_locked(kthread_t *t) 1038 { 1039 ASSERT(THREAD_LOCK_HELD(t)); 1040 if (t->t_state == TS_SLEEP) { 1041 /* 1042 * Take off sleep queue. 1043 */ 1044 SOBJ_UNSLEEP(t->t_sobj_ops, t); 1045 } else if (t->t_state & (TS_RUN | TS_ONPROC)) { 1046 /* 1047 * Already on dispatcher queue. 1048 */ 1049 return; 1050 } else if (t->t_state == TS_STOPPED) { 1051 /* 1052 * All of the sending of SIGCONT (TC_XSTART) and /proc 1053 * (TC_PSTART) and lwp_continue() (TC_CSTART) must have 1054 * requested that the thread be run. 1055 * Just calling setrun() is not sufficient to set a stopped 1056 * thread running. TP_TXSTART is always set if the thread 1057 * is not stopped by a jobcontrol stop signal. 1058 * TP_TPSTART is always set if /proc is not controlling it. 1059 * TP_TCSTART is always set if lwp_suspend() didn't stop it. 1060 * The thread won't be stopped unless one of these 1061 * three mechanisms did it. 1062 * 1063 * These flags must be set before calling setrun_locked(t). 1064 * They can't be passed as arguments because the streams 1065 * code calls setrun() indirectly and the mechanism for 1066 * doing so admits only one argument. Note that the 1067 * thread must be locked in order to change t_schedflags. 1068 */ 1069 if ((t->t_schedflag & TS_ALLSTART) != TS_ALLSTART) 1070 return; 1071 /* 1072 * Process is no longer stopped (a thread is running). 1073 */ 1074 t->t_whystop = 0; 1075 t->t_whatstop = 0; 1076 /* 1077 * Strictly speaking, we do not have to clear these 1078 * flags here; they are cleared on entry to stop(). 1079 * However, they are confusing when doing kernel 1080 * debugging or when they are revealed by ps(1). 1081 */ 1082 t->t_schedflag &= ~TS_ALLSTART; 1083 THREAD_TRANSITION(t); /* drop stopped-thread lock */ 1084 ASSERT(t->t_lockp == &transition_lock); 1085 ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL); 1086 /* 1087 * Let the class put the process on the dispatcher queue. 1088 */ 1089 CL_SETRUN(t); 1090 } 1091 1092 1093 } 1094 1095 void 1096 setrun(kthread_t *t) 1097 { 1098 thread_lock(t); 1099 setrun_locked(t); 1100 thread_unlock(t); 1101 } 1102 1103 /* 1104 * Unpin an interrupted thread. 1105 * When an interrupt occurs, the interrupt is handled on the stack 1106 * of an interrupt thread, taken from a pool linked to the CPU structure. 1107 * 1108 * When swtch() is switching away from an interrupt thread because it 1109 * blocked or was preempted, this routine is called to complete the 1110 * saving of the interrupted thread state, and returns the interrupted 1111 * thread pointer so it may be resumed. 1112 * 1113 * Called by swtch() only at high spl. 1114 */ 1115 kthread_t * 1116 thread_unpin() 1117 { 1118 kthread_t *t = curthread; /* current thread */ 1119 kthread_t *itp; /* interrupted thread */ 1120 int i; /* interrupt level */ 1121 extern int intr_passivate(); 1122 1123 ASSERT(t->t_intr != NULL); 1124 1125 itp = t->t_intr; /* interrupted thread */ 1126 t->t_intr = NULL; /* clear interrupt ptr */ 1127 1128 /* 1129 * Get state from interrupt thread for the one 1130 * it interrupted. 1131 */ 1132 1133 i = intr_passivate(t, itp); 1134 1135 TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE, 1136 "intr_passivate:level %d curthread %p (%T) ithread %p (%T)", 1137 i, t, t, itp, itp); 1138 1139 /* 1140 * Dissociate the current thread from the interrupted thread's LWP. 1141 */ 1142 t->t_lwp = NULL; 1143 1144 /* 1145 * Interrupt handlers above the level that spinlocks block must 1146 * not block. 1147 */ 1148 #if DEBUG 1149 if (i < 0 || i > LOCK_LEVEL) 1150 cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i); 1151 #endif 1152 1153 /* 1154 * Compute the CPU's base interrupt level based on the active 1155 * interrupts. 1156 */ 1157 ASSERT(CPU->cpu_intr_actv & (1 << i)); 1158 set_base_spl(); 1159 1160 return (itp); 1161 } 1162 1163 /* 1164 * Create and initialize an interrupt thread. 1165 * Returns non-zero on error. 1166 * Called at spl7() or better. 1167 */ 1168 void 1169 thread_create_intr(struct cpu *cp) 1170 { 1171 kthread_t *tp; 1172 1173 tp = thread_create(NULL, 0, 1174 (void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0); 1175 1176 /* 1177 * Set the thread in the TS_FREE state. The state will change 1178 * to TS_ONPROC only while the interrupt is active. Think of these 1179 * as being on a private free list for the CPU. Being TS_FREE keeps 1180 * inactive interrupt threads out of debugger thread lists. 1181 * 1182 * We cannot call thread_create with TS_FREE because of the current 1183 * checks there for ONPROC. Fix this when thread_create takes flags. 1184 */ 1185 THREAD_FREEINTR(tp, cp); 1186 1187 /* 1188 * Nobody should ever reference the credentials of an interrupt 1189 * thread so make it NULL to catch any such references. 1190 */ 1191 tp->t_cred = NULL; 1192 tp->t_flag |= T_INTR_THREAD; 1193 tp->t_cpu = cp; 1194 tp->t_bound_cpu = cp; 1195 tp->t_disp_queue = cp->cpu_disp; 1196 tp->t_affinitycnt = 1; 1197 tp->t_preempt = 1; 1198 1199 /* 1200 * Don't make a user-requested binding on this thread so that 1201 * the processor can be offlined. 1202 */ 1203 tp->t_bind_cpu = PBIND_NONE; /* no USER-requested binding */ 1204 tp->t_bind_pset = PS_NONE; 1205 1206 #if defined(__i386) || defined(__amd64) 1207 tp->t_stk -= STACK_ALIGN; 1208 *(tp->t_stk) = 0; /* terminate intr thread stack */ 1209 #endif 1210 1211 /* 1212 * Link onto CPU's interrupt pool. 1213 */ 1214 tp->t_link = cp->cpu_intr_thread; 1215 cp->cpu_intr_thread = tp; 1216 } 1217 1218 /* 1219 * TSD -- THREAD SPECIFIC DATA 1220 */ 1221 static kmutex_t tsd_mutex; /* linked list spin lock */ 1222 static uint_t tsd_nkeys; /* size of destructor array */ 1223 /* per-key destructor funcs */ 1224 static void (**tsd_destructor)(void *); 1225 /* list of tsd_thread's */ 1226 static struct tsd_thread *tsd_list; 1227 1228 /* 1229 * Default destructor 1230 * Needed because NULL destructor means that the key is unused 1231 */ 1232 /* ARGSUSED */ 1233 void 1234 tsd_defaultdestructor(void *value) 1235 {} 1236 1237 /* 1238 * Create a key (index into per thread array) 1239 * Locks out tsd_create, tsd_destroy, and tsd_exit 1240 * May allocate memory with lock held 1241 */ 1242 void 1243 tsd_create(uint_t *keyp, void (*destructor)(void *)) 1244 { 1245 int i; 1246 uint_t nkeys; 1247 1248 /* 1249 * if key is allocated, do nothing 1250 */ 1251 mutex_enter(&tsd_mutex); 1252 if (*keyp) { 1253 mutex_exit(&tsd_mutex); 1254 return; 1255 } 1256 /* 1257 * find an unused key 1258 */ 1259 if (destructor == NULL) 1260 destructor = tsd_defaultdestructor; 1261 1262 for (i = 0; i < tsd_nkeys; ++i) 1263 if (tsd_destructor[i] == NULL) 1264 break; 1265 1266 /* 1267 * if no unused keys, increase the size of the destructor array 1268 */ 1269 if (i == tsd_nkeys) { 1270 if ((nkeys = (tsd_nkeys << 1)) == 0) 1271 nkeys = 1; 1272 tsd_destructor = 1273 (void (**)(void *))tsd_realloc((void *)tsd_destructor, 1274 (size_t)(tsd_nkeys * sizeof (void (*)(void *))), 1275 (size_t)(nkeys * sizeof (void (*)(void *)))); 1276 tsd_nkeys = nkeys; 1277 } 1278 1279 /* 1280 * allocate the next available unused key 1281 */ 1282 tsd_destructor[i] = destructor; 1283 *keyp = i + 1; 1284 mutex_exit(&tsd_mutex); 1285 } 1286 1287 /* 1288 * Destroy a key -- this is for unloadable modules 1289 * 1290 * Assumes that the caller is preventing tsd_set and tsd_get 1291 * Locks out tsd_create, tsd_destroy, and tsd_exit 1292 * May free memory with lock held 1293 */ 1294 void 1295 tsd_destroy(uint_t *keyp) 1296 { 1297 uint_t key; 1298 struct tsd_thread *tsd; 1299 1300 /* 1301 * protect the key namespace and our destructor lists 1302 */ 1303 mutex_enter(&tsd_mutex); 1304 key = *keyp; 1305 *keyp = 0; 1306 1307 ASSERT(key <= tsd_nkeys); 1308 1309 /* 1310 * if the key is valid 1311 */ 1312 if (key != 0) { 1313 uint_t k = key - 1; 1314 /* 1315 * for every thread with TSD, call key's destructor 1316 */ 1317 for (tsd = tsd_list; tsd; tsd = tsd->ts_next) { 1318 /* 1319 * no TSD for key in this thread 1320 */ 1321 if (key > tsd->ts_nkeys) 1322 continue; 1323 /* 1324 * call destructor for key 1325 */ 1326 if (tsd->ts_value[k] && tsd_destructor[k]) 1327 (*tsd_destructor[k])(tsd->ts_value[k]); 1328 /* 1329 * reset value for key 1330 */ 1331 tsd->ts_value[k] = NULL; 1332 } 1333 /* 1334 * actually free the key (NULL destructor == unused) 1335 */ 1336 tsd_destructor[k] = NULL; 1337 } 1338 1339 mutex_exit(&tsd_mutex); 1340 } 1341 1342 /* 1343 * Quickly return the per thread value that was stored with the specified key 1344 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1345 */ 1346 void * 1347 tsd_get(uint_t key) 1348 { 1349 return (tsd_agent_get(curthread, key)); 1350 } 1351 1352 /* 1353 * Set a per thread value indexed with the specified key 1354 */ 1355 int 1356 tsd_set(uint_t key, void *value) 1357 { 1358 return (tsd_agent_set(curthread, key, value)); 1359 } 1360 1361 /* 1362 * Like tsd_get(), except that the agent lwp can get the tsd of 1363 * another thread in the same process (the agent thread only runs when the 1364 * process is completely stopped by /proc), or syslwp is creating a new lwp. 1365 */ 1366 void * 1367 tsd_agent_get(kthread_t *t, uint_t key) 1368 { 1369 struct tsd_thread *tsd = t->t_tsd; 1370 1371 ASSERT(t == curthread || 1372 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1373 1374 if (key && tsd != NULL && key <= tsd->ts_nkeys) 1375 return (tsd->ts_value[key - 1]); 1376 return (NULL); 1377 } 1378 1379 /* 1380 * Like tsd_set(), except that the agent lwp can set the tsd of 1381 * another thread in the same process, or syslwp can set the tsd 1382 * of a thread it's in the middle of creating. 1383 * 1384 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1385 * May lock out tsd_destroy (and tsd_create), may allocate memory with 1386 * lock held 1387 */ 1388 int 1389 tsd_agent_set(kthread_t *t, uint_t key, void *value) 1390 { 1391 struct tsd_thread *tsd = t->t_tsd; 1392 1393 ASSERT(t == curthread || 1394 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1395 1396 if (key == 0) 1397 return (EINVAL); 1398 if (tsd == NULL) 1399 tsd = t->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1400 if (key <= tsd->ts_nkeys) { 1401 tsd->ts_value[key - 1] = value; 1402 return (0); 1403 } 1404 1405 ASSERT(key <= tsd_nkeys); 1406 1407 /* 1408 * lock out tsd_destroy() 1409 */ 1410 mutex_enter(&tsd_mutex); 1411 if (tsd->ts_nkeys == 0) { 1412 /* 1413 * Link onto list of threads with TSD 1414 */ 1415 if ((tsd->ts_next = tsd_list) != NULL) 1416 tsd_list->ts_prev = tsd; 1417 tsd_list = tsd; 1418 } 1419 1420 /* 1421 * Allocate thread local storage and set the value for key 1422 */ 1423 tsd->ts_value = tsd_realloc(tsd->ts_value, 1424 tsd->ts_nkeys * sizeof (void *), 1425 key * sizeof (void *)); 1426 tsd->ts_nkeys = key; 1427 tsd->ts_value[key - 1] = value; 1428 mutex_exit(&tsd_mutex); 1429 1430 return (0); 1431 } 1432 1433 1434 /* 1435 * Return the per thread value that was stored with the specified key 1436 * If necessary, create the key and the value 1437 * Assumes the caller is protecting *keyp from tsd_destroy 1438 */ 1439 void * 1440 tsd_getcreate(uint_t *keyp, void (*destroy)(void *), void *(*allocate)(void)) 1441 { 1442 void *value; 1443 uint_t key = *keyp; 1444 struct tsd_thread *tsd = curthread->t_tsd; 1445 1446 if (tsd == NULL) 1447 tsd = curthread->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1448 if (key && key <= tsd->ts_nkeys && (value = tsd->ts_value[key - 1])) 1449 return (value); 1450 if (key == 0) 1451 tsd_create(keyp, destroy); 1452 (void) tsd_set(*keyp, value = (*allocate)()); 1453 1454 return (value); 1455 } 1456 1457 /* 1458 * Called from thread_exit() to run the destructor function for each tsd 1459 * Locks out tsd_create and tsd_destroy 1460 * Assumes that the destructor *DOES NOT* use tsd 1461 */ 1462 void 1463 tsd_exit(void) 1464 { 1465 int i; 1466 struct tsd_thread *tsd = curthread->t_tsd; 1467 1468 if (tsd == NULL) 1469 return; 1470 1471 if (tsd->ts_nkeys == 0) { 1472 kmem_free(tsd, sizeof (*tsd)); 1473 curthread->t_tsd = NULL; 1474 return; 1475 } 1476 1477 /* 1478 * lock out tsd_create and tsd_destroy, call 1479 * the destructor, and mark the value as destroyed. 1480 */ 1481 mutex_enter(&tsd_mutex); 1482 1483 for (i = 0; i < tsd->ts_nkeys; i++) { 1484 if (tsd->ts_value[i] && tsd_destructor[i]) 1485 (*tsd_destructor[i])(tsd->ts_value[i]); 1486 tsd->ts_value[i] = NULL; 1487 } 1488 1489 /* 1490 * remove from linked list of threads with TSD 1491 */ 1492 if (tsd->ts_next) 1493 tsd->ts_next->ts_prev = tsd->ts_prev; 1494 if (tsd->ts_prev) 1495 tsd->ts_prev->ts_next = tsd->ts_next; 1496 if (tsd_list == tsd) 1497 tsd_list = tsd->ts_next; 1498 1499 mutex_exit(&tsd_mutex); 1500 1501 /* 1502 * free up the TSD 1503 */ 1504 kmem_free(tsd->ts_value, tsd->ts_nkeys * sizeof (void *)); 1505 kmem_free(tsd, sizeof (struct tsd_thread)); 1506 curthread->t_tsd = NULL; 1507 } 1508 1509 /* 1510 * realloc 1511 */ 1512 static void * 1513 tsd_realloc(void *old, size_t osize, size_t nsize) 1514 { 1515 void *new; 1516 1517 new = kmem_zalloc(nsize, KM_SLEEP); 1518 if (old) { 1519 bcopy(old, new, osize); 1520 kmem_free(old, osize); 1521 } 1522 return (new); 1523 } 1524 1525 /* 1526 * Check to see if an interrupt thread might be active at a given ipl. 1527 * If so return true. 1528 * We must be conservative--it is ok to give a false yes, but a false no 1529 * will cause disaster. (But if the situation changes after we check it is 1530 * ok--the caller is trying to ensure that an interrupt routine has been 1531 * exited). 1532 * This is used when trying to remove an interrupt handler from an autovector 1533 * list in avintr.c. 1534 */ 1535 int 1536 intr_active(struct cpu *cp, int level) 1537 { 1538 if (level <= LOCK_LEVEL) 1539 return (cp->cpu_thread != cp->cpu_dispthread); 1540 else 1541 return (CPU_ON_INTR(cp)); 1542 } 1543 1544 /* 1545 * Return non-zero if an interrupt is being serviced. 1546 */ 1547 int 1548 servicing_interrupt() 1549 { 1550 int onintr = 0; 1551 1552 /* Are we an interrupt thread */ 1553 if (curthread->t_flag & T_INTR_THREAD) 1554 return (1); 1555 /* Are we servicing a high level interrupt? */ 1556 if (CPU_ON_INTR(CPU)) { 1557 kpreempt_disable(); 1558 onintr = CPU_ON_INTR(CPU); 1559 kpreempt_enable(); 1560 } 1561 return (onintr); 1562 } 1563 1564 1565 /* 1566 * Change the dispatch priority of a thread in the system. 1567 * Used when raising or lowering a thread's priority. 1568 * (E.g., priority inheritance) 1569 * 1570 * Since threads are queued according to their priority, we 1571 * we must check the thread's state to determine whether it 1572 * is on a queue somewhere. If it is, we've got to: 1573 * 1574 * o Dequeue the thread. 1575 * o Change its effective priority. 1576 * o Enqueue the thread. 1577 * 1578 * Assumptions: The thread whose priority we wish to change 1579 * must be locked before we call thread_change_(e)pri(). 1580 * The thread_change(e)pri() function doesn't drop the thread 1581 * lock--that must be done by its caller. 1582 */ 1583 void 1584 thread_change_epri(kthread_t *t, pri_t disp_pri) 1585 { 1586 uint_t state; 1587 1588 ASSERT(THREAD_LOCK_HELD(t)); 1589 1590 /* 1591 * If the inherited priority hasn't actually changed, 1592 * just return. 1593 */ 1594 if (t->t_epri == disp_pri) 1595 return; 1596 1597 state = t->t_state; 1598 1599 /* 1600 * If it's not on a queue, change the priority with 1601 * impunity. 1602 */ 1603 if ((state & (TS_SLEEP | TS_RUN)) == 0) { 1604 t->t_epri = disp_pri; 1605 1606 if (state == TS_ONPROC) { 1607 cpu_t *cp = t->t_disp_queue->disp_cpu; 1608 1609 if (t == cp->cpu_dispthread) 1610 cp->cpu_dispatch_pri = DISP_PRIO(t); 1611 } 1612 return; 1613 } 1614 1615 /* 1616 * It's either on a sleep queue or a run queue. 1617 */ 1618 if (state == TS_SLEEP) { 1619 1620 /* 1621 * Take the thread out of its sleep queue. 1622 * Change the inherited priority. 1623 * Re-enqueue the thread. 1624 * Each synchronization object exports a function 1625 * to do this in an appropriate manner. 1626 */ 1627 SOBJ_CHANGE_EPRI(t->t_sobj_ops, t, disp_pri); 1628 } else { 1629 /* 1630 * The thread is on a run queue. 1631 * Note: setbackdq() may not put the thread 1632 * back on the same run queue where it originally 1633 * resided. 1634 */ 1635 (void) dispdeq(t); 1636 t->t_epri = disp_pri; 1637 setbackdq(t); 1638 } 1639 } /* end of thread_change_epri */ 1640 1641 /* 1642 * Function: Change the t_pri field of a thread. 1643 * Side Effects: Adjust the thread ordering on a run queue 1644 * or sleep queue, if necessary. 1645 * Returns: 1 if the thread was on a run queue, else 0. 1646 */ 1647 int 1648 thread_change_pri(kthread_t *t, pri_t disp_pri, int front) 1649 { 1650 uint_t state; 1651 int on_rq = 0; 1652 1653 ASSERT(THREAD_LOCK_HELD(t)); 1654 1655 state = t->t_state; 1656 THREAD_WILLCHANGE_PRI(t, disp_pri); 1657 1658 /* 1659 * If it's not on a queue, change the priority with 1660 * impunity. 1661 */ 1662 if ((state & (TS_SLEEP | TS_RUN)) == 0) { 1663 t->t_pri = disp_pri; 1664 1665 if (state == TS_ONPROC) { 1666 cpu_t *cp = t->t_disp_queue->disp_cpu; 1667 1668 if (t == cp->cpu_dispthread) 1669 cp->cpu_dispatch_pri = DISP_PRIO(t); 1670 } 1671 return (0); 1672 } 1673 1674 /* 1675 * It's either on a sleep queue or a run queue. 1676 */ 1677 if (state == TS_SLEEP) { 1678 /* 1679 * If the priority has changed, take the thread out of 1680 * its sleep queue and change the priority. 1681 * Re-enqueue the thread. 1682 * Each synchronization object exports a function 1683 * to do this in an appropriate manner. 1684 */ 1685 if (disp_pri != t->t_pri) 1686 SOBJ_CHANGE_PRI(t->t_sobj_ops, t, disp_pri); 1687 } else { 1688 /* 1689 * The thread is on a run queue. 1690 * Note: setbackdq() may not put the thread 1691 * back on the same run queue where it originally 1692 * resided. 1693 * 1694 * We still requeue the thread even if the priority 1695 * is unchanged to preserve round-robin (and other) 1696 * effects between threads of the same priority. 1697 */ 1698 on_rq = dispdeq(t); 1699 ASSERT(on_rq); 1700 t->t_pri = disp_pri; 1701 if (front) { 1702 setfrontdq(t); 1703 } else { 1704 setbackdq(t); 1705 } 1706 } 1707 return (on_rq); 1708 } 1709