1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/sysmacros.h> 32 #include <sys/signal.h> 33 #include <sys/stack.h> 34 #include <sys/pcb.h> 35 #include <sys/user.h> 36 #include <sys/systm.h> 37 #include <sys/sysinfo.h> 38 #include <sys/var.h> 39 #include <sys/errno.h> 40 #include <sys/cmn_err.h> 41 #include <sys/cred.h> 42 #include <sys/resource.h> 43 #include <sys/task.h> 44 #include <sys/project.h> 45 #include <sys/proc.h> 46 #include <sys/debug.h> 47 #include <sys/inline.h> 48 #include <sys/disp.h> 49 #include <sys/class.h> 50 #include <vm/seg_kmem.h> 51 #include <vm/seg_kp.h> 52 #include <sys/machlock.h> 53 #include <sys/kmem.h> 54 #include <sys/varargs.h> 55 #include <sys/turnstile.h> 56 #include <sys/poll.h> 57 #include <sys/vtrace.h> 58 #include <sys/callb.h> 59 #include <c2/audit.h> 60 #include <sys/tnf.h> 61 #include <sys/sobject.h> 62 #include <sys/cpupart.h> 63 #include <sys/pset.h> 64 #include <sys/door.h> 65 #include <sys/spl.h> 66 #include <sys/copyops.h> 67 #include <sys/rctl.h> 68 #include <sys/pool.h> 69 #include <sys/zone.h> 70 #include <sys/cpc_impl.h> 71 #include <sys/sdt.h> 72 #include <sys/reboot.h> 73 #include <sys/kdi.h> 74 75 struct kmem_cache *thread_cache; /* cache of free threads */ 76 struct kmem_cache *lwp_cache; /* cache of free lwps */ 77 struct kmem_cache *turnstile_cache; /* cache of free turnstiles */ 78 79 /* 80 * allthreads is only for use by kmem_readers. All kernel loops can use 81 * the current thread as a start/end point. 82 */ 83 static kthread_t *allthreads = &t0; /* circular list of all threads */ 84 85 static kcondvar_t reaper_cv; /* synchronization var */ 86 kthread_t *thread_deathrow; /* circular list of reapable threads */ 87 kthread_t *lwp_deathrow; /* circular list of reapable threads */ 88 kmutex_t reaplock; /* protects lwp and thread deathrows */ 89 kmutex_t thread_free_lock; /* protects clock from reaper */ 90 int thread_reapcnt = 0; /* number of threads on deathrow */ 91 int lwp_reapcnt = 0; /* number of lwps on deathrow */ 92 int reaplimit = 16; /* delay reaping until reaplimit */ 93 94 extern int nthread; 95 96 id_t syscid; /* system scheduling class ID */ 97 void *segkp_thread; /* cookie for segkp pool */ 98 99 int lwp_cache_sz = 32; 100 int t_cache_sz = 8; 101 static kt_did_t next_t_id = 1; 102 103 /* 104 * Min/Max stack sizes for stack size parameters 105 */ 106 #define MAX_STKSIZE (32 * DEFAULTSTKSZ) 107 #define MIN_STKSIZE DEFAULTSTKSZ 108 109 /* 110 * default_stksize overrides lwp_default_stksize if it is set. 111 */ 112 int default_stksize; 113 int lwp_default_stksize; 114 115 static zone_key_t zone_thread_key; 116 117 /* 118 * forward declarations for internal thread specific data (tsd) 119 */ 120 static void *tsd_realloc(void *, size_t, size_t); 121 122 /*ARGSUSED*/ 123 static int 124 turnstile_constructor(void *buf, void *cdrarg, int kmflags) 125 { 126 bzero(buf, sizeof (turnstile_t)); 127 return (0); 128 } 129 130 /*ARGSUSED*/ 131 static void 132 turnstile_destructor(void *buf, void *cdrarg) 133 { 134 turnstile_t *ts = buf; 135 136 ASSERT(ts->ts_free == NULL); 137 ASSERT(ts->ts_waiters == 0); 138 ASSERT(ts->ts_inheritor == NULL); 139 ASSERT(ts->ts_sleepq[0].sq_first == NULL); 140 ASSERT(ts->ts_sleepq[1].sq_first == NULL); 141 } 142 143 void 144 thread_init(void) 145 { 146 kthread_t *tp; 147 extern char sys_name[]; 148 extern void idle(); 149 struct cpu *cpu = CPU; 150 151 mutex_init(&reaplock, NULL, MUTEX_SPIN, (void *)ipltospl(DISP_LEVEL)); 152 153 #if defined(__i386) || defined(__amd64) 154 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 155 PTR24_ALIGN, NULL, NULL, NULL, NULL, NULL, 0); 156 157 /* 158 * "struct _klwp" includes a "struct pcb", which includes a 159 * "struct fpu", which needs to be 16-byte aligned on amd64 160 * (and even on i386 for fxsave/fxrstor). 161 */ 162 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 163 16, NULL, NULL, NULL, NULL, NULL, 0); 164 #else 165 /* 166 * Allocate thread structures from static_arena. This prevents 167 * issues where a thread tries to relocate its own thread 168 * structure and touches it after the mapping has been suspended. 169 */ 170 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 171 PTR24_ALIGN, NULL, NULL, NULL, NULL, static_arena, 0); 172 173 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 174 0, NULL, NULL, NULL, NULL, NULL, 0); 175 #endif 176 177 turnstile_cache = kmem_cache_create("turnstile_cache", 178 sizeof (turnstile_t), 0, 179 turnstile_constructor, turnstile_destructor, NULL, NULL, NULL, 0); 180 181 cred_init(); 182 183 rctl_init(); 184 project_init(); 185 zone_init(); 186 task_init(); 187 pool_init(); 188 189 curthread->t_ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 190 191 /* 192 * Originally, we had two parameters to set default stack 193 * size: one for lwp's (lwp_default_stksize), and one for 194 * kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz). 195 * Now we have a third parameter that overrides both if it is 196 * set to a legal stack size, called default_stksize. 197 */ 198 199 if (default_stksize == 0) { 200 default_stksize = DEFAULTSTKSZ; 201 } else if (default_stksize % PAGESIZE != 0 || 202 default_stksize > MAX_STKSIZE || 203 default_stksize < MIN_STKSIZE) { 204 cmn_err(CE_WARN, "Illegal stack size. Using %d", 205 (int)DEFAULTSTKSZ); 206 default_stksize = DEFAULTSTKSZ; 207 } else { 208 lwp_default_stksize = default_stksize; 209 } 210 211 if (lwp_default_stksize == 0) { 212 lwp_default_stksize = default_stksize; 213 } else if (lwp_default_stksize % PAGESIZE != 0 || 214 lwp_default_stksize > MAX_STKSIZE || 215 lwp_default_stksize < MIN_STKSIZE) { 216 cmn_err(CE_WARN, "Illegal stack size. Using %d", 217 default_stksize); 218 lwp_default_stksize = default_stksize; 219 } 220 221 segkp_lwp = segkp_cache_init(segkp, lwp_cache_sz, 222 lwp_default_stksize, 223 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED)); 224 225 segkp_thread = segkp_cache_init(segkp, t_cache_sz, 226 default_stksize, KPD_HASREDZONE | KPD_LOCKED | KPD_NO_ANON); 227 228 (void) getcid(sys_name, &syscid); 229 curthread->t_cid = syscid; /* current thread is t0 */ 230 231 /* 232 * Set up the first CPU's idle thread. 233 * It runs whenever the CPU has nothing worthwhile to do. 234 */ 235 tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_STOPPED, -1); 236 cpu->cpu_idle_thread = tp; 237 tp->t_preempt = 1; 238 tp->t_disp_queue = cpu->cpu_disp; 239 ASSERT(tp->t_disp_queue != NULL); 240 tp->t_bound_cpu = cpu; 241 tp->t_affinitycnt = 1; 242 243 /* 244 * Registering a thread in the callback table is usually 245 * done in the initialization code of the thread. In this 246 * case, we do it right after thread creation to avoid 247 * blocking idle thread while registering itself. It also 248 * avoids the possibility of reregistration in case a CPU 249 * restarts its idle thread. 250 */ 251 CALLB_CPR_INIT_SAFE(tp, "idle"); 252 253 /* 254 * Finish initializing the kernel memory allocator now that 255 * thread_create() is available. 256 */ 257 kmem_thread_init(); 258 259 if (boothowto & RB_DEBUG) 260 kdi_dvec_thravail(); 261 } 262 263 /* 264 * Create a thread. 265 * 266 * thread_create() blocks for memory if necessary. It never fails. 267 * 268 * If stk is NULL, the thread is created at the base of the stack 269 * and cannot be swapped. 270 */ 271 kthread_t * 272 thread_create( 273 caddr_t stk, 274 size_t stksize, 275 void (*proc)(), 276 void *arg, 277 size_t len, 278 proc_t *pp, 279 int state, 280 pri_t pri) 281 { 282 kthread_t *t; 283 extern struct classfuncs sys_classfuncs; 284 turnstile_t *ts; 285 #if defined(__ia64) 286 size_t regstksize; 287 #endif 288 289 /* 290 * Every thread keeps a turnstile around in case it needs to block. 291 * The only reason the turnstile is not simply part of the thread 292 * structure is that we may have to break the association whenever 293 * more than one thread blocks on a given synchronization object. 294 * From a memory-management standpoint, turnstiles are like the 295 * "attached mblks" that hang off dblks in the streams allocator. 296 */ 297 ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 298 299 if (stk == NULL) { 300 /* 301 * alloc both thread and stack in segkp chunk 302 */ 303 304 if (stksize < default_stksize) 305 stksize = default_stksize; 306 307 if (stksize == default_stksize) { 308 stk = (caddr_t)segkp_cache_get(segkp_thread); 309 } else { 310 stksize = roundup(stksize, PAGESIZE); 311 stk = (caddr_t)segkp_get(segkp, stksize, 312 (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED)); 313 } 314 315 ASSERT(stk != NULL); 316 317 /* 318 * The machine-dependent mutex code may require that 319 * thread pointers (since they may be used for mutex owner 320 * fields) have certain alignment requirements. 321 * PTR24_ALIGN is the size of the alignment quanta. 322 * XXX - assumes stack grows toward low addresses. 323 */ 324 if (stksize <= sizeof (kthread_t) + PTR24_ALIGN) 325 cmn_err(CE_PANIC, "thread_create: proposed stack size" 326 " too small to hold thread."); 327 #ifdef STACK_GROWTH_DOWN 328 #if defined(__ia64) 329 /* "stksize / 2" may need to be adjusted */ 330 stksize = stksize / 2; /* needs to match below */ 331 regstksize = stksize; 332 #endif 333 stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1); 334 stksize &= -PTR24_ALIGN; /* make thread aligned */ 335 t = (kthread_t *)(stk + stksize); 336 bzero(t, sizeof (kthread_t)); 337 #ifdef C2_AUDIT 338 if (audit_active) 339 audit_thread_create(t); 340 #endif 341 t->t_stk = stk + stksize; 342 t->t_stkbase = stk; 343 #if defined(__ia64) 344 t->t_regstk = stk + regstksize; 345 t->t_stksize = regstksize * 2; /* needs to match above */ 346 #endif 347 #else /* stack grows to larger addresses */ 348 stksize -= SA(sizeof (kthread_t)); 349 t = (kthread_t *)(stk); 350 bzero(t, sizeof (kthread_t)); 351 t->t_stk = stk + sizeof (kthread_t); 352 t->t_stkbase = stk + stksize + sizeof (kthread_t); 353 #endif /* STACK_GROWTH_DOWN */ 354 t->t_flag |= T_TALLOCSTK; 355 t->t_swap = stk; 356 } else { 357 t = kmem_cache_alloc(thread_cache, KM_SLEEP); 358 bzero(t, sizeof (kthread_t)); 359 ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0); 360 #ifdef C2_AUDIT 361 if (audit_active) 362 audit_thread_create(t); 363 #endif 364 /* 365 * Initialize t_stk to the kernel stack pointer to use 366 * upon entry to the kernel 367 */ 368 #ifdef STACK_GROWTH_DOWN 369 #if defined(__ia64) 370 /* "stksize / 2" may need to be adjusted */ 371 t->t_stk = stk + (stksize / 2); /* grows down */ 372 t->t_regstk = t->t_stk; /* grows up from same place */ 373 t->t_stkbase = stk; 374 t->t_stksize = stksize; 375 #else 376 t->t_stk = stk + stksize; 377 t->t_stkbase = stk; 378 #endif 379 #else 380 t->t_stk = stk; /* 3b2-like */ 381 t->t_stkbase = stk + stksize; 382 #endif /* STACK_GROWTH_DOWN */ 383 } 384 385 /* set default stack flag */ 386 if (stksize == lwp_default_stksize) 387 t->t_flag |= T_DFLTSTK; 388 389 t->t_ts = ts; 390 391 /* 392 * p_cred could be NULL if it thread_create is called before cred_init 393 * is called in main. 394 */ 395 mutex_enter(&pp->p_crlock); 396 if (pp->p_cred) 397 crhold(t->t_cred = pp->p_cred); 398 mutex_exit(&pp->p_crlock); 399 t->t_start = gethrestime_sec(); 400 t->t_startpc = proc; 401 t->t_procp = pp; 402 t->t_clfuncs = &sys_classfuncs.thread; 403 t->t_cid = syscid; 404 t->t_pri = pri; 405 t->t_stime = lbolt; 406 t->t_schedflag = TS_LOAD | TS_DONT_SWAP; 407 t->t_bind_cpu = PBIND_NONE; 408 t->t_bind_pset = PS_NONE; 409 t->t_plockp = &pp->p_lock; 410 t->t_copyops = NULL; 411 t->t_taskq = NULL; 412 t->t_anttime = 0; 413 t->t_hatdepth = 0; 414 415 t->t_dtrace_vtime = 1; /* assure vtimestamp is always non-zero */ 416 417 CPU_STATS_ADDQ(CPU, sys, nthreads, 1); 418 #ifndef NPROBE 419 /* Kernel probe */ 420 tnf_thread_create(t); 421 #endif /* NPROBE */ 422 LOCK_INIT_CLEAR(&t->t_lock); 423 424 /* 425 * Callers who give us a NULL proc must do their own 426 * stack initialization. e.g. lwp_create() 427 */ 428 if (proc != NULL) { 429 t->t_stk = thread_stk_init(t->t_stk); 430 thread_load(t, proc, arg, len); 431 } 432 433 /* 434 * Put a hold on project0. If this thread is actually in a 435 * different project, then t_proj will be changed later in 436 * lwp_create(). All kernel-only threads must be in project 0. 437 */ 438 t->t_proj = project_hold(proj0p); 439 440 lgrp_affinity_init(&t->t_lgrp_affinity); 441 442 mutex_enter(&pidlock); 443 nthread++; 444 t->t_did = next_t_id++; 445 t->t_prev = curthread->t_prev; 446 t->t_next = curthread; 447 448 /* 449 * Add the thread to the list of all threads, and initialize 450 * its t_cpu pointer. We need to block preemption since 451 * cpu_offline walks the thread list looking for threads 452 * with t_cpu pointing to the CPU being offlined. We want 453 * to make sure that the list is consistent and that if t_cpu 454 * is set, the thread is on the list. 455 */ 456 kpreempt_disable(); 457 curthread->t_prev->t_next = t; 458 curthread->t_prev = t; 459 460 /* 461 * Threads should never have a NULL t_cpu pointer so assign it 462 * here. If the thread is being created with state TS_RUN a 463 * better CPU may be chosen when it is placed on the run queue. 464 * 465 * We need to keep kernel preemption disabled when setting all 466 * three fields to keep them in sync. Also, always create in 467 * the default partition since that's where kernel threads go 468 * (if this isn't a kernel thread, t_cpupart will be changed 469 * in lwp_create before setting the thread runnable). 470 */ 471 t->t_cpupart = &cp_default; 472 473 /* 474 * For now, affiliate this thread with the root lgroup. 475 * Since the kernel does not (presently) allocate its memory 476 * in a locality aware fashion, the root is an appropriate home. 477 * If this thread is later associated with an lwp, it will have 478 * it's lgroup re-assigned at that time. 479 */ 480 lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1); 481 482 /* 483 * Inherit the current cpu. If this cpu isn't part of the chosen 484 * lgroup, a new cpu will be chosen by cpu_choose when the thread 485 * is ready to run. 486 */ 487 if (CPU->cpu_part == &cp_default) 488 t->t_cpu = CPU; 489 else 490 t->t_cpu = disp_lowpri_cpu(cp_default.cp_cpulist, t->t_lpl, 491 t->t_pri, NULL); 492 493 t->t_disp_queue = t->t_cpu->cpu_disp; 494 kpreempt_enable(); 495 496 /* 497 * Initialize thread state and the dispatcher lock pointer. 498 * Need to hold onto pidlock to block allthreads walkers until 499 * the state is set. 500 */ 501 switch (state) { 502 case TS_RUN: 503 curthread->t_oldspl = splhigh(); /* get dispatcher spl */ 504 THREAD_SET_STATE(t, TS_STOPPED, &transition_lock); 505 CL_SETRUN(t); 506 thread_unlock(t); 507 break; 508 509 case TS_ONPROC: 510 THREAD_ONPROC(t, t->t_cpu); 511 break; 512 513 case TS_FREE: 514 /* 515 * Free state will be used for intr threads. 516 * The interrupt routine must set the thread dispatcher 517 * lock pointer (t_lockp) if starting on a CPU 518 * other than the current one. 519 */ 520 THREAD_FREEINTR(t, CPU); 521 break; 522 523 case TS_STOPPED: 524 THREAD_SET_STATE(t, TS_STOPPED, &stop_lock); 525 break; 526 527 default: /* TS_SLEEP, TS_ZOMB or TS_TRANS */ 528 cmn_err(CE_PANIC, "thread_create: invalid state %d", state); 529 } 530 mutex_exit(&pidlock); 531 return (t); 532 } 533 534 /* 535 * Move thread to project0 and take care of project reference counters. 536 */ 537 void 538 thread_rele(kthread_t *t) 539 { 540 kproject_t *kpj; 541 542 thread_lock(t); 543 544 ASSERT(t == curthread || t->t_state == TS_FREE || t->t_procp == &p0); 545 kpj = ttoproj(t); 546 t->t_proj = proj0p; 547 548 thread_unlock(t); 549 550 if (kpj != proj0p) { 551 project_rele(kpj); 552 (void) project_hold(proj0p); 553 } 554 } 555 556 557 void (*ip_cleanup_func)(void); 558 559 void 560 thread_exit() 561 { 562 kthread_t *t = curthread; 563 564 if ((t->t_proc_flag & TP_ZTHREAD) != 0) 565 cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called"); 566 567 if (ip_cleanup_func != NULL) 568 (*ip_cleanup_func)(); 569 570 tsd_exit(); /* Clean up this thread's TSD */ 571 572 kcpc_passivate(); /* clean up performance counter state */ 573 574 /* 575 * No kernel thread should have called poll() without arranging 576 * calling pollcleanup() here. 577 */ 578 ASSERT(t->t_pollstate == NULL); 579 ASSERT(t->t_schedctl == NULL); 580 if (t->t_door) 581 door_slam(); /* in case thread did an upcall */ 582 583 #ifndef NPROBE 584 /* Kernel probe */ 585 if (t->t_tnf_tpdp) 586 tnf_thread_exit(); 587 #endif /* NPROBE */ 588 589 thread_rele(t); 590 t->t_preempt++; 591 592 /* 593 * remove thread from the all threads list so that 594 * death-row can use the same pointers. 595 */ 596 mutex_enter(&pidlock); 597 t->t_next->t_prev = t->t_prev; 598 t->t_prev->t_next = t->t_next; 599 ASSERT(allthreads != t); /* t0 never exits */ 600 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 601 mutex_exit(&pidlock); 602 603 if (t->t_ctx != NULL) 604 exitctx(t); 605 606 t->t_state = TS_ZOMB; /* set zombie thread */ 607 608 swtch_from_zombie(); /* give up the CPU */ 609 /* NOTREACHED */ 610 } 611 612 /* 613 * Check to see if the specified thread is active (defined as being on 614 * the thread list). This is certainly a slow way to do this; if there's 615 * ever a reason to speed it up, we could maintain a hash table of active 616 * threads indexed by their t_did. 617 */ 618 static kthread_t * 619 did_to_thread(kt_did_t tid) 620 { 621 kthread_t *t; 622 623 ASSERT(MUTEX_HELD(&pidlock)); 624 for (t = curthread->t_next; t != curthread; t = t->t_next) { 625 if (t->t_did == tid) 626 break; 627 } 628 if (t->t_did == tid) 629 return (t); 630 else 631 return (NULL); 632 } 633 634 /* 635 * Wait for specified thread to exit. Returns immediately if the thread 636 * could not be found, meaning that it has either already exited or never 637 * existed. 638 */ 639 void 640 thread_join(kt_did_t tid) 641 { 642 kthread_t *t; 643 644 ASSERT(tid != curthread->t_did); 645 ASSERT(tid != t0.t_did); 646 647 mutex_enter(&pidlock); 648 /* 649 * Make sure we check that the thread is on the thread list 650 * before blocking on it; otherwise we could end up blocking on 651 * a cv that's already been freed. In other words, don't cache 652 * the thread pointer across calls to cv_wait. 653 * 654 * The choice of loop invariant means that whenever a thread 655 * is taken off the allthreads list, a cv_broadcast must be 656 * performed on that thread's t_joincv to wake up any waiters. 657 * The broadcast doesn't have to happen right away, but it 658 * shouldn't be postponed indefinitely (e.g., by doing it in 659 * thread_free which may only be executed when the deathrow 660 * queue is processed. 661 */ 662 while (t = did_to_thread(tid)) 663 cv_wait(&t->t_joincv, &pidlock); 664 mutex_exit(&pidlock); 665 } 666 667 void 668 thread_free(kthread_t *t) 669 { 670 ASSERT(t != &t0 && t->t_state == TS_FREE); 671 ASSERT(t->t_door == NULL); 672 ASSERT(t->t_schedctl == NULL); 673 ASSERT(t->t_pollstate == NULL); 674 675 t->t_pri = 0; 676 t->t_pc = 0; 677 t->t_sp = 0; 678 t->t_wchan0 = NULL; 679 t->t_wchan = NULL; 680 if (t->t_cred != NULL) { 681 crfree(t->t_cred); 682 t->t_cred = 0; 683 } 684 if (t->t_pdmsg) { 685 kmem_free(t->t_pdmsg, strlen(t->t_pdmsg) + 1); 686 t->t_pdmsg = NULL; 687 } 688 #ifdef C2_AUDIT 689 if (audit_active) 690 audit_thread_free(t); 691 #endif 692 #ifndef NPROBE 693 if (t->t_tnf_tpdp) 694 tnf_thread_free(t); 695 #endif /* NPROBE */ 696 if (t->t_cldata) { 697 CL_EXITCLASS(t->t_cid, (caddr_t *)t->t_cldata); 698 } 699 if (t->t_rprof != NULL) { 700 kmem_free(t->t_rprof, sizeof (*t->t_rprof)); 701 t->t_rprof = NULL; 702 } 703 t->t_lockp = NULL; /* nothing should try to lock this thread now */ 704 if (t->t_lwp) 705 lwp_freeregs(t->t_lwp, 0); 706 if (t->t_ctx) 707 freectx(t, 0); 708 t->t_stk = NULL; 709 if (t->t_lwp) 710 lwp_stk_fini(t->t_lwp); 711 lock_clear(&t->t_lock); 712 713 if (t->t_ts->ts_waiters > 0) 714 panic("thread_free: turnstile still active"); 715 716 kmem_cache_free(turnstile_cache, t->t_ts); 717 718 free_afd(&t->t_activefd); 719 720 /* 721 * Barrier for clock thread. The clock holds this lock to 722 * keep the thread from going away while it's looking at it. 723 */ 724 mutex_enter(&thread_free_lock); 725 mutex_exit(&thread_free_lock); 726 727 ASSERT(ttoproj(t) == proj0p); 728 project_rele(ttoproj(t)); 729 730 lgrp_affinity_free(&t->t_lgrp_affinity); 731 732 /* 733 * Free thread struct and its stack. 734 */ 735 if (t->t_flag & T_TALLOCSTK) { 736 /* thread struct is embedded in stack */ 737 segkp_release(segkp, t->t_swap); 738 mutex_enter(&pidlock); 739 nthread--; 740 mutex_exit(&pidlock); 741 } else { 742 if (t->t_swap) { 743 segkp_release(segkp, t->t_swap); 744 t->t_swap = NULL; 745 } 746 if (t->t_lwp) { 747 kmem_cache_free(lwp_cache, t->t_lwp); 748 t->t_lwp = NULL; 749 } 750 mutex_enter(&pidlock); 751 nthread--; 752 mutex_exit(&pidlock); 753 kmem_cache_free(thread_cache, t); 754 } 755 } 756 757 /* 758 * Removes threads associated with the given zone from a deathrow queue. 759 * tp is a pointer to the head of the deathrow queue, and countp is a 760 * pointer to the current deathrow count. Returns a linked list of 761 * threads removed from the list. 762 */ 763 static kthread_t * 764 thread_zone_cleanup(kthread_t **tp, int *countp, zoneid_t zoneid) 765 { 766 kthread_t *tmp, *list = NULL; 767 cred_t *cr; 768 769 ASSERT(MUTEX_HELD(&reaplock)); 770 while (*tp != NULL) { 771 if ((cr = (*tp)->t_cred) != NULL && crgetzoneid(cr) == zoneid) { 772 tmp = *tp; 773 *tp = tmp->t_forw; 774 tmp->t_forw = list; 775 list = tmp; 776 (*countp)--; 777 } else { 778 tp = &(*tp)->t_forw; 779 } 780 } 781 return (list); 782 } 783 784 static void 785 thread_reap_list(kthread_t *t) 786 { 787 kthread_t *next; 788 789 while (t != NULL) { 790 next = t->t_forw; 791 thread_free(t); 792 t = next; 793 } 794 } 795 796 /* ARGSUSED */ 797 static void 798 thread_zone_destroy(zoneid_t zoneid, void *unused) 799 { 800 kthread_t *t, *l; 801 802 mutex_enter(&reaplock); 803 /* 804 * Pull threads and lwps associated with zone off deathrow lists. 805 */ 806 t = thread_zone_cleanup(&thread_deathrow, &thread_reapcnt, zoneid); 807 l = thread_zone_cleanup(&lwp_deathrow, &lwp_reapcnt, zoneid); 808 mutex_exit(&reaplock); 809 810 /* 811 * Reap threads 812 */ 813 thread_reap_list(t); 814 815 /* 816 * Reap lwps 817 */ 818 thread_reap_list(l); 819 } 820 821 /* 822 * cleanup zombie threads that are on deathrow. 823 */ 824 void 825 thread_reaper() 826 { 827 kthread_t *t, *l; 828 callb_cpr_t cprinfo; 829 830 /* 831 * Register callback to clean up threads when zone is destroyed. 832 */ 833 zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy); 834 835 CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper"); 836 for (;;) { 837 mutex_enter(&reaplock); 838 while (thread_deathrow == NULL && lwp_deathrow == NULL) { 839 CALLB_CPR_SAFE_BEGIN(&cprinfo); 840 cv_wait(&reaper_cv, &reaplock); 841 CALLB_CPR_SAFE_END(&cprinfo, &reaplock); 842 } 843 t = thread_deathrow; 844 l = lwp_deathrow; 845 thread_deathrow = NULL; 846 lwp_deathrow = NULL; 847 thread_reapcnt = 0; 848 lwp_reapcnt = 0; 849 mutex_exit(&reaplock); 850 851 /* 852 * Reap threads 853 */ 854 thread_reap_list(t); 855 856 /* 857 * Reap lwps 858 */ 859 thread_reap_list(l); 860 } 861 } 862 863 /* 864 * This is called by resume() to put a zombie thread onto deathrow. 865 * The thread's state is changed to TS_FREE to indicate that is reapable. 866 * This is called from the idle thread so it must not block (just spin). 867 */ 868 void 869 reapq_add(kthread_t *t) 870 { 871 mutex_enter(&reaplock); 872 873 /* 874 * lwp_deathrow contains only threads with lwp linkage 875 * that are of the default stacksize. Anything else goes 876 * on thread_deathrow. 877 */ 878 if (ttolwp(t) && (t->t_flag & T_DFLTSTK)) { 879 t->t_forw = lwp_deathrow; 880 lwp_deathrow = t; 881 lwp_reapcnt++; 882 } else { 883 t->t_forw = thread_deathrow; 884 thread_deathrow = t; 885 thread_reapcnt++; 886 } 887 if (lwp_reapcnt + thread_reapcnt > reaplimit) 888 cv_signal(&reaper_cv); /* wake the reaper */ 889 t->t_state = TS_FREE; 890 lock_clear(&t->t_lock); 891 mutex_exit(&reaplock); 892 } 893 894 /* 895 * Install a device context for the current thread 896 */ 897 void 898 installctx( 899 kthread_t *t, 900 void *arg, 901 void (*save)(void *), 902 void (*restore)(void *), 903 void (*fork)(void *, void *), 904 void (*lwp_create)(void *, void *), 905 void (*exit)(void *), 906 void (*free)(void *, int)) 907 { 908 struct ctxop *ctx; 909 910 ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP); 911 ctx->save_op = save; 912 ctx->restore_op = restore; 913 ctx->fork_op = fork; 914 ctx->lwp_create_op = lwp_create; 915 ctx->exit_op = exit; 916 ctx->free_op = free; 917 ctx->arg = arg; 918 ctx->next = t->t_ctx; 919 t->t_ctx = ctx; 920 } 921 922 /* 923 * Remove a device context from the current thread 924 * (Or allow the agent thread to remove device context from another 925 * thread in the same, stopped, process) 926 */ 927 int 928 removectx( 929 kthread_t *t, 930 void *arg, 931 void (*save)(void *), 932 void (*restore)(void *), 933 void (*fork)(void *, void *), 934 void (*lwp_create)(void *, void *), 935 void (*exit)(void *), 936 void (*free)(void *, int)) 937 { 938 struct ctxop *ctx, *prev_ctx; 939 940 ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL || 941 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 942 943 prev_ctx = NULL; 944 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) { 945 if (ctx->save_op == save && ctx->restore_op == restore && 946 ctx->fork_op == fork && ctx->lwp_create_op == lwp_create && 947 ctx->exit_op == exit && ctx->free_op == free && 948 ctx->arg == arg) { 949 if (prev_ctx) 950 prev_ctx->next = ctx->next; 951 else 952 t->t_ctx = ctx->next; 953 if (ctx->free_op != NULL) 954 (ctx->free_op)(ctx->arg, 0); 955 kmem_free(ctx, sizeof (struct ctxop)); 956 return (1); 957 } 958 prev_ctx = ctx; 959 } 960 return (0); 961 } 962 963 void 964 savectx(kthread_t *t) 965 { 966 struct ctxop *ctx; 967 968 ASSERT(t == curthread); 969 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 970 if (ctx->save_op != NULL) 971 (ctx->save_op)(ctx->arg); 972 } 973 974 void 975 restorectx(kthread_t *t) 976 { 977 struct ctxop *ctx; 978 979 ASSERT(t == curthread); 980 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 981 if (ctx->restore_op != NULL) 982 (ctx->restore_op)(ctx->arg); 983 } 984 985 void 986 forkctx(kthread_t *t, kthread_t *ct) 987 { 988 struct ctxop *ctx; 989 990 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 991 if (ctx->fork_op != NULL) 992 (ctx->fork_op)(t, ct); 993 } 994 995 /* 996 * Note that this operator is only invoked via the _lwp_create 997 * system call. The system may have other reasons to create lwps 998 * e.g. the agent lwp or the doors unreferenced lwp. 999 */ 1000 void 1001 lwp_createctx(kthread_t *t, kthread_t *ct) 1002 { 1003 struct ctxop *ctx; 1004 1005 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1006 if (ctx->lwp_create_op != NULL) 1007 (ctx->lwp_create_op)(t, ct); 1008 } 1009 1010 /* 1011 * exitctx is called from thread_exit() and lwp_exit() to perform any actions 1012 * needed when the thread/LWP leaves the processor for the last time. This 1013 * routine is not intended to deal with freeing memory; freectx() is used for 1014 * that purpose during thread_free(). This routine is provided to allow for 1015 * clean-up that can't wait until thread_free(). 1016 */ 1017 void 1018 exitctx(kthread_t *t) 1019 { 1020 struct ctxop *ctx; 1021 1022 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1023 if (ctx->exit_op != NULL) 1024 (ctx->exit_op)(t); 1025 } 1026 1027 /* 1028 * freectx is called from thread_free() and exec() to get 1029 * rid of old device context. 1030 */ 1031 void 1032 freectx(kthread_t *t, int isexec) 1033 { 1034 struct ctxop *ctx; 1035 1036 while ((ctx = t->t_ctx) != NULL) { 1037 t->t_ctx = ctx->next; 1038 if (ctx->free_op != NULL) 1039 (ctx->free_op)(ctx->arg, isexec); 1040 kmem_free(ctx, sizeof (struct ctxop)); 1041 } 1042 } 1043 1044 /* 1045 * Set the thread running; arrange for it to be swapped in if necessary. 1046 */ 1047 void 1048 setrun_locked(kthread_t *t) 1049 { 1050 ASSERT(THREAD_LOCK_HELD(t)); 1051 if (t->t_state == TS_SLEEP) { 1052 /* 1053 * Take off sleep queue. 1054 */ 1055 SOBJ_UNSLEEP(t->t_sobj_ops, t); 1056 } else if (t->t_state & (TS_RUN | TS_ONPROC)) { 1057 /* 1058 * Already on dispatcher queue. 1059 */ 1060 return; 1061 } else if (t->t_state == TS_STOPPED) { 1062 /* 1063 * All of the sending of SIGCONT (TC_XSTART) and /proc 1064 * (TC_PSTART) and lwp_continue() (TC_CSTART) must have 1065 * requested that the thread be run. 1066 * Just calling setrun() is not sufficient to set a stopped 1067 * thread running. TP_TXSTART is always set if the thread 1068 * is not stopped by a jobcontrol stop signal. 1069 * TP_TPSTART is always set if /proc is not controlling it. 1070 * TP_TCSTART is always set if lwp_suspend() didn't stop it. 1071 * The thread won't be stopped unless one of these 1072 * three mechanisms did it. 1073 * 1074 * These flags must be set before calling setrun_locked(t). 1075 * They can't be passed as arguments because the streams 1076 * code calls setrun() indirectly and the mechanism for 1077 * doing so admits only one argument. Note that the 1078 * thread must be locked in order to change t_schedflags. 1079 */ 1080 if ((t->t_schedflag & TS_ALLSTART) != TS_ALLSTART) 1081 return; 1082 /* 1083 * Process is no longer stopped (a thread is running). 1084 */ 1085 t->t_whystop = 0; 1086 t->t_whatstop = 0; 1087 /* 1088 * Strictly speaking, we do not have to clear these 1089 * flags here; they are cleared on entry to stop(). 1090 * However, they are confusing when doing kernel 1091 * debugging or when they are revealed by ps(1). 1092 */ 1093 t->t_schedflag &= ~TS_ALLSTART; 1094 THREAD_TRANSITION(t); /* drop stopped-thread lock */ 1095 ASSERT(t->t_lockp == &transition_lock); 1096 ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL); 1097 /* 1098 * Let the class put the process on the dispatcher queue. 1099 */ 1100 CL_SETRUN(t); 1101 } 1102 1103 1104 } 1105 1106 void 1107 setrun(kthread_t *t) 1108 { 1109 thread_lock(t); 1110 setrun_locked(t); 1111 thread_unlock(t); 1112 } 1113 1114 /* 1115 * Unpin an interrupted thread. 1116 * When an interrupt occurs, the interrupt is handled on the stack 1117 * of an interrupt thread, taken from a pool linked to the CPU structure. 1118 * 1119 * When swtch() is switching away from an interrupt thread because it 1120 * blocked or was preempted, this routine is called to complete the 1121 * saving of the interrupted thread state, and returns the interrupted 1122 * thread pointer so it may be resumed. 1123 * 1124 * Called by swtch() only at high spl. 1125 */ 1126 kthread_t * 1127 thread_unpin() 1128 { 1129 kthread_t *t = curthread; /* current thread */ 1130 kthread_t *itp; /* interrupted thread */ 1131 int i; /* interrupt level */ 1132 extern int intr_passivate(); 1133 1134 ASSERT(t->t_intr != NULL); 1135 1136 itp = t->t_intr; /* interrupted thread */ 1137 t->t_intr = NULL; /* clear interrupt ptr */ 1138 1139 /* 1140 * Get state from interrupt thread for the one 1141 * it interrupted. 1142 */ 1143 1144 i = intr_passivate(t, itp); 1145 1146 TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE, 1147 "intr_passivate:level %d curthread %p (%T) ithread %p (%T)", 1148 i, t, t, itp, itp); 1149 1150 /* 1151 * Dissociate the current thread from the interrupted thread's LWP. 1152 */ 1153 t->t_lwp = NULL; 1154 1155 /* 1156 * Interrupt handlers above the level that spinlocks block must 1157 * not block. 1158 */ 1159 #if DEBUG 1160 if (i < 0 || i > LOCK_LEVEL) 1161 cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i); 1162 #endif 1163 1164 /* 1165 * Compute the CPU's base interrupt level based on the active 1166 * interrupts. 1167 */ 1168 ASSERT(CPU->cpu_intr_actv & (1 << i)); 1169 set_base_spl(); 1170 1171 return (itp); 1172 } 1173 1174 /* 1175 * Create and initialize an interrupt thread. 1176 * Returns non-zero on error. 1177 * Called at spl7() or better. 1178 */ 1179 void 1180 thread_create_intr(struct cpu *cp) 1181 { 1182 kthread_t *tp; 1183 1184 tp = thread_create(NULL, 0, 1185 (void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0); 1186 1187 /* 1188 * Set the thread in the TS_FREE state. The state will change 1189 * to TS_ONPROC only while the interrupt is active. Think of these 1190 * as being on a private free list for the CPU. Being TS_FREE keeps 1191 * inactive interrupt threads out of debugger thread lists. 1192 * 1193 * We cannot call thread_create with TS_FREE because of the current 1194 * checks there for ONPROC. Fix this when thread_create takes flags. 1195 */ 1196 THREAD_FREEINTR(tp, cp); 1197 1198 /* 1199 * Nobody should ever reference the credentials of an interrupt 1200 * thread so make it NULL to catch any such references. 1201 */ 1202 tp->t_cred = NULL; 1203 tp->t_flag |= T_INTR_THREAD; 1204 tp->t_cpu = cp; 1205 tp->t_bound_cpu = cp; 1206 tp->t_disp_queue = cp->cpu_disp; 1207 tp->t_affinitycnt = 1; 1208 tp->t_preempt = 1; 1209 1210 /* 1211 * Don't make a user-requested binding on this thread so that 1212 * the processor can be offlined. 1213 */ 1214 tp->t_bind_cpu = PBIND_NONE; /* no USER-requested binding */ 1215 tp->t_bind_pset = PS_NONE; 1216 1217 #if defined(__i386) || defined(__amd64) 1218 tp->t_stk -= STACK_ALIGN; 1219 *(tp->t_stk) = 0; /* terminate intr thread stack */ 1220 #endif 1221 1222 /* 1223 * Link onto CPU's interrupt pool. 1224 */ 1225 tp->t_link = cp->cpu_intr_thread; 1226 cp->cpu_intr_thread = tp; 1227 } 1228 1229 /* 1230 * TSD -- THREAD SPECIFIC DATA 1231 */ 1232 static kmutex_t tsd_mutex; /* linked list spin lock */ 1233 static uint_t tsd_nkeys; /* size of destructor array */ 1234 /* per-key destructor funcs */ 1235 static void (**tsd_destructor)(void *); 1236 /* list of tsd_thread's */ 1237 static struct tsd_thread *tsd_list; 1238 1239 /* 1240 * Default destructor 1241 * Needed because NULL destructor means that the key is unused 1242 */ 1243 /* ARGSUSED */ 1244 void 1245 tsd_defaultdestructor(void *value) 1246 {} 1247 1248 /* 1249 * Create a key (index into per thread array) 1250 * Locks out tsd_create, tsd_destroy, and tsd_exit 1251 * May allocate memory with lock held 1252 */ 1253 void 1254 tsd_create(uint_t *keyp, void (*destructor)(void *)) 1255 { 1256 int i; 1257 uint_t nkeys; 1258 1259 /* 1260 * if key is allocated, do nothing 1261 */ 1262 mutex_enter(&tsd_mutex); 1263 if (*keyp) { 1264 mutex_exit(&tsd_mutex); 1265 return; 1266 } 1267 /* 1268 * find an unused key 1269 */ 1270 if (destructor == NULL) 1271 destructor = tsd_defaultdestructor; 1272 1273 for (i = 0; i < tsd_nkeys; ++i) 1274 if (tsd_destructor[i] == NULL) 1275 break; 1276 1277 /* 1278 * if no unused keys, increase the size of the destructor array 1279 */ 1280 if (i == tsd_nkeys) { 1281 if ((nkeys = (tsd_nkeys << 1)) == 0) 1282 nkeys = 1; 1283 tsd_destructor = 1284 (void (**)(void *))tsd_realloc((void *)tsd_destructor, 1285 (size_t)(tsd_nkeys * sizeof (void (*)(void *))), 1286 (size_t)(nkeys * sizeof (void (*)(void *)))); 1287 tsd_nkeys = nkeys; 1288 } 1289 1290 /* 1291 * allocate the next available unused key 1292 */ 1293 tsd_destructor[i] = destructor; 1294 *keyp = i + 1; 1295 mutex_exit(&tsd_mutex); 1296 } 1297 1298 /* 1299 * Destroy a key -- this is for unloadable modules 1300 * 1301 * Assumes that the caller is preventing tsd_set and tsd_get 1302 * Locks out tsd_create, tsd_destroy, and tsd_exit 1303 * May free memory with lock held 1304 */ 1305 void 1306 tsd_destroy(uint_t *keyp) 1307 { 1308 uint_t key; 1309 struct tsd_thread *tsd; 1310 1311 /* 1312 * protect the key namespace and our destructor lists 1313 */ 1314 mutex_enter(&tsd_mutex); 1315 key = *keyp; 1316 *keyp = 0; 1317 1318 ASSERT(key <= tsd_nkeys); 1319 1320 /* 1321 * if the key is valid 1322 */ 1323 if (key != 0) { 1324 uint_t k = key - 1; 1325 /* 1326 * for every thread with TSD, call key's destructor 1327 */ 1328 for (tsd = tsd_list; tsd; tsd = tsd->ts_next) { 1329 /* 1330 * no TSD for key in this thread 1331 */ 1332 if (key > tsd->ts_nkeys) 1333 continue; 1334 /* 1335 * call destructor for key 1336 */ 1337 if (tsd->ts_value[k] && tsd_destructor[k]) 1338 (*tsd_destructor[k])(tsd->ts_value[k]); 1339 /* 1340 * reset value for key 1341 */ 1342 tsd->ts_value[k] = NULL; 1343 } 1344 /* 1345 * actually free the key (NULL destructor == unused) 1346 */ 1347 tsd_destructor[k] = NULL; 1348 } 1349 1350 mutex_exit(&tsd_mutex); 1351 } 1352 1353 /* 1354 * Quickly return the per thread value that was stored with the specified key 1355 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1356 */ 1357 void * 1358 tsd_get(uint_t key) 1359 { 1360 return (tsd_agent_get(curthread, key)); 1361 } 1362 1363 /* 1364 * Set a per thread value indexed with the specified key 1365 */ 1366 int 1367 tsd_set(uint_t key, void *value) 1368 { 1369 return (tsd_agent_set(curthread, key, value)); 1370 } 1371 1372 /* 1373 * Like tsd_get(), except that the agent lwp can get the tsd of 1374 * another thread in the same process (the agent thread only runs when the 1375 * process is completely stopped by /proc), or syslwp is creating a new lwp. 1376 */ 1377 void * 1378 tsd_agent_get(kthread_t *t, uint_t key) 1379 { 1380 struct tsd_thread *tsd = t->t_tsd; 1381 1382 ASSERT(t == curthread || 1383 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1384 1385 if (key && tsd != NULL && key <= tsd->ts_nkeys) 1386 return (tsd->ts_value[key - 1]); 1387 return (NULL); 1388 } 1389 1390 /* 1391 * Like tsd_set(), except that the agent lwp can set the tsd of 1392 * another thread in the same process, or syslwp can set the tsd 1393 * of a thread it's in the middle of creating. 1394 * 1395 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1396 * May lock out tsd_destroy (and tsd_create), may allocate memory with 1397 * lock held 1398 */ 1399 int 1400 tsd_agent_set(kthread_t *t, uint_t key, void *value) 1401 { 1402 struct tsd_thread *tsd = t->t_tsd; 1403 1404 ASSERT(t == curthread || 1405 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1406 1407 if (key == 0) 1408 return (EINVAL); 1409 if (tsd == NULL) 1410 tsd = t->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1411 if (key <= tsd->ts_nkeys) { 1412 tsd->ts_value[key - 1] = value; 1413 return (0); 1414 } 1415 1416 ASSERT(key <= tsd_nkeys); 1417 1418 /* 1419 * lock out tsd_destroy() 1420 */ 1421 mutex_enter(&tsd_mutex); 1422 if (tsd->ts_nkeys == 0) { 1423 /* 1424 * Link onto list of threads with TSD 1425 */ 1426 if ((tsd->ts_next = tsd_list) != NULL) 1427 tsd_list->ts_prev = tsd; 1428 tsd_list = tsd; 1429 } 1430 1431 /* 1432 * Allocate thread local storage and set the value for key 1433 */ 1434 tsd->ts_value = tsd_realloc(tsd->ts_value, 1435 tsd->ts_nkeys * sizeof (void *), 1436 key * sizeof (void *)); 1437 tsd->ts_nkeys = key; 1438 tsd->ts_value[key - 1] = value; 1439 mutex_exit(&tsd_mutex); 1440 1441 return (0); 1442 } 1443 1444 1445 /* 1446 * Return the per thread value that was stored with the specified key 1447 * If necessary, create the key and the value 1448 * Assumes the caller is protecting *keyp from tsd_destroy 1449 */ 1450 void * 1451 tsd_getcreate(uint_t *keyp, void (*destroy)(void *), void *(*allocate)(void)) 1452 { 1453 void *value; 1454 uint_t key = *keyp; 1455 struct tsd_thread *tsd = curthread->t_tsd; 1456 1457 if (tsd == NULL) 1458 tsd = curthread->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1459 if (key && key <= tsd->ts_nkeys && (value = tsd->ts_value[key - 1])) 1460 return (value); 1461 if (key == 0) 1462 tsd_create(keyp, destroy); 1463 (void) tsd_set(*keyp, value = (*allocate)()); 1464 1465 return (value); 1466 } 1467 1468 /* 1469 * Called from thread_exit() to run the destructor function for each tsd 1470 * Locks out tsd_create and tsd_destroy 1471 * Assumes that the destructor *DOES NOT* use tsd 1472 */ 1473 void 1474 tsd_exit(void) 1475 { 1476 int i; 1477 struct tsd_thread *tsd = curthread->t_tsd; 1478 1479 if (tsd == NULL) 1480 return; 1481 1482 if (tsd->ts_nkeys == 0) { 1483 kmem_free(tsd, sizeof (*tsd)); 1484 curthread->t_tsd = NULL; 1485 return; 1486 } 1487 1488 /* 1489 * lock out tsd_create and tsd_destroy, call 1490 * the destructor, and mark the value as destroyed. 1491 */ 1492 mutex_enter(&tsd_mutex); 1493 1494 for (i = 0; i < tsd->ts_nkeys; i++) { 1495 if (tsd->ts_value[i] && tsd_destructor[i]) 1496 (*tsd_destructor[i])(tsd->ts_value[i]); 1497 tsd->ts_value[i] = NULL; 1498 } 1499 1500 /* 1501 * remove from linked list of threads with TSD 1502 */ 1503 if (tsd->ts_next) 1504 tsd->ts_next->ts_prev = tsd->ts_prev; 1505 if (tsd->ts_prev) 1506 tsd->ts_prev->ts_next = tsd->ts_next; 1507 if (tsd_list == tsd) 1508 tsd_list = tsd->ts_next; 1509 1510 mutex_exit(&tsd_mutex); 1511 1512 /* 1513 * free up the TSD 1514 */ 1515 kmem_free(tsd->ts_value, tsd->ts_nkeys * sizeof (void *)); 1516 kmem_free(tsd, sizeof (struct tsd_thread)); 1517 curthread->t_tsd = NULL; 1518 } 1519 1520 /* 1521 * realloc 1522 */ 1523 static void * 1524 tsd_realloc(void *old, size_t osize, size_t nsize) 1525 { 1526 void *new; 1527 1528 new = kmem_zalloc(nsize, KM_SLEEP); 1529 if (old) { 1530 bcopy(old, new, osize); 1531 kmem_free(old, osize); 1532 } 1533 return (new); 1534 } 1535 1536 /* 1537 * Check to see if an interrupt thread might be active at a given ipl. 1538 * If so return true. 1539 * We must be conservative--it is ok to give a false yes, but a false no 1540 * will cause disaster. (But if the situation changes after we check it is 1541 * ok--the caller is trying to ensure that an interrupt routine has been 1542 * exited). 1543 * This is used when trying to remove an interrupt handler from an autovector 1544 * list in avintr.c. 1545 */ 1546 int 1547 intr_active(struct cpu *cp, int level) 1548 { 1549 if (level <= LOCK_LEVEL) 1550 return (cp->cpu_thread != cp->cpu_dispthread); 1551 else 1552 return (CPU_ON_INTR(cp)); 1553 } 1554 1555 /* 1556 * Return non-zero if an interrupt is being serviced. 1557 */ 1558 int 1559 servicing_interrupt() 1560 { 1561 /* 1562 * Note: single-OR used on purpose to return non-zero if T_INTR_THREAD 1563 * flag set or CPU_ON_INTR(CPU) is non-zero (indicating high-level 1564 * interrupt). 1565 */ 1566 return ((curthread->t_flag & T_INTR_THREAD) | CPU_ON_INTR(CPU)); 1567 } 1568 1569 1570 /* 1571 * Change the dispatch priority of a thread in the system. 1572 * Used when raising or lowering a thread's priority. 1573 * (E.g., priority inheritance) 1574 * 1575 * Since threads are queued according to their priority, we 1576 * we must check the thread's state to determine whether it 1577 * is on a queue somewhere. If it is, we've got to: 1578 * 1579 * o Dequeue the thread. 1580 * o Change its effective priority. 1581 * o Enqueue the thread. 1582 * 1583 * Assumptions: The thread whose priority we wish to change 1584 * must be locked before we call thread_change_(e)pri(). 1585 * The thread_change(e)pri() function doesn't drop the thread 1586 * lock--that must be done by its caller. 1587 */ 1588 void 1589 thread_change_epri(kthread_t *t, pri_t disp_pri) 1590 { 1591 uint_t state; 1592 1593 ASSERT(THREAD_LOCK_HELD(t)); 1594 1595 /* 1596 * If the inherited priority hasn't actually changed, 1597 * just return. 1598 */ 1599 if (t->t_epri == disp_pri) 1600 return; 1601 1602 state = t->t_state; 1603 1604 /* 1605 * If it's not on a queue, change the priority with 1606 * impunity. 1607 */ 1608 if ((state & (TS_SLEEP | TS_RUN)) == 0) { 1609 t->t_epri = disp_pri; 1610 1611 if (state == TS_ONPROC) { 1612 cpu_t *cp = t->t_disp_queue->disp_cpu; 1613 1614 if (t == cp->cpu_dispthread) 1615 cp->cpu_dispatch_pri = DISP_PRIO(t); 1616 } 1617 return; 1618 } 1619 1620 /* 1621 * It's either on a sleep queue or a run queue. 1622 */ 1623 if (state == TS_SLEEP) { 1624 1625 /* 1626 * Take the thread out of its sleep queue. 1627 * Change the inherited priority. 1628 * Re-enqueue the thread. 1629 * Each synchronization object exports a function 1630 * to do this in an appropriate manner. 1631 */ 1632 SOBJ_CHANGE_EPRI(t->t_sobj_ops, t, disp_pri); 1633 } else { 1634 /* 1635 * The thread is on a run queue. 1636 * Note: setbackdq() may not put the thread 1637 * back on the same run queue where it originally 1638 * resided. 1639 */ 1640 (void) dispdeq(t); 1641 t->t_epri = disp_pri; 1642 setbackdq(t); 1643 } 1644 } /* end of thread_change_epri */ 1645 1646 /* 1647 * Function: Change the t_pri field of a thread. 1648 * Side Effects: Adjust the thread ordering on a run queue 1649 * or sleep queue, if necessary. 1650 * Returns: 1 if the thread was on a run queue, else 0. 1651 */ 1652 int 1653 thread_change_pri(kthread_t *t, pri_t disp_pri, int front) 1654 { 1655 uint_t state; 1656 int on_rq = 0; 1657 1658 ASSERT(THREAD_LOCK_HELD(t)); 1659 1660 state = t->t_state; 1661 THREAD_WILLCHANGE_PRI(t, disp_pri); 1662 1663 /* 1664 * If it's not on a queue, change the priority with 1665 * impunity. 1666 */ 1667 if ((state & (TS_SLEEP | TS_RUN)) == 0) { 1668 t->t_pri = disp_pri; 1669 1670 if (state == TS_ONPROC) { 1671 cpu_t *cp = t->t_disp_queue->disp_cpu; 1672 1673 if (t == cp->cpu_dispthread) 1674 cp->cpu_dispatch_pri = DISP_PRIO(t); 1675 } 1676 return (0); 1677 } 1678 1679 /* 1680 * It's either on a sleep queue or a run queue. 1681 */ 1682 if (state == TS_SLEEP) { 1683 /* 1684 * If the priority has changed, take the thread out of 1685 * its sleep queue and change the priority. 1686 * Re-enqueue the thread. 1687 * Each synchronization object exports a function 1688 * to do this in an appropriate manner. 1689 */ 1690 if (disp_pri != t->t_pri) 1691 SOBJ_CHANGE_PRI(t->t_sobj_ops, t, disp_pri); 1692 } else { 1693 /* 1694 * The thread is on a run queue. 1695 * Note: setbackdq() may not put the thread 1696 * back on the same run queue where it originally 1697 * resided. 1698 * 1699 * We still requeue the thread even if the priority 1700 * is unchanged to preserve round-robin (and other) 1701 * effects between threads of the same priority. 1702 */ 1703 on_rq = dispdeq(t); 1704 ASSERT(on_rq); 1705 t->t_pri = disp_pri; 1706 if (front) { 1707 setfrontdq(t); 1708 } else { 1709 setbackdq(t); 1710 } 1711 } 1712 return (on_rq); 1713 } 1714