1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/sysmacros.h> 32 #include <sys/signal.h> 33 #include <sys/stack.h> 34 #include <sys/pcb.h> 35 #include <sys/user.h> 36 #include <sys/systm.h> 37 #include <sys/sysinfo.h> 38 #include <sys/var.h> 39 #include <sys/errno.h> 40 #include <sys/cmn_err.h> 41 #include <sys/cred.h> 42 #include <sys/resource.h> 43 #include <sys/task.h> 44 #include <sys/project.h> 45 #include <sys/proc.h> 46 #include <sys/debug.h> 47 #include <sys/inline.h> 48 #include <sys/disp.h> 49 #include <sys/class.h> 50 #include <vm/seg_kmem.h> 51 #include <vm/seg_kp.h> 52 #include <sys/machlock.h> 53 #include <sys/kmem.h> 54 #include <sys/varargs.h> 55 #include <sys/turnstile.h> 56 #include <sys/poll.h> 57 #include <sys/vtrace.h> 58 #include <sys/callb.h> 59 #include <c2/audit.h> 60 #include <sys/tnf.h> 61 #include <sys/sobject.h> 62 #include <sys/cpupart.h> 63 #include <sys/pset.h> 64 #include <sys/door.h> 65 #include <sys/spl.h> 66 #include <sys/copyops.h> 67 #include <sys/rctl.h> 68 #include <sys/pool.h> 69 #include <sys/zone.h> 70 #include <sys/cpc_impl.h> 71 #include <sys/sdt.h> 72 #include <sys/reboot.h> 73 #include <sys/kdi.h> 74 75 struct kmem_cache *thread_cache; /* cache of free threads */ 76 struct kmem_cache *lwp_cache; /* cache of free lwps */ 77 struct kmem_cache *turnstile_cache; /* cache of free turnstiles */ 78 79 /* 80 * allthreads is only for use by kmem_readers. All kernel loops can use 81 * the current thread as a start/end point. 82 */ 83 static kthread_t *allthreads = &t0; /* circular list of all threads */ 84 85 static kcondvar_t reaper_cv; /* synchronization var */ 86 kthread_t *thread_deathrow; /* circular list of reapable threads */ 87 kthread_t *lwp_deathrow; /* circular list of reapable threads */ 88 kmutex_t reaplock; /* protects lwp and thread deathrows */ 89 kmutex_t thread_free_lock; /* protects clock from reaper */ 90 int thread_reapcnt = 0; /* number of threads on deathrow */ 91 int lwp_reapcnt = 0; /* number of lwps on deathrow */ 92 int reaplimit = 16; /* delay reaping until reaplimit */ 93 94 extern int nthread; 95 96 id_t syscid; /* system scheduling class ID */ 97 void *segkp_thread; /* cookie for segkp pool */ 98 99 int lwp_cache_sz = 32; 100 int t_cache_sz = 8; 101 static kt_did_t next_t_id = 1; 102 103 /* 104 * Min/Max stack sizes for stack size parameters 105 */ 106 #define MAX_STKSIZE (32 * DEFAULTSTKSZ) 107 #define MIN_STKSIZE DEFAULTSTKSZ 108 109 /* 110 * default_stksize overrides lwp_default_stksize if it is set. 111 */ 112 int default_stksize; 113 int lwp_default_stksize; 114 115 static zone_key_t zone_thread_key; 116 117 /* 118 * forward declarations for internal thread specific data (tsd) 119 */ 120 static void *tsd_realloc(void *, size_t, size_t); 121 122 /*ARGSUSED*/ 123 static int 124 turnstile_constructor(void *buf, void *cdrarg, int kmflags) 125 { 126 bzero(buf, sizeof (turnstile_t)); 127 return (0); 128 } 129 130 /*ARGSUSED*/ 131 static void 132 turnstile_destructor(void *buf, void *cdrarg) 133 { 134 turnstile_t *ts = buf; 135 136 ASSERT(ts->ts_free == NULL); 137 ASSERT(ts->ts_waiters == 0); 138 ASSERT(ts->ts_inheritor == NULL); 139 ASSERT(ts->ts_sleepq[0].sq_first == NULL); 140 ASSERT(ts->ts_sleepq[1].sq_first == NULL); 141 } 142 143 void 144 thread_init(void) 145 { 146 kthread_t *tp; 147 extern char sys_name[]; 148 extern void idle(); 149 struct cpu *cpu = CPU; 150 151 mutex_init(&reaplock, NULL, MUTEX_SPIN, (void *)ipltospl(DISP_LEVEL)); 152 153 #if defined(__i386) || defined(__amd64) 154 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 155 PTR24_ALIGN, NULL, NULL, NULL, NULL, NULL, 0); 156 157 /* 158 * "struct _klwp" includes a "struct pcb", which includes a 159 * "struct fpu", which needs to be 16-byte aligned on amd64 160 * (and even on i386 for fxsave/fxrstor). 161 */ 162 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 163 16, NULL, NULL, NULL, NULL, NULL, 0); 164 #else 165 /* 166 * Allocate thread structures from static_arena. This prevents 167 * issues where a thread tries to relocate its own thread 168 * structure and touches it after the mapping has been suspended. 169 */ 170 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 171 PTR24_ALIGN, NULL, NULL, NULL, NULL, static_arena, 0); 172 173 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 174 0, NULL, NULL, NULL, NULL, NULL, 0); 175 #endif 176 177 turnstile_cache = kmem_cache_create("turnstile_cache", 178 sizeof (turnstile_t), 0, 179 turnstile_constructor, turnstile_destructor, NULL, NULL, NULL, 0); 180 181 cred_init(); 182 183 rctl_init(); 184 project_init(); 185 zone_init(); 186 task_init(); 187 pool_init(); 188 189 curthread->t_ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 190 191 /* 192 * Originally, we had two parameters to set default stack 193 * size: one for lwp's (lwp_default_stksize), and one for 194 * kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz). 195 * Now we have a third parameter that overrides both if it is 196 * set to a legal stack size, called default_stksize. 197 */ 198 199 if (default_stksize == 0) { 200 default_stksize = DEFAULTSTKSZ; 201 } else if (default_stksize % PAGESIZE != 0 || 202 default_stksize > MAX_STKSIZE || 203 default_stksize < MIN_STKSIZE) { 204 cmn_err(CE_WARN, "Illegal stack size. Using %d", 205 (int)DEFAULTSTKSZ); 206 default_stksize = DEFAULTSTKSZ; 207 } else { 208 lwp_default_stksize = default_stksize; 209 } 210 211 if (lwp_default_stksize == 0) { 212 lwp_default_stksize = default_stksize; 213 } else if (lwp_default_stksize % PAGESIZE != 0 || 214 lwp_default_stksize > MAX_STKSIZE || 215 lwp_default_stksize < MIN_STKSIZE) { 216 cmn_err(CE_WARN, "Illegal stack size. Using %d", 217 default_stksize); 218 lwp_default_stksize = default_stksize; 219 } 220 221 segkp_lwp = segkp_cache_init(segkp, lwp_cache_sz, 222 lwp_default_stksize, 223 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED)); 224 225 segkp_thread = segkp_cache_init(segkp, t_cache_sz, 226 default_stksize, KPD_HASREDZONE | KPD_LOCKED | KPD_NO_ANON); 227 228 (void) getcid(sys_name, &syscid); 229 curthread->t_cid = syscid; /* current thread is t0 */ 230 231 /* 232 * Set up the first CPU's idle thread. 233 * It runs whenever the CPU has nothing worthwhile to do. 234 */ 235 tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_STOPPED, -1); 236 cpu->cpu_idle_thread = tp; 237 tp->t_preempt = 1; 238 tp->t_disp_queue = cpu->cpu_disp; 239 ASSERT(tp->t_disp_queue != NULL); 240 tp->t_bound_cpu = cpu; 241 tp->t_affinitycnt = 1; 242 243 /* 244 * Registering a thread in the callback table is usually 245 * done in the initialization code of the thread. In this 246 * case, we do it right after thread creation to avoid 247 * blocking idle thread while registering itself. It also 248 * avoids the possibility of reregistration in case a CPU 249 * restarts its idle thread. 250 */ 251 CALLB_CPR_INIT_SAFE(tp, "idle"); 252 253 /* 254 * Finish initializing the kernel memory allocator now that 255 * thread_create() is available. 256 */ 257 kmem_thread_init(); 258 259 if (boothowto & RB_DEBUG) 260 kdi_dvec_thravail(); 261 } 262 263 /* 264 * Create a thread. 265 * 266 * thread_create() blocks for memory if necessary. It never fails. 267 * 268 * If stk is NULL, the thread is created at the base of the stack 269 * and cannot be swapped. 270 */ 271 kthread_t * 272 thread_create( 273 caddr_t stk, 274 size_t stksize, 275 void (*proc)(), 276 void *arg, 277 size_t len, 278 proc_t *pp, 279 int state, 280 pri_t pri) 281 { 282 kthread_t *t; 283 extern struct classfuncs sys_classfuncs; 284 turnstile_t *ts; 285 286 /* 287 * Every thread keeps a turnstile around in case it needs to block. 288 * The only reason the turnstile is not simply part of the thread 289 * structure is that we may have to break the association whenever 290 * more than one thread blocks on a given synchronization object. 291 * From a memory-management standpoint, turnstiles are like the 292 * "attached mblks" that hang off dblks in the streams allocator. 293 */ 294 ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 295 296 if (stk == NULL) { 297 /* 298 * alloc both thread and stack in segkp chunk 299 */ 300 301 if (stksize < default_stksize) 302 stksize = default_stksize; 303 304 if (stksize == default_stksize) { 305 stk = (caddr_t)segkp_cache_get(segkp_thread); 306 } else { 307 stksize = roundup(stksize, PAGESIZE); 308 stk = (caddr_t)segkp_get(segkp, stksize, 309 (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED)); 310 } 311 312 ASSERT(stk != NULL); 313 314 /* 315 * The machine-dependent mutex code may require that 316 * thread pointers (since they may be used for mutex owner 317 * fields) have certain alignment requirements. 318 * PTR24_ALIGN is the size of the alignment quanta. 319 * XXX - assumes stack grows toward low addresses. 320 */ 321 if (stksize <= sizeof (kthread_t) + PTR24_ALIGN) 322 cmn_err(CE_PANIC, "thread_create: proposed stack size" 323 " too small to hold thread."); 324 #ifdef STACK_GROWTH_DOWN 325 stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1); 326 stksize &= -PTR24_ALIGN; /* make thread aligned */ 327 t = (kthread_t *)(stk + stksize); 328 bzero(t, sizeof (kthread_t)); 329 #ifdef C2_AUDIT 330 if (audit_active) 331 audit_thread_create(t); 332 #endif 333 t->t_stk = stk + stksize; 334 t->t_stkbase = stk; 335 #else /* stack grows to larger addresses */ 336 stksize -= SA(sizeof (kthread_t)); 337 t = (kthread_t *)(stk); 338 bzero(t, sizeof (kthread_t)); 339 t->t_stk = stk + sizeof (kthread_t); 340 t->t_stkbase = stk + stksize + sizeof (kthread_t); 341 #endif /* STACK_GROWTH_DOWN */ 342 t->t_flag |= T_TALLOCSTK; 343 t->t_swap = stk; 344 } else { 345 t = kmem_cache_alloc(thread_cache, KM_SLEEP); 346 bzero(t, sizeof (kthread_t)); 347 ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0); 348 #ifdef C2_AUDIT 349 if (audit_active) 350 audit_thread_create(t); 351 #endif 352 /* 353 * Initialize t_stk to the kernel stack pointer to use 354 * upon entry to the kernel 355 */ 356 #ifdef STACK_GROWTH_DOWN 357 t->t_stk = stk + stksize; 358 t->t_stkbase = stk; 359 #else 360 t->t_stk = stk; /* 3b2-like */ 361 t->t_stkbase = stk + stksize; 362 #endif /* STACK_GROWTH_DOWN */ 363 } 364 365 /* set default stack flag */ 366 if (stksize == lwp_default_stksize) 367 t->t_flag |= T_DFLTSTK; 368 369 t->t_ts = ts; 370 371 /* 372 * p_cred could be NULL if it thread_create is called before cred_init 373 * is called in main. 374 */ 375 mutex_enter(&pp->p_crlock); 376 if (pp->p_cred) 377 crhold(t->t_cred = pp->p_cred); 378 mutex_exit(&pp->p_crlock); 379 t->t_start = gethrestime_sec(); 380 t->t_startpc = proc; 381 t->t_procp = pp; 382 t->t_clfuncs = &sys_classfuncs.thread; 383 t->t_cid = syscid; 384 t->t_pri = pri; 385 t->t_stime = lbolt; 386 t->t_schedflag = TS_LOAD | TS_DONT_SWAP; 387 t->t_bind_cpu = PBIND_NONE; 388 t->t_bind_pset = PS_NONE; 389 t->t_plockp = &pp->p_lock; 390 t->t_copyops = NULL; 391 t->t_taskq = NULL; 392 t->t_anttime = 0; 393 t->t_hatdepth = 0; 394 395 t->t_dtrace_vtime = 1; /* assure vtimestamp is always non-zero */ 396 397 CPU_STATS_ADDQ(CPU, sys, nthreads, 1); 398 #ifndef NPROBE 399 /* Kernel probe */ 400 tnf_thread_create(t); 401 #endif /* NPROBE */ 402 LOCK_INIT_CLEAR(&t->t_lock); 403 404 /* 405 * Callers who give us a NULL proc must do their own 406 * stack initialization. e.g. lwp_create() 407 */ 408 if (proc != NULL) { 409 t->t_stk = thread_stk_init(t->t_stk); 410 thread_load(t, proc, arg, len); 411 } 412 413 /* 414 * Put a hold on project0. If this thread is actually in a 415 * different project, then t_proj will be changed later in 416 * lwp_create(). All kernel-only threads must be in project 0. 417 */ 418 t->t_proj = project_hold(proj0p); 419 420 lgrp_affinity_init(&t->t_lgrp_affinity); 421 422 mutex_enter(&pidlock); 423 nthread++; 424 t->t_did = next_t_id++; 425 t->t_prev = curthread->t_prev; 426 t->t_next = curthread; 427 428 /* 429 * Add the thread to the list of all threads, and initialize 430 * its t_cpu pointer. We need to block preemption since 431 * cpu_offline walks the thread list looking for threads 432 * with t_cpu pointing to the CPU being offlined. We want 433 * to make sure that the list is consistent and that if t_cpu 434 * is set, the thread is on the list. 435 */ 436 kpreempt_disable(); 437 curthread->t_prev->t_next = t; 438 curthread->t_prev = t; 439 440 /* 441 * Threads should never have a NULL t_cpu pointer so assign it 442 * here. If the thread is being created with state TS_RUN a 443 * better CPU may be chosen when it is placed on the run queue. 444 * 445 * We need to keep kernel preemption disabled when setting all 446 * three fields to keep them in sync. Also, always create in 447 * the default partition since that's where kernel threads go 448 * (if this isn't a kernel thread, t_cpupart will be changed 449 * in lwp_create before setting the thread runnable). 450 */ 451 t->t_cpupart = &cp_default; 452 453 /* 454 * For now, affiliate this thread with the root lgroup. 455 * Since the kernel does not (presently) allocate its memory 456 * in a locality aware fashion, the root is an appropriate home. 457 * If this thread is later associated with an lwp, it will have 458 * it's lgroup re-assigned at that time. 459 */ 460 lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1); 461 462 /* 463 * Inherit the current cpu. If this cpu isn't part of the chosen 464 * lgroup, a new cpu will be chosen by cpu_choose when the thread 465 * is ready to run. 466 */ 467 if (CPU->cpu_part == &cp_default) 468 t->t_cpu = CPU; 469 else 470 t->t_cpu = disp_lowpri_cpu(cp_default.cp_cpulist, t->t_lpl, 471 t->t_pri, NULL); 472 473 t->t_disp_queue = t->t_cpu->cpu_disp; 474 kpreempt_enable(); 475 476 /* 477 * Initialize thread state and the dispatcher lock pointer. 478 * Need to hold onto pidlock to block allthreads walkers until 479 * the state is set. 480 */ 481 switch (state) { 482 case TS_RUN: 483 curthread->t_oldspl = splhigh(); /* get dispatcher spl */ 484 THREAD_SET_STATE(t, TS_STOPPED, &transition_lock); 485 CL_SETRUN(t); 486 thread_unlock(t); 487 break; 488 489 case TS_ONPROC: 490 THREAD_ONPROC(t, t->t_cpu); 491 break; 492 493 case TS_FREE: 494 /* 495 * Free state will be used for intr threads. 496 * The interrupt routine must set the thread dispatcher 497 * lock pointer (t_lockp) if starting on a CPU 498 * other than the current one. 499 */ 500 THREAD_FREEINTR(t, CPU); 501 break; 502 503 case TS_STOPPED: 504 THREAD_SET_STATE(t, TS_STOPPED, &stop_lock); 505 break; 506 507 default: /* TS_SLEEP, TS_ZOMB or TS_TRANS */ 508 cmn_err(CE_PANIC, "thread_create: invalid state %d", state); 509 } 510 mutex_exit(&pidlock); 511 return (t); 512 } 513 514 /* 515 * Move thread to project0 and take care of project reference counters. 516 */ 517 void 518 thread_rele(kthread_t *t) 519 { 520 kproject_t *kpj; 521 522 thread_lock(t); 523 524 ASSERT(t == curthread || t->t_state == TS_FREE || t->t_procp == &p0); 525 kpj = ttoproj(t); 526 t->t_proj = proj0p; 527 528 thread_unlock(t); 529 530 if (kpj != proj0p) { 531 project_rele(kpj); 532 (void) project_hold(proj0p); 533 } 534 } 535 536 537 void (*ip_cleanup_func)(void); 538 539 void 540 thread_exit() 541 { 542 kthread_t *t = curthread; 543 544 if ((t->t_proc_flag & TP_ZTHREAD) != 0) 545 cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called"); 546 547 if (ip_cleanup_func != NULL) 548 (*ip_cleanup_func)(); 549 550 tsd_exit(); /* Clean up this thread's TSD */ 551 552 kcpc_passivate(); /* clean up performance counter state */ 553 554 /* 555 * No kernel thread should have called poll() without arranging 556 * calling pollcleanup() here. 557 */ 558 ASSERT(t->t_pollstate == NULL); 559 ASSERT(t->t_schedctl == NULL); 560 if (t->t_door) 561 door_slam(); /* in case thread did an upcall */ 562 563 #ifndef NPROBE 564 /* Kernel probe */ 565 if (t->t_tnf_tpdp) 566 tnf_thread_exit(); 567 #endif /* NPROBE */ 568 569 thread_rele(t); 570 t->t_preempt++; 571 572 /* 573 * remove thread from the all threads list so that 574 * death-row can use the same pointers. 575 */ 576 mutex_enter(&pidlock); 577 t->t_next->t_prev = t->t_prev; 578 t->t_prev->t_next = t->t_next; 579 ASSERT(allthreads != t); /* t0 never exits */ 580 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 581 mutex_exit(&pidlock); 582 583 if (t->t_ctx != NULL) 584 exitctx(t); 585 if (t->t_procp->p_pctx != NULL) 586 exitpctx(t->t_procp); 587 588 t->t_state = TS_ZOMB; /* set zombie thread */ 589 590 swtch_from_zombie(); /* give up the CPU */ 591 /* NOTREACHED */ 592 } 593 594 /* 595 * Check to see if the specified thread is active (defined as being on 596 * the thread list). This is certainly a slow way to do this; if there's 597 * ever a reason to speed it up, we could maintain a hash table of active 598 * threads indexed by their t_did. 599 */ 600 static kthread_t * 601 did_to_thread(kt_did_t tid) 602 { 603 kthread_t *t; 604 605 ASSERT(MUTEX_HELD(&pidlock)); 606 for (t = curthread->t_next; t != curthread; t = t->t_next) { 607 if (t->t_did == tid) 608 break; 609 } 610 if (t->t_did == tid) 611 return (t); 612 else 613 return (NULL); 614 } 615 616 /* 617 * Wait for specified thread to exit. Returns immediately if the thread 618 * could not be found, meaning that it has either already exited or never 619 * existed. 620 */ 621 void 622 thread_join(kt_did_t tid) 623 { 624 kthread_t *t; 625 626 ASSERT(tid != curthread->t_did); 627 ASSERT(tid != t0.t_did); 628 629 mutex_enter(&pidlock); 630 /* 631 * Make sure we check that the thread is on the thread list 632 * before blocking on it; otherwise we could end up blocking on 633 * a cv that's already been freed. In other words, don't cache 634 * the thread pointer across calls to cv_wait. 635 * 636 * The choice of loop invariant means that whenever a thread 637 * is taken off the allthreads list, a cv_broadcast must be 638 * performed on that thread's t_joincv to wake up any waiters. 639 * The broadcast doesn't have to happen right away, but it 640 * shouldn't be postponed indefinitely (e.g., by doing it in 641 * thread_free which may only be executed when the deathrow 642 * queue is processed. 643 */ 644 while (t = did_to_thread(tid)) 645 cv_wait(&t->t_joincv, &pidlock); 646 mutex_exit(&pidlock); 647 } 648 649 void 650 thread_free(kthread_t *t) 651 { 652 ASSERT(t != &t0 && t->t_state == TS_FREE); 653 ASSERT(t->t_door == NULL); 654 ASSERT(t->t_schedctl == NULL); 655 ASSERT(t->t_pollstate == NULL); 656 657 t->t_pri = 0; 658 t->t_pc = 0; 659 t->t_sp = 0; 660 t->t_wchan0 = NULL; 661 t->t_wchan = NULL; 662 if (t->t_cred != NULL) { 663 crfree(t->t_cred); 664 t->t_cred = 0; 665 } 666 if (t->t_pdmsg) { 667 kmem_free(t->t_pdmsg, strlen(t->t_pdmsg) + 1); 668 t->t_pdmsg = NULL; 669 } 670 #ifdef C2_AUDIT 671 if (audit_active) 672 audit_thread_free(t); 673 #endif 674 #ifndef NPROBE 675 if (t->t_tnf_tpdp) 676 tnf_thread_free(t); 677 #endif /* NPROBE */ 678 if (t->t_cldata) { 679 CL_EXITCLASS(t->t_cid, (caddr_t *)t->t_cldata); 680 } 681 if (t->t_rprof != NULL) { 682 kmem_free(t->t_rprof, sizeof (*t->t_rprof)); 683 t->t_rprof = NULL; 684 } 685 t->t_lockp = NULL; /* nothing should try to lock this thread now */ 686 if (t->t_lwp) 687 lwp_freeregs(t->t_lwp, 0); 688 if (t->t_ctx) 689 freectx(t, 0); 690 if (t->t_procp->p_pctx) 691 freepctx(t->t_procp, 0); 692 t->t_stk = NULL; 693 if (t->t_lwp) 694 lwp_stk_fini(t->t_lwp); 695 lock_clear(&t->t_lock); 696 697 if (t->t_ts->ts_waiters > 0) 698 panic("thread_free: turnstile still active"); 699 700 kmem_cache_free(turnstile_cache, t->t_ts); 701 702 free_afd(&t->t_activefd); 703 704 /* 705 * Barrier for clock thread. The clock holds this lock to 706 * keep the thread from going away while it's looking at it. 707 */ 708 mutex_enter(&thread_free_lock); 709 mutex_exit(&thread_free_lock); 710 711 ASSERT(ttoproj(t) == proj0p); 712 project_rele(ttoproj(t)); 713 714 lgrp_affinity_free(&t->t_lgrp_affinity); 715 716 /* 717 * Free thread struct and its stack. 718 */ 719 if (t->t_flag & T_TALLOCSTK) { 720 /* thread struct is embedded in stack */ 721 segkp_release(segkp, t->t_swap); 722 mutex_enter(&pidlock); 723 nthread--; 724 mutex_exit(&pidlock); 725 } else { 726 if (t->t_swap) { 727 segkp_release(segkp, t->t_swap); 728 t->t_swap = NULL; 729 } 730 if (t->t_lwp) { 731 kmem_cache_free(lwp_cache, t->t_lwp); 732 t->t_lwp = NULL; 733 } 734 mutex_enter(&pidlock); 735 nthread--; 736 mutex_exit(&pidlock); 737 kmem_cache_free(thread_cache, t); 738 } 739 } 740 741 /* 742 * Removes threads associated with the given zone from a deathrow queue. 743 * tp is a pointer to the head of the deathrow queue, and countp is a 744 * pointer to the current deathrow count. Returns a linked list of 745 * threads removed from the list. 746 */ 747 static kthread_t * 748 thread_zone_cleanup(kthread_t **tp, int *countp, zoneid_t zoneid) 749 { 750 kthread_t *tmp, *list = NULL; 751 cred_t *cr; 752 753 ASSERT(MUTEX_HELD(&reaplock)); 754 while (*tp != NULL) { 755 if ((cr = (*tp)->t_cred) != NULL && crgetzoneid(cr) == zoneid) { 756 tmp = *tp; 757 *tp = tmp->t_forw; 758 tmp->t_forw = list; 759 list = tmp; 760 (*countp)--; 761 } else { 762 tp = &(*tp)->t_forw; 763 } 764 } 765 return (list); 766 } 767 768 static void 769 thread_reap_list(kthread_t *t) 770 { 771 kthread_t *next; 772 773 while (t != NULL) { 774 next = t->t_forw; 775 thread_free(t); 776 t = next; 777 } 778 } 779 780 /* ARGSUSED */ 781 static void 782 thread_zone_destroy(zoneid_t zoneid, void *unused) 783 { 784 kthread_t *t, *l; 785 786 mutex_enter(&reaplock); 787 /* 788 * Pull threads and lwps associated with zone off deathrow lists. 789 */ 790 t = thread_zone_cleanup(&thread_deathrow, &thread_reapcnt, zoneid); 791 l = thread_zone_cleanup(&lwp_deathrow, &lwp_reapcnt, zoneid); 792 mutex_exit(&reaplock); 793 794 /* 795 * Reap threads 796 */ 797 thread_reap_list(t); 798 799 /* 800 * Reap lwps 801 */ 802 thread_reap_list(l); 803 } 804 805 /* 806 * cleanup zombie threads that are on deathrow. 807 */ 808 void 809 thread_reaper() 810 { 811 kthread_t *t, *l; 812 callb_cpr_t cprinfo; 813 814 /* 815 * Register callback to clean up threads when zone is destroyed. 816 */ 817 zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy); 818 819 CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper"); 820 for (;;) { 821 mutex_enter(&reaplock); 822 while (thread_deathrow == NULL && lwp_deathrow == NULL) { 823 CALLB_CPR_SAFE_BEGIN(&cprinfo); 824 cv_wait(&reaper_cv, &reaplock); 825 CALLB_CPR_SAFE_END(&cprinfo, &reaplock); 826 } 827 t = thread_deathrow; 828 l = lwp_deathrow; 829 thread_deathrow = NULL; 830 lwp_deathrow = NULL; 831 thread_reapcnt = 0; 832 lwp_reapcnt = 0; 833 mutex_exit(&reaplock); 834 835 /* 836 * Reap threads 837 */ 838 thread_reap_list(t); 839 840 /* 841 * Reap lwps 842 */ 843 thread_reap_list(l); 844 } 845 } 846 847 /* 848 * This is called by resume() to put a zombie thread onto deathrow. 849 * The thread's state is changed to TS_FREE to indicate that is reapable. 850 * This is called from the idle thread so it must not block (just spin). 851 */ 852 void 853 reapq_add(kthread_t *t) 854 { 855 mutex_enter(&reaplock); 856 857 /* 858 * lwp_deathrow contains only threads with lwp linkage 859 * that are of the default stacksize. Anything else goes 860 * on thread_deathrow. 861 */ 862 if (ttolwp(t) && (t->t_flag & T_DFLTSTK)) { 863 t->t_forw = lwp_deathrow; 864 lwp_deathrow = t; 865 lwp_reapcnt++; 866 } else { 867 t->t_forw = thread_deathrow; 868 thread_deathrow = t; 869 thread_reapcnt++; 870 } 871 if (lwp_reapcnt + thread_reapcnt > reaplimit) 872 cv_signal(&reaper_cv); /* wake the reaper */ 873 t->t_state = TS_FREE; 874 lock_clear(&t->t_lock); 875 mutex_exit(&reaplock); 876 } 877 878 /* 879 * Install thread context ops for the current thread. 880 */ 881 void 882 installctx( 883 kthread_t *t, 884 void *arg, 885 void (*save)(void *), 886 void (*restore)(void *), 887 void (*fork)(void *, void *), 888 void (*lwp_create)(void *, void *), 889 void (*exit)(void *), 890 void (*free)(void *, int)) 891 { 892 struct ctxop *ctx; 893 894 ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP); 895 ctx->save_op = save; 896 ctx->restore_op = restore; 897 ctx->fork_op = fork; 898 ctx->lwp_create_op = lwp_create; 899 ctx->exit_op = exit; 900 ctx->free_op = free; 901 ctx->arg = arg; 902 ctx->next = t->t_ctx; 903 t->t_ctx = ctx; 904 } 905 906 /* 907 * Remove thread context ops from the current thread. 908 * (Or allow the agent thread to remove thread context ops from another 909 * thread in the same, stopped, process) 910 */ 911 int 912 removectx( 913 kthread_t *t, 914 void *arg, 915 void (*save)(void *), 916 void (*restore)(void *), 917 void (*fork)(void *, void *), 918 void (*lwp_create)(void *, void *), 919 void (*exit)(void *), 920 void (*free)(void *, int)) 921 { 922 struct ctxop *ctx, *prev_ctx; 923 924 ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL || 925 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 926 927 prev_ctx = NULL; 928 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) { 929 if (ctx->save_op == save && ctx->restore_op == restore && 930 ctx->fork_op == fork && ctx->lwp_create_op == lwp_create && 931 ctx->exit_op == exit && ctx->free_op == free && 932 ctx->arg == arg) { 933 if (prev_ctx) 934 prev_ctx->next = ctx->next; 935 else 936 t->t_ctx = ctx->next; 937 if (ctx->free_op != NULL) 938 (ctx->free_op)(ctx->arg, 0); 939 kmem_free(ctx, sizeof (struct ctxop)); 940 return (1); 941 } 942 prev_ctx = ctx; 943 } 944 return (0); 945 } 946 947 void 948 savectx(kthread_t *t) 949 { 950 struct ctxop *ctx; 951 952 ASSERT(t == curthread); 953 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 954 if (ctx->save_op != NULL) 955 (ctx->save_op)(ctx->arg); 956 } 957 958 void 959 restorectx(kthread_t *t) 960 { 961 struct ctxop *ctx; 962 963 ASSERT(t == curthread); 964 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 965 if (ctx->restore_op != NULL) 966 (ctx->restore_op)(ctx->arg); 967 } 968 969 void 970 forkctx(kthread_t *t, kthread_t *ct) 971 { 972 struct ctxop *ctx; 973 974 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 975 if (ctx->fork_op != NULL) 976 (ctx->fork_op)(t, ct); 977 } 978 979 /* 980 * Note that this operator is only invoked via the _lwp_create 981 * system call. The system may have other reasons to create lwps 982 * e.g. the agent lwp or the doors unreferenced lwp. 983 */ 984 void 985 lwp_createctx(kthread_t *t, kthread_t *ct) 986 { 987 struct ctxop *ctx; 988 989 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 990 if (ctx->lwp_create_op != NULL) 991 (ctx->lwp_create_op)(t, ct); 992 } 993 994 /* 995 * exitctx is called from thread_exit() and lwp_exit() to perform any actions 996 * needed when the thread/LWP leaves the processor for the last time. This 997 * routine is not intended to deal with freeing memory; freectx() is used for 998 * that purpose during thread_free(). This routine is provided to allow for 999 * clean-up that can't wait until thread_free(). 1000 */ 1001 void 1002 exitctx(kthread_t *t) 1003 { 1004 struct ctxop *ctx; 1005 1006 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1007 if (ctx->exit_op != NULL) 1008 (ctx->exit_op)(t); 1009 } 1010 1011 /* 1012 * freectx is called from thread_free() and exec() to get 1013 * rid of old thread context ops. 1014 */ 1015 void 1016 freectx(kthread_t *t, int isexec) 1017 { 1018 struct ctxop *ctx; 1019 1020 while ((ctx = t->t_ctx) != NULL) { 1021 t->t_ctx = ctx->next; 1022 if (ctx->free_op != NULL) 1023 (ctx->free_op)(ctx->arg, isexec); 1024 kmem_free(ctx, sizeof (struct ctxop)); 1025 } 1026 } 1027 1028 /* 1029 * Set the thread running; arrange for it to be swapped in if necessary. 1030 */ 1031 void 1032 setrun_locked(kthread_t *t) 1033 { 1034 ASSERT(THREAD_LOCK_HELD(t)); 1035 if (t->t_state == TS_SLEEP) { 1036 /* 1037 * Take off sleep queue. 1038 */ 1039 SOBJ_UNSLEEP(t->t_sobj_ops, t); 1040 } else if (t->t_state & (TS_RUN | TS_ONPROC)) { 1041 /* 1042 * Already on dispatcher queue. 1043 */ 1044 return; 1045 } else if (t->t_state == TS_STOPPED) { 1046 /* 1047 * All of the sending of SIGCONT (TC_XSTART) and /proc 1048 * (TC_PSTART) and lwp_continue() (TC_CSTART) must have 1049 * requested that the thread be run. 1050 * Just calling setrun() is not sufficient to set a stopped 1051 * thread running. TP_TXSTART is always set if the thread 1052 * is not stopped by a jobcontrol stop signal. 1053 * TP_TPSTART is always set if /proc is not controlling it. 1054 * TP_TCSTART is always set if lwp_suspend() didn't stop it. 1055 * The thread won't be stopped unless one of these 1056 * three mechanisms did it. 1057 * 1058 * These flags must be set before calling setrun_locked(t). 1059 * They can't be passed as arguments because the streams 1060 * code calls setrun() indirectly and the mechanism for 1061 * doing so admits only one argument. Note that the 1062 * thread must be locked in order to change t_schedflags. 1063 */ 1064 if ((t->t_schedflag & TS_ALLSTART) != TS_ALLSTART) 1065 return; 1066 /* 1067 * Process is no longer stopped (a thread is running). 1068 */ 1069 t->t_whystop = 0; 1070 t->t_whatstop = 0; 1071 /* 1072 * Strictly speaking, we do not have to clear these 1073 * flags here; they are cleared on entry to stop(). 1074 * However, they are confusing when doing kernel 1075 * debugging or when they are revealed by ps(1). 1076 */ 1077 t->t_schedflag &= ~TS_ALLSTART; 1078 THREAD_TRANSITION(t); /* drop stopped-thread lock */ 1079 ASSERT(t->t_lockp == &transition_lock); 1080 ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL); 1081 /* 1082 * Let the class put the process on the dispatcher queue. 1083 */ 1084 CL_SETRUN(t); 1085 } 1086 1087 1088 } 1089 1090 void 1091 setrun(kthread_t *t) 1092 { 1093 thread_lock(t); 1094 setrun_locked(t); 1095 thread_unlock(t); 1096 } 1097 1098 /* 1099 * Unpin an interrupted thread. 1100 * When an interrupt occurs, the interrupt is handled on the stack 1101 * of an interrupt thread, taken from a pool linked to the CPU structure. 1102 * 1103 * When swtch() is switching away from an interrupt thread because it 1104 * blocked or was preempted, this routine is called to complete the 1105 * saving of the interrupted thread state, and returns the interrupted 1106 * thread pointer so it may be resumed. 1107 * 1108 * Called by swtch() only at high spl. 1109 */ 1110 kthread_t * 1111 thread_unpin() 1112 { 1113 kthread_t *t = curthread; /* current thread */ 1114 kthread_t *itp; /* interrupted thread */ 1115 int i; /* interrupt level */ 1116 extern int intr_passivate(); 1117 1118 ASSERT(t->t_intr != NULL); 1119 1120 itp = t->t_intr; /* interrupted thread */ 1121 t->t_intr = NULL; /* clear interrupt ptr */ 1122 1123 /* 1124 * Get state from interrupt thread for the one 1125 * it interrupted. 1126 */ 1127 1128 i = intr_passivate(t, itp); 1129 1130 TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE, 1131 "intr_passivate:level %d curthread %p (%T) ithread %p (%T)", 1132 i, t, t, itp, itp); 1133 1134 /* 1135 * Dissociate the current thread from the interrupted thread's LWP. 1136 */ 1137 t->t_lwp = NULL; 1138 1139 /* 1140 * Interrupt handlers above the level that spinlocks block must 1141 * not block. 1142 */ 1143 #if DEBUG 1144 if (i < 0 || i > LOCK_LEVEL) 1145 cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i); 1146 #endif 1147 1148 /* 1149 * Compute the CPU's base interrupt level based on the active 1150 * interrupts. 1151 */ 1152 ASSERT(CPU->cpu_intr_actv & (1 << i)); 1153 set_base_spl(); 1154 1155 return (itp); 1156 } 1157 1158 /* 1159 * Create and initialize an interrupt thread. 1160 * Returns non-zero on error. 1161 * Called at spl7() or better. 1162 */ 1163 void 1164 thread_create_intr(struct cpu *cp) 1165 { 1166 kthread_t *tp; 1167 1168 tp = thread_create(NULL, 0, 1169 (void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0); 1170 1171 /* 1172 * Set the thread in the TS_FREE state. The state will change 1173 * to TS_ONPROC only while the interrupt is active. Think of these 1174 * as being on a private free list for the CPU. Being TS_FREE keeps 1175 * inactive interrupt threads out of debugger thread lists. 1176 * 1177 * We cannot call thread_create with TS_FREE because of the current 1178 * checks there for ONPROC. Fix this when thread_create takes flags. 1179 */ 1180 THREAD_FREEINTR(tp, cp); 1181 1182 /* 1183 * Nobody should ever reference the credentials of an interrupt 1184 * thread so make it NULL to catch any such references. 1185 */ 1186 tp->t_cred = NULL; 1187 tp->t_flag |= T_INTR_THREAD; 1188 tp->t_cpu = cp; 1189 tp->t_bound_cpu = cp; 1190 tp->t_disp_queue = cp->cpu_disp; 1191 tp->t_affinitycnt = 1; 1192 tp->t_preempt = 1; 1193 1194 /* 1195 * Don't make a user-requested binding on this thread so that 1196 * the processor can be offlined. 1197 */ 1198 tp->t_bind_cpu = PBIND_NONE; /* no USER-requested binding */ 1199 tp->t_bind_pset = PS_NONE; 1200 1201 #if defined(__i386) || defined(__amd64) 1202 tp->t_stk -= STACK_ALIGN; 1203 *(tp->t_stk) = 0; /* terminate intr thread stack */ 1204 #endif 1205 1206 /* 1207 * Link onto CPU's interrupt pool. 1208 */ 1209 tp->t_link = cp->cpu_intr_thread; 1210 cp->cpu_intr_thread = tp; 1211 } 1212 1213 /* 1214 * TSD -- THREAD SPECIFIC DATA 1215 */ 1216 static kmutex_t tsd_mutex; /* linked list spin lock */ 1217 static uint_t tsd_nkeys; /* size of destructor array */ 1218 /* per-key destructor funcs */ 1219 static void (**tsd_destructor)(void *); 1220 /* list of tsd_thread's */ 1221 static struct tsd_thread *tsd_list; 1222 1223 /* 1224 * Default destructor 1225 * Needed because NULL destructor means that the key is unused 1226 */ 1227 /* ARGSUSED */ 1228 void 1229 tsd_defaultdestructor(void *value) 1230 {} 1231 1232 /* 1233 * Create a key (index into per thread array) 1234 * Locks out tsd_create, tsd_destroy, and tsd_exit 1235 * May allocate memory with lock held 1236 */ 1237 void 1238 tsd_create(uint_t *keyp, void (*destructor)(void *)) 1239 { 1240 int i; 1241 uint_t nkeys; 1242 1243 /* 1244 * if key is allocated, do nothing 1245 */ 1246 mutex_enter(&tsd_mutex); 1247 if (*keyp) { 1248 mutex_exit(&tsd_mutex); 1249 return; 1250 } 1251 /* 1252 * find an unused key 1253 */ 1254 if (destructor == NULL) 1255 destructor = tsd_defaultdestructor; 1256 1257 for (i = 0; i < tsd_nkeys; ++i) 1258 if (tsd_destructor[i] == NULL) 1259 break; 1260 1261 /* 1262 * if no unused keys, increase the size of the destructor array 1263 */ 1264 if (i == tsd_nkeys) { 1265 if ((nkeys = (tsd_nkeys << 1)) == 0) 1266 nkeys = 1; 1267 tsd_destructor = 1268 (void (**)(void *))tsd_realloc((void *)tsd_destructor, 1269 (size_t)(tsd_nkeys * sizeof (void (*)(void *))), 1270 (size_t)(nkeys * sizeof (void (*)(void *)))); 1271 tsd_nkeys = nkeys; 1272 } 1273 1274 /* 1275 * allocate the next available unused key 1276 */ 1277 tsd_destructor[i] = destructor; 1278 *keyp = i + 1; 1279 mutex_exit(&tsd_mutex); 1280 } 1281 1282 /* 1283 * Destroy a key -- this is for unloadable modules 1284 * 1285 * Assumes that the caller is preventing tsd_set and tsd_get 1286 * Locks out tsd_create, tsd_destroy, and tsd_exit 1287 * May free memory with lock held 1288 */ 1289 void 1290 tsd_destroy(uint_t *keyp) 1291 { 1292 uint_t key; 1293 struct tsd_thread *tsd; 1294 1295 /* 1296 * protect the key namespace and our destructor lists 1297 */ 1298 mutex_enter(&tsd_mutex); 1299 key = *keyp; 1300 *keyp = 0; 1301 1302 ASSERT(key <= tsd_nkeys); 1303 1304 /* 1305 * if the key is valid 1306 */ 1307 if (key != 0) { 1308 uint_t k = key - 1; 1309 /* 1310 * for every thread with TSD, call key's destructor 1311 */ 1312 for (tsd = tsd_list; tsd; tsd = tsd->ts_next) { 1313 /* 1314 * no TSD for key in this thread 1315 */ 1316 if (key > tsd->ts_nkeys) 1317 continue; 1318 /* 1319 * call destructor for key 1320 */ 1321 if (tsd->ts_value[k] && tsd_destructor[k]) 1322 (*tsd_destructor[k])(tsd->ts_value[k]); 1323 /* 1324 * reset value for key 1325 */ 1326 tsd->ts_value[k] = NULL; 1327 } 1328 /* 1329 * actually free the key (NULL destructor == unused) 1330 */ 1331 tsd_destructor[k] = NULL; 1332 } 1333 1334 mutex_exit(&tsd_mutex); 1335 } 1336 1337 /* 1338 * Quickly return the per thread value that was stored with the specified key 1339 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1340 */ 1341 void * 1342 tsd_get(uint_t key) 1343 { 1344 return (tsd_agent_get(curthread, key)); 1345 } 1346 1347 /* 1348 * Set a per thread value indexed with the specified key 1349 */ 1350 int 1351 tsd_set(uint_t key, void *value) 1352 { 1353 return (tsd_agent_set(curthread, key, value)); 1354 } 1355 1356 /* 1357 * Like tsd_get(), except that the agent lwp can get the tsd of 1358 * another thread in the same process (the agent thread only runs when the 1359 * process is completely stopped by /proc), or syslwp is creating a new lwp. 1360 */ 1361 void * 1362 tsd_agent_get(kthread_t *t, uint_t key) 1363 { 1364 struct tsd_thread *tsd = t->t_tsd; 1365 1366 ASSERT(t == curthread || 1367 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1368 1369 if (key && tsd != NULL && key <= tsd->ts_nkeys) 1370 return (tsd->ts_value[key - 1]); 1371 return (NULL); 1372 } 1373 1374 /* 1375 * Like tsd_set(), except that the agent lwp can set the tsd of 1376 * another thread in the same process, or syslwp can set the tsd 1377 * of a thread it's in the middle of creating. 1378 * 1379 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1380 * May lock out tsd_destroy (and tsd_create), may allocate memory with 1381 * lock held 1382 */ 1383 int 1384 tsd_agent_set(kthread_t *t, uint_t key, void *value) 1385 { 1386 struct tsd_thread *tsd = t->t_tsd; 1387 1388 ASSERT(t == curthread || 1389 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1390 1391 if (key == 0) 1392 return (EINVAL); 1393 if (tsd == NULL) 1394 tsd = t->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1395 if (key <= tsd->ts_nkeys) { 1396 tsd->ts_value[key - 1] = value; 1397 return (0); 1398 } 1399 1400 ASSERT(key <= tsd_nkeys); 1401 1402 /* 1403 * lock out tsd_destroy() 1404 */ 1405 mutex_enter(&tsd_mutex); 1406 if (tsd->ts_nkeys == 0) { 1407 /* 1408 * Link onto list of threads with TSD 1409 */ 1410 if ((tsd->ts_next = tsd_list) != NULL) 1411 tsd_list->ts_prev = tsd; 1412 tsd_list = tsd; 1413 } 1414 1415 /* 1416 * Allocate thread local storage and set the value for key 1417 */ 1418 tsd->ts_value = tsd_realloc(tsd->ts_value, 1419 tsd->ts_nkeys * sizeof (void *), 1420 key * sizeof (void *)); 1421 tsd->ts_nkeys = key; 1422 tsd->ts_value[key - 1] = value; 1423 mutex_exit(&tsd_mutex); 1424 1425 return (0); 1426 } 1427 1428 1429 /* 1430 * Return the per thread value that was stored with the specified key 1431 * If necessary, create the key and the value 1432 * Assumes the caller is protecting *keyp from tsd_destroy 1433 */ 1434 void * 1435 tsd_getcreate(uint_t *keyp, void (*destroy)(void *), void *(*allocate)(void)) 1436 { 1437 void *value; 1438 uint_t key = *keyp; 1439 struct tsd_thread *tsd = curthread->t_tsd; 1440 1441 if (tsd == NULL) 1442 tsd = curthread->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1443 if (key && key <= tsd->ts_nkeys && (value = tsd->ts_value[key - 1])) 1444 return (value); 1445 if (key == 0) 1446 tsd_create(keyp, destroy); 1447 (void) tsd_set(*keyp, value = (*allocate)()); 1448 1449 return (value); 1450 } 1451 1452 /* 1453 * Called from thread_exit() to run the destructor function for each tsd 1454 * Locks out tsd_create and tsd_destroy 1455 * Assumes that the destructor *DOES NOT* use tsd 1456 */ 1457 void 1458 tsd_exit(void) 1459 { 1460 int i; 1461 struct tsd_thread *tsd = curthread->t_tsd; 1462 1463 if (tsd == NULL) 1464 return; 1465 1466 if (tsd->ts_nkeys == 0) { 1467 kmem_free(tsd, sizeof (*tsd)); 1468 curthread->t_tsd = NULL; 1469 return; 1470 } 1471 1472 /* 1473 * lock out tsd_create and tsd_destroy, call 1474 * the destructor, and mark the value as destroyed. 1475 */ 1476 mutex_enter(&tsd_mutex); 1477 1478 for (i = 0; i < tsd->ts_nkeys; i++) { 1479 if (tsd->ts_value[i] && tsd_destructor[i]) 1480 (*tsd_destructor[i])(tsd->ts_value[i]); 1481 tsd->ts_value[i] = NULL; 1482 } 1483 1484 /* 1485 * remove from linked list of threads with TSD 1486 */ 1487 if (tsd->ts_next) 1488 tsd->ts_next->ts_prev = tsd->ts_prev; 1489 if (tsd->ts_prev) 1490 tsd->ts_prev->ts_next = tsd->ts_next; 1491 if (tsd_list == tsd) 1492 tsd_list = tsd->ts_next; 1493 1494 mutex_exit(&tsd_mutex); 1495 1496 /* 1497 * free up the TSD 1498 */ 1499 kmem_free(tsd->ts_value, tsd->ts_nkeys * sizeof (void *)); 1500 kmem_free(tsd, sizeof (struct tsd_thread)); 1501 curthread->t_tsd = NULL; 1502 } 1503 1504 /* 1505 * realloc 1506 */ 1507 static void * 1508 tsd_realloc(void *old, size_t osize, size_t nsize) 1509 { 1510 void *new; 1511 1512 new = kmem_zalloc(nsize, KM_SLEEP); 1513 if (old) { 1514 bcopy(old, new, osize); 1515 kmem_free(old, osize); 1516 } 1517 return (new); 1518 } 1519 1520 /* 1521 * Check to see if an interrupt thread might be active at a given ipl. 1522 * If so return true. 1523 * We must be conservative--it is ok to give a false yes, but a false no 1524 * will cause disaster. (But if the situation changes after we check it is 1525 * ok--the caller is trying to ensure that an interrupt routine has been 1526 * exited). 1527 * This is used when trying to remove an interrupt handler from an autovector 1528 * list in avintr.c. 1529 */ 1530 int 1531 intr_active(struct cpu *cp, int level) 1532 { 1533 if (level <= LOCK_LEVEL) 1534 return (cp->cpu_thread != cp->cpu_dispthread); 1535 else 1536 return (CPU_ON_INTR(cp)); 1537 } 1538 1539 /* 1540 * Return non-zero if an interrupt is being serviced. 1541 */ 1542 int 1543 servicing_interrupt() 1544 { 1545 /* 1546 * Note: single-OR used on purpose to return non-zero if T_INTR_THREAD 1547 * flag set or CPU_ON_INTR(CPU) is non-zero (indicating high-level 1548 * interrupt). 1549 */ 1550 return ((curthread->t_flag & T_INTR_THREAD) | CPU_ON_INTR(CPU)); 1551 } 1552 1553 1554 /* 1555 * Change the dispatch priority of a thread in the system. 1556 * Used when raising or lowering a thread's priority. 1557 * (E.g., priority inheritance) 1558 * 1559 * Since threads are queued according to their priority, we 1560 * we must check the thread's state to determine whether it 1561 * is on a queue somewhere. If it is, we've got to: 1562 * 1563 * o Dequeue the thread. 1564 * o Change its effective priority. 1565 * o Enqueue the thread. 1566 * 1567 * Assumptions: The thread whose priority we wish to change 1568 * must be locked before we call thread_change_(e)pri(). 1569 * The thread_change(e)pri() function doesn't drop the thread 1570 * lock--that must be done by its caller. 1571 */ 1572 void 1573 thread_change_epri(kthread_t *t, pri_t disp_pri) 1574 { 1575 uint_t state; 1576 1577 ASSERT(THREAD_LOCK_HELD(t)); 1578 1579 /* 1580 * If the inherited priority hasn't actually changed, 1581 * just return. 1582 */ 1583 if (t->t_epri == disp_pri) 1584 return; 1585 1586 state = t->t_state; 1587 1588 /* 1589 * If it's not on a queue, change the priority with 1590 * impunity. 1591 */ 1592 if ((state & (TS_SLEEP | TS_RUN)) == 0) { 1593 t->t_epri = disp_pri; 1594 1595 if (state == TS_ONPROC) { 1596 cpu_t *cp = t->t_disp_queue->disp_cpu; 1597 1598 if (t == cp->cpu_dispthread) 1599 cp->cpu_dispatch_pri = DISP_PRIO(t); 1600 } 1601 return; 1602 } 1603 1604 /* 1605 * It's either on a sleep queue or a run queue. 1606 */ 1607 if (state == TS_SLEEP) { 1608 1609 /* 1610 * Take the thread out of its sleep queue. 1611 * Change the inherited priority. 1612 * Re-enqueue the thread. 1613 * Each synchronization object exports a function 1614 * to do this in an appropriate manner. 1615 */ 1616 SOBJ_CHANGE_EPRI(t->t_sobj_ops, t, disp_pri); 1617 } else { 1618 /* 1619 * The thread is on a run queue. 1620 * Note: setbackdq() may not put the thread 1621 * back on the same run queue where it originally 1622 * resided. 1623 */ 1624 (void) dispdeq(t); 1625 t->t_epri = disp_pri; 1626 setbackdq(t); 1627 } 1628 } /* end of thread_change_epri */ 1629 1630 /* 1631 * Function: Change the t_pri field of a thread. 1632 * Side Effects: Adjust the thread ordering on a run queue 1633 * or sleep queue, if necessary. 1634 * Returns: 1 if the thread was on a run queue, else 0. 1635 */ 1636 int 1637 thread_change_pri(kthread_t *t, pri_t disp_pri, int front) 1638 { 1639 uint_t state; 1640 int on_rq = 0; 1641 1642 ASSERT(THREAD_LOCK_HELD(t)); 1643 1644 state = t->t_state; 1645 THREAD_WILLCHANGE_PRI(t, disp_pri); 1646 1647 /* 1648 * If it's not on a queue, change the priority with 1649 * impunity. 1650 */ 1651 if ((state & (TS_SLEEP | TS_RUN)) == 0) { 1652 t->t_pri = disp_pri; 1653 1654 if (state == TS_ONPROC) { 1655 cpu_t *cp = t->t_disp_queue->disp_cpu; 1656 1657 if (t == cp->cpu_dispthread) 1658 cp->cpu_dispatch_pri = DISP_PRIO(t); 1659 } 1660 return (0); 1661 } 1662 1663 /* 1664 * It's either on a sleep queue or a run queue. 1665 */ 1666 if (state == TS_SLEEP) { 1667 /* 1668 * If the priority has changed, take the thread out of 1669 * its sleep queue and change the priority. 1670 * Re-enqueue the thread. 1671 * Each synchronization object exports a function 1672 * to do this in an appropriate manner. 1673 */ 1674 if (disp_pri != t->t_pri) 1675 SOBJ_CHANGE_PRI(t->t_sobj_ops, t, disp_pri); 1676 } else { 1677 /* 1678 * The thread is on a run queue. 1679 * Note: setbackdq() may not put the thread 1680 * back on the same run queue where it originally 1681 * resided. 1682 * 1683 * We still requeue the thread even if the priority 1684 * is unchanged to preserve round-robin (and other) 1685 * effects between threads of the same priority. 1686 */ 1687 on_rq = dispdeq(t); 1688 ASSERT(on_rq); 1689 t->t_pri = disp_pri; 1690 if (front) { 1691 setfrontdq(t); 1692 } else { 1693 setbackdq(t); 1694 } 1695 } 1696 return (on_rq); 1697 } 1698