xref: /titanic_41/usr/src/uts/common/disp/sysdc.c (revision 1d7b78a3ad3ba3aedee339128153e8f515cb6f1c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * The System Duty Cycle (SDC) scheduling class
28  * --------------------------------------------
29  *
30  * Background
31  *
32  * Kernel threads in Solaris have traditionally not been large consumers
33  * of CPU time.  They typically wake up, perform a small amount of
34  * work, then go back to sleep waiting for either a timeout or another
35  * signal.  On the assumption that the small amount of work that they do
36  * is important for the behavior of the whole system, these threads are
37  * treated kindly by the dispatcher and the SYS scheduling class: they run
38  * without preemption from anything other than real-time and interrupt
39  * threads; when preempted, they are put at the front of the queue, so they
40  * generally do not migrate between CPUs; and they are allowed to stay
41  * running until they voluntarily give up the CPU.
42  *
43  * As Solaris has evolved, new workloads have emerged which require the
44  * kernel to perform significant amounts of CPU-intensive work.  One
45  * example of such a workload is ZFS's transaction group sync processing.
46  * Each sync operation generates a large batch of I/Os, and each I/O
47  * may need to be compressed and/or checksummed before it is written to
48  * storage.  The taskq threads which perform the compression and checksums
49  * will run nonstop as long as they have work to do; a large sync operation
50  * on a compression-heavy dataset can keep them busy for seconds on end.
51  * This causes human-time-scale dispatch latency bubbles for any other
52  * threads which have the misfortune to share a CPU with the taskq threads.
53  *
54  * The SDC scheduling class is a solution to this problem.
55  *
56  *
57  * Overview
58  *
59  * SDC is centered around the concept of a thread's duty cycle (DC):
60  *
61  *			      ONPROC time
62  *	Duty Cycle =	----------------------
63  *			ONPROC + Runnable time
64  *
65  * This is the ratio of the time that the thread spent running on a CPU
66  * divided by the time it spent running or trying to run.  It is unaffected
67  * by any time the thread spent sleeping, stopped, etc.
68  *
69  * A thread joining the SDC class specifies a "target" DC that it wants
70  * to run at.  To implement this policy, the routine sysdc_update() scans
71  * the list of active SDC threads every few ticks and uses each thread's
72  * microstate data to compute the actual duty cycle that that thread
73  * has experienced recently.  If the thread is under its target DC, its
74  * priority is increased to the maximum available (sysdc_maxpri, which is
75  * 99 by default).  If the thread is over its target DC, its priority is
76  * reduced to the minimum available (sysdc_minpri, 0 by default).  This
77  * is a fairly primitive approach, in that it doesn't use any of the
78  * intermediate priorities, but it's not completely inappropriate.  Even
79  * though threads in the SDC class might take a while to do their job, they
80  * are by some definition important if they're running inside the kernel,
81  * so it is reasonable that they should get to run at priority 99.
82  *
83  * If a thread is running when sysdc_update() calculates its actual duty
84  * cycle, and there are other threads of equal or greater priority on its
85  * CPU's dispatch queue, sysdc_update() preempts that thread.  The thread
86  * acknowledges the preemption by calling sysdc_preempt(), which calls
87  * setbackdq(), which gives other threads with the same priority a chance
88  * to run.  This creates a de facto time quantum for threads in the SDC
89  * scheduling class.
90  *
91  * An SDC thread which is assigned priority 0 can continue to run if
92  * nothing else needs to use the CPU that it's running on.  Similarly, an
93  * SDC thread at priority 99 might not get to run as much as it wants to
94  * if there are other priority-99 or higher threads on its CPU.  These
95  * situations would cause the thread to get ahead of or behind its target
96  * DC; the longer the situations lasted, the further ahead or behind the
97  * thread would get.  Rather than condemning a thread to a lifetime of
98  * paying for its youthful indiscretions, SDC keeps "base" values for
99  * ONPROC and Runnable times in each thread's sysdc data, and updates these
100  * values periodically.  The duty cycle is then computed using the elapsed
101  * amount of ONPROC and Runnable times since those base times.
102  *
103  * Since sysdc_update() scans SDC threads fairly frequently, it tries to
104  * keep the list of "active" threads small by pruning out threads which
105  * have been asleep for a brief time.  They are not pruned immediately upon
106  * going to sleep, since some threads may bounce back and forth between
107  * sleeping and being runnable.
108  *
109  *
110  * Interfaces
111  *
112  * void sysdc_thread_enter(t, dc, flags)
113  *
114  *	Moves a kernel thread from the SYS scheduling class to the
115  *	SDC class. t must have an associated LWP (created by calling
116  *	lwp_kernel_create()).  The thread will have a target DC of dc.
117  *	Flags should be either 0 or SYSDC_THREAD_BATCH.  If
118  *	SYSDC_THREAD_BATCH is specified, the thread will run with a
119  *	slightly lower priority (see "Batch threads", below).
120  *
121  *
122  * Complications
123  *
124  * - Run queue balancing
125  *
126  *	The Solaris dispatcher is biased towards letting a thread run
127  *	on the same CPU which it last ran on, if no more than 3 ticks
128  *	(i.e. rechoose_interval) have passed since the thread last ran.
129  *	This helps to preserve cache warmth.  On the other hand, it also
130  *	tries to keep the per-CPU run queues fairly balanced; if the CPU
131  *	chosen for a runnable thread has a run queue which is three or
132  *	more threads longer than a neighboring CPU's queue, the runnable
133  *	thread is dispatched onto the neighboring CPU instead.
134  *
135  *	These policies work well for some workloads, but not for many SDC
136  *	threads.  The taskq client of SDC, for example, has many discrete
137  *	units of work to do.  The work units are largely independent, so
138  *	cache warmth is not an important consideration.  It is important
139  *	that the threads fan out quickly to different CPUs, since the
140  *	amount of work these threads have to do (a few seconds worth at a
141  *	time) doesn't leave much time to correct thread placement errors
142  *	(i.e. two SDC threads being dispatched to the same CPU).
143  *
144  *	To fix this, SDC uses the TS_RUNQMATCH flag introduced for FSS.
145  *	This tells the dispatcher to keep neighboring run queues' lengths
146  *	more evenly matched, which allows SDC threads to migrate more
147  *	easily.
148  *
149  * - LWPs and system processes
150  *
151  *	SDC can only be used for kernel threads.  Since SDC uses microstate
152  *	accounting data to compute each thread's actual duty cycle, all
153  *	threads entering the SDC class must have associated LWPs (which
154  *	store the microstate data).  This means that the threads have to
155  *	be associated with an SSYS process, i.e. one created by newproc().
156  *	If the microstate accounting information is ever moved into the
157  *	kthread_t, this restriction could be lifted.
158  *
159  * - Dealing with oversubscription
160  *
161  *	Since SDC duty cycles are per-thread, it is possible that the
162  *	aggregate requested duty cycle of all SDC threads in a processor
163  *	set could be greater than the total CPU time available in that set.
164  *	The FSS scheduling class has an analogous situation, which it deals
165  *	with by reducing each thread's allotted CPU time proportionally.
166  *	Since SDC doesn't need to be as precise as FSS, it uses a simpler
167  *	solution to the oversubscription problem.
168  *
169  *	sysdc_update() accumulates the amount of time that max-priority SDC
170  *	threads have spent on-CPU in each processor set, and uses that sum
171  *	to create an implied duty cycle for that processor set:
172  *
173  *				accumulated CPU time
174  *	   pset DC =	-----------------------------------
175  *			 (# CPUs) * time since last update
176  *
177  *	If this implied duty cycle is above a maximum pset duty cycle (90%
178  *	by default), sysdc_update() sets the priority of all SDC threads
179  *	in that processor set to sysdc_minpri for a "break" period.  After
180  *	the break period, it waits for a "nobreak" period before trying to
181  *	enforce the pset duty cycle limit again.
182  *
183  * - Processor sets
184  *
185  *	As the above implies, SDC is processor set aware, but it does not
186  *	currently allow threads to change processor sets while in the SDC
187  *	class.  Instead, those threads must join the desired processor set
188  *	before entering SDC. [1]
189  *
190  * - Batch threads
191  *
192  *	A thread joining the SDC class can specify the SDC_THREAD_BATCH
193  *	flag.  This flag causes the maximum priority for that thread to be
194  *	reduced (by default, the maximum is reduced by 1).  This allows
195  *	longer-running, batch-oriented SDC threads to be interrupted by
196  *	more immediate, higher-priority work.
197  *
198  * - t_kpri_req
199  *
200  *	The TS and FSS scheduling classes pay attention to t_kpri_req,
201  *	which provides a simple form of priority inheritance for
202  *	synchronization primitives (such as rwlocks held as READER) which
203  *	cannot be traced to a unique thread.  The SDC class does not honor
204  *	t_kpri_req, for a few reasons:
205  *
206  *	1.  t_kpri_req is notoriously inaccurate.  A measure of its
207  *	    inaccuracy is that it needs to be cleared every time a thread
208  *	    returns to user mode, because it is frequently non-zero at that
209  *	    point.  This can happen because "ownership" of synchronization
210  *	    primitives that use t_kpri_req can be silently handed off,
211  *	    leaving no opportunity to will the t_kpri_req inheritance.
212  *
213  *	2.  Unlike in TS and FSS, threads in SDC *will* eventually run at
214  *	    kernel priority.  This means that even if an SDC thread
215  *	    is holding a synchronization primitive and running at low
216  *	    priority, its priority will eventually be raised above 60,
217  *	    allowing it to drive on and release the resource.
218  *
219  *	3.  The first consumer of SDC uses the taskq subsystem, which holds
220  *	    a reader lock for the duration of the task's execution.  This
221  *	    would mean that SDC threads would never drop below kernel
222  *	    priority in practice, which defeats one of the purposes of SDC.
223  *
224  * - Why not FSS?
225  *
226  *	It might seem that the existing FSS scheduling class could solve
227  *	the problems that SDC is attempting to solve.  FSS's more precise
228  *	solution to the oversubscription problem would hardly cause
229  *	trouble, as long as it performed well.  SDC is implemented as
230  *	a separate scheduling class for two main reasons: the initial
231  *	consumer of SDC does not map well onto the "project" abstraction
232  *	that is central to FSS, and FSS does not expect to run at kernel
233  *	priorities.
234  *
235  *
236  * Tunables
237  *
238  * - sysdc_batch_niceness:  The amount below sysdc_maxpri that
239  *	SDC_THREAD_BATCH threads should use as their per-thread
240  *	maximum priority.
241  *
242  * - sysdc_update_interval_msec:  Number of milliseconds between
243  *	consecutive thread priority updates.
244  *
245  * - sysdc_reset_interval_msec:  Number of milliseconds between
246  *	consecutive resets of a thread's base ONPROC and Runnable
247  *	times.
248  *
249  * - sysdc_prune_interval_msec:  Number of milliseconds of sleeping
250  *	before a thread is pruned from the active list.
251  *
252  * - sysdc_max_pset_DC:  Allowable percentage of a processor set's
253  *	CPU time which SDC can give to its high-priority threads.
254  *
255  * - sysdc_break_msec:  Number of milliseconds of "break" taken when
256  *	sysdc_max_pset_DC is exceeded.
257  *
258  *
259  * Future work (in SDC and related subsystems)
260  *
261  * - Per-thread rechoose interval (0 for SDC)
262  *
263  *	Allow each thread to specify its own rechoose interval.  SDC
264  *	threads would specify an interval of zero, which would rechoose
265  *	the CPU with the lowest priority once per update.
266  *
267  * - Allow threads to change processor sets after joining the SDC class
268  *
269  * - Thread groups and per-group DC
270  *
271  *	It might be nice to be able to specify a duty cycle which applies
272  *	to a group of threads in aggregate.
273  *
274  * - Per-group DC callback to allow dynamic DC tuning
275  *
276  *	Currently, DCs are assigned when the thread joins SDC.  Some
277  *	workloads could benefit from being able to tune their DC using
278  *	subsystem-specific knowledge about the workload.
279  *
280  * - Finer-grained priority updates
281  *
282  * - More nuanced management of oversubscription
283  *
284  * - Moving other CPU-intensive threads into SDC
285  *
286  * - Move msacct data into kthread_t
287  *
288  *	This would allow kernel threads without LWPs to join SDC.
289  *
290  *
291  * Footnotes
292  *
293  * [1] The details of doing so are left as an exercise for the reader.
294  */
295 
296 #include <sys/types.h>
297 #include <sys/sysdc.h>
298 #include <sys/sysdc_impl.h>
299 
300 #include <sys/class.h>
301 #include <sys/cmn_err.h>
302 #include <sys/cpuvar.h>
303 #include <sys/cpupart.h>
304 #include <sys/debug.h>
305 #include <sys/disp.h>
306 #include <sys/errno.h>
307 #include <sys/inline.h>
308 #include <sys/kmem.h>
309 #include <sys/modctl.h>
310 #include <sys/schedctl.h>
311 #include <sys/sdt.h>
312 #include <sys/sunddi.h>
313 #include <sys/sysmacros.h>
314 #include <sys/systm.h>
315 #include <sys/var.h>
316 
317 /*
318  * Tunables - loaded into the internal state at module load time
319  */
320 uint_t		sysdc_update_interval_msec = 20;
321 uint_t		sysdc_reset_interval_msec = 400;
322 uint_t		sysdc_prune_interval_msec = 100;
323 uint_t		sysdc_max_pset_DC = 90;
324 uint_t		sysdc_break_msec = 80;
325 pri_t		sysdc_batch_niceness = 1;
326 
327 /*
328  * Internal state - constants set up by sysdc_initparam()
329  */
330 static clock_t	sysdc_update_ticks;	/* ticks between updates */
331 static uint_t	sysdc_prune_updates;	/* updates asleep before pruning */
332 static uint_t	sysdc_reset_updates;	/* # of updates before reset */
333 static uint_t	sysdc_break_updates;	/* updates to break */
334 static uint_t	sysdc_nobreak_updates;	/* updates to not check */
335 static uint_t	sysdc_minDC;		/* minimum allowed DC */
336 static uint_t	sysdc_maxDC;		/* maximum allowed DC */
337 static pri_t	sysdc_minpri;		/* minimum allowed priority */
338 static pri_t	sysdc_maxpri;		/* maximum allowed priority */
339 
340 /*
341  * Internal state
342  */
343 static kmutex_t	sysdc_pset_lock;	/* lock protecting pset data */
344 static list_t	sysdc_psets;		/* list of psets with SDC threads */
345 static uint_t	sysdc_param_init;	/* sysdc_initparam() has been called */
346 static uint_t	sysdc_update_timeout_started; /* update timeout is active */
347 static hrtime_t	sysdc_last_update;	/* time of last sysdc_update() */
348 static sysdc_t	sysdc_dummy;		/* used to terminate active lists */
349 
350 /*
351  * Internal state - active hash table
352  */
353 #define	SYSDC_NLISTS	8
354 #define	SYSDC_HASH(sdc)	(((uintptr_t)(sdc) >> 6) & (SYSDC_NLISTS - 1))
355 static sysdc_list_t	sysdc_active[SYSDC_NLISTS];
356 #define	SYSDC_LIST(sdc)		(&sysdc_active[SYSDC_HASH(sdc)])
357 
358 #ifdef DEBUG
359 static struct {
360 	uint64_t	sysdc_update_times_asleep;
361 	uint64_t	sysdc_update_times_base_ran_backwards;
362 	uint64_t	sysdc_update_times_already_done;
363 	uint64_t	sysdc_update_times_cur_ran_backwards;
364 	uint64_t	sysdc_compute_pri_breaking;
365 	uint64_t	sysdc_activate_enter;
366 	uint64_t	sysdc_update_enter;
367 	uint64_t	sysdc_update_exited;
368 	uint64_t	sysdc_update_not_sdc;
369 	uint64_t	sysdc_update_idle;
370 	uint64_t	sysdc_update_take_break;
371 	uint64_t	sysdc_update_no_psets;
372 	uint64_t	sysdc_tick_not_sdc;
373 	uint64_t	sysdc_tick_quantum_expired;
374 	uint64_t	sysdc_thread_enter_enter;
375 } sysdc_stats;
376 
377 #define	SYSDC_INC_STAT(x)	(sysdc_stats.x++)
378 #else
379 #define	SYSDC_INC_STAT(x)	((void)0)
380 #endif
381 
382 /* macros are UPPER CASE */
383 #define	HOWMANY(a, b)	howmany((a), (b))
384 #define	MSECTOTICKS(a)	HOWMANY((a) * 1000, usec_per_tick)
385 
386 static void
387 sysdc_initparam(void)
388 {
389 	uint_t sysdc_break_ticks;
390 
391 	/* update / prune intervals */
392 	sysdc_update_ticks = MSECTOTICKS(sysdc_update_interval_msec);
393 
394 	sysdc_prune_updates = HOWMANY(sysdc_prune_interval_msec,
395 	    sysdc_update_interval_msec);
396 	sysdc_reset_updates = HOWMANY(sysdc_reset_interval_msec,
397 	    sysdc_update_interval_msec);
398 
399 	/* We must get at least a little time on CPU. */
400 	sysdc_minDC = 1;
401 	sysdc_maxDC = SYSDC_DC_MAX;
402 	sysdc_minpri = 0;
403 	sysdc_maxpri = maxclsyspri;
404 
405 	/* break parameters */
406 	if (sysdc_max_pset_DC > SYSDC_DC_MAX) {
407 		sysdc_max_pset_DC = SYSDC_DC_MAX;
408 	}
409 	sysdc_break_ticks = MSECTOTICKS(sysdc_break_msec);
410 	sysdc_break_updates = HOWMANY(sysdc_break_ticks, sysdc_update_ticks);
411 
412 	/*
413 	 * We want:
414 	 *
415 	 *	sysdc_max_pset_DC = (nobreak / (break + nobreak))
416 	 *
417 	 *	==>	  nobreak = sysdc_max_pset_DC * (break + nobreak)
418 	 *
419 	 *			    sysdc_max_pset_DC * break
420 	 *	==>	  nobreak = -------------------------
421 	 *			    1 - sysdc_max_pset_DC
422 	 */
423 	sysdc_nobreak_updates =
424 	    HOWMANY((uint64_t)sysdc_break_updates * sysdc_max_pset_DC,
425 	    (SYSDC_DC_MAX - sysdc_max_pset_DC));
426 
427 	sysdc_param_init = 1;
428 }
429 
430 #undef HOWMANY
431 #undef MSECTOTICKS
432 
433 #define	SDC_UPDATE_INITIAL	0x1	/* for the initial update */
434 #define	SDC_UPDATE_TIMEOUT	0x2	/* from sysdc_update() */
435 #define	SDC_UPDATE_TICK		0x4	/* from sysdc_tick(), on expiry */
436 
437 /*
438  * Updates the recorded times in the sdc, and returns the elapsed ONPROC
439  * and Runnable times since the last reset.
440  *
441  * newO is the thread's actual ONPROC time; it's used during sysdc_update()
442  * to track processor set usage.
443  */
444 static void
445 sysdc_update_times(sysdc_t *sdc, uint_t flags,
446     hrtime_t *O, hrtime_t *R, hrtime_t *newO)
447 {
448 	kthread_t *const t = sdc->sdc_thread;
449 	const uint_t	initial = (flags & SDC_UPDATE_INITIAL);
450 	const uint_t	update = (flags & SDC_UPDATE_TIMEOUT);
451 	const clock_t	now = ddi_get_lbolt();
452 	uint_t		do_reset;
453 
454 	ASSERT(THREAD_LOCK_HELD(t));
455 
456 	*O = *R = 0;
457 
458 	/* If we've been sleeping, we know we haven't had any ONPROC time. */
459 	if (sdc->sdc_sleep_updates != 0 &&
460 	    sdc->sdc_sleep_updates != sdc->sdc_nupdates) {
461 		*newO = sdc->sdc_last_base_O;
462 		SYSDC_INC_STAT(sysdc_update_times_asleep);
463 		return;
464 	}
465 
466 	/*
467 	 * If this is our first update, or we've hit the reset point,
468 	 * we need to reset our base_{O,R}.  Once we've updated them, we
469 	 * report O and R for the entire prior interval.
470 	 */
471 	do_reset = initial;
472 	if (update) {
473 		++sdc->sdc_nupdates;
474 		if ((sdc->sdc_nupdates % sysdc_reset_updates) == 0)
475 			do_reset = 1;
476 	}
477 	if (do_reset) {
478 		hrtime_t baseO, baseR;
479 		if (initial) {
480 			/*
481 			 * Start off our cycle count somewhere in the middle,
482 			 * to keep the resets from all happening at once.
483 			 *
484 			 * 4999 is a handy prime much larger than
485 			 * sysdc_reset_updates, so that we don't run into
486 			 * trouble if the resolution is a multiple of
487 			 * sysdc_reset_updates.
488 			 */
489 			sdc->sdc_nupdates = (uint_t)((gethrtime() % 4999) %
490 			    sysdc_reset_updates);
491 			baseO = baseR = 0;
492 		} else {
493 			baseO = sdc->sdc_base_O;
494 			baseR = sdc->sdc_base_R;
495 		}
496 
497 		mstate_systhread_times(t, &sdc->sdc_base_O, &sdc->sdc_base_R);
498 		*newO = sdc->sdc_base_O;
499 
500 		sdc->sdc_reset = now;
501 		sdc->sdc_pri_check = -1; /* force mismatch below */
502 
503 		/*
504 		 * See below for rationale.
505 		 */
506 		if (baseO > sdc->sdc_base_O || baseR > sdc->sdc_base_R) {
507 			SYSDC_INC_STAT(sysdc_update_times_base_ran_backwards);
508 			baseO = sdc->sdc_base_O;
509 			baseR = sdc->sdc_base_R;
510 		}
511 
512 		/* compute based on the entire interval */
513 		*O = (sdc->sdc_base_O - baseO);
514 		*R = (sdc->sdc_base_R - baseR);
515 		return;
516 	}
517 
518 	/*
519 	 * If we're called from sysdc_update(), we *must* return a value
520 	 * for newO, so we always call mstate_systhread_times().
521 	 *
522 	 * Otherwise, if we've already done a pri check this tick,
523 	 * we can skip it.
524 	 */
525 	if (!update && sdc->sdc_pri_check == now) {
526 		SYSDC_INC_STAT(sysdc_update_times_already_done);
527 		return;
528 	}
529 
530 	/* Get the current times from the thread */
531 	sdc->sdc_pri_check = now;
532 	mstate_systhread_times(t, &sdc->sdc_cur_O, &sdc->sdc_cur_R);
533 	*newO = sdc->sdc_cur_O;
534 
535 	/*
536 	 * The updating of microstate accounting is not done under a
537 	 * consistent set of locks, particularly the t_waitrq field.  This
538 	 * can lead to narrow windows in which we account for time in the
539 	 * wrong bucket, which on the next read will be accounted for
540 	 * correctly.
541 	 *
542 	 * If our sdc_base_* fields were affected by one of these blips, we
543 	 * throw away the old data, and pretend this tick didn't happen.
544 	 */
545 	if (sdc->sdc_cur_O < sdc->sdc_base_O ||
546 	    sdc->sdc_cur_R < sdc->sdc_base_R) {
547 
548 		sdc->sdc_base_O = sdc->sdc_cur_O;
549 		sdc->sdc_base_R = sdc->sdc_cur_R;
550 
551 		SYSDC_INC_STAT(sysdc_update_times_cur_ran_backwards);
552 		return;
553 	}
554 
555 	*O = sdc->sdc_cur_O - sdc->sdc_base_O;
556 	*R = sdc->sdc_cur_R - sdc->sdc_base_R;
557 }
558 
559 /*
560  * sysdc_compute_pri()
561  *
562  *	Recomputes the priority of the thread, leaving the result in
563  *	sdc->sdc_epri.  Returns 1 if a priority update should occur
564  *	(which will also trigger a cpu_surrender()), otherwise
565  *	returns 0.
566  */
567 static uint_t
568 sysdc_compute_pri(sysdc_t *sdc, uint_t flags)
569 {
570 	kthread_t *const t = sdc->sdc_thread;
571 	const uint_t	update = (flags & SDC_UPDATE_TIMEOUT);
572 	const uint_t	tick = (flags & SDC_UPDATE_TICK);
573 
574 	hrtime_t	O, R;
575 	hrtime_t	newO = -1;
576 
577 	ASSERT(THREAD_LOCK_HELD(t));
578 
579 	sysdc_update_times(sdc, flags, &O, &R, &newO);
580 	ASSERT(!update || newO != -1);
581 
582 	/* If we have new data, recompute our priority. */
583 	if ((O + R) != 0) {
584 		sdc->sdc_cur_DC = (O * SYSDC_DC_MAX) / (O + R);
585 
586 		/* Adjust our priority to move our DC closer to the target. */
587 		if (sdc->sdc_cur_DC < sdc->sdc_target_DC)
588 			sdc->sdc_pri = sdc->sdc_maxpri;
589 		else
590 			sdc->sdc_pri = sdc->sdc_minpri;
591 	}
592 
593 	/*
594 	 * If our per-pset duty cycle goes over the max, we will take a break.
595 	 * This forces all sysdc threads in the pset to minimum priority, in
596 	 * order to let everyone else have a chance at the CPU.
597 	 */
598 	if (sdc->sdc_pset->sdp_need_break) {
599 		SYSDC_INC_STAT(sysdc_compute_pri_breaking);
600 		sdc->sdc_epri = sdc->sdc_minpri;
601 	} else {
602 		sdc->sdc_epri = sdc->sdc_pri;
603 	}
604 
605 	DTRACE_PROBE4(sysdc__compute__pri,
606 	    kthread_t *, t, pri_t, sdc->sdc_epri, uint_t, sdc->sdc_cur_DC,
607 	    uint_t, sdc->sdc_target_DC);
608 
609 	/*
610 	 * For sysdc_update(), we compute the ONPROC time for high-priority
611 	 * threads, which is used to calculate the per-pset duty cycle.  We
612 	 * will always tell our callers to update the thread's priority,
613 	 * since we want to force a cpu_surrender().
614 	 *
615 	 * We reset sdc_update_ticks so that sysdc_tick() will only update
616 	 * the thread's priority if our timeout is delayed by a tick or
617 	 * more.
618 	 */
619 	if (update) {
620 		/* SDC threads are not allowed to change cpupart bindings. */
621 		ASSERT(t->t_cpupart == sdc->sdc_pset->sdp_cpupart);
622 
623 		/* If we were at MAXPRI, account for our onproc time. */
624 		if (t->t_pri == sdc->sdc_maxpri &&
625 		    sdc->sdc_last_base_O != 0 &&
626 		    sdc->sdc_last_base_O < newO) {
627 			sdc->sdc_last_O = newO - sdc->sdc_last_base_O;
628 			sdc->sdc_pset->sdp_onproc_time +=
629 			    (uint64_t)sdc->sdc_last_O;
630 			sdc->sdc_pset->sdp_onproc_threads++;
631 		} else {
632 			sdc->sdc_last_O = 0;
633 		}
634 		sdc->sdc_last_base_O = newO;
635 
636 		sdc->sdc_update_ticks = sdc->sdc_ticks + sysdc_update_ticks + 1;
637 		return (1);
638 	}
639 
640 	/*
641 	 * Like sysdc_update(), sysdc_tick() always wants to update the
642 	 * thread's priority, so that the CPU is surrendered if necessary.
643 	 * We reset sdc_update_ticks so that if the timeout continues to be
644 	 * delayed, we'll update at the regular interval.
645 	 */
646 	if (tick) {
647 		ASSERT(sdc->sdc_ticks == sdc->sdc_update_ticks);
648 		sdc->sdc_update_ticks = sdc->sdc_ticks + sysdc_update_ticks;
649 		return (1);
650 	}
651 
652 	/*
653 	 * Otherwise, only tell our callers to update the priority if it has
654 	 * changed.
655 	 */
656 	return (sdc->sdc_epri != t->t_pri);
657 }
658 
659 static void
660 sysdc_update_pri(sysdc_t *sdc, uint_t flags)
661 {
662 	kthread_t *t = sdc->sdc_thread;
663 
664 	ASSERT(THREAD_LOCK_HELD(t));
665 
666 	if (sysdc_compute_pri(sdc, flags)) {
667 		if (!thread_change_pri(t, sdc->sdc_epri, 0)) {
668 			cpu_surrender(t);
669 		}
670 	}
671 }
672 
673 /*
674  * Add a thread onto the active list.  It will only be removed by
675  * sysdc_update().
676  */
677 static void
678 sysdc_activate(sysdc_t *sdc)
679 {
680 	sysdc_t *volatile *headp = &SYSDC_LIST(sdc)->sdl_list;
681 	sysdc_t		*head;
682 	kthread_t	*t = sdc->sdc_thread;
683 
684 	SYSDC_INC_STAT(sysdc_activate_enter);
685 
686 	ASSERT(sdc->sdc_next == NULL);
687 	ASSERT(THREAD_LOCK_HELD(t));
688 
689 	do {
690 		head = *headp;
691 		sdc->sdc_next = head;
692 	} while (atomic_cas_ptr(headp, head, sdc) != head);
693 }
694 
695 /*
696  * sysdc_update() has two jobs:
697  *
698  *	1. It updates the priorities of all active SDC threads on the system.
699  *	2. It measures pset CPU usage and enforces sysdc_max_pset_DC.
700  */
701 static void
702 sysdc_update(void *arg)
703 {
704 	int		idx;
705 	sysdc_t		*freelist = NULL;
706 	sysdc_pset_t	*cur;
707 	hrtime_t	now, diff;
708 	uint_t		redeploy = 1;
709 
710 	SYSDC_INC_STAT(sysdc_update_enter);
711 
712 	ASSERT(sysdc_update_timeout_started);
713 
714 	/*
715 	 * If this is our first time through, diff will be gigantic, and
716 	 * no breaks will be necessary.
717 	 */
718 	now = gethrtime();
719 	diff = now - sysdc_last_update;
720 	sysdc_last_update = now;
721 
722 	mutex_enter(&sysdc_pset_lock);
723 	for (cur = list_head(&sysdc_psets); cur != NULL;
724 	    cur = list_next(&sysdc_psets, cur)) {
725 		boolean_t breaking = (cur->sdp_should_break != 0);
726 
727 		if (cur->sdp_need_break != breaking) {
728 			DTRACE_PROBE2(sdc__pset__break, sysdc_pset_t *, cur,
729 			    boolean_t, breaking);
730 		}
731 		cur->sdp_onproc_time = 0;
732 		cur->sdp_onproc_threads = 0;
733 		cur->sdp_need_break = breaking;
734 	}
735 	mutex_exit(&sysdc_pset_lock);
736 
737 	for (idx = 0; idx < SYSDC_NLISTS; idx++) {
738 		sysdc_list_t		*sdl = &sysdc_active[idx];
739 		sysdc_t *volatile	*headp = &sdl->sdl_list;
740 		sysdc_t			*head, *tail;
741 		sysdc_t			**prevptr;
742 
743 		if (*headp == &sysdc_dummy)
744 			continue;
745 
746 		/* Prevent any threads from exiting while we're poking them. */
747 		mutex_enter(&sdl->sdl_lock);
748 
749 		/*
750 		 * Each sdl_list contains a singly-linked list of active
751 		 * threads. Threads which become active while we are
752 		 * processing the list will be added to sdl_list.  Since we
753 		 * don't want that to interfere with our own processing, we
754 		 * swap in an empty list.  Any newly active threads will
755 		 * go on to this empty list.  When finished, we'll put any
756 		 * such threads at the end of the processed list.
757 		 */
758 		head = atomic_swap_ptr(headp, &sysdc_dummy);
759 		prevptr = &head;
760 		while (*prevptr != &sysdc_dummy) {
761 			sysdc_t		*const	sdc = *prevptr;
762 			kthread_t	*const	t = sdc->sdc_thread;
763 
764 			/*
765 			 * If the thread has exited, move its sysdc_t onto
766 			 * freelist, to be freed later.
767 			 */
768 			if (t == NULL) {
769 				*prevptr = sdc->sdc_next;
770 				SYSDC_INC_STAT(sysdc_update_exited);
771 				sdc->sdc_next = freelist;
772 				freelist = sdc;
773 				continue;
774 			}
775 
776 			thread_lock(t);
777 			if (t->t_cid != sysdccid) {
778 				thread_unlock(t);
779 				prevptr = &sdc->sdc_next;
780 				SYSDC_INC_STAT(sysdc_update_not_sdc);
781 				continue;
782 			}
783 			ASSERT(t->t_cldata == sdc);
784 
785 			/*
786 			 * If the thread has been sleeping for longer
787 			 * than sysdc_prune_interval, make it inactive by
788 			 * removing it from the list.
789 			 */
790 			if (!(t->t_state & (TS_RUN | TS_ONPROC)) &&
791 			    sdc->sdc_sleep_updates != 0 &&
792 			    (sdc->sdc_sleep_updates - sdc->sdc_nupdates) >
793 			    sysdc_prune_updates) {
794 				*prevptr = sdc->sdc_next;
795 				SYSDC_INC_STAT(sysdc_update_idle);
796 				sdc->sdc_next = NULL;
797 				thread_unlock(t);
798 				continue;
799 			}
800 			sysdc_update_pri(sdc, SDC_UPDATE_TIMEOUT);
801 			thread_unlock(t);
802 
803 			prevptr = &sdc->sdc_next;
804 		}
805 
806 		/*
807 		 * Add our list to the bucket, putting any new entries
808 		 * added while we were working at the tail of the list.
809 		 */
810 		do {
811 			tail = *headp;
812 			*prevptr = tail;
813 		} while (atomic_cas_ptr(headp, tail, head) != tail);
814 
815 		mutex_exit(&sdl->sdl_lock);
816 	}
817 
818 	mutex_enter(&sysdc_pset_lock);
819 	for (cur = list_head(&sysdc_psets); cur != NULL;
820 	    cur = list_next(&sysdc_psets, cur)) {
821 
822 		cur->sdp_vtime_last_interval =
823 		    diff * cur->sdp_cpupart->cp_ncpus;
824 		cur->sdp_DC_last_interval =
825 		    (cur->sdp_onproc_time * SYSDC_DC_MAX) /
826 		    cur->sdp_vtime_last_interval;
827 
828 		if (cur->sdp_should_break > 0) {
829 			cur->sdp_should_break--;	/* breaking */
830 			continue;
831 		}
832 		if (cur->sdp_dont_break > 0) {
833 			cur->sdp_dont_break--;	/* waiting before checking */
834 			continue;
835 		}
836 		if (cur->sdp_DC_last_interval > sysdc_max_pset_DC) {
837 			cur->sdp_should_break = sysdc_break_updates;
838 			cur->sdp_dont_break = sysdc_nobreak_updates;
839 			SYSDC_INC_STAT(sysdc_update_take_break);
840 		}
841 	}
842 
843 	/*
844 	 * If there are no sysdc_psets, there can be no threads, so
845 	 * we can stop doing our timeout.  Since we're holding the
846 	 * sysdc_pset_lock, no new sysdc_psets can come in, which will
847 	 * prevent anyone from racing with this and dropping our timeout
848 	 * on the floor.
849 	 */
850 	if (list_is_empty(&sysdc_psets)) {
851 		SYSDC_INC_STAT(sysdc_update_no_psets);
852 		ASSERT(sysdc_update_timeout_started);
853 		sysdc_update_timeout_started = 0;
854 
855 		redeploy = 0;
856 	}
857 	mutex_exit(&sysdc_pset_lock);
858 
859 	while (freelist != NULL) {
860 		sysdc_t *cur = freelist;
861 		freelist = cur->sdc_next;
862 		kmem_free(cur, sizeof (*cur));
863 	}
864 
865 	if (redeploy) {
866 		(void) timeout(sysdc_update, arg, sysdc_update_ticks);
867 	}
868 }
869 
870 static void
871 sysdc_preempt(kthread_t *t)
872 {
873 	ASSERT(t == curthread);
874 	ASSERT(THREAD_LOCK_HELD(t));
875 
876 	setbackdq(t);		/* give others a chance to run */
877 }
878 
879 static void
880 sysdc_tick(kthread_t *t)
881 {
882 	sysdc_t *sdc;
883 
884 	thread_lock(t);
885 	if (t->t_cid != sysdccid) {
886 		SYSDC_INC_STAT(sysdc_tick_not_sdc);
887 		thread_unlock(t);
888 		return;
889 	}
890 	sdc = t->t_cldata;
891 	if (t->t_state == TS_ONPROC &&
892 	    t->t_pri < t->t_disp_queue->disp_maxrunpri) {
893 		cpu_surrender(t);
894 	}
895 
896 	if (t->t_state == TS_ONPROC || t->t_state == TS_RUN) {
897 		ASSERT(sdc->sdc_sleep_updates == 0);
898 	}
899 
900 	ASSERT(sdc->sdc_ticks != sdc->sdc_update_ticks);
901 	sdc->sdc_ticks++;
902 	if (sdc->sdc_ticks == sdc->sdc_update_ticks) {
903 		SYSDC_INC_STAT(sysdc_tick_quantum_expired);
904 		sysdc_update_pri(sdc, SDC_UPDATE_TICK);
905 		ASSERT(sdc->sdc_ticks != sdc->sdc_update_ticks);
906 	}
907 	thread_unlock(t);
908 }
909 
910 static void
911 sysdc_setrun(kthread_t *t)
912 {
913 	sysdc_t *sdc = t->t_cldata;
914 
915 	ASSERT(THREAD_LOCK_HELD(t));	/* t should be in transition */
916 
917 	sdc->sdc_sleep_updates = 0;
918 
919 	if (sdc->sdc_next == NULL) {
920 		/*
921 		 * Since we're in transition, we don't want to use the
922 		 * full thread_update_pri().
923 		 */
924 		if (sysdc_compute_pri(sdc, 0)) {
925 			THREAD_CHANGE_PRI(t, sdc->sdc_epri);
926 		}
927 		sysdc_activate(sdc);
928 
929 		ASSERT(sdc->sdc_next != NULL);
930 	}
931 
932 	setbackdq(t);
933 }
934 
935 static void
936 sysdc_wakeup(kthread_t *t)
937 {
938 	sysdc_setrun(t);
939 }
940 
941 static void
942 sysdc_sleep(kthread_t *t)
943 {
944 	sysdc_t *sdc = t->t_cldata;
945 
946 	ASSERT(THREAD_LOCK_HELD(t));	/* t should be in transition */
947 
948 	sdc->sdc_sleep_updates = sdc->sdc_nupdates;
949 }
950 
951 /*ARGSUSED*/
952 static int
953 sysdc_enterclass(kthread_t *t, id_t cid, void *parmsp, cred_t *reqpcredp,
954     void *bufp)
955 {
956 	cpupart_t *const cpupart = t->t_cpupart;
957 	sysdc_t *sdc = bufp;
958 	sysdc_params_t *sdpp = parmsp;
959 	sysdc_pset_t *newpset = sdc->sdc_pset;
960 	sysdc_pset_t *pset;
961 	int start_timeout;
962 
963 	if (t->t_cid != syscid)
964 		return (EPERM);
965 
966 	ASSERT(ttolwp(t) != NULL);
967 	ASSERT(sdpp != NULL);
968 	ASSERT(newpset != NULL);
969 	ASSERT(sysdc_param_init);
970 
971 	ASSERT(sdpp->sdp_minpri >= sysdc_minpri);
972 	ASSERT(sdpp->sdp_maxpri <= sysdc_maxpri);
973 	ASSERT(sdpp->sdp_DC >= sysdc_minDC);
974 	ASSERT(sdpp->sdp_DC <= sysdc_maxDC);
975 
976 	sdc->sdc_thread = t;
977 	sdc->sdc_pri = sdpp->sdp_maxpri;	/* start off maximally */
978 	sdc->sdc_minpri = sdpp->sdp_minpri;
979 	sdc->sdc_maxpri = sdpp->sdp_maxpri;
980 	sdc->sdc_target_DC = sdpp->sdp_DC;
981 	sdc->sdc_ticks = 0;
982 	sdc->sdc_update_ticks = sysdc_update_ticks + 1;
983 
984 	/* Assign ourselves to the appropriate pset. */
985 	sdc->sdc_pset = NULL;
986 	mutex_enter(&sysdc_pset_lock);
987 	for (pset = list_head(&sysdc_psets); pset != NULL;
988 	    pset = list_next(&sysdc_psets, pset)) {
989 		if (pset->sdp_cpupart == cpupart) {
990 			break;
991 		}
992 	}
993 	if (pset == NULL) {
994 		pset = newpset;
995 		newpset = NULL;
996 		pset->sdp_cpupart = cpupart;
997 		list_insert_tail(&sysdc_psets, pset);
998 	}
999 	pset->sdp_nthreads++;
1000 	ASSERT(pset->sdp_nthreads > 0);
1001 
1002 	sdc->sdc_pset = pset;
1003 
1004 	start_timeout = (sysdc_update_timeout_started == 0);
1005 	sysdc_update_timeout_started = 1;
1006 	mutex_exit(&sysdc_pset_lock);
1007 
1008 	if (newpset != NULL)
1009 		kmem_free(newpset, sizeof (*newpset));
1010 
1011 	/* Update t's scheduling class and priority. */
1012 	thread_lock(t);
1013 	t->t_clfuncs = &(sclass[cid].cl_funcs->thread);
1014 	t->t_cid = cid;
1015 	t->t_cldata = sdc;
1016 	t->t_schedflag |= TS_RUNQMATCH;
1017 
1018 	sysdc_update_pri(sdc, SDC_UPDATE_INITIAL);
1019 	thread_unlock(t);
1020 
1021 	/* Kick off the thread timeout if we're the first one in. */
1022 	if (start_timeout) {
1023 		(void) timeout(sysdc_update, NULL, sysdc_update_ticks);
1024 	}
1025 
1026 	return (0);
1027 }
1028 
1029 static void
1030 sysdc_leave(sysdc_t *sdc)
1031 {
1032 	sysdc_pset_t *sdp = sdc->sdc_pset;
1033 	sysdc_list_t *sdl = SYSDC_LIST(sdc);
1034 	uint_t freedc;
1035 
1036 	mutex_enter(&sdl->sdl_lock);		/* block sysdc_update() */
1037 	sdc->sdc_thread = NULL;
1038 	freedc = (sdc->sdc_next == NULL);
1039 	mutex_exit(&sdl->sdl_lock);
1040 
1041 	mutex_enter(&sysdc_pset_lock);
1042 	sdp = sdc->sdc_pset;
1043 	ASSERT(sdp != NULL);
1044 	ASSERT(sdp->sdp_nthreads > 0);
1045 	--sdp->sdp_nthreads;
1046 	if (sdp->sdp_nthreads == 0) {
1047 		list_remove(&sysdc_psets, sdp);
1048 	} else {
1049 		sdp = NULL;
1050 	}
1051 	mutex_exit(&sysdc_pset_lock);
1052 
1053 	if (freedc)
1054 		kmem_free(sdc, sizeof (*sdc));
1055 	if (sdp != NULL)
1056 		kmem_free(sdp, sizeof (*sdp));
1057 }
1058 
1059 static void
1060 sysdc_exitclass(void *buf)
1061 {
1062 	sysdc_leave((sysdc_t *)buf);
1063 }
1064 
1065 /*ARGSUSED*/
1066 static int
1067 sysdc_canexit(kthread_t *t, cred_t *reqpcredp)
1068 {
1069 	/* Threads cannot exit SDC once joined, except in a body bag. */
1070 	return (EPERM);
1071 }
1072 
1073 static void
1074 sysdc_exit(kthread_t *t)
1075 {
1076 	sysdc_t *sdc;
1077 
1078 	/* We're exiting, so we just rejoin the SYS class. */
1079 	thread_lock(t);
1080 	ASSERT(t->t_cid == sysdccid);
1081 	sdc = t->t_cldata;
1082 	t->t_cid = syscid;
1083 	t->t_cldata = NULL;
1084 	t->t_clfuncs = &(sclass[syscid].cl_funcs->thread);
1085 	(void) thread_change_pri(t, maxclsyspri, 0);
1086 	t->t_schedflag &= ~TS_RUNQMATCH;
1087 	thread_unlock_nopreempt(t);
1088 
1089 	/* Unlink the sdc from everything. */
1090 	sysdc_leave(sdc);
1091 }
1092 
1093 /*ARGSUSED*/
1094 static int
1095 sysdc_fork(kthread_t *t, kthread_t *ct, void *bufp)
1096 {
1097 	/*
1098 	 * Threads cannot be created with SDC as their class; they must
1099 	 * be created as SYS and then added with sysdc_thread_enter().
1100 	 * Because of this restriction, sysdc_fork() should never be called.
1101 	 */
1102 	panic("sysdc cannot be forked");
1103 
1104 	return (ENOSYS);
1105 }
1106 
1107 /*ARGSUSED*/
1108 static void
1109 sysdc_forkret(kthread_t *t, kthread_t *ct)
1110 {
1111 	/* SDC threads are part of system processes, which never fork. */
1112 	panic("sysdc cannot be forked");
1113 }
1114 
1115 static pri_t
1116 sysdc_globpri(kthread_t *t)
1117 {
1118 	return (t->t_epri);
1119 }
1120 
1121 /*ARGSUSED*/
1122 static pri_t
1123 sysdc_no_swap(kthread_t *t, int flags)
1124 {
1125 	/* SDC threads cannot be swapped. */
1126 	return (-1);
1127 }
1128 
1129 /*
1130  * Get maximum and minimum priorities enjoyed by SDC threads.
1131  */
1132 static int
1133 sysdc_getclpri(pcpri_t *pcprip)
1134 {
1135 	pcprip->pc_clpmax = sysdc_maxpri;
1136 	pcprip->pc_clpmin = sysdc_minpri;
1137 	return (0);
1138 }
1139 
1140 /*ARGSUSED*/
1141 static int
1142 sysdc_getclinfo(void *arg)
1143 {
1144 	return (0);		/* no class-specific info */
1145 }
1146 
1147 /*ARGSUSED*/
1148 static int
1149 sysdc_alloc(void **p, int flag)
1150 {
1151 	sysdc_t *new;
1152 
1153 	*p = NULL;
1154 	if ((new = kmem_zalloc(sizeof (*new), flag)) == NULL) {
1155 		return (ENOMEM);
1156 	}
1157 	if ((new->sdc_pset = kmem_zalloc(sizeof (*new->sdc_pset), flag)) ==
1158 	    NULL) {
1159 		kmem_free(new, sizeof (*new));
1160 		return (ENOMEM);
1161 	}
1162 	*p = new;
1163 	return (0);
1164 }
1165 
1166 static void
1167 sysdc_free(void *p)
1168 {
1169 	sysdc_t *sdc = p;
1170 
1171 	if (sdc != NULL) {
1172 		/*
1173 		 * We must have failed CL_ENTERCLASS(), so our pset should be
1174 		 * there and unused.
1175 		 */
1176 		ASSERT(sdc->sdc_pset != NULL);
1177 		ASSERT(sdc->sdc_pset->sdp_cpupart == NULL);
1178 		kmem_free(sdc->sdc_pset, sizeof (*sdc->sdc_pset));
1179 		kmem_free(sdc, sizeof (*sdc));
1180 	}
1181 }
1182 
1183 static int sysdc_enosys();	/* Boy, ANSI-C's K&R compatibility is weird. */
1184 static int sysdc_einval();
1185 static void sysdc_nullsys();
1186 
1187 static struct classfuncs sysdc_classfuncs = {
1188 	/* messages to class manager */
1189 	{
1190 		sysdc_enosys,	/* admin */
1191 		sysdc_getclinfo,
1192 		sysdc_enosys,	/* parmsin */
1193 		sysdc_enosys,	/* parmsout */
1194 		sysdc_enosys,	/* vaparmsin */
1195 		sysdc_enosys,	/* vaparmsout */
1196 		sysdc_getclpri,
1197 		sysdc_alloc,
1198 		sysdc_free,
1199 	},
1200 	/* operations on threads */
1201 	{
1202 		sysdc_enterclass,
1203 		sysdc_exitclass,
1204 		sysdc_canexit,
1205 		sysdc_fork,
1206 		sysdc_forkret,
1207 		sysdc_nullsys,	/* parmsget */
1208 		sysdc_enosys,	/* parmsset */
1209 		sysdc_nullsys,	/* stop */
1210 		sysdc_exit,
1211 		sysdc_nullsys,	/* active */
1212 		sysdc_nullsys,	/* inactive */
1213 		sysdc_no_swap,	/* swapin */
1214 		sysdc_no_swap,	/* swapout */
1215 		sysdc_nullsys,	/* trapret */
1216 		sysdc_preempt,
1217 		sysdc_setrun,
1218 		sysdc_sleep,
1219 		sysdc_tick,
1220 		sysdc_wakeup,
1221 		sysdc_einval,	/* donice */
1222 		sysdc_globpri,
1223 		sysdc_nullsys,	/* set_process_group */
1224 		sysdc_nullsys,	/* yield */
1225 		sysdc_einval,	/* doprio */
1226 	}
1227 };
1228 
1229 static int
1230 sysdc_enosys()
1231 {
1232 	return (ENOSYS);
1233 }
1234 
1235 static int
1236 sysdc_einval()
1237 {
1238 	return (EINVAL);
1239 }
1240 
1241 static void
1242 sysdc_nullsys()
1243 {
1244 }
1245 
1246 /*ARGSUSED*/
1247 static pri_t
1248 sysdc_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp)
1249 {
1250 	int idx;
1251 
1252 	list_create(&sysdc_psets, sizeof (sysdc_pset_t),
1253 	    offsetof(sysdc_pset_t, sdp_node));
1254 
1255 	for (idx = 0; idx < SYSDC_NLISTS; idx++) {
1256 		sysdc_active[idx].sdl_list = &sysdc_dummy;
1257 	}
1258 
1259 	sysdc_initparam();
1260 
1261 	sysdccid = cid;
1262 	*clfuncspp = &sysdc_classfuncs;
1263 
1264 	return ((pri_t)v.v_maxsyspri);
1265 }
1266 
1267 static struct sclass csw = {
1268 	"SDC",
1269 	sysdc_init,
1270 	0
1271 };
1272 
1273 static struct modlsched modlsched = {
1274 	&mod_schedops, "system duty cycle scheduling class", &csw
1275 };
1276 
1277 static struct modlinkage modlinkage = {
1278 	MODREV_1, (void *)&modlsched, NULL
1279 };
1280 
1281 int
1282 _init()
1283 {
1284 	return (mod_install(&modlinkage));
1285 }
1286 
1287 int
1288 _fini()
1289 {
1290 	return (EBUSY);		/* can't unload for now */
1291 }
1292 
1293 int
1294 _info(struct modinfo *modinfop)
1295 {
1296 	return (mod_info(&modlinkage, modinfop));
1297 }
1298 
1299 /* --- consolidation-private interfaces --- */
1300 void
1301 sysdc_thread_enter(kthread_t *t, uint_t dc, uint_t flags)
1302 {
1303 	void *buf = NULL;
1304 	sysdc_params_t sdp;
1305 
1306 	SYSDC_INC_STAT(sysdc_thread_enter_enter);
1307 
1308 	ASSERT(sysdc_param_init);
1309 	ASSERT(sysdccid >= 0);
1310 
1311 	ASSERT((flags & ~SYSDC_THREAD_BATCH) == 0);
1312 
1313 	sdp.sdp_minpri = sysdc_minpri;
1314 	sdp.sdp_maxpri = sysdc_maxpri;
1315 	sdp.sdp_DC = MAX(MIN(dc, sysdc_maxDC), sysdc_minDC);
1316 
1317 	if (flags & SYSDC_THREAD_BATCH)
1318 		sdp.sdp_maxpri -= sysdc_batch_niceness;
1319 
1320 	VERIFY3U(CL_ALLOC(&buf, sysdccid, KM_SLEEP), ==, 0);
1321 
1322 	ASSERT(t->t_lwp != NULL);
1323 	ASSERT(t->t_cid == syscid);
1324 	ASSERT(t->t_cldata == NULL);
1325 	VERIFY3U(CL_CANEXIT(t, NULL), ==, 0);
1326 	VERIFY3U(CL_ENTERCLASS(t, sysdccid, &sdp, kcred, buf), ==, 0);
1327 	CL_EXITCLASS(syscid, NULL);
1328 }
1329