1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/param.h> 29 #include <sys/sysmacros.h> 30 #include <sys/cred.h> 31 #include <sys/proc.h> 32 #include <sys/session.h> 33 #include <sys/strsubr.h> 34 #include <sys/user.h> 35 #include <sys/priocntl.h> 36 #include <sys/class.h> 37 #include <sys/disp.h> 38 #include <sys/procset.h> 39 #include <sys/debug.h> 40 #include <sys/kmem.h> 41 #include <sys/errno.h> 42 #include <sys/fx.h> 43 #include <sys/fxpriocntl.h> 44 #include <sys/cpuvar.h> 45 #include <sys/systm.h> 46 #include <sys/vtrace.h> 47 #include <sys/schedctl.h> 48 #include <sys/tnf_probe.h> 49 #include <sys/sunddi.h> 50 #include <sys/spl.h> 51 #include <sys/modctl.h> 52 #include <sys/policy.h> 53 #include <sys/sdt.h> 54 #include <sys/cpupart.h> 55 #include <sys/cpucaps.h> 56 57 static pri_t fx_init(id_t, int, classfuncs_t **); 58 59 static struct sclass csw = { 60 "FX", 61 fx_init, 62 0 63 }; 64 65 static struct modlsched modlsched = { 66 &mod_schedops, "Fixed priority sched class", &csw 67 }; 68 69 static struct modlinkage modlinkage = { 70 MODREV_1, (void *)&modlsched, NULL 71 }; 72 73 74 /* 75 * control flags (kparms->fx_cflags). 76 */ 77 #define FX_DOUPRILIM 0x01 /* change user priority limit */ 78 #define FX_DOUPRI 0x02 /* change user priority */ 79 #define FX_DOTQ 0x04 /* change FX time quantum */ 80 81 82 #define FXMAXUPRI 60 /* maximum user priority setting */ 83 84 #define FX_MAX_UNPRIV_PRI 0 /* maximum unpriviledge priority */ 85 86 /* 87 * The fxproc_t structures that have a registered callback vector, 88 * are also kept in an array of circular doubly linked lists. A hash on 89 * the thread id (from ddi_get_kt_did()) is used to determine which list 90 * each of such fxproc structures should be placed. Each list has a dummy 91 * "head" which is never removed, so the list is never empty. 92 */ 93 94 #define FX_CB_LISTS 16 /* number of lists, must be power of 2 */ 95 #define FX_CB_LIST_HASH(ktid) ((uint_t)ktid & (FX_CB_LISTS - 1)) 96 97 /* Insert fxproc into callback list */ 98 #define FX_CB_LIST_INSERT(fxpp) \ 99 { \ 100 int index = FX_CB_LIST_HASH(fxpp->fx_ktid); \ 101 kmutex_t *lockp = &fx_cb_list_lock[index]; \ 102 fxproc_t *headp = &fx_cb_plisthead[index]; \ 103 mutex_enter(lockp); \ 104 fxpp->fx_cb_next = headp->fx_cb_next; \ 105 fxpp->fx_cb_prev = headp; \ 106 headp->fx_cb_next->fx_cb_prev = fxpp; \ 107 headp->fx_cb_next = fxpp; \ 108 mutex_exit(lockp); \ 109 } 110 111 /* 112 * Remove thread from callback list. 113 */ 114 #define FX_CB_LIST_DELETE(fxpp) \ 115 { \ 116 int index = FX_CB_LIST_HASH(fxpp->fx_ktid); \ 117 kmutex_t *lockp = &fx_cb_list_lock[index]; \ 118 mutex_enter(lockp); \ 119 fxpp->fx_cb_prev->fx_cb_next = fxpp->fx_cb_next; \ 120 fxpp->fx_cb_next->fx_cb_prev = fxpp->fx_cb_prev; \ 121 mutex_exit(lockp); \ 122 } 123 124 #define FX_HAS_CB(fxpp) (fxpp->fx_callback != NULL) 125 126 /* adjust x to be between 0 and fx_maxumdpri */ 127 128 #define FX_ADJUST_PRI(pri) \ 129 { \ 130 if (pri < 0) \ 131 pri = 0; \ 132 else if (pri > fx_maxumdpri) \ 133 pri = fx_maxumdpri; \ 134 } 135 136 #define FX_ADJUST_QUANTUM(q) \ 137 { \ 138 if (q > INT_MAX) \ 139 q = INT_MAX; \ 140 else if (q <= 0) \ 141 q = FX_TQINF; \ 142 } 143 144 #define FX_ISVALID(pri, quantum) \ 145 (((pri >= 0) || (pri == FX_CB_NOCHANGE)) && \ 146 ((quantum >= 0) || (quantum == FX_NOCHANGE) || \ 147 (quantum == FX_TQDEF) || (quantum == FX_TQINF))) 148 149 150 static id_t fx_cid; /* fixed priority class ID */ 151 static fxdpent_t *fx_dptbl; /* fixed priority disp parameter table */ 152 153 static pri_t fx_maxupri = FXMAXUPRI; 154 static pri_t fx_maxumdpri; /* max user mode fixed priority */ 155 156 static pri_t fx_maxglobpri; /* maximum global priority used by fx class */ 157 static kmutex_t fx_dptblock; /* protects fixed priority dispatch table */ 158 159 160 static kmutex_t fx_cb_list_lock[FX_CB_LISTS]; /* protects list of fxprocs */ 161 /* that have callbacks */ 162 static fxproc_t fx_cb_plisthead[FX_CB_LISTS]; /* dummy fxproc at head of */ 163 /* list of fxprocs with */ 164 /* callbacks */ 165 166 static int fx_admin(caddr_t, cred_t *); 167 static int fx_getclinfo(void *); 168 static int fx_parmsin(void *); 169 static int fx_parmsout(void *, pc_vaparms_t *); 170 static int fx_vaparmsin(void *, pc_vaparms_t *); 171 static int fx_vaparmsout(void *, pc_vaparms_t *); 172 static int fx_getclpri(pcpri_t *); 173 static int fx_alloc(void **, int); 174 static void fx_free(void *); 175 static int fx_enterclass(kthread_t *, id_t, void *, cred_t *, void *); 176 static void fx_exitclass(void *); 177 static int fx_canexit(kthread_t *, cred_t *); 178 static int fx_fork(kthread_t *, kthread_t *, void *); 179 static void fx_forkret(kthread_t *, kthread_t *); 180 static void fx_parmsget(kthread_t *, void *); 181 static int fx_parmsset(kthread_t *, void *, id_t, cred_t *); 182 static void fx_stop(kthread_t *, int, int); 183 static void fx_exit(kthread_t *); 184 static pri_t fx_swapin(kthread_t *, int); 185 static pri_t fx_swapout(kthread_t *, int); 186 static void fx_trapret(kthread_t *); 187 static void fx_preempt(kthread_t *); 188 static void fx_setrun(kthread_t *); 189 static void fx_sleep(kthread_t *); 190 static void fx_tick(kthread_t *); 191 static void fx_wakeup(kthread_t *); 192 static int fx_donice(kthread_t *, cred_t *, int, int *); 193 static int fx_doprio(kthread_t *, cred_t *, int, int *); 194 static pri_t fx_globpri(kthread_t *); 195 static void fx_yield(kthread_t *); 196 static void fx_nullsys(); 197 198 extern fxdpent_t *fx_getdptbl(void); 199 200 static void fx_change_priority(kthread_t *, fxproc_t *); 201 static fxproc_t *fx_list_lookup(kt_did_t); 202 static void fx_list_release(fxproc_t *); 203 204 205 static struct classfuncs fx_classfuncs = { 206 /* class functions */ 207 fx_admin, 208 fx_getclinfo, 209 fx_parmsin, 210 fx_parmsout, 211 fx_vaparmsin, 212 fx_vaparmsout, 213 fx_getclpri, 214 fx_alloc, 215 fx_free, 216 217 /* thread functions */ 218 fx_enterclass, 219 fx_exitclass, 220 fx_canexit, 221 fx_fork, 222 fx_forkret, 223 fx_parmsget, 224 fx_parmsset, 225 fx_stop, 226 fx_exit, 227 fx_nullsys, /* active */ 228 fx_nullsys, /* inactive */ 229 fx_swapin, 230 fx_swapout, 231 fx_trapret, 232 fx_preempt, 233 fx_setrun, 234 fx_sleep, 235 fx_tick, 236 fx_wakeup, 237 fx_donice, 238 fx_globpri, 239 fx_nullsys, /* set_process_group */ 240 fx_yield, 241 fx_doprio, 242 }; 243 244 245 int 246 _init() 247 { 248 return (mod_install(&modlinkage)); 249 } 250 251 int 252 _fini() 253 { 254 return (EBUSY); 255 } 256 257 int 258 _info(struct modinfo *modinfop) 259 { 260 return (mod_info(&modlinkage, modinfop)); 261 } 262 263 /* 264 * Fixed priority class initialization. Called by dispinit() at boot time. 265 * We can ignore the clparmsz argument since we know that the smallest 266 * possible parameter buffer is big enough for us. 267 */ 268 /* ARGSUSED */ 269 static pri_t 270 fx_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp) 271 { 272 int i; 273 extern pri_t fx_getmaxumdpri(void); 274 275 fx_dptbl = fx_getdptbl(); 276 fx_maxumdpri = fx_getmaxumdpri(); 277 fx_maxglobpri = fx_dptbl[fx_maxumdpri].fx_globpri; 278 279 fx_cid = cid; /* Record our class ID */ 280 281 /* 282 * Initialize the hash table for fxprocs with callbacks 283 */ 284 for (i = 0; i < FX_CB_LISTS; i++) { 285 fx_cb_plisthead[i].fx_cb_next = fx_cb_plisthead[i].fx_cb_prev = 286 &fx_cb_plisthead[i]; 287 } 288 289 /* 290 * We're required to return a pointer to our classfuncs 291 * structure and the highest global priority value we use. 292 */ 293 *clfuncspp = &fx_classfuncs; 294 return (fx_maxglobpri); 295 } 296 297 /* 298 * Get or reset the fx_dptbl values per the user's request. 299 */ 300 static int 301 fx_admin(caddr_t uaddr, cred_t *reqpcredp) 302 { 303 fxadmin_t fxadmin; 304 fxdpent_t *tmpdpp; 305 int userdpsz; 306 int i; 307 size_t fxdpsz; 308 309 if (get_udatamodel() == DATAMODEL_NATIVE) { 310 if (copyin(uaddr, &fxadmin, sizeof (fxadmin_t))) 311 return (EFAULT); 312 } 313 #ifdef _SYSCALL32_IMPL 314 else { 315 /* get fxadmin struct from ILP32 caller */ 316 fxadmin32_t fxadmin32; 317 if (copyin(uaddr, &fxadmin32, sizeof (fxadmin32_t))) 318 return (EFAULT); 319 fxadmin.fx_dpents = 320 (struct fxdpent *)(uintptr_t)fxadmin32.fx_dpents; 321 fxadmin.fx_ndpents = fxadmin32.fx_ndpents; 322 fxadmin.fx_cmd = fxadmin32.fx_cmd; 323 } 324 #endif /* _SYSCALL32_IMPL */ 325 326 fxdpsz = (fx_maxumdpri + 1) * sizeof (fxdpent_t); 327 328 switch (fxadmin.fx_cmd) { 329 case FX_GETDPSIZE: 330 fxadmin.fx_ndpents = fx_maxumdpri + 1; 331 332 if (get_udatamodel() == DATAMODEL_NATIVE) { 333 if (copyout(&fxadmin, uaddr, sizeof (fxadmin_t))) 334 return (EFAULT); 335 } 336 #ifdef _SYSCALL32_IMPL 337 else { 338 /* return fxadmin struct to ILP32 caller */ 339 fxadmin32_t fxadmin32; 340 fxadmin32.fx_dpents = 341 (caddr32_t)(uintptr_t)fxadmin.fx_dpents; 342 fxadmin32.fx_ndpents = fxadmin.fx_ndpents; 343 fxadmin32.fx_cmd = fxadmin.fx_cmd; 344 if (copyout(&fxadmin32, uaddr, sizeof (fxadmin32_t))) 345 return (EFAULT); 346 } 347 #endif /* _SYSCALL32_IMPL */ 348 break; 349 350 case FX_GETDPTBL: 351 userdpsz = MIN(fxadmin.fx_ndpents * sizeof (fxdpent_t), 352 fxdpsz); 353 if (copyout(fx_dptbl, fxadmin.fx_dpents, userdpsz)) 354 return (EFAULT); 355 356 fxadmin.fx_ndpents = userdpsz / sizeof (fxdpent_t); 357 358 if (get_udatamodel() == DATAMODEL_NATIVE) { 359 if (copyout(&fxadmin, uaddr, sizeof (fxadmin_t))) 360 return (EFAULT); 361 } 362 #ifdef _SYSCALL32_IMPL 363 else { 364 /* return fxadmin struct to ILP32 callers */ 365 fxadmin32_t fxadmin32; 366 fxadmin32.fx_dpents = 367 (caddr32_t)(uintptr_t)fxadmin.fx_dpents; 368 fxadmin32.fx_ndpents = fxadmin.fx_ndpents; 369 fxadmin32.fx_cmd = fxadmin.fx_cmd; 370 if (copyout(&fxadmin32, uaddr, sizeof (fxadmin32_t))) 371 return (EFAULT); 372 } 373 #endif /* _SYSCALL32_IMPL */ 374 break; 375 376 case FX_SETDPTBL: 377 /* 378 * We require that the requesting process has sufficient 379 * privileges. We also require that the table supplied by 380 * the user exactly match the current fx_dptbl in size. 381 */ 382 if (secpolicy_dispadm(reqpcredp) != 0) { 383 return (EPERM); 384 } 385 if (fxadmin.fx_ndpents * sizeof (fxdpent_t) != fxdpsz) { 386 return (EINVAL); 387 } 388 389 /* 390 * We read the user supplied table into a temporary buffer 391 * where it is validated before being copied over the 392 * fx_dptbl. 393 */ 394 tmpdpp = kmem_alloc(fxdpsz, KM_SLEEP); 395 if (copyin(fxadmin.fx_dpents, tmpdpp, fxdpsz)) { 396 kmem_free(tmpdpp, fxdpsz); 397 return (EFAULT); 398 } 399 for (i = 0; i < fxadmin.fx_ndpents; i++) { 400 401 /* 402 * Validate the user supplied values. All we are doing 403 * here is verifying that the values are within their 404 * allowable ranges and will not panic the system. We 405 * make no attempt to ensure that the resulting 406 * configuration makes sense or results in reasonable 407 * performance. 408 */ 409 if (tmpdpp[i].fx_quantum <= 0 && 410 tmpdpp[i].fx_quantum != FX_TQINF) { 411 kmem_free(tmpdpp, fxdpsz); 412 return (EINVAL); 413 } 414 } 415 416 /* 417 * Copy the user supplied values over the current fx_dptbl 418 * values. The fx_globpri member is read-only so we don't 419 * overwrite it. 420 */ 421 mutex_enter(&fx_dptblock); 422 for (i = 0; i < fxadmin.fx_ndpents; i++) { 423 fx_dptbl[i].fx_quantum = tmpdpp[i].fx_quantum; 424 } 425 mutex_exit(&fx_dptblock); 426 kmem_free(tmpdpp, fxdpsz); 427 break; 428 429 default: 430 return (EINVAL); 431 } 432 return (0); 433 } 434 435 /* 436 * Allocate a fixed priority class specific thread structure and 437 * initialize it with the parameters supplied. Also move the thread 438 * to specified priority. 439 */ 440 static int 441 fx_enterclass(kthread_t *t, id_t cid, void *parmsp, cred_t *reqpcredp, 442 void *bufp) 443 { 444 fxkparms_t *fxkparmsp = (fxkparms_t *)parmsp; 445 fxproc_t *fxpp; 446 pri_t reqfxupri; 447 pri_t reqfxuprilim; 448 449 fxpp = (fxproc_t *)bufp; 450 ASSERT(fxpp != NULL); 451 452 /* 453 * Initialize the fxproc structure. 454 */ 455 fxpp->fx_flags = 0; 456 fxpp->fx_callback = NULL; 457 fxpp->fx_cookie = NULL; 458 459 if (fxkparmsp == NULL) { 460 /* 461 * Use default values. 462 */ 463 fxpp->fx_pri = fxpp->fx_uprilim = 0; 464 fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum; 465 fxpp->fx_nice = NZERO; 466 } else { 467 /* 468 * Use supplied values. 469 */ 470 471 if ((fxkparmsp->fx_cflags & FX_DOUPRILIM) == 0) { 472 reqfxuprilim = 0; 473 } else { 474 if (fxkparmsp->fx_uprilim > FX_MAX_UNPRIV_PRI && 475 secpolicy_setpriority(reqpcredp) != 0) 476 return (EPERM); 477 reqfxuprilim = fxkparmsp->fx_uprilim; 478 FX_ADJUST_PRI(reqfxuprilim); 479 } 480 481 if ((fxkparmsp->fx_cflags & FX_DOUPRI) == 0) { 482 reqfxupri = reqfxuprilim; 483 } else { 484 if (fxkparmsp->fx_upri > FX_MAX_UNPRIV_PRI && 485 secpolicy_setpriority(reqpcredp) != 0) 486 return (EPERM); 487 /* 488 * Set the user priority to the requested value 489 * or the upri limit, whichever is lower. 490 */ 491 reqfxupri = fxkparmsp->fx_upri; 492 FX_ADJUST_PRI(reqfxupri); 493 494 if (reqfxupri > reqfxuprilim) 495 reqfxupri = reqfxuprilim; 496 } 497 498 499 fxpp->fx_uprilim = reqfxuprilim; 500 fxpp->fx_pri = reqfxupri; 501 502 fxpp->fx_nice = NZERO - (NZERO * reqfxupri) / fx_maxupri; 503 504 if (((fxkparmsp->fx_cflags & FX_DOTQ) == 0) || 505 (fxkparmsp->fx_tqntm == FX_TQDEF)) { 506 fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum; 507 } else { 508 if (secpolicy_setpriority(reqpcredp) != 0) 509 return (EPERM); 510 511 if (fxkparmsp->fx_tqntm == FX_TQINF) 512 fxpp->fx_pquantum = FX_TQINF; 513 else { 514 fxpp->fx_pquantum = fxkparmsp->fx_tqntm; 515 } 516 } 517 518 } 519 520 fxpp->fx_timeleft = fxpp->fx_pquantum; 521 cpucaps_sc_init(&fxpp->fx_caps); 522 fxpp->fx_tp = t; 523 524 thread_lock(t); /* get dispatcher lock on thread */ 525 t->t_clfuncs = &(sclass[cid].cl_funcs->thread); 526 t->t_cid = cid; 527 t->t_cldata = (void *)fxpp; 528 t->t_schedflag &= ~TS_RUNQMATCH; 529 fx_change_priority(t, fxpp); 530 thread_unlock(t); 531 532 return (0); 533 } 534 535 /* 536 * The thread is exiting. 537 */ 538 static void 539 fx_exit(kthread_t *t) 540 { 541 fxproc_t *fxpp; 542 543 thread_lock(t); 544 fxpp = (fxproc_t *)(t->t_cldata); 545 546 /* 547 * A thread could be exiting in between clock ticks, so we need to 548 * calculate how much CPU time it used since it was charged last time. 549 * 550 * CPU caps are not enforced on exiting processes - it is usually 551 * desirable to exit as soon as possible to free resources. 552 */ 553 (void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ONLY); 554 555 if (FX_HAS_CB(fxpp)) { 556 FX_CB_EXIT(FX_CALLB(fxpp), fxpp->fx_cookie); 557 fxpp->fx_callback = NULL; 558 fxpp->fx_cookie = NULL; 559 thread_unlock(t); 560 FX_CB_LIST_DELETE(fxpp); 561 return; 562 } 563 564 thread_unlock(t); 565 } 566 567 /* 568 * Exiting the class. Free fxproc structure of thread. 569 */ 570 static void 571 fx_exitclass(void *procp) 572 { 573 fxproc_t *fxpp = (fxproc_t *)procp; 574 575 thread_lock(fxpp->fx_tp); 576 if (FX_HAS_CB(fxpp)) { 577 578 FX_CB_EXIT(FX_CALLB(fxpp), fxpp->fx_cookie); 579 580 fxpp->fx_callback = NULL; 581 fxpp->fx_cookie = NULL; 582 thread_unlock(fxpp->fx_tp); 583 FX_CB_LIST_DELETE(fxpp); 584 } else 585 thread_unlock(fxpp->fx_tp); 586 587 kmem_free(fxpp, sizeof (fxproc_t)); 588 } 589 590 /* ARGSUSED */ 591 static int 592 fx_canexit(kthread_t *t, cred_t *cred) 593 { 594 /* 595 * A thread can always leave the FX class 596 */ 597 return (0); 598 } 599 600 /* 601 * Initialize fixed-priority class specific proc structure for a child. 602 * callbacks are not inherited upon fork. 603 */ 604 static int 605 fx_fork(kthread_t *t, kthread_t *ct, void *bufp) 606 { 607 fxproc_t *pfxpp; /* ptr to parent's fxproc structure */ 608 fxproc_t *cfxpp; /* ptr to child's fxproc structure */ 609 610 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 611 612 cfxpp = (fxproc_t *)bufp; 613 ASSERT(cfxpp != NULL); 614 thread_lock(t); 615 pfxpp = (fxproc_t *)t->t_cldata; 616 /* 617 * Initialize child's fxproc structure. 618 */ 619 cfxpp->fx_timeleft = cfxpp->fx_pquantum = pfxpp->fx_pquantum; 620 cfxpp->fx_pri = pfxpp->fx_pri; 621 cfxpp->fx_uprilim = pfxpp->fx_uprilim; 622 cfxpp->fx_nice = pfxpp->fx_nice; 623 cfxpp->fx_callback = NULL; 624 cfxpp->fx_cookie = NULL; 625 cfxpp->fx_flags = pfxpp->fx_flags & ~(FXBACKQ); 626 cpucaps_sc_init(&cfxpp->fx_caps); 627 628 cfxpp->fx_tp = ct; 629 ct->t_cldata = (void *)cfxpp; 630 thread_unlock(t); 631 632 /* 633 * Link new structure into fxproc list. 634 */ 635 return (0); 636 } 637 638 639 /* 640 * Child is placed at back of dispatcher queue and parent gives 641 * up processor so that the child runs first after the fork. 642 * This allows the child immediately execing to break the multiple 643 * use of copy on write pages with no disk home. The parent will 644 * get to steal them back rather than uselessly copying them. 645 */ 646 static void 647 fx_forkret(kthread_t *t, kthread_t *ct) 648 { 649 proc_t *pp = ttoproc(t); 650 proc_t *cp = ttoproc(ct); 651 fxproc_t *fxpp; 652 653 ASSERT(t == curthread); 654 ASSERT(MUTEX_HELD(&pidlock)); 655 656 /* 657 * Grab the child's p_lock before dropping pidlock to ensure 658 * the process does not disappear before we set it running. 659 */ 660 mutex_enter(&cp->p_lock); 661 mutex_exit(&pidlock); 662 continuelwps(cp); 663 mutex_exit(&cp->p_lock); 664 665 mutex_enter(&pp->p_lock); 666 continuelwps(pp); 667 mutex_exit(&pp->p_lock); 668 669 thread_lock(t); 670 fxpp = (fxproc_t *)(t->t_cldata); 671 t->t_pri = fx_dptbl[fxpp->fx_pri].fx_globpri; 672 ASSERT(t->t_pri >= 0 && t->t_pri <= fx_maxglobpri); 673 THREAD_TRANSITION(t); 674 fx_setrun(t); 675 thread_unlock(t); 676 677 swtch(); 678 } 679 680 681 /* 682 * Get information about the fixed-priority class into the buffer 683 * pointed to by fxinfop. The maximum configured user priority 684 * is the only information we supply. 685 */ 686 static int 687 fx_getclinfo(void *infop) 688 { 689 fxinfo_t *fxinfop = (fxinfo_t *)infop; 690 fxinfop->fx_maxupri = fx_maxupri; 691 return (0); 692 } 693 694 695 696 /* 697 * Return the user mode scheduling priority range. 698 */ 699 static int 700 fx_getclpri(pcpri_t *pcprip) 701 { 702 pcprip->pc_clpmax = fx_maxupri; 703 pcprip->pc_clpmin = 0; 704 return (0); 705 } 706 707 708 static void 709 fx_nullsys() 710 {} 711 712 713 /* 714 * Get the fixed-priority parameters of the thread pointed to by 715 * fxprocp into the buffer pointed to by fxparmsp. 716 */ 717 static void 718 fx_parmsget(kthread_t *t, void *parmsp) 719 { 720 fxproc_t *fxpp = (fxproc_t *)t->t_cldata; 721 fxkparms_t *fxkparmsp = (fxkparms_t *)parmsp; 722 723 fxkparmsp->fx_upri = fxpp->fx_pri; 724 fxkparmsp->fx_uprilim = fxpp->fx_uprilim; 725 fxkparmsp->fx_tqntm = fxpp->fx_pquantum; 726 } 727 728 729 730 /* 731 * Check the validity of the fixed-priority parameters in the buffer 732 * pointed to by fxparmsp. 733 */ 734 static int 735 fx_parmsin(void *parmsp) 736 { 737 fxparms_t *fxparmsp = (fxparms_t *)parmsp; 738 uint_t cflags; 739 longlong_t ticks; 740 /* 741 * Check validity of parameters. 742 */ 743 744 if ((fxparmsp->fx_uprilim > fx_maxupri || 745 fxparmsp->fx_uprilim < 0) && 746 fxparmsp->fx_uprilim != FX_NOCHANGE) 747 return (EINVAL); 748 749 if ((fxparmsp->fx_upri > fx_maxupri || 750 fxparmsp->fx_upri < 0) && 751 fxparmsp->fx_upri != FX_NOCHANGE) 752 return (EINVAL); 753 754 if ((fxparmsp->fx_tqsecs == 0 && fxparmsp->fx_tqnsecs == 0) || 755 fxparmsp->fx_tqnsecs >= NANOSEC) 756 return (EINVAL); 757 758 cflags = (fxparmsp->fx_upri != FX_NOCHANGE ? FX_DOUPRI : 0); 759 760 if (fxparmsp->fx_uprilim != FX_NOCHANGE) { 761 cflags |= FX_DOUPRILIM; 762 } 763 764 if (fxparmsp->fx_tqnsecs != FX_NOCHANGE) 765 cflags |= FX_DOTQ; 766 767 /* 768 * convert the buffer to kernel format. 769 */ 770 771 if (fxparmsp->fx_tqnsecs >= 0) { 772 if ((ticks = SEC_TO_TICK((longlong_t)fxparmsp->fx_tqsecs) + 773 NSEC_TO_TICK_ROUNDUP(fxparmsp->fx_tqnsecs)) > INT_MAX) 774 return (ERANGE); 775 776 ((fxkparms_t *)fxparmsp)->fx_tqntm = (int)ticks; 777 } else { 778 if ((fxparmsp->fx_tqnsecs != FX_NOCHANGE) && 779 (fxparmsp->fx_tqnsecs != FX_TQINF) && 780 (fxparmsp->fx_tqnsecs != FX_TQDEF)) 781 return (EINVAL); 782 ((fxkparms_t *)fxparmsp)->fx_tqntm = fxparmsp->fx_tqnsecs; 783 } 784 785 ((fxkparms_t *)fxparmsp)->fx_cflags = cflags; 786 787 return (0); 788 } 789 790 791 /* 792 * Check the validity of the fixed-priority parameters in the pc_vaparms_t 793 * structure vaparmsp and put them in the buffer pointed to by fxprmsp. 794 * pc_vaparms_t contains (key, value) pairs of parameter. 795 */ 796 static int 797 fx_vaparmsin(void *prmsp, pc_vaparms_t *vaparmsp) 798 { 799 uint_t secs = 0; 800 uint_t cnt; 801 int nsecs = 0; 802 int priflag, secflag, nsecflag, limflag; 803 longlong_t ticks; 804 fxkparms_t *fxprmsp = (fxkparms_t *)prmsp; 805 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 806 807 808 /* 809 * First check the validity of parameters and convert them 810 * from the user supplied format to the internal format. 811 */ 812 priflag = secflag = nsecflag = limflag = 0; 813 814 fxprmsp->fx_cflags = 0; 815 816 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 817 return (EINVAL); 818 819 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 820 821 switch (vpp->pc_key) { 822 case FX_KY_UPRILIM: 823 if (limflag++) 824 return (EINVAL); 825 fxprmsp->fx_cflags |= FX_DOUPRILIM; 826 fxprmsp->fx_uprilim = (pri_t)vpp->pc_parm; 827 if (fxprmsp->fx_uprilim > fx_maxupri || 828 fxprmsp->fx_uprilim < 0) 829 return (EINVAL); 830 break; 831 832 case FX_KY_UPRI: 833 if (priflag++) 834 return (EINVAL); 835 fxprmsp->fx_cflags |= FX_DOUPRI; 836 fxprmsp->fx_upri = (pri_t)vpp->pc_parm; 837 if (fxprmsp->fx_upri > fx_maxupri || 838 fxprmsp->fx_upri < 0) 839 return (EINVAL); 840 break; 841 842 case FX_KY_TQSECS: 843 if (secflag++) 844 return (EINVAL); 845 fxprmsp->fx_cflags |= FX_DOTQ; 846 secs = (uint_t)vpp->pc_parm; 847 break; 848 849 case FX_KY_TQNSECS: 850 if (nsecflag++) 851 return (EINVAL); 852 fxprmsp->fx_cflags |= FX_DOTQ; 853 nsecs = (int)vpp->pc_parm; 854 break; 855 856 default: 857 return (EINVAL); 858 } 859 } 860 861 if (vaparmsp->pc_vaparmscnt == 0) { 862 /* 863 * Use default parameters. 864 */ 865 fxprmsp->fx_upri = 0; 866 fxprmsp->fx_uprilim = 0; 867 fxprmsp->fx_tqntm = FX_TQDEF; 868 fxprmsp->fx_cflags = FX_DOUPRI | FX_DOUPRILIM | FX_DOTQ; 869 } else if ((fxprmsp->fx_cflags & FX_DOTQ) != 0) { 870 if ((secs == 0 && nsecs == 0) || nsecs >= NANOSEC) 871 return (EINVAL); 872 873 if (nsecs >= 0) { 874 if ((ticks = SEC_TO_TICK((longlong_t)secs) + 875 NSEC_TO_TICK_ROUNDUP(nsecs)) > INT_MAX) 876 return (ERANGE); 877 878 fxprmsp->fx_tqntm = (int)ticks; 879 } else { 880 if (nsecs != FX_TQINF && nsecs != FX_TQDEF) 881 return (EINVAL); 882 fxprmsp->fx_tqntm = nsecs; 883 } 884 } 885 886 return (0); 887 } 888 889 890 /* 891 * Nothing to do here but return success. 892 */ 893 /* ARGSUSED */ 894 static int 895 fx_parmsout(void *parmsp, pc_vaparms_t *vaparmsp) 896 { 897 register fxkparms_t *fxkprmsp = (fxkparms_t *)parmsp; 898 899 if (vaparmsp != NULL) 900 return (0); 901 902 if (fxkprmsp->fx_tqntm < 0) { 903 /* 904 * Quantum field set to special value (e.g. FX_TQINF) 905 */ 906 ((fxparms_t *)fxkprmsp)->fx_tqnsecs = fxkprmsp->fx_tqntm; 907 ((fxparms_t *)fxkprmsp)->fx_tqsecs = 0; 908 909 } else { 910 /* Convert quantum from ticks to seconds-nanoseconds */ 911 912 timestruc_t ts; 913 TICK_TO_TIMESTRUC(fxkprmsp->fx_tqntm, &ts); 914 ((fxparms_t *)fxkprmsp)->fx_tqsecs = ts.tv_sec; 915 ((fxparms_t *)fxkprmsp)->fx_tqnsecs = ts.tv_nsec; 916 } 917 918 return (0); 919 } 920 921 922 /* 923 * Copy all selected fixed-priority class parameters to the user. 924 * The parameters are specified by a key. 925 */ 926 static int 927 fx_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp) 928 { 929 fxkparms_t *fxkprmsp = (fxkparms_t *)prmsp; 930 timestruc_t ts; 931 uint_t cnt; 932 uint_t secs; 933 int nsecs; 934 int priflag, secflag, nsecflag, limflag; 935 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 936 937 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock)); 938 939 priflag = secflag = nsecflag = limflag = 0; 940 941 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 942 return (EINVAL); 943 944 if (fxkprmsp->fx_tqntm < 0) { 945 /* 946 * Quantum field set to special value (e.g. FX_TQINF). 947 */ 948 secs = 0; 949 nsecs = fxkprmsp->fx_tqntm; 950 } else { 951 /* 952 * Convert quantum from ticks to seconds-nanoseconds. 953 */ 954 TICK_TO_TIMESTRUC(fxkprmsp->fx_tqntm, &ts); 955 secs = ts.tv_sec; 956 nsecs = ts.tv_nsec; 957 } 958 959 960 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 961 962 switch (vpp->pc_key) { 963 case FX_KY_UPRILIM: 964 if (limflag++) 965 return (EINVAL); 966 if (copyout(&fxkprmsp->fx_uprilim, 967 (void *)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 968 return (EFAULT); 969 break; 970 971 case FX_KY_UPRI: 972 if (priflag++) 973 return (EINVAL); 974 if (copyout(&fxkprmsp->fx_upri, 975 (void *)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 976 return (EFAULT); 977 break; 978 979 case FX_KY_TQSECS: 980 if (secflag++) 981 return (EINVAL); 982 if (copyout(&secs, 983 (void *)(uintptr_t)vpp->pc_parm, sizeof (uint_t))) 984 return (EFAULT); 985 break; 986 987 case FX_KY_TQNSECS: 988 if (nsecflag++) 989 return (EINVAL); 990 if (copyout(&nsecs, 991 (void *)(uintptr_t)vpp->pc_parm, sizeof (int))) 992 return (EFAULT); 993 break; 994 995 default: 996 return (EINVAL); 997 } 998 } 999 1000 return (0); 1001 } 1002 1003 /* 1004 * Set the scheduling parameters of the thread pointed to by fxprocp 1005 * to those specified in the buffer pointed to by fxparmsp. 1006 */ 1007 /* ARGSUSED */ 1008 static int 1009 fx_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp) 1010 { 1011 char nice; 1012 pri_t reqfxuprilim; 1013 pri_t reqfxupri; 1014 fxkparms_t *fxkparmsp = (fxkparms_t *)parmsp; 1015 fxproc_t *fxpp; 1016 1017 1018 ASSERT(MUTEX_HELD(&(ttoproc(tx))->p_lock)); 1019 1020 thread_lock(tx); 1021 fxpp = (fxproc_t *)tx->t_cldata; 1022 1023 if ((fxkparmsp->fx_cflags & FX_DOUPRILIM) == 0) 1024 reqfxuprilim = fxpp->fx_uprilim; 1025 else 1026 reqfxuprilim = fxkparmsp->fx_uprilim; 1027 1028 /* 1029 * Basic permissions enforced by generic kernel code 1030 * for all classes require that a thread attempting 1031 * to change the scheduling parameters of a target 1032 * thread be privileged or have a real or effective 1033 * UID matching that of the target thread. We are not 1034 * called unless these basic permission checks have 1035 * already passed. The fixed priority class requires in 1036 * addition that the calling thread be privileged if it 1037 * is attempting to raise the pri above its current 1038 * value This may have been checked previously but if our 1039 * caller passed us a non-NULL credential pointer we assume 1040 * it hasn't and we check it here. 1041 */ 1042 1043 if ((reqpcredp != NULL) && 1044 (reqfxuprilim > fxpp->fx_uprilim || 1045 ((fxkparmsp->fx_cflags & FX_DOTQ) != 0)) && 1046 secpolicy_setpriority(reqpcredp) != 0) { 1047 thread_unlock(tx); 1048 return (EPERM); 1049 } 1050 1051 FX_ADJUST_PRI(reqfxuprilim); 1052 1053 if ((fxkparmsp->fx_cflags & FX_DOUPRI) == 0) 1054 reqfxupri = fxpp->fx_pri; 1055 else 1056 reqfxupri = fxkparmsp->fx_upri; 1057 1058 1059 /* 1060 * Make sure the user priority doesn't exceed the upri limit. 1061 */ 1062 if (reqfxupri > reqfxuprilim) 1063 reqfxupri = reqfxuprilim; 1064 1065 /* 1066 * Set fx_nice to the nice value corresponding to the user 1067 * priority we are setting. Note that setting the nice field 1068 * of the parameter struct won't affect upri or nice. 1069 */ 1070 1071 nice = NZERO - (reqfxupri * NZERO) / fx_maxupri; 1072 1073 if (nice > NZERO) 1074 nice = NZERO; 1075 1076 fxpp->fx_uprilim = reqfxuprilim; 1077 fxpp->fx_pri = reqfxupri; 1078 1079 if (fxkparmsp->fx_tqntm == FX_TQINF) 1080 fxpp->fx_pquantum = FX_TQINF; 1081 else if (fxkparmsp->fx_tqntm == FX_TQDEF) 1082 fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum; 1083 else if ((fxkparmsp->fx_cflags & FX_DOTQ) != 0) 1084 fxpp->fx_pquantum = fxkparmsp->fx_tqntm; 1085 1086 fxpp->fx_nice = nice; 1087 1088 fx_change_priority(tx, fxpp); 1089 thread_unlock(tx); 1090 return (0); 1091 } 1092 1093 1094 /* 1095 * Return the global scheduling priority that would be assigned 1096 * to a thread entering the fixed-priority class with the fx_upri. 1097 */ 1098 static pri_t 1099 fx_globpri(kthread_t *t) 1100 { 1101 fxproc_t *fxpp; 1102 1103 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 1104 1105 fxpp = (fxproc_t *)t->t_cldata; 1106 return (fx_dptbl[fxpp->fx_pri].fx_globpri); 1107 1108 } 1109 1110 /* 1111 * Arrange for thread to be placed in appropriate location 1112 * on dispatcher queue. 1113 * 1114 * This is called with the current thread in TS_ONPROC and locked. 1115 */ 1116 static void 1117 fx_preempt(kthread_t *t) 1118 { 1119 fxproc_t *fxpp = (fxproc_t *)(t->t_cldata); 1120 1121 ASSERT(t == curthread); 1122 ASSERT(THREAD_LOCK_HELD(curthread)); 1123 1124 (void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ENFORCE); 1125 1126 /* 1127 * Check to see if we're doing "preemption control" here. If 1128 * we are, and if the user has requested that this thread not 1129 * be preempted, and if preemptions haven't been put off for 1130 * too long, let the preemption happen here but try to make 1131 * sure the thread is rescheduled as soon as possible. We do 1132 * this by putting it on the front of the highest priority run 1133 * queue in the FX class. If the preemption has been put off 1134 * for too long, clear the "nopreempt" bit and let the thread 1135 * be preempted. 1136 */ 1137 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 1138 if (fxpp->fx_pquantum == FX_TQINF || 1139 fxpp->fx_timeleft > -SC_MAX_TICKS) { 1140 DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t); 1141 schedctl_set_yield(t, 1); 1142 setfrontdq(t); 1143 return; 1144 } else { 1145 schedctl_set_nopreempt(t, 0); 1146 DTRACE_SCHED1(schedctl__preempt, kthread_t *, t); 1147 TNF_PROBE_2(schedctl_preempt, "schedctl FX fx_preempt", 1148 /* CSTYLED */, tnf_pid, pid, ttoproc(t)->p_pid, 1149 tnf_lwpid, lwpid, t->t_tid); 1150 /* 1151 * Fall through and be preempted below. 1152 */ 1153 } 1154 } 1155 1156 if (FX_HAS_CB(fxpp)) { 1157 clock_t new_quantum = (clock_t)fxpp->fx_pquantum; 1158 pri_t newpri = fxpp->fx_pri; 1159 FX_CB_PREEMPT(FX_CALLB(fxpp), fxpp->fx_cookie, 1160 &new_quantum, &newpri); 1161 FX_ADJUST_QUANTUM(new_quantum); 1162 if ((int)new_quantum != fxpp->fx_pquantum) { 1163 fxpp->fx_pquantum = (int)new_quantum; 1164 fxpp->fx_timeleft = fxpp->fx_pquantum; 1165 } 1166 FX_ADJUST_PRI(newpri); 1167 fxpp->fx_pri = newpri; 1168 THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri); 1169 } 1170 1171 /* 1172 * This thread may be placed on wait queue by CPU Caps. In this case we 1173 * do not need to do anything until it is removed from the wait queue. 1174 */ 1175 if (CPUCAPS_ENFORCE(t)) { 1176 return; 1177 } 1178 1179 if ((fxpp->fx_flags & (FXBACKQ)) == FXBACKQ) { 1180 fxpp->fx_timeleft = fxpp->fx_pquantum; 1181 fxpp->fx_flags &= ~FXBACKQ; 1182 setbackdq(t); 1183 } else { 1184 setfrontdq(t); 1185 } 1186 } 1187 1188 static void 1189 fx_setrun(kthread_t *t) 1190 { 1191 fxproc_t *fxpp = (fxproc_t *)(t->t_cldata); 1192 1193 ASSERT(THREAD_LOCK_HELD(t)); /* t should be in transition */ 1194 fxpp->fx_flags &= ~FXBACKQ; 1195 1196 if (t->t_disp_time != ddi_get_lbolt()) 1197 setbackdq(t); 1198 else 1199 setfrontdq(t); 1200 } 1201 1202 1203 /* 1204 * Prepare thread for sleep. We reset the thread priority so it will 1205 * run at the kernel priority level when it wakes up. 1206 */ 1207 static void 1208 fx_sleep(kthread_t *t) 1209 { 1210 fxproc_t *fxpp = (fxproc_t *)(t->t_cldata); 1211 1212 ASSERT(t == curthread); 1213 ASSERT(THREAD_LOCK_HELD(t)); 1214 1215 /* 1216 * Account for time spent on CPU before going to sleep. 1217 */ 1218 (void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ENFORCE); 1219 1220 if (FX_HAS_CB(fxpp)) { 1221 FX_CB_SLEEP(FX_CALLB(fxpp), fxpp->fx_cookie); 1222 } 1223 t->t_stime = ddi_get_lbolt(); /* time stamp for the swapper */ 1224 } 1225 1226 1227 /* 1228 * Return Values: 1229 * 1230 * -1 if the thread is loaded or is not eligible to be swapped in. 1231 * 1232 * FX and RT threads are designed so that they don't swapout; however, 1233 * it is possible that while the thread is swapped out and in another class, it 1234 * can be changed to FX or RT. Since these threads should be swapped in 1235 * as soon as they're runnable, rt_swapin returns SHRT_MAX, and fx_swapin 1236 * returns SHRT_MAX - 1, so that it gives deference to any swapped out 1237 * RT threads. 1238 */ 1239 /* ARGSUSED */ 1240 static pri_t 1241 fx_swapin(kthread_t *t, int flags) 1242 { 1243 pri_t tpri = -1; 1244 1245 ASSERT(THREAD_LOCK_HELD(t)); 1246 1247 if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) { 1248 tpri = (pri_t)SHRT_MAX - 1; 1249 } 1250 1251 return (tpri); 1252 } 1253 1254 /* 1255 * Return Values 1256 * -1 if the thread isn't loaded or is not eligible to be swapped out. 1257 */ 1258 /* ARGSUSED */ 1259 static pri_t 1260 fx_swapout(kthread_t *t, int flags) 1261 { 1262 ASSERT(THREAD_LOCK_HELD(t)); 1263 1264 return (-1); 1265 1266 } 1267 1268 /* ARGSUSED */ 1269 static void 1270 fx_stop(kthread_t *t, int why, int what) 1271 { 1272 fxproc_t *fxpp = (fxproc_t *)(t->t_cldata); 1273 1274 ASSERT(THREAD_LOCK_HELD(t)); 1275 1276 if (FX_HAS_CB(fxpp)) { 1277 FX_CB_STOP(FX_CALLB(fxpp), fxpp->fx_cookie); 1278 } 1279 } 1280 1281 /* 1282 * Check for time slice expiration. If time slice has expired 1283 * set runrun to cause preemption. 1284 */ 1285 static void 1286 fx_tick(kthread_t *t) 1287 { 1288 boolean_t call_cpu_surrender = B_FALSE; 1289 fxproc_t *fxpp; 1290 1291 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 1292 1293 thread_lock(t); 1294 1295 fxpp = (fxproc_t *)(t->t_cldata); 1296 1297 if (FX_HAS_CB(fxpp)) { 1298 clock_t new_quantum = (clock_t)fxpp->fx_pquantum; 1299 pri_t newpri = fxpp->fx_pri; 1300 FX_CB_TICK(FX_CALLB(fxpp), fxpp->fx_cookie, 1301 &new_quantum, &newpri); 1302 FX_ADJUST_QUANTUM(new_quantum); 1303 if ((int)new_quantum != fxpp->fx_pquantum) { 1304 fxpp->fx_pquantum = (int)new_quantum; 1305 fxpp->fx_timeleft = fxpp->fx_pquantum; 1306 } 1307 FX_ADJUST_PRI(newpri); 1308 if (newpri != fxpp->fx_pri) { 1309 fxpp->fx_pri = newpri; 1310 fx_change_priority(t, fxpp); 1311 } 1312 } 1313 1314 /* 1315 * Keep track of thread's project CPU usage. Note that projects 1316 * get charged even when threads are running in the kernel. 1317 */ 1318 call_cpu_surrender = CPUCAPS_CHARGE(t, &fxpp->fx_caps, 1319 CPUCAPS_CHARGE_ENFORCE); 1320 1321 if ((fxpp->fx_pquantum != FX_TQINF) && 1322 (--fxpp->fx_timeleft <= 0)) { 1323 pri_t new_pri; 1324 1325 /* 1326 * If we're doing preemption control and trying to 1327 * avoid preempting this thread, just note that 1328 * the thread should yield soon and let it keep 1329 * running (unless it's been a while). 1330 */ 1331 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 1332 if (fxpp->fx_timeleft > -SC_MAX_TICKS) { 1333 DTRACE_SCHED1(schedctl__nopreempt, 1334 kthread_t *, t); 1335 schedctl_set_yield(t, 1); 1336 thread_unlock_nopreempt(t); 1337 return; 1338 } 1339 TNF_PROBE_2(schedctl_failsafe, 1340 "schedctl FX fx_tick", /* CSTYLED */, 1341 tnf_pid, pid, ttoproc(t)->p_pid, 1342 tnf_lwpid, lwpid, t->t_tid); 1343 } 1344 new_pri = fx_dptbl[fxpp->fx_pri].fx_globpri; 1345 ASSERT(new_pri >= 0 && new_pri <= fx_maxglobpri); 1346 /* 1347 * When the priority of a thread is changed, 1348 * it may be necessary to adjust its position 1349 * on a sleep queue or dispatch queue. Even 1350 * when the priority is not changed, we need 1351 * to preserve round robin on dispatch queue. 1352 * The function thread_change_pri accomplishes 1353 * this. 1354 */ 1355 if (thread_change_pri(t, new_pri, 0)) { 1356 fxpp->fx_timeleft = fxpp->fx_pquantum; 1357 } else { 1358 call_cpu_surrender = B_TRUE; 1359 } 1360 } else if (t->t_state == TS_ONPROC && 1361 t->t_pri < t->t_disp_queue->disp_maxrunpri) { 1362 call_cpu_surrender = B_TRUE; 1363 } 1364 1365 if (call_cpu_surrender) { 1366 fxpp->fx_flags |= FXBACKQ; 1367 cpu_surrender(t); 1368 } 1369 thread_unlock_nopreempt(t); /* clock thread can't be preempted */ 1370 } 1371 1372 1373 static void 1374 fx_trapret(kthread_t *t) 1375 { 1376 cpu_t *cp = CPU; 1377 1378 ASSERT(THREAD_LOCK_HELD(t)); 1379 ASSERT(t == curthread); 1380 ASSERT(cp->cpu_dispthread == t); 1381 ASSERT(t->t_state == TS_ONPROC); 1382 } 1383 1384 1385 /* 1386 * Processes waking up go to the back of their queue. 1387 */ 1388 static void 1389 fx_wakeup(kthread_t *t) 1390 { 1391 fxproc_t *fxpp = (fxproc_t *)(t->t_cldata); 1392 1393 ASSERT(THREAD_LOCK_HELD(t)); 1394 1395 t->t_stime = ddi_get_lbolt(); /* time stamp for the swapper */ 1396 if (FX_HAS_CB(fxpp)) { 1397 clock_t new_quantum = (clock_t)fxpp->fx_pquantum; 1398 pri_t newpri = fxpp->fx_pri; 1399 FX_CB_WAKEUP(FX_CALLB(fxpp), fxpp->fx_cookie, 1400 &new_quantum, &newpri); 1401 FX_ADJUST_QUANTUM(new_quantum); 1402 if ((int)new_quantum != fxpp->fx_pquantum) { 1403 fxpp->fx_pquantum = (int)new_quantum; 1404 fxpp->fx_timeleft = fxpp->fx_pquantum; 1405 } 1406 1407 FX_ADJUST_PRI(newpri); 1408 if (newpri != fxpp->fx_pri) { 1409 fxpp->fx_pri = newpri; 1410 THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri); 1411 } 1412 } 1413 1414 fxpp->fx_flags &= ~FXBACKQ; 1415 1416 if (t->t_disp_time != ddi_get_lbolt()) 1417 setbackdq(t); 1418 else 1419 setfrontdq(t); 1420 } 1421 1422 1423 /* 1424 * When a thread yields, put it on the back of the run queue. 1425 */ 1426 static void 1427 fx_yield(kthread_t *t) 1428 { 1429 fxproc_t *fxpp = (fxproc_t *)(t->t_cldata); 1430 1431 ASSERT(t == curthread); 1432 ASSERT(THREAD_LOCK_HELD(t)); 1433 1434 /* 1435 * Collect CPU usage spent before yielding CPU. 1436 */ 1437 (void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ENFORCE); 1438 1439 if (FX_HAS_CB(fxpp)) { 1440 clock_t new_quantum = (clock_t)fxpp->fx_pquantum; 1441 pri_t newpri = fxpp->fx_pri; 1442 FX_CB_PREEMPT(FX_CALLB(fxpp), fxpp->fx_cookie, 1443 &new_quantum, &newpri); 1444 FX_ADJUST_QUANTUM(new_quantum); 1445 if ((int)new_quantum != fxpp->fx_pquantum) { 1446 fxpp->fx_pquantum = (int)new_quantum; 1447 fxpp->fx_timeleft = fxpp->fx_pquantum; 1448 } 1449 FX_ADJUST_PRI(newpri); 1450 fxpp->fx_pri = newpri; 1451 THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri); 1452 } 1453 1454 /* 1455 * Clear the preemption control "yield" bit since the user is 1456 * doing a yield. 1457 */ 1458 if (t->t_schedctl) 1459 schedctl_set_yield(t, 0); 1460 1461 if (fxpp->fx_timeleft <= 0) { 1462 /* 1463 * Time slice was artificially extended to avoid 1464 * preemption, so pretend we're preempting it now. 1465 */ 1466 DTRACE_SCHED1(schedctl__yield, int, -fxpp->fx_timeleft); 1467 fxpp->fx_timeleft = fxpp->fx_pquantum; 1468 THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri); 1469 ASSERT(t->t_pri >= 0 && t->t_pri <= fx_maxglobpri); 1470 } 1471 1472 fxpp->fx_flags &= ~FXBACKQ; 1473 setbackdq(t); 1474 } 1475 1476 /* 1477 * Increment the nice value of the specified thread by incr and 1478 * return the new value in *retvalp. 1479 */ 1480 static int 1481 fx_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp) 1482 { 1483 int newnice; 1484 fxproc_t *fxpp = (fxproc_t *)(t->t_cldata); 1485 fxkparms_t fxkparms; 1486 1487 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 1488 1489 /* If there's no change to priority, just return current setting */ 1490 if (incr == 0) { 1491 if (retvalp) { 1492 *retvalp = fxpp->fx_nice - NZERO; 1493 } 1494 return (0); 1495 } 1496 1497 if ((incr < 0 || incr > 2 * NZERO) && 1498 secpolicy_setpriority(cr) != 0) 1499 return (EPERM); 1500 1501 /* 1502 * Specifying a nice increment greater than the upper limit of 1503 * 2 * NZERO - 1 will result in the thread's nice value being 1504 * set to the upper limit. We check for this before computing 1505 * the new value because otherwise we could get overflow 1506 * if a privileged user specified some ridiculous increment. 1507 */ 1508 if (incr > 2 * NZERO - 1) 1509 incr = 2 * NZERO - 1; 1510 1511 newnice = fxpp->fx_nice + incr; 1512 if (newnice > NZERO) 1513 newnice = NZERO; 1514 else if (newnice < 0) 1515 newnice = 0; 1516 1517 fxkparms.fx_uprilim = fxkparms.fx_upri = 1518 -((newnice - NZERO) * fx_maxupri) / NZERO; 1519 1520 fxkparms.fx_cflags = FX_DOUPRILIM | FX_DOUPRI; 1521 1522 fxkparms.fx_tqntm = FX_TQDEF; 1523 1524 /* 1525 * Reset the uprilim and upri values of the thread. Adjust 1526 * time quantum accordingly. 1527 */ 1528 1529 (void) fx_parmsset(t, (void *)&fxkparms, (id_t)0, (cred_t *)NULL); 1530 1531 /* 1532 * Although fx_parmsset already reset fx_nice it may 1533 * not have been set to precisely the value calculated above 1534 * because fx_parmsset determines the nice value from the 1535 * user priority and we may have truncated during the integer 1536 * conversion from nice value to user priority and back. 1537 * We reset fx_nice to the value we calculated above. 1538 */ 1539 fxpp->fx_nice = (char)newnice; 1540 1541 if (retvalp) 1542 *retvalp = newnice - NZERO; 1543 1544 return (0); 1545 } 1546 1547 /* 1548 * Increment the priority of the specified thread by incr and 1549 * return the new value in *retvalp. 1550 */ 1551 static int 1552 fx_doprio(kthread_t *t, cred_t *cr, int incr, int *retvalp) 1553 { 1554 int newpri; 1555 fxproc_t *fxpp = (fxproc_t *)(t->t_cldata); 1556 fxkparms_t fxkparms; 1557 1558 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 1559 1560 /* If there's no change to priority, just return current setting */ 1561 if (incr == 0) { 1562 *retvalp = fxpp->fx_pri; 1563 return (0); 1564 } 1565 1566 newpri = fxpp->fx_pri + incr; 1567 if (newpri > fx_maxupri || newpri < 0) 1568 return (EINVAL); 1569 1570 *retvalp = newpri; 1571 fxkparms.fx_uprilim = fxkparms.fx_upri = newpri; 1572 fxkparms.fx_tqntm = FX_NOCHANGE; 1573 fxkparms.fx_cflags = FX_DOUPRILIM | FX_DOUPRI; 1574 1575 /* 1576 * Reset the uprilim and upri values of the thread. 1577 */ 1578 return (fx_parmsset(t, (void *)&fxkparms, (id_t)0, cr)); 1579 } 1580 1581 static void 1582 fx_change_priority(kthread_t *t, fxproc_t *fxpp) 1583 { 1584 pri_t new_pri; 1585 1586 ASSERT(THREAD_LOCK_HELD(t)); 1587 new_pri = fx_dptbl[fxpp->fx_pri].fx_globpri; 1588 ASSERT(new_pri >= 0 && new_pri <= fx_maxglobpri); 1589 t->t_cpri = fxpp->fx_pri; 1590 if (t == curthread || t->t_state == TS_ONPROC) { 1591 /* curthread is always onproc */ 1592 cpu_t *cp = t->t_disp_queue->disp_cpu; 1593 THREAD_CHANGE_PRI(t, new_pri); 1594 if (t == cp->cpu_dispthread) 1595 cp->cpu_dispatch_pri = DISP_PRIO(t); 1596 if (DISP_MUST_SURRENDER(t)) { 1597 fxpp->fx_flags |= FXBACKQ; 1598 cpu_surrender(t); 1599 } else { 1600 fxpp->fx_timeleft = fxpp->fx_pquantum; 1601 } 1602 } else { 1603 /* 1604 * When the priority of a thread is changed, 1605 * it may be necessary to adjust its position 1606 * on a sleep queue or dispatch queue. 1607 * The function thread_change_pri accomplishes 1608 * this. 1609 */ 1610 if (thread_change_pri(t, new_pri, 0)) { 1611 /* 1612 * The thread was on a run queue. Reset 1613 * its CPU timeleft from the quantum 1614 * associated with the new priority. 1615 */ 1616 fxpp->fx_timeleft = fxpp->fx_pquantum; 1617 } else { 1618 fxpp->fx_flags |= FXBACKQ; 1619 } 1620 } 1621 } 1622 1623 static int 1624 fx_alloc(void **p, int flag) 1625 { 1626 void *bufp; 1627 1628 bufp = kmem_alloc(sizeof (fxproc_t), flag); 1629 if (bufp == NULL) { 1630 return (ENOMEM); 1631 } else { 1632 *p = bufp; 1633 return (0); 1634 } 1635 } 1636 1637 static void 1638 fx_free(void *bufp) 1639 { 1640 if (bufp) 1641 kmem_free(bufp, sizeof (fxproc_t)); 1642 } 1643 1644 /* 1645 * Release the callback list mutex after successful lookup 1646 */ 1647 void 1648 fx_list_release(fxproc_t *fxpp) 1649 { 1650 int index = FX_CB_LIST_HASH(fxpp->fx_ktid); 1651 kmutex_t *lockp = &fx_cb_list_lock[index]; 1652 mutex_exit(lockp); 1653 } 1654 1655 fxproc_t * 1656 fx_list_lookup(kt_did_t ktid) 1657 { 1658 int index = FX_CB_LIST_HASH(ktid); 1659 kmutex_t *lockp = &fx_cb_list_lock[index]; 1660 fxproc_t *fxpp; 1661 1662 mutex_enter(lockp); 1663 1664 for (fxpp = fx_cb_plisthead[index].fx_cb_next; 1665 fxpp != &fx_cb_plisthead[index]; fxpp = fxpp->fx_cb_next) { 1666 if (fxpp->fx_tp->t_cid == fx_cid && fxpp->fx_ktid == ktid && 1667 fxpp->fx_callback != NULL) { 1668 /* 1669 * The caller is responsible for calling 1670 * fx_list_release to drop the lock upon 1671 * successful lookup 1672 */ 1673 return (fxpp); 1674 } 1675 } 1676 mutex_exit(lockp); 1677 return ((fxproc_t *)NULL); 1678 } 1679 1680 1681 /* 1682 * register a callback set of routines for current thread 1683 * thread should already be in FX class 1684 */ 1685 int 1686 fx_register_callbacks(fx_callbacks_t *fx_callback, fx_cookie_t cookie, 1687 pri_t pri, clock_t quantum) 1688 { 1689 1690 fxproc_t *fxpp; 1691 1692 if (fx_callback == NULL) 1693 return (EINVAL); 1694 1695 if (secpolicy_dispadm(CRED()) != 0) 1696 return (EPERM); 1697 1698 if (FX_CB_VERSION(fx_callback) != FX_CALLB_REV) 1699 return (EINVAL); 1700 1701 if (!FX_ISVALID(pri, quantum)) 1702 return (EINVAL); 1703 1704 thread_lock(curthread); /* get dispatcher lock on thread */ 1705 1706 if (curthread->t_cid != fx_cid) { 1707 thread_unlock(curthread); 1708 return (EINVAL); 1709 } 1710 1711 fxpp = (fxproc_t *)(curthread->t_cldata); 1712 ASSERT(fxpp != NULL); 1713 if (FX_HAS_CB(fxpp)) { 1714 thread_unlock(curthread); 1715 return (EINVAL); 1716 } 1717 1718 fxpp->fx_callback = fx_callback; 1719 fxpp->fx_cookie = cookie; 1720 1721 if (pri != FX_CB_NOCHANGE) { 1722 fxpp->fx_pri = pri; 1723 FX_ADJUST_PRI(fxpp->fx_pri); 1724 if (quantum == FX_TQDEF) { 1725 fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum; 1726 } else if (quantum == FX_TQINF) { 1727 fxpp->fx_pquantum = FX_TQINF; 1728 } else if (quantum != FX_NOCHANGE) { 1729 FX_ADJUST_QUANTUM(quantum); 1730 fxpp->fx_pquantum = quantum; 1731 } 1732 } else if (quantum != FX_NOCHANGE && quantum != FX_TQDEF) { 1733 if (quantum == FX_TQINF) 1734 fxpp->fx_pquantum = FX_TQINF; 1735 else { 1736 FX_ADJUST_QUANTUM(quantum); 1737 fxpp->fx_pquantum = quantum; 1738 } 1739 } 1740 1741 fxpp->fx_ktid = ddi_get_kt_did(); 1742 1743 fx_change_priority(curthread, fxpp); 1744 1745 thread_unlock(curthread); 1746 1747 /* 1748 * Link new structure into fxproc list. 1749 */ 1750 FX_CB_LIST_INSERT(fxpp); 1751 return (0); 1752 } 1753 1754 /* unregister a callback set of routines for current thread */ 1755 int 1756 fx_unregister_callbacks() 1757 { 1758 fxproc_t *fxpp; 1759 1760 if ((fxpp = fx_list_lookup(ddi_get_kt_did())) == NULL) { 1761 /* 1762 * did not have a registered callback; 1763 */ 1764 return (EINVAL); 1765 } 1766 1767 thread_lock(fxpp->fx_tp); 1768 fxpp->fx_callback = NULL; 1769 fxpp->fx_cookie = NULL; 1770 thread_unlock(fxpp->fx_tp); 1771 fx_list_release(fxpp); 1772 1773 FX_CB_LIST_DELETE(fxpp); 1774 return (0); 1775 } 1776 1777 /* 1778 * modify priority and/or quantum value of a thread with callback 1779 */ 1780 int 1781 fx_modify_priority(kt_did_t ktid, clock_t quantum, pri_t pri) 1782 { 1783 fxproc_t *fxpp; 1784 1785 if (!FX_ISVALID(pri, quantum)) 1786 return (EINVAL); 1787 1788 if ((fxpp = fx_list_lookup(ktid)) == NULL) { 1789 /* 1790 * either thread had exited or did not have a registered 1791 * callback; 1792 */ 1793 return (ESRCH); 1794 } 1795 1796 thread_lock(fxpp->fx_tp); 1797 1798 if (pri != FX_CB_NOCHANGE) { 1799 fxpp->fx_pri = pri; 1800 FX_ADJUST_PRI(fxpp->fx_pri); 1801 if (quantum == FX_TQDEF) { 1802 fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum; 1803 } else if (quantum == FX_TQINF) { 1804 fxpp->fx_pquantum = FX_TQINF; 1805 } else if (quantum != FX_NOCHANGE) { 1806 FX_ADJUST_QUANTUM(quantum); 1807 fxpp->fx_pquantum = quantum; 1808 } 1809 } else if (quantum != FX_NOCHANGE && quantum != FX_TQDEF) { 1810 if (quantum == FX_TQINF) { 1811 fxpp->fx_pquantum = FX_TQINF; 1812 } else { 1813 FX_ADJUST_QUANTUM(quantum); 1814 fxpp->fx_pquantum = quantum; 1815 } 1816 } 1817 1818 fx_change_priority(fxpp->fx_tp, fxpp); 1819 1820 thread_unlock(fxpp->fx_tp); 1821 fx_list_release(fxpp); 1822 return (0); 1823 } 1824 1825 1826 /* 1827 * return an iblock cookie for mutex initialization to be used in callbacks 1828 */ 1829 void * 1830 fx_get_mutex_cookie() 1831 { 1832 return ((void *)(uintptr_t)__ipltospl(DISP_LEVEL)); 1833 } 1834 1835 /* 1836 * return maximum relative priority 1837 */ 1838 pri_t 1839 fx_get_maxpri() 1840 { 1841 return (fx_maxumdpri); 1842 } 1843