1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/sysmacros.h> 32 #include <sys/cred.h> 33 #include <sys/proc.h> 34 #include <sys/strsubr.h> 35 #include <sys/priocntl.h> 36 #include <sys/class.h> 37 #include <sys/disp.h> 38 #include <sys/procset.h> 39 #include <sys/debug.h> 40 #include <sys/kmem.h> 41 #include <sys/errno.h> 42 #include <sys/systm.h> 43 #include <sys/schedctl.h> 44 #include <sys/vmsystm.h> 45 #include <sys/atomic.h> 46 #include <sys/project.h> 47 #include <sys/modctl.h> 48 #include <sys/fss.h> 49 #include <sys/fsspriocntl.h> 50 #include <sys/cpupart.h> 51 #include <sys/zone.h> 52 #include <vm/rm.h> 53 #include <vm/seg_kmem.h> 54 #include <sys/tnf_probe.h> 55 #include <sys/policy.h> 56 #include <sys/sdt.h> 57 #include <sys/cpucaps.h> 58 59 /* 60 * FSS Data Structures: 61 * 62 * fsszone 63 * ----- ----- 64 * ----- | | | | 65 * | |-------->| |<------->| |<---->... 66 * | | ----- ----- 67 * | | ^ ^ ^ 68 * | |--- | \ \ 69 * ----- | | \ \ 70 * fsspset | | \ \ 71 * | | \ \ 72 * | ----- ----- ----- 73 * -->| |<--->| |<--->| | 74 * | | | | | | 75 * ----- ----- ----- 76 * fssproj 77 * 78 * 79 * That is, fsspsets contain a list of fsszone's that are currently active in 80 * the pset, and a list of fssproj's, corresponding to projects with runnable 81 * threads on the pset. fssproj's in turn point to the fsszone which they 82 * are a member of. 83 * 84 * An fssproj_t is removed when there are no threads in it. 85 * 86 * An fsszone_t is removed when there are no projects with threads in it. 87 * 88 * Projects in a zone compete with each other for cpu time, receiving cpu 89 * allocation within a zone proportional to fssproj->fssp_shares 90 * (project.cpu-shares); at a higher level zones compete with each other, 91 * receiving allocation in a pset proportional to fsszone->fssz_shares 92 * (zone.cpu-shares). See fss_decay_usage() for the precise formula. 93 */ 94 95 static pri_t fss_init(id_t, int, classfuncs_t **); 96 97 static struct sclass fss = { 98 "FSS", 99 fss_init, 100 0 101 }; 102 103 extern struct mod_ops mod_schedops; 104 105 /* 106 * Module linkage information for the kernel. 107 */ 108 static struct modlsched modlsched = { 109 &mod_schedops, "fair share scheduling class", &fss 110 }; 111 112 static struct modlinkage modlinkage = { 113 MODREV_1, (void *)&modlsched, NULL 114 }; 115 116 #define FSS_MAXUPRI 60 117 118 /* 119 * The fssproc_t structures are kept in an array of circular doubly linked 120 * lists. A hash on the thread pointer is used to determine which list each 121 * thread should be placed in. Each list has a dummy "head" which is never 122 * removed, so the list is never empty. fss_update traverses these lists to 123 * update the priorities of threads that have been waiting on the run queue. 124 */ 125 #define FSS_LISTS 16 /* number of lists, must be power of 2 */ 126 #define FSS_LIST_HASH(t) (((uintptr_t)(t) >> 9) & (FSS_LISTS - 1)) 127 #define FSS_LIST_NEXT(i) (((i) + 1) & (FSS_LISTS - 1)) 128 129 #define FSS_LIST_INSERT(fssproc) \ 130 { \ 131 int index = FSS_LIST_HASH(fssproc->fss_tp); \ 132 kmutex_t *lockp = &fss_listlock[index]; \ 133 fssproc_t *headp = &fss_listhead[index]; \ 134 mutex_enter(lockp); \ 135 fssproc->fss_next = headp->fss_next; \ 136 fssproc->fss_prev = headp; \ 137 headp->fss_next->fss_prev = fssproc; \ 138 headp->fss_next = fssproc; \ 139 mutex_exit(lockp); \ 140 } 141 142 #define FSS_LIST_DELETE(fssproc) \ 143 { \ 144 int index = FSS_LIST_HASH(fssproc->fss_tp); \ 145 kmutex_t *lockp = &fss_listlock[index]; \ 146 mutex_enter(lockp); \ 147 fssproc->fss_prev->fss_next = fssproc->fss_next; \ 148 fssproc->fss_next->fss_prev = fssproc->fss_prev; \ 149 mutex_exit(lockp); \ 150 } 151 152 #define FSS_TICK_COST 1000 /* tick cost for threads with nice level = 0 */ 153 154 /* 155 * Decay rate percentages are based on n/128 rather than n/100 so that 156 * calculations can avoid having to do an integer divide by 100 (divide 157 * by FSS_DECAY_BASE == 128 optimizes to an arithmetic shift). 158 * 159 * FSS_DECAY_MIN = 83/128 ~= 65% 160 * FSS_DECAY_MAX = 108/128 ~= 85% 161 * FSS_DECAY_USG = 96/128 ~= 75% 162 */ 163 #define FSS_DECAY_MIN 83 /* fsspri decay pct for threads w/ nice -20 */ 164 #define FSS_DECAY_MAX 108 /* fsspri decay pct for threads w/ nice +19 */ 165 #define FSS_DECAY_USG 96 /* fssusage decay pct for projects */ 166 #define FSS_DECAY_BASE 128 /* base for decay percentages above */ 167 168 #define FSS_NICE_MIN 0 169 #define FSS_NICE_MAX (2 * NZERO - 1) 170 #define FSS_NICE_RANGE (FSS_NICE_MAX - FSS_NICE_MIN + 1) 171 172 static int fss_nice_tick[FSS_NICE_RANGE]; 173 static int fss_nice_decay[FSS_NICE_RANGE]; 174 175 static pri_t fss_maxupri = FSS_MAXUPRI; /* maximum FSS user priority */ 176 static pri_t fss_maxumdpri; /* maximum user mode fss priority */ 177 static pri_t fss_maxglobpri; /* maximum global priority used by fss class */ 178 static pri_t fss_minglobpri; /* minimum global priority */ 179 180 static fssproc_t fss_listhead[FSS_LISTS]; 181 static kmutex_t fss_listlock[FSS_LISTS]; 182 183 static fsspset_t *fsspsets; 184 static kmutex_t fsspsets_lock; /* protects fsspsets */ 185 186 static id_t fss_cid; 187 188 static time_t fss_minrun = 2; /* t_pri becomes 59 within 2 secs */ 189 static time_t fss_minslp = 2; /* min time on sleep queue for hardswap */ 190 static int fss_quantum = 11; 191 192 static void fss_newpri(fssproc_t *); 193 static void fss_update(void *); 194 static int fss_update_list(int); 195 static void fss_change_priority(kthread_t *, fssproc_t *); 196 197 static int fss_admin(caddr_t, cred_t *); 198 static int fss_getclinfo(void *); 199 static int fss_parmsin(void *); 200 static int fss_parmsout(void *, pc_vaparms_t *); 201 static int fss_vaparmsin(void *, pc_vaparms_t *); 202 static int fss_vaparmsout(void *, pc_vaparms_t *); 203 static int fss_getclpri(pcpri_t *); 204 static int fss_alloc(void **, int); 205 static void fss_free(void *); 206 207 static int fss_enterclass(kthread_t *, id_t, void *, cred_t *, void *); 208 static void fss_exitclass(void *); 209 static int fss_canexit(kthread_t *, cred_t *); 210 static int fss_fork(kthread_t *, kthread_t *, void *); 211 static void fss_forkret(kthread_t *, kthread_t *); 212 static void fss_parmsget(kthread_t *, void *); 213 static int fss_parmsset(kthread_t *, void *, id_t, cred_t *); 214 static void fss_stop(kthread_t *, int, int); 215 static void fss_exit(kthread_t *); 216 static void fss_active(kthread_t *); 217 static void fss_inactive(kthread_t *); 218 static pri_t fss_swapin(kthread_t *, int); 219 static pri_t fss_swapout(kthread_t *, int); 220 static void fss_trapret(kthread_t *); 221 static void fss_preempt(kthread_t *); 222 static void fss_setrun(kthread_t *); 223 static void fss_sleep(kthread_t *); 224 static void fss_tick(kthread_t *); 225 static void fss_wakeup(kthread_t *); 226 static int fss_donice(kthread_t *, cred_t *, int, int *); 227 static int fss_doprio(kthread_t *, cred_t *, int, int *); 228 static pri_t fss_globpri(kthread_t *); 229 static void fss_yield(kthread_t *); 230 static void fss_nullsys(); 231 232 static struct classfuncs fss_classfuncs = { 233 /* class functions */ 234 fss_admin, 235 fss_getclinfo, 236 fss_parmsin, 237 fss_parmsout, 238 fss_vaparmsin, 239 fss_vaparmsout, 240 fss_getclpri, 241 fss_alloc, 242 fss_free, 243 244 /* thread functions */ 245 fss_enterclass, 246 fss_exitclass, 247 fss_canexit, 248 fss_fork, 249 fss_forkret, 250 fss_parmsget, 251 fss_parmsset, 252 fss_stop, 253 fss_exit, 254 fss_active, 255 fss_inactive, 256 fss_swapin, 257 fss_swapout, 258 fss_trapret, 259 fss_preempt, 260 fss_setrun, 261 fss_sleep, 262 fss_tick, 263 fss_wakeup, 264 fss_donice, 265 fss_globpri, 266 fss_nullsys, /* set_process_group */ 267 fss_yield, 268 fss_doprio, 269 }; 270 271 int 272 _init() 273 { 274 return (mod_install(&modlinkage)); 275 } 276 277 int 278 _fini() 279 { 280 return (EBUSY); 281 } 282 283 int 284 _info(struct modinfo *modinfop) 285 { 286 return (mod_info(&modlinkage, modinfop)); 287 } 288 289 /*ARGSUSED*/ 290 static int 291 fss_project_walker(kproject_t *kpj, void *buf) 292 { 293 return (0); 294 } 295 296 void * 297 fss_allocbuf(int op, int type) 298 { 299 fssbuf_t *fssbuf; 300 void **fsslist; 301 int cnt; 302 int i; 303 size_t size; 304 305 ASSERT(op == FSS_NPSET_BUF || op == FSS_NPROJ_BUF || op == FSS_ONE_BUF); 306 ASSERT(type == FSS_ALLOC_PROJ || type == FSS_ALLOC_ZONE); 307 ASSERT(MUTEX_HELD(&cpu_lock)); 308 309 fssbuf = kmem_zalloc(sizeof (fssbuf_t), KM_SLEEP); 310 switch (op) { 311 case FSS_NPSET_BUF: 312 cnt = cpupart_list(NULL, 0, CP_NONEMPTY); 313 break; 314 case FSS_NPROJ_BUF: 315 cnt = project_walk_all(ALL_ZONES, fss_project_walker, NULL); 316 break; 317 case FSS_ONE_BUF: 318 cnt = 1; 319 break; 320 } 321 322 switch (type) { 323 case FSS_ALLOC_PROJ: 324 size = sizeof (fssproj_t); 325 break; 326 case FSS_ALLOC_ZONE: 327 size = sizeof (fsszone_t); 328 break; 329 } 330 fsslist = kmem_zalloc(cnt * sizeof (void *), KM_SLEEP); 331 fssbuf->fssb_size = cnt; 332 fssbuf->fssb_list = fsslist; 333 for (i = 0; i < cnt; i++) 334 fsslist[i] = kmem_zalloc(size, KM_SLEEP); 335 return (fssbuf); 336 } 337 338 void 339 fss_freebuf(fssbuf_t *fssbuf, int type) 340 { 341 void **fsslist; 342 int i; 343 size_t size; 344 345 ASSERT(fssbuf != NULL); 346 ASSERT(type == FSS_ALLOC_PROJ || type == FSS_ALLOC_ZONE); 347 fsslist = fssbuf->fssb_list; 348 349 switch (type) { 350 case FSS_ALLOC_PROJ: 351 size = sizeof (fssproj_t); 352 break; 353 case FSS_ALLOC_ZONE: 354 size = sizeof (fsszone_t); 355 break; 356 } 357 358 for (i = 0; i < fssbuf->fssb_size; i++) { 359 if (fsslist[i] != NULL) 360 kmem_free(fsslist[i], size); 361 } 362 kmem_free(fsslist, sizeof (void *) * fssbuf->fssb_size); 363 kmem_free(fssbuf, sizeof (fssbuf_t)); 364 } 365 366 static fsspset_t * 367 fss_find_fsspset(cpupart_t *cpupart) 368 { 369 int i; 370 fsspset_t *fsspset = NULL; 371 int found = 0; 372 373 ASSERT(cpupart != NULL); 374 ASSERT(MUTEX_HELD(&fsspsets_lock)); 375 376 /* 377 * Search for the cpupart pointer in the array of fsspsets. 378 */ 379 for (i = 0; i < max_ncpus; i++) { 380 fsspset = &fsspsets[i]; 381 if (fsspset->fssps_cpupart == cpupart) { 382 ASSERT(fsspset->fssps_nproj > 0); 383 found = 1; 384 break; 385 } 386 } 387 if (found == 0) { 388 /* 389 * If we didn't find anything, then use the first 390 * available slot in the fsspsets array. 391 */ 392 for (i = 0; i < max_ncpus; i++) { 393 fsspset = &fsspsets[i]; 394 if (fsspset->fssps_cpupart == NULL) { 395 ASSERT(fsspset->fssps_nproj == 0); 396 found = 1; 397 break; 398 } 399 } 400 fsspset->fssps_cpupart = cpupart; 401 } 402 ASSERT(found == 1); 403 return (fsspset); 404 } 405 406 static void 407 fss_del_fsspset(fsspset_t *fsspset) 408 { 409 ASSERT(MUTEX_HELD(&fsspsets_lock)); 410 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 411 ASSERT(fsspset->fssps_nproj == 0); 412 ASSERT(fsspset->fssps_list == NULL); 413 ASSERT(fsspset->fssps_zones == NULL); 414 fsspset->fssps_cpupart = NULL; 415 fsspset->fssps_maxfsspri = 0; 416 fsspset->fssps_shares = 0; 417 } 418 419 /* 420 * The following routine returns a pointer to the fsszone structure which 421 * belongs to zone "zone" and cpu partition fsspset, if such structure exists. 422 */ 423 static fsszone_t * 424 fss_find_fsszone(fsspset_t *fsspset, zone_t *zone) 425 { 426 fsszone_t *fsszone; 427 428 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 429 430 if (fsspset->fssps_list != NULL) { 431 /* 432 * There are projects/zones active on this cpu partition 433 * already. Try to find our zone among them. 434 */ 435 fsszone = fsspset->fssps_zones; 436 do { 437 if (fsszone->fssz_zone == zone) { 438 return (fsszone); 439 } 440 fsszone = fsszone->fssz_next; 441 } while (fsszone != fsspset->fssps_zones); 442 } 443 return (NULL); 444 } 445 446 /* 447 * The following routine links new fsszone structure into doubly linked list of 448 * zones active on the specified cpu partition. 449 */ 450 static void 451 fss_insert_fsszone(fsspset_t *fsspset, zone_t *zone, fsszone_t *fsszone) 452 { 453 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 454 455 fsszone->fssz_zone = zone; 456 fsszone->fssz_rshares = zone->zone_shares; 457 458 if (fsspset->fssps_zones == NULL) { 459 /* 460 * This will be the first fsszone for this fsspset 461 */ 462 fsszone->fssz_next = fsszone->fssz_prev = fsszone; 463 fsspset->fssps_zones = fsszone; 464 } else { 465 /* 466 * Insert this fsszone to the doubly linked list. 467 */ 468 fsszone_t *fssz_head = fsspset->fssps_zones; 469 470 fsszone->fssz_next = fssz_head; 471 fsszone->fssz_prev = fssz_head->fssz_prev; 472 fssz_head->fssz_prev->fssz_next = fsszone; 473 fssz_head->fssz_prev = fsszone; 474 fsspset->fssps_zones = fsszone; 475 } 476 } 477 478 /* 479 * The following routine removes a single fsszone structure from the doubly 480 * linked list of zones active on the specified cpu partition. Note that 481 * global fsspsets_lock must be held in case this fsszone structure is the last 482 * on the above mentioned list. Also note that the fsszone structure is not 483 * freed here, it is the responsibility of the caller to call kmem_free for it. 484 */ 485 static void 486 fss_remove_fsszone(fsspset_t *fsspset, fsszone_t *fsszone) 487 { 488 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 489 ASSERT(fsszone->fssz_nproj == 0); 490 ASSERT(fsszone->fssz_shares == 0); 491 ASSERT(fsszone->fssz_runnable == 0); 492 493 if (fsszone->fssz_next != fsszone) { 494 /* 495 * This is not the last zone in the list. 496 */ 497 fsszone->fssz_prev->fssz_next = fsszone->fssz_next; 498 fsszone->fssz_next->fssz_prev = fsszone->fssz_prev; 499 if (fsspset->fssps_zones == fsszone) 500 fsspset->fssps_zones = fsszone->fssz_next; 501 } else { 502 /* 503 * This was the last zone active in this cpu partition. 504 */ 505 fsspset->fssps_zones = NULL; 506 } 507 } 508 509 /* 510 * The following routine returns a pointer to the fssproj structure 511 * which belongs to project kpj and cpu partition fsspset, if such structure 512 * exists. 513 */ 514 static fssproj_t * 515 fss_find_fssproj(fsspset_t *fsspset, kproject_t *kpj) 516 { 517 fssproj_t *fssproj; 518 519 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 520 521 if (fsspset->fssps_list != NULL) { 522 /* 523 * There are projects running on this cpu partition already. 524 * Try to find our project among them. 525 */ 526 fssproj = fsspset->fssps_list; 527 do { 528 if (fssproj->fssp_proj == kpj) { 529 ASSERT(fssproj->fssp_pset == fsspset); 530 return (fssproj); 531 } 532 fssproj = fssproj->fssp_next; 533 } while (fssproj != fsspset->fssps_list); 534 } 535 return (NULL); 536 } 537 538 /* 539 * The following routine links new fssproj structure into doubly linked list 540 * of projects running on the specified cpu partition. 541 */ 542 static void 543 fss_insert_fssproj(fsspset_t *fsspset, kproject_t *kpj, fsszone_t *fsszone, 544 fssproj_t *fssproj) 545 { 546 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 547 548 fssproj->fssp_pset = fsspset; 549 fssproj->fssp_proj = kpj; 550 fssproj->fssp_shares = kpj->kpj_shares; 551 552 fsspset->fssps_nproj++; 553 554 if (fsspset->fssps_list == NULL) { 555 /* 556 * This will be the first fssproj for this fsspset 557 */ 558 fssproj->fssp_next = fssproj->fssp_prev = fssproj; 559 fsspset->fssps_list = fssproj; 560 } else { 561 /* 562 * Insert this fssproj to the doubly linked list. 563 */ 564 fssproj_t *fssp_head = fsspset->fssps_list; 565 566 fssproj->fssp_next = fssp_head; 567 fssproj->fssp_prev = fssp_head->fssp_prev; 568 fssp_head->fssp_prev->fssp_next = fssproj; 569 fssp_head->fssp_prev = fssproj; 570 fsspset->fssps_list = fssproj; 571 } 572 fssproj->fssp_fsszone = fsszone; 573 fsszone->fssz_nproj++; 574 ASSERT(fsszone->fssz_nproj != 0); 575 } 576 577 /* 578 * The following routine removes a single fssproj structure from the doubly 579 * linked list of projects running on the specified cpu partition. Note that 580 * global fsspsets_lock must be held in case if this fssproj structure is the 581 * last on the above mentioned list. Also note that the fssproj structure is 582 * not freed here, it is the responsibility of the caller to call kmem_free 583 * for it. 584 */ 585 static void 586 fss_remove_fssproj(fsspset_t *fsspset, fssproj_t *fssproj) 587 { 588 fsszone_t *fsszone; 589 590 ASSERT(MUTEX_HELD(&fsspsets_lock)); 591 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 592 ASSERT(fssproj->fssp_runnable == 0); 593 594 fsspset->fssps_nproj--; 595 596 fsszone = fssproj->fssp_fsszone; 597 fsszone->fssz_nproj--; 598 599 if (fssproj->fssp_next != fssproj) { 600 /* 601 * This is not the last part in the list. 602 */ 603 fssproj->fssp_prev->fssp_next = fssproj->fssp_next; 604 fssproj->fssp_next->fssp_prev = fssproj->fssp_prev; 605 if (fsspset->fssps_list == fssproj) 606 fsspset->fssps_list = fssproj->fssp_next; 607 if (fsszone->fssz_nproj == 0) 608 fss_remove_fsszone(fsspset, fsszone); 609 } else { 610 /* 611 * This was the last project part running 612 * at this cpu partition. 613 */ 614 fsspset->fssps_list = NULL; 615 ASSERT(fsspset->fssps_nproj == 0); 616 ASSERT(fsszone->fssz_nproj == 0); 617 fss_remove_fsszone(fsspset, fsszone); 618 fss_del_fsspset(fsspset); 619 } 620 } 621 622 static void 623 fss_inactive(kthread_t *t) 624 { 625 fssproc_t *fssproc; 626 fssproj_t *fssproj; 627 fsspset_t *fsspset; 628 fsszone_t *fsszone; 629 630 ASSERT(THREAD_LOCK_HELD(t)); 631 fssproc = FSSPROC(t); 632 fssproj = FSSPROC2FSSPROJ(fssproc); 633 if (fssproj == NULL) /* if this thread already exited */ 634 return; 635 fsspset = FSSPROJ2FSSPSET(fssproj); 636 fsszone = fssproj->fssp_fsszone; 637 disp_lock_enter_high(&fsspset->fssps_displock); 638 ASSERT(fssproj->fssp_runnable > 0); 639 if (--fssproj->fssp_runnable == 0) { 640 fsszone->fssz_shares -= fssproj->fssp_shares; 641 if (--fsszone->fssz_runnable == 0) 642 fsspset->fssps_shares -= fsszone->fssz_rshares; 643 } 644 ASSERT(fssproc->fss_runnable == 1); 645 fssproc->fss_runnable = 0; 646 disp_lock_exit_high(&fsspset->fssps_displock); 647 } 648 649 static void 650 fss_active(kthread_t *t) 651 { 652 fssproc_t *fssproc; 653 fssproj_t *fssproj; 654 fsspset_t *fsspset; 655 fsszone_t *fsszone; 656 657 ASSERT(THREAD_LOCK_HELD(t)); 658 fssproc = FSSPROC(t); 659 fssproj = FSSPROC2FSSPROJ(fssproc); 660 if (fssproj == NULL) /* if this thread already exited */ 661 return; 662 fsspset = FSSPROJ2FSSPSET(fssproj); 663 fsszone = fssproj->fssp_fsszone; 664 disp_lock_enter_high(&fsspset->fssps_displock); 665 if (++fssproj->fssp_runnable == 1) { 666 fsszone->fssz_shares += fssproj->fssp_shares; 667 if (++fsszone->fssz_runnable == 1) 668 fsspset->fssps_shares += fsszone->fssz_rshares; 669 } 670 ASSERT(fssproc->fss_runnable == 0); 671 fssproc->fss_runnable = 1; 672 disp_lock_exit_high(&fsspset->fssps_displock); 673 } 674 675 /* 676 * Fair share scheduler initialization. Called by dispinit() at boot time. 677 * We can ignore clparmsz argument since we know that the smallest possible 678 * parameter buffer is big enough for us. 679 */ 680 /*ARGSUSED*/ 681 static pri_t 682 fss_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp) 683 { 684 int i; 685 686 ASSERT(MUTEX_HELD(&cpu_lock)); 687 688 fss_cid = cid; 689 fss_maxumdpri = minclsyspri - 1; 690 fss_maxglobpri = minclsyspri; 691 fss_minglobpri = 0; 692 fsspsets = kmem_zalloc(sizeof (fsspset_t) * max_ncpus, KM_SLEEP); 693 694 /* 695 * Initialize the fssproc hash table. 696 */ 697 for (i = 0; i < FSS_LISTS; i++) 698 fss_listhead[i].fss_next = fss_listhead[i].fss_prev = 699 &fss_listhead[i]; 700 701 *clfuncspp = &fss_classfuncs; 702 703 /* 704 * Fill in fss_nice_tick and fss_nice_decay arrays: 705 * The cost of a tick is lower at positive nice values (so that it 706 * will not increase its project's usage as much as normal) with 50% 707 * drop at the maximum level and 50% increase at the minimum level. 708 * The fsspri decay is slower at positive nice values. fsspri values 709 * of processes with negative nice levels must decay faster to receive 710 * time slices more frequently than normal. 711 */ 712 for (i = 0; i < FSS_NICE_RANGE; i++) { 713 fss_nice_tick[i] = (FSS_TICK_COST * (((3 * FSS_NICE_RANGE) / 2) 714 - i)) / FSS_NICE_RANGE; 715 fss_nice_decay[i] = FSS_DECAY_MIN + 716 ((FSS_DECAY_MAX - FSS_DECAY_MIN) * i) / 717 (FSS_NICE_RANGE - 1); 718 } 719 720 return (fss_maxglobpri); 721 } 722 723 /* 724 * Calculate the new cpupri based on the usage, the number of shares and 725 * the number of active threads. Reset the tick counter for this thread. 726 */ 727 static void 728 fss_newpri(fssproc_t *fssproc) 729 { 730 kthread_t *tp; 731 fssproj_t *fssproj; 732 fsspset_t *fsspset; 733 fsszone_t *fsszone; 734 fsspri_t fsspri, maxfsspri; 735 pri_t invpri; 736 uint32_t ticks; 737 738 tp = fssproc->fss_tp; 739 ASSERT(tp != NULL); 740 741 if (tp->t_cid != fss_cid) 742 return; 743 744 ASSERT(THREAD_LOCK_HELD(tp)); 745 746 fssproj = FSSPROC2FSSPROJ(fssproc); 747 fsszone = FSSPROJ2FSSZONE(fssproj); 748 if (fssproj == NULL) 749 /* 750 * No need to change priority of exited threads. 751 */ 752 return; 753 754 fsspset = FSSPROJ2FSSPSET(fssproj); 755 disp_lock_enter_high(&fsspset->fssps_displock); 756 757 if (fssproj->fssp_shares == 0 || fsszone->fssz_rshares == 0) { 758 /* 759 * Special case: threads with no shares. 760 */ 761 fssproc->fss_umdpri = fss_minglobpri; 762 fssproc->fss_ticks = 0; 763 disp_lock_exit_high(&fsspset->fssps_displock); 764 return; 765 } 766 767 /* 768 * fsspri += shusage * nrunnable * ticks 769 */ 770 ticks = fssproc->fss_ticks; 771 fssproc->fss_ticks = 0; 772 fsspri = fssproc->fss_fsspri; 773 fsspri += fssproj->fssp_shusage * fssproj->fssp_runnable * ticks; 774 fssproc->fss_fsspri = fsspri; 775 776 if (fsspri < fss_maxumdpri) 777 fsspri = fss_maxumdpri; /* so that maxfsspri is != 0 */ 778 779 /* 780 * The general priority formula: 781 * 782 * (fsspri * umdprirange) 783 * pri = maxumdpri - ------------------------ 784 * maxfsspri 785 * 786 * If this thread's fsspri is greater than the previous largest 787 * fsspri, then record it as the new high and priority for this 788 * thread will be one (the lowest priority assigned to a thread 789 * that has non-zero shares). 790 * Note that this formula cannot produce out of bounds priority 791 * values; if it is changed, additional checks may need to be 792 * added. 793 */ 794 maxfsspri = fsspset->fssps_maxfsspri; 795 if (fsspri >= maxfsspri) { 796 fsspset->fssps_maxfsspri = fsspri; 797 disp_lock_exit_high(&fsspset->fssps_displock); 798 fssproc->fss_umdpri = 1; 799 } else { 800 disp_lock_exit_high(&fsspset->fssps_displock); 801 invpri = (fsspri * (fss_maxumdpri - 1)) / maxfsspri; 802 fssproc->fss_umdpri = fss_maxumdpri - invpri; 803 } 804 } 805 806 /* 807 * Decays usages of all running projects and resets their tick counters. 808 * Called once per second from fss_update() after updating priorities. 809 */ 810 static void 811 fss_decay_usage() 812 { 813 uint32_t zone_ext_shares, zone_int_shares; 814 uint32_t kpj_shares, pset_shares; 815 fsspset_t *fsspset; 816 fssproj_t *fssproj; 817 fsszone_t *fsszone; 818 fsspri_t maxfsspri; 819 int psetid; 820 821 mutex_enter(&fsspsets_lock); 822 /* 823 * Go through all active processor sets and decay usages of projects 824 * running on them. 825 */ 826 for (psetid = 0; psetid < max_ncpus; psetid++) { 827 fsspset = &fsspsets[psetid]; 828 mutex_enter(&fsspset->fssps_lock); 829 830 if (fsspset->fssps_cpupart == NULL || 831 (fssproj = fsspset->fssps_list) == NULL) { 832 mutex_exit(&fsspset->fssps_lock); 833 continue; 834 } 835 836 /* 837 * Decay maxfsspri for this cpu partition with the 838 * fastest possible decay rate. 839 */ 840 disp_lock_enter(&fsspset->fssps_displock); 841 842 maxfsspri = (fsspset->fssps_maxfsspri * 843 fss_nice_decay[NZERO]) / FSS_DECAY_BASE; 844 if (maxfsspri < fss_maxumdpri) 845 maxfsspri = fss_maxumdpri; 846 fsspset->fssps_maxfsspri = maxfsspri; 847 848 do { 849 /* 850 * Decay usage for each project running on 851 * this cpu partition. 852 */ 853 fssproj->fssp_usage = 854 (fssproj->fssp_usage * FSS_DECAY_USG) / 855 FSS_DECAY_BASE + fssproj->fssp_ticks; 856 fssproj->fssp_ticks = 0; 857 858 fsszone = fssproj->fssp_fsszone; 859 /* 860 * Readjust the project's number of shares if it has 861 * changed since we checked it last time. 862 */ 863 kpj_shares = fssproj->fssp_proj->kpj_shares; 864 if (fssproj->fssp_shares != kpj_shares) { 865 if (fssproj->fssp_runnable != 0) { 866 fsszone->fssz_shares -= 867 fssproj->fssp_shares; 868 fsszone->fssz_shares += kpj_shares; 869 } 870 fssproj->fssp_shares = kpj_shares; 871 } 872 873 /* 874 * Readjust the zone's number of shares if it 875 * has changed since we checked it last time. 876 */ 877 zone_ext_shares = fsszone->fssz_zone->zone_shares; 878 if (fsszone->fssz_rshares != zone_ext_shares) { 879 if (fsszone->fssz_runnable != 0) { 880 fsspset->fssps_shares -= 881 fsszone->fssz_rshares; 882 fsspset->fssps_shares += 883 zone_ext_shares; 884 } 885 fsszone->fssz_rshares = zone_ext_shares; 886 } 887 zone_int_shares = fsszone->fssz_shares; 888 pset_shares = fsspset->fssps_shares; 889 /* 890 * Calculate fssp_shusage value to be used 891 * for fsspri increments for the next second. 892 */ 893 if (kpj_shares == 0 || zone_ext_shares == 0) { 894 fssproj->fssp_shusage = 0; 895 } else if (FSSPROJ2KPROJ(fssproj) == proj0p) { 896 /* 897 * Project 0 in the global zone has 50% 898 * of its zone. 899 */ 900 fssproj->fssp_shusage = (fssproj->fssp_usage * 901 zone_int_shares * zone_int_shares) / 902 (zone_ext_shares * zone_ext_shares); 903 } else { 904 /* 905 * Thread's priority is based on its project's 906 * normalized usage (shusage) value which gets 907 * calculated this way: 908 * 909 * pset_shares^2 zone_int_shares^2 910 * usage * ------------- * ------------------ 911 * kpj_shares^2 zone_ext_shares^2 912 * 913 * Where zone_int_shares is the sum of shares 914 * of all active projects within the zone (and 915 * the pset), and zone_ext_shares is the number 916 * of zone shares (ie, zone.cpu-shares). 917 * 918 * If there is only one zone active on the pset 919 * the above reduces to: 920 * 921 * zone_int_shares^2 922 * shusage = usage * --------------------- 923 * kpj_shares^2 924 * 925 * If there's only one project active in the 926 * zone this formula reduces to: 927 * 928 * pset_shares^2 929 * shusage = usage * ---------------------- 930 * zone_ext_shares^2 931 */ 932 fssproj->fssp_shusage = fssproj->fssp_usage * 933 pset_shares * zone_int_shares; 934 fssproj->fssp_shusage /= 935 kpj_shares * zone_ext_shares; 936 fssproj->fssp_shusage *= 937 pset_shares * zone_int_shares; 938 fssproj->fssp_shusage /= 939 kpj_shares * zone_ext_shares; 940 } 941 fssproj = fssproj->fssp_next; 942 } while (fssproj != fsspset->fssps_list); 943 944 disp_lock_exit(&fsspset->fssps_displock); 945 mutex_exit(&fsspset->fssps_lock); 946 } 947 mutex_exit(&fsspsets_lock); 948 } 949 950 static void 951 fss_change_priority(kthread_t *t, fssproc_t *fssproc) 952 { 953 pri_t new_pri; 954 955 ASSERT(THREAD_LOCK_HELD(t)); 956 new_pri = fssproc->fss_umdpri; 957 ASSERT(new_pri >= 0 && new_pri <= fss_maxglobpri); 958 959 t->t_cpri = fssproc->fss_upri; 960 fssproc->fss_flags &= ~FSSRESTORE; 961 if (t == curthread || t->t_state == TS_ONPROC) { 962 /* 963 * curthread is always onproc 964 */ 965 cpu_t *cp = t->t_disp_queue->disp_cpu; 966 THREAD_CHANGE_PRI(t, new_pri); 967 if (t == cp->cpu_dispthread) 968 cp->cpu_dispatch_pri = DISP_PRIO(t); 969 if (DISP_MUST_SURRENDER(t)) { 970 fssproc->fss_flags |= FSSBACKQ; 971 cpu_surrender(t); 972 } else { 973 fssproc->fss_timeleft = fss_quantum; 974 } 975 } else { 976 /* 977 * When the priority of a thread is changed, it may be 978 * necessary to adjust its position on a sleep queue or 979 * dispatch queue. The function thread_change_pri accomplishes 980 * this. 981 */ 982 if (thread_change_pri(t, new_pri, 0)) { 983 /* 984 * The thread was on a run queue. 985 */ 986 fssproc->fss_timeleft = fss_quantum; 987 } else { 988 fssproc->fss_flags |= FSSBACKQ; 989 } 990 } 991 } 992 993 /* 994 * Update priorities of all fair-sharing threads that are currently runnable 995 * at a user mode priority based on the number of shares and current usage. 996 * Called once per second via timeout which we reset here. 997 * 998 * There are several lists of fair-sharing threads broken up by a hash on the 999 * thread pointer. Each list has its own lock. This avoids blocking all 1000 * fss_enterclass, fss_fork, and fss_exitclass operations while fss_update runs. 1001 * fss_update traverses each list in turn. 1002 */ 1003 static void 1004 fss_update(void *arg) 1005 { 1006 int i; 1007 int new_marker = -1; 1008 static int fss_update_marker; 1009 1010 /* 1011 * Decay and update usages for all projects. 1012 */ 1013 fss_decay_usage(); 1014 1015 /* 1016 * Start with the fss_update_marker list, then do the rest. 1017 */ 1018 i = fss_update_marker; 1019 1020 /* 1021 * Go around all threads, set new priorities and decay 1022 * per-thread CPU usages. 1023 */ 1024 do { 1025 /* 1026 * If this is the first list after the current marker to have 1027 * threads with priorities updates, advance the marker to this 1028 * list for the next time fss_update runs. 1029 */ 1030 if (fss_update_list(i) && 1031 new_marker == -1 && i != fss_update_marker) 1032 new_marker = i; 1033 } while ((i = FSS_LIST_NEXT(i)) != fss_update_marker); 1034 1035 /* 1036 * Advance marker for the next fss_update call 1037 */ 1038 if (new_marker != -1) 1039 fss_update_marker = new_marker; 1040 1041 (void) timeout(fss_update, arg, hz); 1042 } 1043 1044 /* 1045 * Updates priority for a list of threads. Returns 1 if the priority of one 1046 * of the threads was actually updated, 0 if none were for various reasons 1047 * (thread is no longer in the FSS class, is not runnable, has the preemption 1048 * control no-preempt bit set, etc.) 1049 */ 1050 static int 1051 fss_update_list(int i) 1052 { 1053 fssproc_t *fssproc; 1054 fssproj_t *fssproj; 1055 fsspri_t fsspri; 1056 kthread_t *t; 1057 int updated = 0; 1058 1059 mutex_enter(&fss_listlock[i]); 1060 for (fssproc = fss_listhead[i].fss_next; fssproc != &fss_listhead[i]; 1061 fssproc = fssproc->fss_next) { 1062 t = fssproc->fss_tp; 1063 /* 1064 * Lock the thread and verify the state. 1065 */ 1066 thread_lock(t); 1067 /* 1068 * Skip the thread if it is no longer in the FSS class or 1069 * is running with kernel mode priority. 1070 */ 1071 if (t->t_cid != fss_cid) 1072 goto next; 1073 if ((fssproc->fss_flags & FSSKPRI) != 0) 1074 goto next; 1075 1076 fssproj = FSSPROC2FSSPROJ(fssproc); 1077 if (fssproj == NULL) 1078 goto next; 1079 if (fssproj->fssp_shares != 0) { 1080 /* 1081 * Decay fsspri value. 1082 */ 1083 fsspri = fssproc->fss_fsspri; 1084 fsspri = (fsspri * fss_nice_decay[fssproc->fss_nice]) / 1085 FSS_DECAY_BASE; 1086 fssproc->fss_fsspri = fsspri; 1087 } 1088 1089 if (t->t_schedctl && schedctl_get_nopreempt(t)) 1090 goto next; 1091 if (t->t_state != TS_RUN && t->t_state != TS_WAIT) { 1092 /* 1093 * Make next syscall/trap call fss_trapret 1094 */ 1095 t->t_trapret = 1; 1096 aston(t); 1097 goto next; 1098 } 1099 fss_newpri(fssproc); 1100 updated = 1; 1101 1102 /* 1103 * Only dequeue the thread if it needs to be moved; otherwise 1104 * it should just round-robin here. 1105 */ 1106 if (t->t_pri != fssproc->fss_umdpri) 1107 fss_change_priority(t, fssproc); 1108 next: 1109 thread_unlock(t); 1110 } 1111 mutex_exit(&fss_listlock[i]); 1112 return (updated); 1113 } 1114 1115 /*ARGSUSED*/ 1116 static int 1117 fss_admin(caddr_t uaddr, cred_t *reqpcredp) 1118 { 1119 fssadmin_t fssadmin; 1120 1121 if (copyin(uaddr, &fssadmin, sizeof (fssadmin_t))) 1122 return (EFAULT); 1123 1124 switch (fssadmin.fss_cmd) { 1125 case FSS_SETADMIN: 1126 if (secpolicy_dispadm(reqpcredp) != 0) 1127 return (EPERM); 1128 if (fssadmin.fss_quantum <= 0 || fssadmin.fss_quantum >= hz) 1129 return (EINVAL); 1130 fss_quantum = fssadmin.fss_quantum; 1131 break; 1132 case FSS_GETADMIN: 1133 fssadmin.fss_quantum = fss_quantum; 1134 if (copyout(&fssadmin, uaddr, sizeof (fssadmin_t))) 1135 return (EFAULT); 1136 break; 1137 default: 1138 return (EINVAL); 1139 } 1140 return (0); 1141 } 1142 1143 static int 1144 fss_getclinfo(void *infop) 1145 { 1146 fssinfo_t *fssinfo = (fssinfo_t *)infop; 1147 fssinfo->fss_maxupri = fss_maxupri; 1148 return (0); 1149 } 1150 1151 static int 1152 fss_parmsin(void *parmsp) 1153 { 1154 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1155 1156 /* 1157 * Check validity of parameters. 1158 */ 1159 if ((fssparmsp->fss_uprilim > fss_maxupri || 1160 fssparmsp->fss_uprilim < -fss_maxupri) && 1161 fssparmsp->fss_uprilim != FSS_NOCHANGE) 1162 return (EINVAL); 1163 1164 if ((fssparmsp->fss_upri > fss_maxupri || 1165 fssparmsp->fss_upri < -fss_maxupri) && 1166 fssparmsp->fss_upri != FSS_NOCHANGE) 1167 return (EINVAL); 1168 1169 return (0); 1170 } 1171 1172 /*ARGSUSED*/ 1173 static int 1174 fss_parmsout(void *parmsp, pc_vaparms_t *vaparmsp) 1175 { 1176 return (0); 1177 } 1178 1179 static int 1180 fss_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp) 1181 { 1182 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1183 int priflag = 0; 1184 int limflag = 0; 1185 uint_t cnt; 1186 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 1187 1188 /* 1189 * FSS_NOCHANGE (-32768) is outside of the range of values for 1190 * fss_uprilim and fss_upri. If the structure fssparms_t is changed, 1191 * FSS_NOCHANGE should be replaced by a flag word. 1192 */ 1193 fssparmsp->fss_uprilim = FSS_NOCHANGE; 1194 fssparmsp->fss_upri = FSS_NOCHANGE; 1195 1196 /* 1197 * Get the varargs parameter and check validity of parameters. 1198 */ 1199 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 1200 return (EINVAL); 1201 1202 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 1203 switch (vpp->pc_key) { 1204 case FSS_KY_UPRILIM: 1205 if (limflag++) 1206 return (EINVAL); 1207 fssparmsp->fss_uprilim = (pri_t)vpp->pc_parm; 1208 if (fssparmsp->fss_uprilim > fss_maxupri || 1209 fssparmsp->fss_uprilim < -fss_maxupri) 1210 return (EINVAL); 1211 break; 1212 case FSS_KY_UPRI: 1213 if (priflag++) 1214 return (EINVAL); 1215 fssparmsp->fss_upri = (pri_t)vpp->pc_parm; 1216 if (fssparmsp->fss_upri > fss_maxupri || 1217 fssparmsp->fss_upri < -fss_maxupri) 1218 return (EINVAL); 1219 break; 1220 default: 1221 return (EINVAL); 1222 } 1223 } 1224 1225 if (vaparmsp->pc_vaparmscnt == 0) { 1226 /* 1227 * Use default parameters. 1228 */ 1229 fssparmsp->fss_upri = fssparmsp->fss_uprilim = 0; 1230 } 1231 1232 return (0); 1233 } 1234 1235 /* 1236 * Copy all selected fair-sharing class parameters to the user. The parameters 1237 * are specified by a key. 1238 */ 1239 static int 1240 fss_vaparmsout(void *parmsp, pc_vaparms_t *vaparmsp) 1241 { 1242 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1243 int priflag = 0; 1244 int limflag = 0; 1245 uint_t cnt; 1246 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 1247 1248 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock)); 1249 1250 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 1251 return (EINVAL); 1252 1253 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 1254 switch (vpp->pc_key) { 1255 case FSS_KY_UPRILIM: 1256 if (limflag++) 1257 return (EINVAL); 1258 if (copyout(&fssparmsp->fss_uprilim, 1259 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1260 return (EFAULT); 1261 break; 1262 case FSS_KY_UPRI: 1263 if (priflag++) 1264 return (EINVAL); 1265 if (copyout(&fssparmsp->fss_upri, 1266 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1267 return (EFAULT); 1268 break; 1269 default: 1270 return (EINVAL); 1271 } 1272 } 1273 1274 return (0); 1275 } 1276 1277 /* 1278 * Return the user mode scheduling priority range. 1279 */ 1280 static int 1281 fss_getclpri(pcpri_t *pcprip) 1282 { 1283 pcprip->pc_clpmax = fss_maxupri; 1284 pcprip->pc_clpmin = -fss_maxupri; 1285 return (0); 1286 } 1287 1288 static int 1289 fss_alloc(void **p, int flag) 1290 { 1291 void *bufp; 1292 1293 if ((bufp = kmem_zalloc(sizeof (fssproc_t), flag)) == NULL) { 1294 return (ENOMEM); 1295 } else { 1296 *p = bufp; 1297 return (0); 1298 } 1299 } 1300 1301 static void 1302 fss_free(void *bufp) 1303 { 1304 if (bufp) 1305 kmem_free(bufp, sizeof (fssproc_t)); 1306 } 1307 1308 /* 1309 * Thread functions 1310 */ 1311 static int 1312 fss_enterclass(kthread_t *t, id_t cid, void *parmsp, cred_t *reqpcredp, 1313 void *bufp) 1314 { 1315 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1316 fssproc_t *fssproc; 1317 pri_t reqfssuprilim; 1318 pri_t reqfssupri; 1319 static uint32_t fssexists = 0; 1320 fsspset_t *fsspset; 1321 fssproj_t *fssproj; 1322 fsszone_t *fsszone; 1323 kproject_t *kpj; 1324 zone_t *zone; 1325 int fsszone_allocated = 0; 1326 1327 fssproc = (fssproc_t *)bufp; 1328 ASSERT(fssproc != NULL); 1329 1330 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 1331 1332 /* 1333 * Only root can move threads to FSS class. 1334 */ 1335 if (reqpcredp != NULL && secpolicy_setpriority(reqpcredp) != 0) 1336 return (EPERM); 1337 /* 1338 * Initialize the fssproc structure. 1339 */ 1340 fssproc->fss_umdpri = fss_maxumdpri / 2; 1341 1342 if (fssparmsp == NULL) { 1343 /* 1344 * Use default values. 1345 */ 1346 fssproc->fss_nice = NZERO; 1347 fssproc->fss_uprilim = fssproc->fss_upri = 0; 1348 } else { 1349 /* 1350 * Use supplied values. 1351 */ 1352 if (fssparmsp->fss_uprilim == FSS_NOCHANGE) { 1353 reqfssuprilim = 0; 1354 } else { 1355 if (fssparmsp->fss_uprilim > 0 && 1356 secpolicy_setpriority(reqpcredp) != 0) 1357 return (EPERM); 1358 reqfssuprilim = fssparmsp->fss_uprilim; 1359 } 1360 if (fssparmsp->fss_upri == FSS_NOCHANGE) { 1361 reqfssupri = reqfssuprilim; 1362 } else { 1363 if (fssparmsp->fss_upri > 0 && 1364 secpolicy_setpriority(reqpcredp) != 0) 1365 return (EPERM); 1366 /* 1367 * Set the user priority to the requested value or 1368 * the upri limit, whichever is lower. 1369 */ 1370 reqfssupri = fssparmsp->fss_upri; 1371 if (reqfssupri > reqfssuprilim) 1372 reqfssupri = reqfssuprilim; 1373 } 1374 fssproc->fss_uprilim = reqfssuprilim; 1375 fssproc->fss_upri = reqfssupri; 1376 fssproc->fss_nice = NZERO - (NZERO * reqfssupri) / fss_maxupri; 1377 if (fssproc->fss_nice > FSS_NICE_MAX) 1378 fssproc->fss_nice = FSS_NICE_MAX; 1379 } 1380 1381 fssproc->fss_timeleft = fss_quantum; 1382 fssproc->fss_tp = t; 1383 cpucaps_sc_init(&fssproc->fss_caps); 1384 1385 /* 1386 * Put a lock on our fsspset structure. 1387 */ 1388 mutex_enter(&fsspsets_lock); 1389 fsspset = fss_find_fsspset(t->t_cpupart); 1390 mutex_enter(&fsspset->fssps_lock); 1391 mutex_exit(&fsspsets_lock); 1392 1393 zone = ttoproc(t)->p_zone; 1394 if ((fsszone = fss_find_fsszone(fsspset, zone)) == NULL) { 1395 if ((fsszone = kmem_zalloc(sizeof (fsszone_t), KM_NOSLEEP)) 1396 == NULL) { 1397 mutex_exit(&fsspset->fssps_lock); 1398 return (ENOMEM); 1399 } else { 1400 fsszone_allocated = 1; 1401 fss_insert_fsszone(fsspset, zone, fsszone); 1402 } 1403 } 1404 kpj = ttoproj(t); 1405 if ((fssproj = fss_find_fssproj(fsspset, kpj)) == NULL) { 1406 if ((fssproj = kmem_zalloc(sizeof (fssproj_t), KM_NOSLEEP)) 1407 == NULL) { 1408 if (fsszone_allocated) { 1409 fss_remove_fsszone(fsspset, fsszone); 1410 kmem_free(fsszone, sizeof (fsszone_t)); 1411 } 1412 mutex_exit(&fsspset->fssps_lock); 1413 return (ENOMEM); 1414 } else { 1415 fss_insert_fssproj(fsspset, kpj, fsszone, fssproj); 1416 } 1417 } 1418 fssproj->fssp_threads++; 1419 fssproc->fss_proj = fssproj; 1420 1421 /* 1422 * Reset priority. Process goes to a "user mode" priority here 1423 * regardless of whether or not it has slept since entering the kernel. 1424 */ 1425 thread_lock(t); 1426 t->t_clfuncs = &(sclass[cid].cl_funcs->thread); 1427 t->t_cid = cid; 1428 t->t_cldata = (void *)fssproc; 1429 t->t_schedflag |= TS_RUNQMATCH; 1430 fss_change_priority(t, fssproc); 1431 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC || 1432 t->t_state == TS_WAIT) 1433 fss_active(t); 1434 thread_unlock(t); 1435 1436 mutex_exit(&fsspset->fssps_lock); 1437 1438 /* 1439 * Link new structure into fssproc list. 1440 */ 1441 FSS_LIST_INSERT(fssproc); 1442 1443 /* 1444 * If this is the first fair-sharing thread to occur since boot, 1445 * we set up the initial call to fss_update() here. Use an atomic 1446 * compare-and-swap since that's easier and faster than a mutex 1447 * (but check with an ordinary load first since most of the time 1448 * this will already be done). 1449 */ 1450 if (fssexists == 0 && cas32(&fssexists, 0, 1) == 0) 1451 (void) timeout(fss_update, NULL, hz); 1452 1453 return (0); 1454 } 1455 1456 /* 1457 * Remove fssproc_t from the list. 1458 */ 1459 static void 1460 fss_exitclass(void *procp) 1461 { 1462 fssproc_t *fssproc = (fssproc_t *)procp; 1463 fssproj_t *fssproj; 1464 fsspset_t *fsspset; 1465 fsszone_t *fsszone; 1466 kthread_t *t = fssproc->fss_tp; 1467 1468 /* 1469 * We should be either getting this thread off the deathrow or 1470 * this thread has already moved to another scheduling class and 1471 * we're being called with its old cldata buffer pointer. In both 1472 * cases, the content of this buffer can not be changed while we're 1473 * here. 1474 */ 1475 mutex_enter(&fsspsets_lock); 1476 thread_lock(t); 1477 if (t->t_cid != fss_cid) { 1478 /* 1479 * We're being called as a result of the priocntl() system 1480 * call -- someone is trying to move our thread to another 1481 * scheduling class. We can't call fss_inactive() here 1482 * because our thread's t_cldata pointer already points 1483 * to another scheduling class specific data. 1484 */ 1485 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 1486 1487 fssproj = FSSPROC2FSSPROJ(fssproc); 1488 fsspset = FSSPROJ2FSSPSET(fssproj); 1489 fsszone = fssproj->fssp_fsszone; 1490 1491 if (fssproc->fss_runnable) { 1492 disp_lock_enter_high(&fsspset->fssps_displock); 1493 if (--fssproj->fssp_runnable == 0) { 1494 fsszone->fssz_shares -= fssproj->fssp_shares; 1495 if (--fsszone->fssz_runnable == 0) 1496 fsspset->fssps_shares -= 1497 fsszone->fssz_rshares; 1498 } 1499 disp_lock_exit_high(&fsspset->fssps_displock); 1500 } 1501 thread_unlock(t); 1502 1503 mutex_enter(&fsspset->fssps_lock); 1504 if (--fssproj->fssp_threads == 0) { 1505 fss_remove_fssproj(fsspset, fssproj); 1506 if (fsszone->fssz_nproj == 0) 1507 kmem_free(fsszone, sizeof (fsszone_t)); 1508 kmem_free(fssproj, sizeof (fssproj_t)); 1509 } 1510 mutex_exit(&fsspset->fssps_lock); 1511 1512 } else { 1513 ASSERT(t->t_state == TS_FREE); 1514 /* 1515 * We're being called from thread_free() when our thread 1516 * is removed from the deathrow. There is nothing we need 1517 * do here since everything should've been done earlier 1518 * in fss_exit(). 1519 */ 1520 thread_unlock(t); 1521 } 1522 mutex_exit(&fsspsets_lock); 1523 1524 FSS_LIST_DELETE(fssproc); 1525 fss_free(fssproc); 1526 } 1527 1528 /*ARGSUSED*/ 1529 static int 1530 fss_canexit(kthread_t *t, cred_t *credp) 1531 { 1532 /* 1533 * A thread is allowed to exit FSS only if we have sufficient 1534 * privileges. 1535 */ 1536 if (credp != NULL && secpolicy_setpriority(credp) != 0) 1537 return (EPERM); 1538 else 1539 return (0); 1540 } 1541 1542 /* 1543 * Initialize fair-share class specific proc structure for a child. 1544 */ 1545 static int 1546 fss_fork(kthread_t *pt, kthread_t *ct, void *bufp) 1547 { 1548 fssproc_t *pfssproc; /* ptr to parent's fssproc structure */ 1549 fssproc_t *cfssproc; /* ptr to child's fssproc structure */ 1550 fssproj_t *fssproj; 1551 fsspset_t *fsspset; 1552 1553 ASSERT(MUTEX_HELD(&ttoproc(pt)->p_lock)); 1554 ASSERT(ct->t_state == TS_STOPPED); 1555 1556 cfssproc = (fssproc_t *)bufp; 1557 ASSERT(cfssproc != NULL); 1558 bzero(cfssproc, sizeof (fssproc_t)); 1559 1560 thread_lock(pt); 1561 pfssproc = FSSPROC(pt); 1562 fssproj = FSSPROC2FSSPROJ(pfssproc); 1563 fsspset = FSSPROJ2FSSPSET(fssproj); 1564 thread_unlock(pt); 1565 1566 mutex_enter(&fsspset->fssps_lock); 1567 /* 1568 * Initialize child's fssproc structure. 1569 */ 1570 thread_lock(pt); 1571 ASSERT(FSSPROJ(pt) == fssproj); 1572 cfssproc->fss_proj = fssproj; 1573 cfssproc->fss_timeleft = fss_quantum; 1574 cfssproc->fss_umdpri = pfssproc->fss_umdpri; 1575 cfssproc->fss_fsspri = 0; 1576 cfssproc->fss_uprilim = pfssproc->fss_uprilim; 1577 cfssproc->fss_upri = pfssproc->fss_upri; 1578 cfssproc->fss_tp = ct; 1579 cfssproc->fss_nice = pfssproc->fss_nice; 1580 cpucaps_sc_init(&cfssproc->fss_caps); 1581 1582 cfssproc->fss_flags = 1583 pfssproc->fss_flags & ~(FSSKPRI | FSSBACKQ | FSSRESTORE); 1584 ct->t_cldata = (void *)cfssproc; 1585 ct->t_schedflag |= TS_RUNQMATCH; 1586 thread_unlock(pt); 1587 1588 fssproj->fssp_threads++; 1589 mutex_exit(&fsspset->fssps_lock); 1590 1591 /* 1592 * Link new structure into fssproc hash table. 1593 */ 1594 FSS_LIST_INSERT(cfssproc); 1595 return (0); 1596 } 1597 1598 /* 1599 * Child is placed at back of dispatcher queue and parent gives up processor 1600 * so that the child runs first after the fork. This allows the child 1601 * immediately execing to break the multiple use of copy on write pages with no 1602 * disk home. The parent will get to steal them back rather than uselessly 1603 * copying them. 1604 */ 1605 static void 1606 fss_forkret(kthread_t *t, kthread_t *ct) 1607 { 1608 proc_t *pp = ttoproc(t); 1609 proc_t *cp = ttoproc(ct); 1610 fssproc_t *fssproc; 1611 1612 ASSERT(t == curthread); 1613 ASSERT(MUTEX_HELD(&pidlock)); 1614 1615 /* 1616 * Grab the child's p_lock before dropping pidlock to ensure the 1617 * process does not disappear before we set it running. 1618 */ 1619 mutex_enter(&cp->p_lock); 1620 mutex_exit(&pidlock); 1621 continuelwps(cp); 1622 mutex_exit(&cp->p_lock); 1623 1624 mutex_enter(&pp->p_lock); 1625 continuelwps(pp); 1626 mutex_exit(&pp->p_lock); 1627 1628 thread_lock(t); 1629 1630 fssproc = FSSPROC(t); 1631 fss_newpri(fssproc); 1632 fssproc->fss_timeleft = fss_quantum; 1633 t->t_pri = fssproc->fss_umdpri; 1634 ASSERT(t->t_pri >= 0 && t->t_pri <= fss_maxglobpri); 1635 fssproc->fss_flags &= ~FSSKPRI; 1636 THREAD_TRANSITION(t); 1637 1638 /* 1639 * We don't want to call fss_setrun(t) here because it may call 1640 * fss_active, which we don't need. 1641 */ 1642 fssproc->fss_flags &= ~FSSBACKQ; 1643 1644 if (t->t_disp_time != lbolt) 1645 setbackdq(t); 1646 else 1647 setfrontdq(t); 1648 1649 thread_unlock(t); 1650 1651 swtch(); 1652 } 1653 1654 /* 1655 * Get the fair-sharing parameters of the thread pointed to by fssprocp into 1656 * the buffer pointed by fssparmsp. 1657 */ 1658 static void 1659 fss_parmsget(kthread_t *t, void *parmsp) 1660 { 1661 fssproc_t *fssproc = FSSPROC(t); 1662 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1663 1664 fssparmsp->fss_uprilim = fssproc->fss_uprilim; 1665 fssparmsp->fss_upri = fssproc->fss_upri; 1666 } 1667 1668 /*ARGSUSED*/ 1669 static int 1670 fss_parmsset(kthread_t *t, void *parmsp, id_t reqpcid, cred_t *reqpcredp) 1671 { 1672 char nice; 1673 pri_t reqfssuprilim; 1674 pri_t reqfssupri; 1675 fssproc_t *fssproc = FSSPROC(t); 1676 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1677 1678 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 1679 1680 if (fssparmsp->fss_uprilim == FSS_NOCHANGE) 1681 reqfssuprilim = fssproc->fss_uprilim; 1682 else 1683 reqfssuprilim = fssparmsp->fss_uprilim; 1684 1685 if (fssparmsp->fss_upri == FSS_NOCHANGE) 1686 reqfssupri = fssproc->fss_upri; 1687 else 1688 reqfssupri = fssparmsp->fss_upri; 1689 1690 /* 1691 * Make sure the user priority doesn't exceed the upri limit. 1692 */ 1693 if (reqfssupri > reqfssuprilim) 1694 reqfssupri = reqfssuprilim; 1695 1696 /* 1697 * Basic permissions enforced by generic kernel code for all classes 1698 * require that a thread attempting to change the scheduling parameters 1699 * of a target thread be privileged or have a real or effective UID 1700 * matching that of the target thread. We are not called unless these 1701 * basic permission checks have already passed. The fair-sharing class 1702 * requires in addition that the calling thread be privileged if it 1703 * is attempting to raise the upri limit above its current value. 1704 * This may have been checked previously but if our caller passed us 1705 * a non-NULL credential pointer we assume it hasn't and we check it 1706 * here. 1707 */ 1708 if ((reqpcredp != NULL) && 1709 (reqfssuprilim > fssproc->fss_uprilim) && 1710 secpolicy_setpriority(reqpcredp) != 0) 1711 return (EPERM); 1712 1713 /* 1714 * Set fss_nice to the nice value corresponding to the user priority we 1715 * are setting. Note that setting the nice field of the parameter 1716 * struct won't affect upri or nice. 1717 */ 1718 nice = NZERO - (reqfssupri * NZERO) / fss_maxupri; 1719 if (nice > FSS_NICE_MAX) 1720 nice = FSS_NICE_MAX; 1721 1722 thread_lock(t); 1723 1724 fssproc->fss_uprilim = reqfssuprilim; 1725 fssproc->fss_upri = reqfssupri; 1726 fssproc->fss_nice = nice; 1727 fss_newpri(fssproc); 1728 1729 if ((fssproc->fss_flags & FSSKPRI) != 0) { 1730 thread_unlock(t); 1731 return (0); 1732 } 1733 1734 fss_change_priority(t, fssproc); 1735 thread_unlock(t); 1736 return (0); 1737 1738 } 1739 1740 /* 1741 * The thread is being stopped. 1742 */ 1743 /*ARGSUSED*/ 1744 static void 1745 fss_stop(kthread_t *t, int why, int what) 1746 { 1747 ASSERT(THREAD_LOCK_HELD(t)); 1748 ASSERT(t == curthread); 1749 1750 fss_inactive(t); 1751 } 1752 1753 /* 1754 * The current thread is exiting, do necessary adjustments to its project 1755 */ 1756 static void 1757 fss_exit(kthread_t *t) 1758 { 1759 fsspset_t *fsspset; 1760 fssproj_t *fssproj; 1761 fssproc_t *fssproc; 1762 fsszone_t *fsszone; 1763 int free = 0; 1764 1765 /* 1766 * Thread t here is either a current thread (in which case we hold 1767 * its process' p_lock), or a thread being destroyed by forklwp_fail(), 1768 * in which case we hold pidlock and thread is no longer on the 1769 * thread list. 1770 */ 1771 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock) || MUTEX_HELD(&pidlock)); 1772 1773 fssproc = FSSPROC(t); 1774 fssproj = FSSPROC2FSSPROJ(fssproc); 1775 fsspset = FSSPROJ2FSSPSET(fssproj); 1776 fsszone = fssproj->fssp_fsszone; 1777 1778 mutex_enter(&fsspsets_lock); 1779 mutex_enter(&fsspset->fssps_lock); 1780 1781 thread_lock(t); 1782 disp_lock_enter_high(&fsspset->fssps_displock); 1783 if (t->t_state == TS_ONPROC || t->t_state == TS_RUN) { 1784 if (--fssproj->fssp_runnable == 0) { 1785 fsszone->fssz_shares -= fssproj->fssp_shares; 1786 if (--fsszone->fssz_runnable == 0) 1787 fsspset->fssps_shares -= fsszone->fssz_rshares; 1788 } 1789 ASSERT(fssproc->fss_runnable == 1); 1790 fssproc->fss_runnable = 0; 1791 } 1792 if (--fssproj->fssp_threads == 0) { 1793 fss_remove_fssproj(fsspset, fssproj); 1794 free = 1; 1795 } 1796 disp_lock_exit_high(&fsspset->fssps_displock); 1797 fssproc->fss_proj = NULL; /* mark this thread as already exited */ 1798 thread_unlock(t); 1799 1800 if (free) { 1801 if (fsszone->fssz_nproj == 0) 1802 kmem_free(fsszone, sizeof (fsszone_t)); 1803 kmem_free(fssproj, sizeof (fssproj_t)); 1804 } 1805 mutex_exit(&fsspset->fssps_lock); 1806 mutex_exit(&fsspsets_lock); 1807 1808 /* 1809 * A thread could be exiting in between clock ticks, so we need to 1810 * calculate how much CPU time it used since it was charged last time. 1811 * 1812 * CPU caps are not enforced on exiting processes - it is usually 1813 * desirable to exit as soon as possible to free resources. 1814 */ 1815 if (CPUCAPS_ON()) { 1816 thread_lock(t); 1817 fssproc = FSSPROC(t); 1818 (void) cpucaps_charge(t, &fssproc->fss_caps, 1819 CPUCAPS_CHARGE_ONLY); 1820 thread_unlock(t); 1821 } 1822 } 1823 1824 static void 1825 fss_nullsys() 1826 { 1827 } 1828 1829 /* 1830 * fss_swapin() returns -1 if the thread is loaded or is not eligible to be 1831 * swapped in. Otherwise, it returns the thread's effective priority based 1832 * on swapout time and size of process (0 <= epri <= 0 SHRT_MAX). 1833 */ 1834 /*ARGSUSED*/ 1835 static pri_t 1836 fss_swapin(kthread_t *t, int flags) 1837 { 1838 fssproc_t *fssproc = FSSPROC(t); 1839 long epri = -1; 1840 proc_t *pp = ttoproc(t); 1841 1842 ASSERT(THREAD_LOCK_HELD(t)); 1843 1844 if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) { 1845 time_t swapout_time; 1846 1847 swapout_time = (lbolt - t->t_stime) / hz; 1848 if (INHERITED(t) || (fssproc->fss_flags & FSSKPRI)) { 1849 epri = (long)DISP_PRIO(t) + swapout_time; 1850 } else { 1851 /* 1852 * Threads which have been out for a long time, 1853 * have high user mode priority and are associated 1854 * with a small address space are more deserving. 1855 */ 1856 epri = fssproc->fss_umdpri; 1857 ASSERT(epri >= 0 && epri <= fss_maxumdpri); 1858 epri += swapout_time - pp->p_swrss / nz(maxpgio)/2; 1859 } 1860 /* 1861 * Scale epri so that SHRT_MAX / 2 represents zero priority. 1862 */ 1863 epri += SHRT_MAX / 2; 1864 if (epri < 0) 1865 epri = 0; 1866 else if (epri > SHRT_MAX) 1867 epri = SHRT_MAX; 1868 } 1869 return ((pri_t)epri); 1870 } 1871 1872 /* 1873 * fss_swapout() returns -1 if the thread isn't loaded or is not eligible to 1874 * be swapped out. Otherwise, it returns the thread's effective priority 1875 * based on if the swapper is in softswap or hardswap mode. 1876 */ 1877 static pri_t 1878 fss_swapout(kthread_t *t, int flags) 1879 { 1880 fssproc_t *fssproc = FSSPROC(t); 1881 long epri = -1; 1882 proc_t *pp = ttoproc(t); 1883 time_t swapin_time; 1884 1885 ASSERT(THREAD_LOCK_HELD(t)); 1886 1887 if (INHERITED(t) || 1888 (fssproc->fss_flags & FSSKPRI) || 1889 (t->t_proc_flag & TP_LWPEXIT) || 1890 (t->t_state & (TS_ZOMB|TS_FREE|TS_STOPPED|TS_ONPROC|TS_WAIT)) || 1891 !(t->t_schedflag & TS_LOAD) || 1892 !(SWAP_OK(t))) 1893 return (-1); 1894 1895 ASSERT(t->t_state & (TS_SLEEP | TS_RUN)); 1896 1897 swapin_time = (lbolt - t->t_stime) / hz; 1898 1899 if (flags == SOFTSWAP) { 1900 if (t->t_state == TS_SLEEP && swapin_time > maxslp) { 1901 epri = 0; 1902 } else { 1903 return ((pri_t)epri); 1904 } 1905 } else { 1906 pri_t pri; 1907 1908 if ((t->t_state == TS_SLEEP && swapin_time > fss_minslp) || 1909 (t->t_state == TS_RUN && swapin_time > fss_minrun)) { 1910 pri = fss_maxumdpri; 1911 epri = swapin_time - 1912 (rm_asrss(pp->p_as) / nz(maxpgio)/2) - (long)pri; 1913 } else { 1914 return ((pri_t)epri); 1915 } 1916 } 1917 1918 /* 1919 * Scale epri so that SHRT_MAX / 2 represents zero priority. 1920 */ 1921 epri += SHRT_MAX / 2; 1922 if (epri < 0) 1923 epri = 0; 1924 else if (epri > SHRT_MAX) 1925 epri = SHRT_MAX; 1926 1927 return ((pri_t)epri); 1928 } 1929 1930 /* 1931 * If thread is currently at a kernel mode priority (has slept) and is 1932 * returning to the userland we assign it the appropriate user mode priority 1933 * and time quantum here. If we're lowering the thread's priority below that 1934 * of other runnable threads then we will set runrun via cpu_surrender() to 1935 * cause preemption. 1936 */ 1937 static void 1938 fss_trapret(kthread_t *t) 1939 { 1940 fssproc_t *fssproc = FSSPROC(t); 1941 cpu_t *cp = CPU; 1942 1943 ASSERT(THREAD_LOCK_HELD(t)); 1944 ASSERT(t == curthread); 1945 ASSERT(cp->cpu_dispthread == t); 1946 ASSERT(t->t_state == TS_ONPROC); 1947 1948 t->t_kpri_req = 0; 1949 if (fssproc->fss_flags & FSSKPRI) { 1950 /* 1951 * If thread has blocked in the kernel 1952 */ 1953 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri); 1954 cp->cpu_dispatch_pri = DISP_PRIO(t); 1955 ASSERT(t->t_pri >= 0 && t->t_pri <= fss_maxglobpri); 1956 fssproc->fss_flags &= ~FSSKPRI; 1957 1958 if (DISP_MUST_SURRENDER(t)) 1959 cpu_surrender(t); 1960 } 1961 1962 /* 1963 * Swapout lwp if the swapper is waiting for this thread to reach 1964 * a safe point. 1965 */ 1966 if (t->t_schedflag & TS_SWAPENQ) { 1967 thread_unlock(t); 1968 swapout_lwp(ttolwp(t)); 1969 thread_lock(t); 1970 } 1971 } 1972 1973 /* 1974 * Arrange for thread to be placed in appropriate location on dispatcher queue. 1975 * This is called with the current thread in TS_ONPROC and locked. 1976 */ 1977 static void 1978 fss_preempt(kthread_t *t) 1979 { 1980 fssproc_t *fssproc = FSSPROC(t); 1981 klwp_t *lwp; 1982 uint_t flags; 1983 1984 ASSERT(t == curthread); 1985 ASSERT(THREAD_LOCK_HELD(curthread)); 1986 ASSERT(t->t_state == TS_ONPROC); 1987 1988 /* 1989 * If preempted in the kernel, make sure the thread has a kernel 1990 * priority if needed. 1991 */ 1992 lwp = curthread->t_lwp; 1993 if (!(fssproc->fss_flags & FSSKPRI) && lwp != NULL && t->t_kpri_req) { 1994 fssproc->fss_flags |= FSSKPRI; 1995 THREAD_CHANGE_PRI(t, minclsyspri); 1996 ASSERT(t->t_pri >= 0 && t->t_pri <= fss_maxglobpri); 1997 t->t_trapret = 1; /* so that fss_trapret will run */ 1998 aston(t); 1999 } 2000 2001 /* 2002 * This thread may be placed on wait queue by CPU Caps. In this case we 2003 * do not need to do anything until it is removed from the wait queue. 2004 * Do not enforce CPU caps on threads running at a kernel priority 2005 */ 2006 if (CPUCAPS_ON()) { 2007 (void) cpucaps_charge(t, &fssproc->fss_caps, 2008 CPUCAPS_CHARGE_ENFORCE); 2009 2010 if (!(fssproc->fss_flags & FSSKPRI) && CPUCAPS_ENFORCE(t)) 2011 return; 2012 } 2013 2014 /* 2015 * If preempted in user-land mark the thread as swappable because it 2016 * cannot be holding any kernel locks. 2017 */ 2018 ASSERT(t->t_schedflag & TS_DONT_SWAP); 2019 if (lwp != NULL && lwp->lwp_state == LWP_USER) 2020 t->t_schedflag &= ~TS_DONT_SWAP; 2021 2022 /* 2023 * Check to see if we're doing "preemption control" here. If 2024 * we are, and if the user has requested that this thread not 2025 * be preempted, and if preemptions haven't been put off for 2026 * too long, let the preemption happen here but try to make 2027 * sure the thread is rescheduled as soon as possible. We do 2028 * this by putting it on the front of the highest priority run 2029 * queue in the FSS class. If the preemption has been put off 2030 * for too long, clear the "nopreempt" bit and let the thread 2031 * be preempted. 2032 */ 2033 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 2034 if (fssproc->fss_timeleft > -SC_MAX_TICKS) { 2035 DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t); 2036 if (!(fssproc->fss_flags & FSSKPRI)) { 2037 /* 2038 * If not already remembered, remember current 2039 * priority for restoration in fss_yield(). 2040 */ 2041 if (!(fssproc->fss_flags & FSSRESTORE)) { 2042 fssproc->fss_scpri = t->t_pri; 2043 fssproc->fss_flags |= FSSRESTORE; 2044 } 2045 THREAD_CHANGE_PRI(t, fss_maxumdpri); 2046 t->t_schedflag |= TS_DONT_SWAP; 2047 } 2048 schedctl_set_yield(t, 1); 2049 setfrontdq(t); 2050 return; 2051 } else { 2052 if (fssproc->fss_flags & FSSRESTORE) { 2053 THREAD_CHANGE_PRI(t, fssproc->fss_scpri); 2054 fssproc->fss_flags &= ~FSSRESTORE; 2055 } 2056 schedctl_set_nopreempt(t, 0); 2057 DTRACE_SCHED1(schedctl__preempt, kthread_t *, t); 2058 /* 2059 * Fall through and be preempted below. 2060 */ 2061 } 2062 } 2063 2064 flags = fssproc->fss_flags & (FSSBACKQ | FSSKPRI); 2065 2066 if (flags == FSSBACKQ) { 2067 fssproc->fss_timeleft = fss_quantum; 2068 fssproc->fss_flags &= ~FSSBACKQ; 2069 setbackdq(t); 2070 } else if (flags == (FSSBACKQ | FSSKPRI)) { 2071 fssproc->fss_flags &= ~FSSBACKQ; 2072 setbackdq(t); 2073 } else { 2074 setfrontdq(t); 2075 } 2076 } 2077 2078 /* 2079 * Called when a thread is waking up and is to be placed on the run queue. 2080 */ 2081 static void 2082 fss_setrun(kthread_t *t) 2083 { 2084 fssproc_t *fssproc = FSSPROC(t); 2085 2086 ASSERT(THREAD_LOCK_HELD(t)); /* t should be in transition */ 2087 2088 if (t->t_state == TS_SLEEP || t->t_state == TS_STOPPED) 2089 fss_active(t); 2090 2091 fssproc->fss_timeleft = fss_quantum; 2092 2093 fssproc->fss_flags &= ~FSSBACKQ; 2094 /* 2095 * If previously were running at the kernel priority then keep that 2096 * priority and the fss_timeleft doesn't matter. 2097 */ 2098 if ((fssproc->fss_flags & FSSKPRI) == 0) 2099 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri); 2100 2101 if (t->t_disp_time != lbolt) 2102 setbackdq(t); 2103 else 2104 setfrontdq(t); 2105 } 2106 2107 /* 2108 * Prepare thread for sleep. We reset the thread priority so it will run at the 2109 * kernel priority level when it wakes up. 2110 */ 2111 static void 2112 fss_sleep(kthread_t *t) 2113 { 2114 fssproc_t *fssproc = FSSPROC(t); 2115 2116 ASSERT(t == curthread); 2117 ASSERT(THREAD_LOCK_HELD(t)); 2118 2119 ASSERT(t->t_state == TS_ONPROC); 2120 2121 /* 2122 * Account for time spent on CPU before going to sleep. 2123 */ 2124 (void) CPUCAPS_CHARGE(t, &fssproc->fss_caps, CPUCAPS_CHARGE_ENFORCE); 2125 2126 fss_inactive(t); 2127 2128 /* 2129 * Assign a system priority to the thread and arrange for it to be 2130 * retained when the thread is next placed on the run queue (i.e., 2131 * when it wakes up) instead of being given a new pri. Also arrange 2132 * for trapret processing as the thread leaves the system call so it 2133 * will drop back to normal priority range. 2134 */ 2135 if (t->t_kpri_req) { 2136 THREAD_CHANGE_PRI(t, minclsyspri); 2137 fssproc->fss_flags |= FSSKPRI; 2138 t->t_trapret = 1; /* so that fss_trapret will run */ 2139 aston(t); 2140 } else if (fssproc->fss_flags & FSSKPRI) { 2141 /* 2142 * The thread has done a THREAD_KPRI_REQUEST(), slept, then 2143 * done THREAD_KPRI_RELEASE() (so no t_kpri_req is 0 again), 2144 * then slept again all without finishing the current system 2145 * call so trapret won't have cleared FSSKPRI 2146 */ 2147 fssproc->fss_flags &= ~FSSKPRI; 2148 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri); 2149 if (DISP_MUST_SURRENDER(curthread)) 2150 cpu_surrender(t); 2151 } 2152 t->t_stime = lbolt; /* time stamp for the swapper */ 2153 } 2154 2155 /* 2156 * A tick interrupt has ocurrend on a running thread. Check to see if our 2157 * time slice has expired. We must also clear the TS_DONT_SWAP flag in 2158 * t_schedflag if the thread is eligible to be swapped out. 2159 */ 2160 static void 2161 fss_tick(kthread_t *t) 2162 { 2163 fssproc_t *fssproc; 2164 fssproj_t *fssproj; 2165 klwp_t *lwp; 2166 boolean_t call_cpu_surrender = B_FALSE; 2167 boolean_t cpucaps_enforce = B_FALSE; 2168 2169 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 2170 2171 /* 2172 * It's safe to access fsspset and fssproj structures because we're 2173 * holding our p_lock here. 2174 */ 2175 thread_lock(t); 2176 fssproc = FSSPROC(t); 2177 fssproj = FSSPROC2FSSPROJ(fssproc); 2178 if (fssproj != NULL) { 2179 fsspset_t *fsspset = FSSPROJ2FSSPSET(fssproj); 2180 disp_lock_enter_high(&fsspset->fssps_displock); 2181 fssproj->fssp_ticks += fss_nice_tick[fssproc->fss_nice]; 2182 fssproc->fss_ticks++; 2183 disp_lock_exit_high(&fsspset->fssps_displock); 2184 } 2185 2186 /* 2187 * Keep track of thread's project CPU usage. Note that projects 2188 * get charged even when threads are running in the kernel. 2189 * Do not surrender CPU if running in the SYS class. 2190 */ 2191 if (CPUCAPS_ON()) { 2192 cpucaps_enforce = cpucaps_charge(t, 2193 &fssproc->fss_caps, CPUCAPS_CHARGE_ENFORCE) && 2194 !(fssproc->fss_flags & FSSKPRI); 2195 } 2196 2197 /* 2198 * A thread's execution time for threads running in the SYS class 2199 * is not tracked. 2200 */ 2201 if ((fssproc->fss_flags & FSSKPRI) == 0) { 2202 /* 2203 * If thread is not in kernel mode, decrement its fss_timeleft 2204 */ 2205 if (--fssproc->fss_timeleft <= 0) { 2206 pri_t new_pri; 2207 2208 /* 2209 * If we're doing preemption control and trying to 2210 * avoid preempting this thread, just note that the 2211 * thread should yield soon and let it keep running 2212 * (unless it's been a while). 2213 */ 2214 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 2215 if (fssproc->fss_timeleft > -SC_MAX_TICKS) { 2216 DTRACE_SCHED1(schedctl__nopreempt, 2217 kthread_t *, t); 2218 schedctl_set_yield(t, 1); 2219 thread_unlock_nopreempt(t); 2220 return; 2221 } 2222 } 2223 fssproc->fss_flags &= ~FSSRESTORE; 2224 2225 fss_newpri(fssproc); 2226 new_pri = fssproc->fss_umdpri; 2227 ASSERT(new_pri >= 0 && new_pri <= fss_maxglobpri); 2228 2229 /* 2230 * When the priority of a thread is changed, it may 2231 * be necessary to adjust its position on a sleep queue 2232 * or dispatch queue. The function thread_change_pri 2233 * accomplishes this. 2234 */ 2235 if (thread_change_pri(t, new_pri, 0)) { 2236 if ((t->t_schedflag & TS_LOAD) && 2237 (lwp = t->t_lwp) && 2238 lwp->lwp_state == LWP_USER) 2239 t->t_schedflag &= ~TS_DONT_SWAP; 2240 fssproc->fss_timeleft = fss_quantum; 2241 } else { 2242 call_cpu_surrender = B_TRUE; 2243 } 2244 } else if (t->t_state == TS_ONPROC && 2245 t->t_pri < t->t_disp_queue->disp_maxrunpri) { 2246 /* 2247 * If there is a higher-priority thread which is 2248 * waiting for a processor, then thread surrenders 2249 * the processor. 2250 */ 2251 call_cpu_surrender = B_TRUE; 2252 } 2253 } 2254 2255 if (cpucaps_enforce && 2 * fssproc->fss_timeleft > fss_quantum) { 2256 /* 2257 * The thread used more than half of its quantum, so assume that 2258 * it used the whole quantum. 2259 * 2260 * Update thread's priority just before putting it on the wait 2261 * queue so that it gets charged for the CPU time from its 2262 * quantum even before that quantum expires. 2263 */ 2264 fss_newpri(fssproc); 2265 if (t->t_pri != fssproc->fss_umdpri) 2266 fss_change_priority(t, fssproc); 2267 2268 /* 2269 * We need to call cpu_surrender for this thread due to cpucaps 2270 * enforcement, but fss_change_priority may have already done 2271 * so. In this case FSSBACKQ is set and there is no need to call 2272 * cpu-surrender again. 2273 */ 2274 if (!(fssproc->fss_flags & FSSBACKQ)) 2275 call_cpu_surrender = B_TRUE; 2276 } 2277 2278 if (call_cpu_surrender) { 2279 fssproc->fss_flags |= FSSBACKQ; 2280 cpu_surrender(t); 2281 } 2282 2283 thread_unlock_nopreempt(t); /* clock thread can't be preempted */ 2284 } 2285 2286 /* 2287 * Processes waking up go to the back of their queue. We don't need to assign 2288 * a time quantum here because thread is still at a kernel mode priority and 2289 * the time slicing is not done for threads running in the kernel after 2290 * sleeping. The proper time quantum will be assigned by fss_trapret before the 2291 * thread returns to user mode. 2292 */ 2293 static void 2294 fss_wakeup(kthread_t *t) 2295 { 2296 fssproc_t *fssproc; 2297 2298 ASSERT(THREAD_LOCK_HELD(t)); 2299 ASSERT(t->t_state == TS_SLEEP); 2300 2301 fss_active(t); 2302 2303 t->t_stime = lbolt; /* time stamp for the swapper */ 2304 fssproc = FSSPROC(t); 2305 fssproc->fss_flags &= ~FSSBACKQ; 2306 2307 if (fssproc->fss_flags & FSSKPRI) { 2308 /* 2309 * If we already have a kernel priority assigned, then we 2310 * just use it. 2311 */ 2312 setbackdq(t); 2313 } else if (t->t_kpri_req) { 2314 /* 2315 * Give thread a priority boost if we were asked. 2316 */ 2317 fssproc->fss_flags |= FSSKPRI; 2318 THREAD_CHANGE_PRI(t, minclsyspri); 2319 setbackdq(t); 2320 t->t_trapret = 1; /* so that fss_trapret will run */ 2321 aston(t); 2322 } else { 2323 /* 2324 * Otherwise, we recalculate the priority. 2325 */ 2326 if (t->t_disp_time == lbolt) { 2327 setfrontdq(t); 2328 } else { 2329 fssproc->fss_timeleft = fss_quantum; 2330 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri); 2331 setbackdq(t); 2332 } 2333 } 2334 } 2335 2336 /* 2337 * fss_donice() is called when a nice(1) command is issued on the thread to 2338 * alter the priority. The nice(1) command exists in Solaris for compatibility. 2339 * Thread priority adjustments should be done via priocntl(1). 2340 */ 2341 static int 2342 fss_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp) 2343 { 2344 int newnice; 2345 fssproc_t *fssproc = FSSPROC(t); 2346 fssparms_t fssparms; 2347 2348 /* 2349 * If there is no change to priority, just return current setting. 2350 */ 2351 if (incr == 0) { 2352 if (retvalp) 2353 *retvalp = fssproc->fss_nice - NZERO; 2354 return (0); 2355 } 2356 2357 if ((incr < 0 || incr > 2 * NZERO) && secpolicy_setpriority(cr) != 0) 2358 return (EPERM); 2359 2360 /* 2361 * Specifying a nice increment greater than the upper limit of 2362 * FSS_NICE_MAX (== 2 * NZERO - 1) will result in the thread's nice 2363 * value being set to the upper limit. We check for this before 2364 * computing the new value because otherwise we could get overflow 2365 * if a privileged user specified some ridiculous increment. 2366 */ 2367 if (incr > FSS_NICE_MAX) 2368 incr = FSS_NICE_MAX; 2369 2370 newnice = fssproc->fss_nice + incr; 2371 if (newnice > FSS_NICE_MAX) 2372 newnice = FSS_NICE_MAX; 2373 else if (newnice < FSS_NICE_MIN) 2374 newnice = FSS_NICE_MIN; 2375 2376 fssparms.fss_uprilim = fssparms.fss_upri = 2377 -((newnice - NZERO) * fss_maxupri) / NZERO; 2378 2379 /* 2380 * Reset the uprilim and upri values of the thread. 2381 */ 2382 (void) fss_parmsset(t, (void *)&fssparms, (id_t)0, (cred_t *)NULL); 2383 2384 /* 2385 * Although fss_parmsset already reset fss_nice it may not have been 2386 * set to precisely the value calculated above because fss_parmsset 2387 * determines the nice value from the user priority and we may have 2388 * truncated during the integer conversion from nice value to user 2389 * priority and back. We reset fss_nice to the value we calculated 2390 * above. 2391 */ 2392 fssproc->fss_nice = (char)newnice; 2393 2394 if (retvalp) 2395 *retvalp = newnice - NZERO; 2396 return (0); 2397 } 2398 2399 /* 2400 * Increment the priority of the specified thread by incr and 2401 * return the new value in *retvalp. 2402 */ 2403 static int 2404 fss_doprio(kthread_t *t, cred_t *cr, int incr, int *retvalp) 2405 { 2406 int newpri; 2407 fssproc_t *fssproc = FSSPROC(t); 2408 fssparms_t fssparms; 2409 2410 /* 2411 * If there is no change to priority, just return current setting. 2412 */ 2413 if (incr == 0) { 2414 *retvalp = fssproc->fss_upri; 2415 return (0); 2416 } 2417 2418 newpri = fssproc->fss_upri + incr; 2419 if (newpri > fss_maxupri || newpri < -fss_maxupri) 2420 return (EINVAL); 2421 2422 *retvalp = newpri; 2423 fssparms.fss_uprilim = fssparms.fss_upri = newpri; 2424 2425 /* 2426 * Reset the uprilim and upri values of the thread. 2427 */ 2428 return (fss_parmsset(t, &fssparms, (id_t)0, cr)); 2429 } 2430 2431 /* 2432 * Return the global scheduling priority that would be assigned to a thread 2433 * entering the fair-sharing class with the fss_upri. 2434 */ 2435 /*ARGSUSED*/ 2436 static pri_t 2437 fss_globpri(kthread_t *t) 2438 { 2439 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 2440 2441 return (fss_maxumdpri / 2); 2442 } 2443 2444 /* 2445 * Called from the yield(2) system call when a thread is yielding (surrendering) 2446 * the processor. The kernel thread is placed at the back of a dispatch queue. 2447 */ 2448 static void 2449 fss_yield(kthread_t *t) 2450 { 2451 fssproc_t *fssproc = FSSPROC(t); 2452 2453 ASSERT(t == curthread); 2454 ASSERT(THREAD_LOCK_HELD(t)); 2455 2456 /* 2457 * Collect CPU usage spent before yielding 2458 */ 2459 (void) CPUCAPS_CHARGE(t, &fssproc->fss_caps, CPUCAPS_CHARGE_ENFORCE); 2460 2461 /* 2462 * Clear the preemption control "yield" bit since the user is 2463 * doing a yield. 2464 */ 2465 if (t->t_schedctl) 2466 schedctl_set_yield(t, 0); 2467 /* 2468 * If fss_preempt() artifically increased the thread's priority 2469 * to avoid preemption, restore the original priority now. 2470 */ 2471 if (fssproc->fss_flags & FSSRESTORE) { 2472 THREAD_CHANGE_PRI(t, fssproc->fss_scpri); 2473 fssproc->fss_flags &= ~FSSRESTORE; 2474 } 2475 if (fssproc->fss_timeleft < 0) { 2476 /* 2477 * Time slice was artificially extended to avoid preemption, 2478 * so pretend we're preempting it now. 2479 */ 2480 DTRACE_SCHED1(schedctl__yield, int, -fssproc->fss_timeleft); 2481 fssproc->fss_timeleft = fss_quantum; 2482 } 2483 fssproc->fss_flags &= ~FSSBACKQ; 2484 setbackdq(t); 2485 } 2486 2487 void 2488 fss_changeproj(kthread_t *t, void *kp, void *zp, fssbuf_t *projbuf, 2489 fssbuf_t *zonebuf) 2490 { 2491 kproject_t *kpj_new = kp; 2492 zone_t *zone = zp; 2493 fssproj_t *fssproj_old, *fssproj_new; 2494 fsspset_t *fsspset; 2495 kproject_t *kpj_old; 2496 fssproc_t *fssproc; 2497 fsszone_t *fsszone_old, *fsszone_new; 2498 int free = 0; 2499 int id; 2500 2501 ASSERT(MUTEX_HELD(&cpu_lock)); 2502 ASSERT(MUTEX_HELD(&pidlock)); 2503 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 2504 2505 if (t->t_cid != fss_cid) 2506 return; 2507 2508 fssproc = FSSPROC(t); 2509 mutex_enter(&fsspsets_lock); 2510 fssproj_old = FSSPROC2FSSPROJ(fssproc); 2511 if (fssproj_old == NULL) { 2512 mutex_exit(&fsspsets_lock); 2513 return; 2514 } 2515 2516 fsspset = FSSPROJ2FSSPSET(fssproj_old); 2517 mutex_enter(&fsspset->fssps_lock); 2518 kpj_old = FSSPROJ2KPROJ(fssproj_old); 2519 fsszone_old = fssproj_old->fssp_fsszone; 2520 2521 ASSERT(t->t_cpupart == fsspset->fssps_cpupart); 2522 2523 if (kpj_old == kpj_new) { 2524 mutex_exit(&fsspset->fssps_lock); 2525 mutex_exit(&fsspsets_lock); 2526 return; 2527 } 2528 2529 if ((fsszone_new = fss_find_fsszone(fsspset, zone)) == NULL) { 2530 /* 2531 * If the zone for the new project is not currently active on 2532 * the cpu partition we're on, get one of the pre-allocated 2533 * buffers and link it in our per-pset zone list. Such buffers 2534 * should already exist. 2535 */ 2536 for (id = 0; id < zonebuf->fssb_size; id++) { 2537 if ((fsszone_new = zonebuf->fssb_list[id]) != NULL) { 2538 fss_insert_fsszone(fsspset, zone, fsszone_new); 2539 zonebuf->fssb_list[id] = NULL; 2540 break; 2541 } 2542 } 2543 } 2544 ASSERT(fsszone_new != NULL); 2545 if ((fssproj_new = fss_find_fssproj(fsspset, kpj_new)) == NULL) { 2546 /* 2547 * If our new project is not currently running 2548 * on the cpu partition we're on, get one of the 2549 * pre-allocated buffers and link it in our new cpu 2550 * partition doubly linked list. Such buffers should already 2551 * exist. 2552 */ 2553 for (id = 0; id < projbuf->fssb_size; id++) { 2554 if ((fssproj_new = projbuf->fssb_list[id]) != NULL) { 2555 fss_insert_fssproj(fsspset, kpj_new, 2556 fsszone_new, fssproj_new); 2557 projbuf->fssb_list[id] = NULL; 2558 break; 2559 } 2560 } 2561 } 2562 ASSERT(fssproj_new != NULL); 2563 2564 thread_lock(t); 2565 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC || 2566 t->t_state == TS_WAIT) 2567 fss_inactive(t); 2568 ASSERT(fssproj_old->fssp_threads > 0); 2569 if (--fssproj_old->fssp_threads == 0) { 2570 fss_remove_fssproj(fsspset, fssproj_old); 2571 free = 1; 2572 } 2573 fssproc->fss_proj = fssproj_new; 2574 fssproc->fss_fsspri = 0; 2575 fssproj_new->fssp_threads++; 2576 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC || 2577 t->t_state == TS_WAIT) 2578 fss_active(t); 2579 thread_unlock(t); 2580 if (free) { 2581 if (fsszone_old->fssz_nproj == 0) 2582 kmem_free(fsszone_old, sizeof (fsszone_t)); 2583 kmem_free(fssproj_old, sizeof (fssproj_t)); 2584 } 2585 2586 mutex_exit(&fsspset->fssps_lock); 2587 mutex_exit(&fsspsets_lock); 2588 } 2589 2590 void 2591 fss_changepset(kthread_t *t, void *newcp, fssbuf_t *projbuf, 2592 fssbuf_t *zonebuf) 2593 { 2594 fsspset_t *fsspset_old, *fsspset_new; 2595 fssproj_t *fssproj_old, *fssproj_new; 2596 fsszone_t *fsszone_old, *fsszone_new; 2597 fssproc_t *fssproc; 2598 kproject_t *kpj; 2599 zone_t *zone; 2600 int id; 2601 2602 ASSERT(MUTEX_HELD(&cpu_lock)); 2603 ASSERT(MUTEX_HELD(&pidlock)); 2604 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 2605 2606 if (t->t_cid != fss_cid) 2607 return; 2608 2609 fssproc = FSSPROC(t); 2610 zone = ttoproc(t)->p_zone; 2611 mutex_enter(&fsspsets_lock); 2612 fssproj_old = FSSPROC2FSSPROJ(fssproc); 2613 if (fssproj_old == NULL) { 2614 mutex_exit(&fsspsets_lock); 2615 return; 2616 } 2617 fsszone_old = fssproj_old->fssp_fsszone; 2618 fsspset_old = FSSPROJ2FSSPSET(fssproj_old); 2619 kpj = FSSPROJ2KPROJ(fssproj_old); 2620 2621 if (fsspset_old->fssps_cpupart == newcp) { 2622 mutex_exit(&fsspsets_lock); 2623 return; 2624 } 2625 2626 ASSERT(ttoproj(t) == kpj); 2627 2628 fsspset_new = fss_find_fsspset(newcp); 2629 2630 mutex_enter(&fsspset_new->fssps_lock); 2631 if ((fsszone_new = fss_find_fsszone(fsspset_new, zone)) == NULL) { 2632 for (id = 0; id < zonebuf->fssb_size; id++) { 2633 if ((fsszone_new = zonebuf->fssb_list[id]) != NULL) { 2634 fss_insert_fsszone(fsspset_new, zone, 2635 fsszone_new); 2636 zonebuf->fssb_list[id] = NULL; 2637 break; 2638 } 2639 } 2640 } 2641 ASSERT(fsszone_new != NULL); 2642 if ((fssproj_new = fss_find_fssproj(fsspset_new, kpj)) == NULL) { 2643 for (id = 0; id < projbuf->fssb_size; id++) { 2644 if ((fssproj_new = projbuf->fssb_list[id]) != NULL) { 2645 fss_insert_fssproj(fsspset_new, kpj, 2646 fsszone_new, fssproj_new); 2647 projbuf->fssb_list[id] = NULL; 2648 break; 2649 } 2650 } 2651 } 2652 ASSERT(fssproj_new != NULL); 2653 2654 fssproj_new->fssp_threads++; 2655 thread_lock(t); 2656 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC || 2657 t->t_state == TS_WAIT) 2658 fss_inactive(t); 2659 fssproc->fss_proj = fssproj_new; 2660 fssproc->fss_fsspri = 0; 2661 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC || 2662 t->t_state == TS_WAIT) 2663 fss_active(t); 2664 thread_unlock(t); 2665 mutex_exit(&fsspset_new->fssps_lock); 2666 2667 mutex_enter(&fsspset_old->fssps_lock); 2668 if (--fssproj_old->fssp_threads == 0) { 2669 fss_remove_fssproj(fsspset_old, fssproj_old); 2670 if (fsszone_old->fssz_nproj == 0) 2671 kmem_free(fsszone_old, sizeof (fsszone_t)); 2672 kmem_free(fssproj_old, sizeof (fssproj_t)); 2673 } 2674 mutex_exit(&fsspset_old->fssps_lock); 2675 2676 mutex_exit(&fsspsets_lock); 2677 } 2678