1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/param.h> 29 #include <sys/sysmacros.h> 30 #include <sys/cred.h> 31 #include <sys/proc.h> 32 #include <sys/strsubr.h> 33 #include <sys/priocntl.h> 34 #include <sys/class.h> 35 #include <sys/disp.h> 36 #include <sys/procset.h> 37 #include <sys/debug.h> 38 #include <sys/kmem.h> 39 #include <sys/errno.h> 40 #include <sys/systm.h> 41 #include <sys/schedctl.h> 42 #include <sys/vmsystm.h> 43 #include <sys/atomic.h> 44 #include <sys/project.h> 45 #include <sys/modctl.h> 46 #include <sys/fss.h> 47 #include <sys/fsspriocntl.h> 48 #include <sys/cpupart.h> 49 #include <sys/zone.h> 50 #include <vm/rm.h> 51 #include <vm/seg_kmem.h> 52 #include <sys/tnf_probe.h> 53 #include <sys/policy.h> 54 #include <sys/sdt.h> 55 #include <sys/cpucaps.h> 56 57 /* 58 * FSS Data Structures: 59 * 60 * fsszone 61 * ----- ----- 62 * ----- | | | | 63 * | |-------->| |<------->| |<---->... 64 * | | ----- ----- 65 * | | ^ ^ ^ 66 * | |--- | \ \ 67 * ----- | | \ \ 68 * fsspset | | \ \ 69 * | | \ \ 70 * | ----- ----- ----- 71 * -->| |<--->| |<--->| | 72 * | | | | | | 73 * ----- ----- ----- 74 * fssproj 75 * 76 * 77 * That is, fsspsets contain a list of fsszone's that are currently active in 78 * the pset, and a list of fssproj's, corresponding to projects with runnable 79 * threads on the pset. fssproj's in turn point to the fsszone which they 80 * are a member of. 81 * 82 * An fssproj_t is removed when there are no threads in it. 83 * 84 * An fsszone_t is removed when there are no projects with threads in it. 85 * 86 * Projects in a zone compete with each other for cpu time, receiving cpu 87 * allocation within a zone proportional to fssproj->fssp_shares 88 * (project.cpu-shares); at a higher level zones compete with each other, 89 * receiving allocation in a pset proportional to fsszone->fssz_shares 90 * (zone.cpu-shares). See fss_decay_usage() for the precise formula. 91 */ 92 93 static pri_t fss_init(id_t, int, classfuncs_t **); 94 95 static struct sclass fss = { 96 "FSS", 97 fss_init, 98 0 99 }; 100 101 extern struct mod_ops mod_schedops; 102 103 /* 104 * Module linkage information for the kernel. 105 */ 106 static struct modlsched modlsched = { 107 &mod_schedops, "fair share scheduling class", &fss 108 }; 109 110 static struct modlinkage modlinkage = { 111 MODREV_1, (void *)&modlsched, NULL 112 }; 113 114 #define FSS_MAXUPRI 60 115 116 /* 117 * The fssproc_t structures are kept in an array of circular doubly linked 118 * lists. A hash on the thread pointer is used to determine which list each 119 * thread should be placed in. Each list has a dummy "head" which is never 120 * removed, so the list is never empty. fss_update traverses these lists to 121 * update the priorities of threads that have been waiting on the run queue. 122 */ 123 #define FSS_LISTS 16 /* number of lists, must be power of 2 */ 124 #define FSS_LIST_HASH(t) (((uintptr_t)(t) >> 9) & (FSS_LISTS - 1)) 125 #define FSS_LIST_NEXT(i) (((i) + 1) & (FSS_LISTS - 1)) 126 127 #define FSS_LIST_INSERT(fssproc) \ 128 { \ 129 int index = FSS_LIST_HASH(fssproc->fss_tp); \ 130 kmutex_t *lockp = &fss_listlock[index]; \ 131 fssproc_t *headp = &fss_listhead[index]; \ 132 mutex_enter(lockp); \ 133 fssproc->fss_next = headp->fss_next; \ 134 fssproc->fss_prev = headp; \ 135 headp->fss_next->fss_prev = fssproc; \ 136 headp->fss_next = fssproc; \ 137 mutex_exit(lockp); \ 138 } 139 140 #define FSS_LIST_DELETE(fssproc) \ 141 { \ 142 int index = FSS_LIST_HASH(fssproc->fss_tp); \ 143 kmutex_t *lockp = &fss_listlock[index]; \ 144 mutex_enter(lockp); \ 145 fssproc->fss_prev->fss_next = fssproc->fss_next; \ 146 fssproc->fss_next->fss_prev = fssproc->fss_prev; \ 147 mutex_exit(lockp); \ 148 } 149 150 #define FSS_TICK_COST 1000 /* tick cost for threads with nice level = 0 */ 151 152 /* 153 * Decay rate percentages are based on n/128 rather than n/100 so that 154 * calculations can avoid having to do an integer divide by 100 (divide 155 * by FSS_DECAY_BASE == 128 optimizes to an arithmetic shift). 156 * 157 * FSS_DECAY_MIN = 83/128 ~= 65% 158 * FSS_DECAY_MAX = 108/128 ~= 85% 159 * FSS_DECAY_USG = 96/128 ~= 75% 160 */ 161 #define FSS_DECAY_MIN 83 /* fsspri decay pct for threads w/ nice -20 */ 162 #define FSS_DECAY_MAX 108 /* fsspri decay pct for threads w/ nice +19 */ 163 #define FSS_DECAY_USG 96 /* fssusage decay pct for projects */ 164 #define FSS_DECAY_BASE 128 /* base for decay percentages above */ 165 166 #define FSS_NICE_MIN 0 167 #define FSS_NICE_MAX (2 * NZERO - 1) 168 #define FSS_NICE_RANGE (FSS_NICE_MAX - FSS_NICE_MIN + 1) 169 170 static int fss_nice_tick[FSS_NICE_RANGE]; 171 static int fss_nice_decay[FSS_NICE_RANGE]; 172 173 static pri_t fss_maxupri = FSS_MAXUPRI; /* maximum FSS user priority */ 174 static pri_t fss_maxumdpri; /* maximum user mode fss priority */ 175 static pri_t fss_maxglobpri; /* maximum global priority used by fss class */ 176 static pri_t fss_minglobpri; /* minimum global priority */ 177 178 static fssproc_t fss_listhead[FSS_LISTS]; 179 static kmutex_t fss_listlock[FSS_LISTS]; 180 181 static fsspset_t *fsspsets; 182 static kmutex_t fsspsets_lock; /* protects fsspsets */ 183 184 static id_t fss_cid; 185 186 static time_t fss_minrun = 2; /* t_pri becomes 59 within 2 secs */ 187 static time_t fss_minslp = 2; /* min time on sleep queue for hardswap */ 188 static int fss_quantum = 11; 189 190 static void fss_newpri(fssproc_t *); 191 static void fss_update(void *); 192 static int fss_update_list(int); 193 static void fss_change_priority(kthread_t *, fssproc_t *); 194 195 static int fss_admin(caddr_t, cred_t *); 196 static int fss_getclinfo(void *); 197 static int fss_parmsin(void *); 198 static int fss_parmsout(void *, pc_vaparms_t *); 199 static int fss_vaparmsin(void *, pc_vaparms_t *); 200 static int fss_vaparmsout(void *, pc_vaparms_t *); 201 static int fss_getclpri(pcpri_t *); 202 static int fss_alloc(void **, int); 203 static void fss_free(void *); 204 205 static int fss_enterclass(kthread_t *, id_t, void *, cred_t *, void *); 206 static void fss_exitclass(void *); 207 static int fss_canexit(kthread_t *, cred_t *); 208 static int fss_fork(kthread_t *, kthread_t *, void *); 209 static void fss_forkret(kthread_t *, kthread_t *); 210 static void fss_parmsget(kthread_t *, void *); 211 static int fss_parmsset(kthread_t *, void *, id_t, cred_t *); 212 static void fss_stop(kthread_t *, int, int); 213 static void fss_exit(kthread_t *); 214 static void fss_active(kthread_t *); 215 static void fss_inactive(kthread_t *); 216 static pri_t fss_swapin(kthread_t *, int); 217 static pri_t fss_swapout(kthread_t *, int); 218 static void fss_trapret(kthread_t *); 219 static void fss_preempt(kthread_t *); 220 static void fss_setrun(kthread_t *); 221 static void fss_sleep(kthread_t *); 222 static void fss_tick(kthread_t *); 223 static void fss_wakeup(kthread_t *); 224 static int fss_donice(kthread_t *, cred_t *, int, int *); 225 static int fss_doprio(kthread_t *, cred_t *, int, int *); 226 static pri_t fss_globpri(kthread_t *); 227 static void fss_yield(kthread_t *); 228 static void fss_nullsys(); 229 230 static struct classfuncs fss_classfuncs = { 231 /* class functions */ 232 fss_admin, 233 fss_getclinfo, 234 fss_parmsin, 235 fss_parmsout, 236 fss_vaparmsin, 237 fss_vaparmsout, 238 fss_getclpri, 239 fss_alloc, 240 fss_free, 241 242 /* thread functions */ 243 fss_enterclass, 244 fss_exitclass, 245 fss_canexit, 246 fss_fork, 247 fss_forkret, 248 fss_parmsget, 249 fss_parmsset, 250 fss_stop, 251 fss_exit, 252 fss_active, 253 fss_inactive, 254 fss_swapin, 255 fss_swapout, 256 fss_trapret, 257 fss_preempt, 258 fss_setrun, 259 fss_sleep, 260 fss_tick, 261 fss_wakeup, 262 fss_donice, 263 fss_globpri, 264 fss_nullsys, /* set_process_group */ 265 fss_yield, 266 fss_doprio, 267 }; 268 269 int 270 _init() 271 { 272 return (mod_install(&modlinkage)); 273 } 274 275 int 276 _fini() 277 { 278 return (EBUSY); 279 } 280 281 int 282 _info(struct modinfo *modinfop) 283 { 284 return (mod_info(&modlinkage, modinfop)); 285 } 286 287 /*ARGSUSED*/ 288 static int 289 fss_project_walker(kproject_t *kpj, void *buf) 290 { 291 return (0); 292 } 293 294 void * 295 fss_allocbuf(int op, int type) 296 { 297 fssbuf_t *fssbuf; 298 void **fsslist; 299 int cnt; 300 int i; 301 size_t size; 302 303 ASSERT(op == FSS_NPSET_BUF || op == FSS_NPROJ_BUF || op == FSS_ONE_BUF); 304 ASSERT(type == FSS_ALLOC_PROJ || type == FSS_ALLOC_ZONE); 305 ASSERT(MUTEX_HELD(&cpu_lock)); 306 307 fssbuf = kmem_zalloc(sizeof (fssbuf_t), KM_SLEEP); 308 switch (op) { 309 case FSS_NPSET_BUF: 310 cnt = cpupart_list(NULL, 0, CP_NONEMPTY); 311 break; 312 case FSS_NPROJ_BUF: 313 cnt = project_walk_all(ALL_ZONES, fss_project_walker, NULL); 314 break; 315 case FSS_ONE_BUF: 316 cnt = 1; 317 break; 318 } 319 320 switch (type) { 321 case FSS_ALLOC_PROJ: 322 size = sizeof (fssproj_t); 323 break; 324 case FSS_ALLOC_ZONE: 325 size = sizeof (fsszone_t); 326 break; 327 } 328 fsslist = kmem_zalloc(cnt * sizeof (void *), KM_SLEEP); 329 fssbuf->fssb_size = cnt; 330 fssbuf->fssb_list = fsslist; 331 for (i = 0; i < cnt; i++) 332 fsslist[i] = kmem_zalloc(size, KM_SLEEP); 333 return (fssbuf); 334 } 335 336 void 337 fss_freebuf(fssbuf_t *fssbuf, int type) 338 { 339 void **fsslist; 340 int i; 341 size_t size; 342 343 ASSERT(fssbuf != NULL); 344 ASSERT(type == FSS_ALLOC_PROJ || type == FSS_ALLOC_ZONE); 345 fsslist = fssbuf->fssb_list; 346 347 switch (type) { 348 case FSS_ALLOC_PROJ: 349 size = sizeof (fssproj_t); 350 break; 351 case FSS_ALLOC_ZONE: 352 size = sizeof (fsszone_t); 353 break; 354 } 355 356 for (i = 0; i < fssbuf->fssb_size; i++) { 357 if (fsslist[i] != NULL) 358 kmem_free(fsslist[i], size); 359 } 360 kmem_free(fsslist, sizeof (void *) * fssbuf->fssb_size); 361 kmem_free(fssbuf, sizeof (fssbuf_t)); 362 } 363 364 static fsspset_t * 365 fss_find_fsspset(cpupart_t *cpupart) 366 { 367 int i; 368 fsspset_t *fsspset = NULL; 369 int found = 0; 370 371 ASSERT(cpupart != NULL); 372 ASSERT(MUTEX_HELD(&fsspsets_lock)); 373 374 /* 375 * Search for the cpupart pointer in the array of fsspsets. 376 */ 377 for (i = 0; i < max_ncpus; i++) { 378 fsspset = &fsspsets[i]; 379 if (fsspset->fssps_cpupart == cpupart) { 380 ASSERT(fsspset->fssps_nproj > 0); 381 found = 1; 382 break; 383 } 384 } 385 if (found == 0) { 386 /* 387 * If we didn't find anything, then use the first 388 * available slot in the fsspsets array. 389 */ 390 for (i = 0; i < max_ncpus; i++) { 391 fsspset = &fsspsets[i]; 392 if (fsspset->fssps_cpupart == NULL) { 393 ASSERT(fsspset->fssps_nproj == 0); 394 found = 1; 395 break; 396 } 397 } 398 fsspset->fssps_cpupart = cpupart; 399 } 400 ASSERT(found == 1); 401 return (fsspset); 402 } 403 404 static void 405 fss_del_fsspset(fsspset_t *fsspset) 406 { 407 ASSERT(MUTEX_HELD(&fsspsets_lock)); 408 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 409 ASSERT(fsspset->fssps_nproj == 0); 410 ASSERT(fsspset->fssps_list == NULL); 411 ASSERT(fsspset->fssps_zones == NULL); 412 fsspset->fssps_cpupart = NULL; 413 fsspset->fssps_maxfsspri = 0; 414 fsspset->fssps_shares = 0; 415 } 416 417 /* 418 * The following routine returns a pointer to the fsszone structure which 419 * belongs to zone "zone" and cpu partition fsspset, if such structure exists. 420 */ 421 static fsszone_t * 422 fss_find_fsszone(fsspset_t *fsspset, zone_t *zone) 423 { 424 fsszone_t *fsszone; 425 426 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 427 428 if (fsspset->fssps_list != NULL) { 429 /* 430 * There are projects/zones active on this cpu partition 431 * already. Try to find our zone among them. 432 */ 433 fsszone = fsspset->fssps_zones; 434 do { 435 if (fsszone->fssz_zone == zone) { 436 return (fsszone); 437 } 438 fsszone = fsszone->fssz_next; 439 } while (fsszone != fsspset->fssps_zones); 440 } 441 return (NULL); 442 } 443 444 /* 445 * The following routine links new fsszone structure into doubly linked list of 446 * zones active on the specified cpu partition. 447 */ 448 static void 449 fss_insert_fsszone(fsspset_t *fsspset, zone_t *zone, fsszone_t *fsszone) 450 { 451 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 452 453 fsszone->fssz_zone = zone; 454 fsszone->fssz_rshares = zone->zone_shares; 455 456 if (fsspset->fssps_zones == NULL) { 457 /* 458 * This will be the first fsszone for this fsspset 459 */ 460 fsszone->fssz_next = fsszone->fssz_prev = fsszone; 461 fsspset->fssps_zones = fsszone; 462 } else { 463 /* 464 * Insert this fsszone to the doubly linked list. 465 */ 466 fsszone_t *fssz_head = fsspset->fssps_zones; 467 468 fsszone->fssz_next = fssz_head; 469 fsszone->fssz_prev = fssz_head->fssz_prev; 470 fssz_head->fssz_prev->fssz_next = fsszone; 471 fssz_head->fssz_prev = fsszone; 472 fsspset->fssps_zones = fsszone; 473 } 474 } 475 476 /* 477 * The following routine removes a single fsszone structure from the doubly 478 * linked list of zones active on the specified cpu partition. Note that 479 * global fsspsets_lock must be held in case this fsszone structure is the last 480 * on the above mentioned list. Also note that the fsszone structure is not 481 * freed here, it is the responsibility of the caller to call kmem_free for it. 482 */ 483 static void 484 fss_remove_fsszone(fsspset_t *fsspset, fsszone_t *fsszone) 485 { 486 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 487 ASSERT(fsszone->fssz_nproj == 0); 488 ASSERT(fsszone->fssz_shares == 0); 489 ASSERT(fsszone->fssz_runnable == 0); 490 491 if (fsszone->fssz_next != fsszone) { 492 /* 493 * This is not the last zone in the list. 494 */ 495 fsszone->fssz_prev->fssz_next = fsszone->fssz_next; 496 fsszone->fssz_next->fssz_prev = fsszone->fssz_prev; 497 if (fsspset->fssps_zones == fsszone) 498 fsspset->fssps_zones = fsszone->fssz_next; 499 } else { 500 /* 501 * This was the last zone active in this cpu partition. 502 */ 503 fsspset->fssps_zones = NULL; 504 } 505 } 506 507 /* 508 * The following routine returns a pointer to the fssproj structure 509 * which belongs to project kpj and cpu partition fsspset, if such structure 510 * exists. 511 */ 512 static fssproj_t * 513 fss_find_fssproj(fsspset_t *fsspset, kproject_t *kpj) 514 { 515 fssproj_t *fssproj; 516 517 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 518 519 if (fsspset->fssps_list != NULL) { 520 /* 521 * There are projects running on this cpu partition already. 522 * Try to find our project among them. 523 */ 524 fssproj = fsspset->fssps_list; 525 do { 526 if (fssproj->fssp_proj == kpj) { 527 ASSERT(fssproj->fssp_pset == fsspset); 528 return (fssproj); 529 } 530 fssproj = fssproj->fssp_next; 531 } while (fssproj != fsspset->fssps_list); 532 } 533 return (NULL); 534 } 535 536 /* 537 * The following routine links new fssproj structure into doubly linked list 538 * of projects running on the specified cpu partition. 539 */ 540 static void 541 fss_insert_fssproj(fsspset_t *fsspset, kproject_t *kpj, fsszone_t *fsszone, 542 fssproj_t *fssproj) 543 { 544 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 545 546 fssproj->fssp_pset = fsspset; 547 fssproj->fssp_proj = kpj; 548 fssproj->fssp_shares = kpj->kpj_shares; 549 550 fsspset->fssps_nproj++; 551 552 if (fsspset->fssps_list == NULL) { 553 /* 554 * This will be the first fssproj for this fsspset 555 */ 556 fssproj->fssp_next = fssproj->fssp_prev = fssproj; 557 fsspset->fssps_list = fssproj; 558 } else { 559 /* 560 * Insert this fssproj to the doubly linked list. 561 */ 562 fssproj_t *fssp_head = fsspset->fssps_list; 563 564 fssproj->fssp_next = fssp_head; 565 fssproj->fssp_prev = fssp_head->fssp_prev; 566 fssp_head->fssp_prev->fssp_next = fssproj; 567 fssp_head->fssp_prev = fssproj; 568 fsspset->fssps_list = fssproj; 569 } 570 fssproj->fssp_fsszone = fsszone; 571 fsszone->fssz_nproj++; 572 ASSERT(fsszone->fssz_nproj != 0); 573 } 574 575 /* 576 * The following routine removes a single fssproj structure from the doubly 577 * linked list of projects running on the specified cpu partition. Note that 578 * global fsspsets_lock must be held in case if this fssproj structure is the 579 * last on the above mentioned list. Also note that the fssproj structure is 580 * not freed here, it is the responsibility of the caller to call kmem_free 581 * for it. 582 */ 583 static void 584 fss_remove_fssproj(fsspset_t *fsspset, fssproj_t *fssproj) 585 { 586 fsszone_t *fsszone; 587 588 ASSERT(MUTEX_HELD(&fsspsets_lock)); 589 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 590 ASSERT(fssproj->fssp_runnable == 0); 591 592 fsspset->fssps_nproj--; 593 594 fsszone = fssproj->fssp_fsszone; 595 fsszone->fssz_nproj--; 596 597 if (fssproj->fssp_next != fssproj) { 598 /* 599 * This is not the last part in the list. 600 */ 601 fssproj->fssp_prev->fssp_next = fssproj->fssp_next; 602 fssproj->fssp_next->fssp_prev = fssproj->fssp_prev; 603 if (fsspset->fssps_list == fssproj) 604 fsspset->fssps_list = fssproj->fssp_next; 605 if (fsszone->fssz_nproj == 0) 606 fss_remove_fsszone(fsspset, fsszone); 607 } else { 608 /* 609 * This was the last project part running 610 * at this cpu partition. 611 */ 612 fsspset->fssps_list = NULL; 613 ASSERT(fsspset->fssps_nproj == 0); 614 ASSERT(fsszone->fssz_nproj == 0); 615 fss_remove_fsszone(fsspset, fsszone); 616 fss_del_fsspset(fsspset); 617 } 618 } 619 620 static void 621 fss_inactive(kthread_t *t) 622 { 623 fssproc_t *fssproc; 624 fssproj_t *fssproj; 625 fsspset_t *fsspset; 626 fsszone_t *fsszone; 627 628 ASSERT(THREAD_LOCK_HELD(t)); 629 fssproc = FSSPROC(t); 630 fssproj = FSSPROC2FSSPROJ(fssproc); 631 if (fssproj == NULL) /* if this thread already exited */ 632 return; 633 fsspset = FSSPROJ2FSSPSET(fssproj); 634 fsszone = fssproj->fssp_fsszone; 635 disp_lock_enter_high(&fsspset->fssps_displock); 636 ASSERT(fssproj->fssp_runnable > 0); 637 if (--fssproj->fssp_runnable == 0) { 638 fsszone->fssz_shares -= fssproj->fssp_shares; 639 if (--fsszone->fssz_runnable == 0) 640 fsspset->fssps_shares -= fsszone->fssz_rshares; 641 } 642 ASSERT(fssproc->fss_runnable == 1); 643 fssproc->fss_runnable = 0; 644 disp_lock_exit_high(&fsspset->fssps_displock); 645 } 646 647 static void 648 fss_active(kthread_t *t) 649 { 650 fssproc_t *fssproc; 651 fssproj_t *fssproj; 652 fsspset_t *fsspset; 653 fsszone_t *fsszone; 654 655 ASSERT(THREAD_LOCK_HELD(t)); 656 fssproc = FSSPROC(t); 657 fssproj = FSSPROC2FSSPROJ(fssproc); 658 if (fssproj == NULL) /* if this thread already exited */ 659 return; 660 fsspset = FSSPROJ2FSSPSET(fssproj); 661 fsszone = fssproj->fssp_fsszone; 662 disp_lock_enter_high(&fsspset->fssps_displock); 663 if (++fssproj->fssp_runnable == 1) { 664 fsszone->fssz_shares += fssproj->fssp_shares; 665 if (++fsszone->fssz_runnable == 1) 666 fsspset->fssps_shares += fsszone->fssz_rshares; 667 } 668 ASSERT(fssproc->fss_runnable == 0); 669 fssproc->fss_runnable = 1; 670 disp_lock_exit_high(&fsspset->fssps_displock); 671 } 672 673 /* 674 * Fair share scheduler initialization. Called by dispinit() at boot time. 675 * We can ignore clparmsz argument since we know that the smallest possible 676 * parameter buffer is big enough for us. 677 */ 678 /*ARGSUSED*/ 679 static pri_t 680 fss_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp) 681 { 682 int i; 683 684 ASSERT(MUTEX_HELD(&cpu_lock)); 685 686 fss_cid = cid; 687 fss_maxumdpri = minclsyspri - 1; 688 fss_maxglobpri = minclsyspri; 689 fss_minglobpri = 0; 690 fsspsets = kmem_zalloc(sizeof (fsspset_t) * max_ncpus, KM_SLEEP); 691 692 /* 693 * Initialize the fssproc hash table. 694 */ 695 for (i = 0; i < FSS_LISTS; i++) 696 fss_listhead[i].fss_next = fss_listhead[i].fss_prev = 697 &fss_listhead[i]; 698 699 *clfuncspp = &fss_classfuncs; 700 701 /* 702 * Fill in fss_nice_tick and fss_nice_decay arrays: 703 * The cost of a tick is lower at positive nice values (so that it 704 * will not increase its project's usage as much as normal) with 50% 705 * drop at the maximum level and 50% increase at the minimum level. 706 * The fsspri decay is slower at positive nice values. fsspri values 707 * of processes with negative nice levels must decay faster to receive 708 * time slices more frequently than normal. 709 */ 710 for (i = 0; i < FSS_NICE_RANGE; i++) { 711 fss_nice_tick[i] = (FSS_TICK_COST * (((3 * FSS_NICE_RANGE) / 2) 712 - i)) / FSS_NICE_RANGE; 713 fss_nice_decay[i] = FSS_DECAY_MIN + 714 ((FSS_DECAY_MAX - FSS_DECAY_MIN) * i) / 715 (FSS_NICE_RANGE - 1); 716 } 717 718 return (fss_maxglobpri); 719 } 720 721 /* 722 * Calculate the new cpupri based on the usage, the number of shares and 723 * the number of active threads. Reset the tick counter for this thread. 724 */ 725 static void 726 fss_newpri(fssproc_t *fssproc) 727 { 728 kthread_t *tp; 729 fssproj_t *fssproj; 730 fsspset_t *fsspset; 731 fsszone_t *fsszone; 732 fsspri_t fsspri, maxfsspri; 733 pri_t invpri; 734 uint32_t ticks; 735 736 tp = fssproc->fss_tp; 737 ASSERT(tp != NULL); 738 739 if (tp->t_cid != fss_cid) 740 return; 741 742 ASSERT(THREAD_LOCK_HELD(tp)); 743 744 fssproj = FSSPROC2FSSPROJ(fssproc); 745 fsszone = FSSPROJ2FSSZONE(fssproj); 746 if (fssproj == NULL) 747 /* 748 * No need to change priority of exited threads. 749 */ 750 return; 751 752 fsspset = FSSPROJ2FSSPSET(fssproj); 753 disp_lock_enter_high(&fsspset->fssps_displock); 754 755 if (fssproj->fssp_shares == 0 || fsszone->fssz_rshares == 0) { 756 /* 757 * Special case: threads with no shares. 758 */ 759 fssproc->fss_umdpri = fss_minglobpri; 760 fssproc->fss_ticks = 0; 761 disp_lock_exit_high(&fsspset->fssps_displock); 762 return; 763 } 764 765 /* 766 * fsspri += shusage * nrunnable * ticks 767 */ 768 ticks = fssproc->fss_ticks; 769 fssproc->fss_ticks = 0; 770 fsspri = fssproc->fss_fsspri; 771 fsspri += fssproj->fssp_shusage * fssproj->fssp_runnable * ticks; 772 fssproc->fss_fsspri = fsspri; 773 774 if (fsspri < fss_maxumdpri) 775 fsspri = fss_maxumdpri; /* so that maxfsspri is != 0 */ 776 777 /* 778 * The general priority formula: 779 * 780 * (fsspri * umdprirange) 781 * pri = maxumdpri - ------------------------ 782 * maxfsspri 783 * 784 * If this thread's fsspri is greater than the previous largest 785 * fsspri, then record it as the new high and priority for this 786 * thread will be one (the lowest priority assigned to a thread 787 * that has non-zero shares). 788 * Note that this formula cannot produce out of bounds priority 789 * values; if it is changed, additional checks may need to be 790 * added. 791 */ 792 maxfsspri = fsspset->fssps_maxfsspri; 793 if (fsspri >= maxfsspri) { 794 fsspset->fssps_maxfsspri = fsspri; 795 disp_lock_exit_high(&fsspset->fssps_displock); 796 fssproc->fss_umdpri = 1; 797 } else { 798 disp_lock_exit_high(&fsspset->fssps_displock); 799 invpri = (fsspri * (fss_maxumdpri - 1)) / maxfsspri; 800 fssproc->fss_umdpri = fss_maxumdpri - invpri; 801 } 802 } 803 804 /* 805 * Decays usages of all running projects and resets their tick counters. 806 * Called once per second from fss_update() after updating priorities. 807 */ 808 static void 809 fss_decay_usage() 810 { 811 uint32_t zone_ext_shares, zone_int_shares; 812 uint32_t kpj_shares, pset_shares; 813 fsspset_t *fsspset; 814 fssproj_t *fssproj; 815 fsszone_t *fsszone; 816 fsspri_t maxfsspri; 817 int psetid; 818 819 mutex_enter(&fsspsets_lock); 820 /* 821 * Go through all active processor sets and decay usages of projects 822 * running on them. 823 */ 824 for (psetid = 0; psetid < max_ncpus; psetid++) { 825 fsspset = &fsspsets[psetid]; 826 mutex_enter(&fsspset->fssps_lock); 827 828 if (fsspset->fssps_cpupart == NULL || 829 (fssproj = fsspset->fssps_list) == NULL) { 830 mutex_exit(&fsspset->fssps_lock); 831 continue; 832 } 833 834 /* 835 * Decay maxfsspri for this cpu partition with the 836 * fastest possible decay rate. 837 */ 838 disp_lock_enter(&fsspset->fssps_displock); 839 840 maxfsspri = (fsspset->fssps_maxfsspri * 841 fss_nice_decay[NZERO]) / FSS_DECAY_BASE; 842 if (maxfsspri < fss_maxumdpri) 843 maxfsspri = fss_maxumdpri; 844 fsspset->fssps_maxfsspri = maxfsspri; 845 846 do { 847 /* 848 * Decay usage for each project running on 849 * this cpu partition. 850 */ 851 fssproj->fssp_usage = 852 (fssproj->fssp_usage * FSS_DECAY_USG) / 853 FSS_DECAY_BASE + fssproj->fssp_ticks; 854 fssproj->fssp_ticks = 0; 855 856 fsszone = fssproj->fssp_fsszone; 857 /* 858 * Readjust the project's number of shares if it has 859 * changed since we checked it last time. 860 */ 861 kpj_shares = fssproj->fssp_proj->kpj_shares; 862 if (fssproj->fssp_shares != kpj_shares) { 863 if (fssproj->fssp_runnable != 0) { 864 fsszone->fssz_shares -= 865 fssproj->fssp_shares; 866 fsszone->fssz_shares += kpj_shares; 867 } 868 fssproj->fssp_shares = kpj_shares; 869 } 870 871 /* 872 * Readjust the zone's number of shares if it 873 * has changed since we checked it last time. 874 */ 875 zone_ext_shares = fsszone->fssz_zone->zone_shares; 876 if (fsszone->fssz_rshares != zone_ext_shares) { 877 if (fsszone->fssz_runnable != 0) { 878 fsspset->fssps_shares -= 879 fsszone->fssz_rshares; 880 fsspset->fssps_shares += 881 zone_ext_shares; 882 } 883 fsszone->fssz_rshares = zone_ext_shares; 884 } 885 zone_int_shares = fsszone->fssz_shares; 886 pset_shares = fsspset->fssps_shares; 887 /* 888 * Calculate fssp_shusage value to be used 889 * for fsspri increments for the next second. 890 */ 891 if (kpj_shares == 0 || zone_ext_shares == 0) { 892 fssproj->fssp_shusage = 0; 893 } else if (FSSPROJ2KPROJ(fssproj) == proj0p) { 894 /* 895 * Project 0 in the global zone has 50% 896 * of its zone. 897 */ 898 fssproj->fssp_shusage = (fssproj->fssp_usage * 899 zone_int_shares * zone_int_shares) / 900 (zone_ext_shares * zone_ext_shares); 901 } else { 902 /* 903 * Thread's priority is based on its project's 904 * normalized usage (shusage) value which gets 905 * calculated this way: 906 * 907 * pset_shares^2 zone_int_shares^2 908 * usage * ------------- * ------------------ 909 * kpj_shares^2 zone_ext_shares^2 910 * 911 * Where zone_int_shares is the sum of shares 912 * of all active projects within the zone (and 913 * the pset), and zone_ext_shares is the number 914 * of zone shares (ie, zone.cpu-shares). 915 * 916 * If there is only one zone active on the pset 917 * the above reduces to: 918 * 919 * zone_int_shares^2 920 * shusage = usage * --------------------- 921 * kpj_shares^2 922 * 923 * If there's only one project active in the 924 * zone this formula reduces to: 925 * 926 * pset_shares^2 927 * shusage = usage * ---------------------- 928 * zone_ext_shares^2 929 */ 930 fssproj->fssp_shusage = fssproj->fssp_usage * 931 pset_shares * zone_int_shares; 932 fssproj->fssp_shusage /= 933 kpj_shares * zone_ext_shares; 934 fssproj->fssp_shusage *= 935 pset_shares * zone_int_shares; 936 fssproj->fssp_shusage /= 937 kpj_shares * zone_ext_shares; 938 } 939 fssproj = fssproj->fssp_next; 940 } while (fssproj != fsspset->fssps_list); 941 942 disp_lock_exit(&fsspset->fssps_displock); 943 mutex_exit(&fsspset->fssps_lock); 944 } 945 mutex_exit(&fsspsets_lock); 946 } 947 948 static void 949 fss_change_priority(kthread_t *t, fssproc_t *fssproc) 950 { 951 pri_t new_pri; 952 953 ASSERT(THREAD_LOCK_HELD(t)); 954 new_pri = fssproc->fss_umdpri; 955 ASSERT(new_pri >= 0 && new_pri <= fss_maxglobpri); 956 957 t->t_cpri = fssproc->fss_upri; 958 fssproc->fss_flags &= ~FSSRESTORE; 959 if (t == curthread || t->t_state == TS_ONPROC) { 960 /* 961 * curthread is always onproc 962 */ 963 cpu_t *cp = t->t_disp_queue->disp_cpu; 964 THREAD_CHANGE_PRI(t, new_pri); 965 if (t == cp->cpu_dispthread) 966 cp->cpu_dispatch_pri = DISP_PRIO(t); 967 if (DISP_MUST_SURRENDER(t)) { 968 fssproc->fss_flags |= FSSBACKQ; 969 cpu_surrender(t); 970 } else { 971 fssproc->fss_timeleft = fss_quantum; 972 } 973 } else { 974 /* 975 * When the priority of a thread is changed, it may be 976 * necessary to adjust its position on a sleep queue or 977 * dispatch queue. The function thread_change_pri accomplishes 978 * this. 979 */ 980 if (thread_change_pri(t, new_pri, 0)) { 981 /* 982 * The thread was on a run queue. 983 */ 984 fssproc->fss_timeleft = fss_quantum; 985 } else { 986 fssproc->fss_flags |= FSSBACKQ; 987 } 988 } 989 } 990 991 /* 992 * Update priorities of all fair-sharing threads that are currently runnable 993 * at a user mode priority based on the number of shares and current usage. 994 * Called once per second via timeout which we reset here. 995 * 996 * There are several lists of fair-sharing threads broken up by a hash on the 997 * thread pointer. Each list has its own lock. This avoids blocking all 998 * fss_enterclass, fss_fork, and fss_exitclass operations while fss_update runs. 999 * fss_update traverses each list in turn. 1000 */ 1001 static void 1002 fss_update(void *arg) 1003 { 1004 int i; 1005 int new_marker = -1; 1006 static int fss_update_marker; 1007 1008 /* 1009 * Decay and update usages for all projects. 1010 */ 1011 fss_decay_usage(); 1012 1013 /* 1014 * Start with the fss_update_marker list, then do the rest. 1015 */ 1016 i = fss_update_marker; 1017 1018 /* 1019 * Go around all threads, set new priorities and decay 1020 * per-thread CPU usages. 1021 */ 1022 do { 1023 /* 1024 * If this is the first list after the current marker to have 1025 * threads with priorities updates, advance the marker to this 1026 * list for the next time fss_update runs. 1027 */ 1028 if (fss_update_list(i) && 1029 new_marker == -1 && i != fss_update_marker) 1030 new_marker = i; 1031 } while ((i = FSS_LIST_NEXT(i)) != fss_update_marker); 1032 1033 /* 1034 * Advance marker for the next fss_update call 1035 */ 1036 if (new_marker != -1) 1037 fss_update_marker = new_marker; 1038 1039 (void) timeout(fss_update, arg, hz); 1040 } 1041 1042 /* 1043 * Updates priority for a list of threads. Returns 1 if the priority of one 1044 * of the threads was actually updated, 0 if none were for various reasons 1045 * (thread is no longer in the FSS class, is not runnable, has the preemption 1046 * control no-preempt bit set, etc.) 1047 */ 1048 static int 1049 fss_update_list(int i) 1050 { 1051 fssproc_t *fssproc; 1052 fssproj_t *fssproj; 1053 fsspri_t fsspri; 1054 kthread_t *t; 1055 int updated = 0; 1056 1057 mutex_enter(&fss_listlock[i]); 1058 for (fssproc = fss_listhead[i].fss_next; fssproc != &fss_listhead[i]; 1059 fssproc = fssproc->fss_next) { 1060 t = fssproc->fss_tp; 1061 /* 1062 * Lock the thread and verify the state. 1063 */ 1064 thread_lock(t); 1065 /* 1066 * Skip the thread if it is no longer in the FSS class or 1067 * is running with kernel mode priority. 1068 */ 1069 if (t->t_cid != fss_cid) 1070 goto next; 1071 if ((fssproc->fss_flags & FSSKPRI) != 0) 1072 goto next; 1073 1074 fssproj = FSSPROC2FSSPROJ(fssproc); 1075 if (fssproj == NULL) 1076 goto next; 1077 if (fssproj->fssp_shares != 0) { 1078 /* 1079 * Decay fsspri value. 1080 */ 1081 fsspri = fssproc->fss_fsspri; 1082 fsspri = (fsspri * fss_nice_decay[fssproc->fss_nice]) / 1083 FSS_DECAY_BASE; 1084 fssproc->fss_fsspri = fsspri; 1085 } 1086 1087 if (t->t_schedctl && schedctl_get_nopreempt(t)) 1088 goto next; 1089 if (t->t_state != TS_RUN && t->t_state != TS_WAIT) { 1090 /* 1091 * Make next syscall/trap call fss_trapret 1092 */ 1093 t->t_trapret = 1; 1094 aston(t); 1095 goto next; 1096 } 1097 fss_newpri(fssproc); 1098 updated = 1; 1099 1100 /* 1101 * Only dequeue the thread if it needs to be moved; otherwise 1102 * it should just round-robin here. 1103 */ 1104 if (t->t_pri != fssproc->fss_umdpri) 1105 fss_change_priority(t, fssproc); 1106 next: 1107 thread_unlock(t); 1108 } 1109 mutex_exit(&fss_listlock[i]); 1110 return (updated); 1111 } 1112 1113 /*ARGSUSED*/ 1114 static int 1115 fss_admin(caddr_t uaddr, cred_t *reqpcredp) 1116 { 1117 fssadmin_t fssadmin; 1118 1119 if (copyin(uaddr, &fssadmin, sizeof (fssadmin_t))) 1120 return (EFAULT); 1121 1122 switch (fssadmin.fss_cmd) { 1123 case FSS_SETADMIN: 1124 if (secpolicy_dispadm(reqpcredp) != 0) 1125 return (EPERM); 1126 if (fssadmin.fss_quantum <= 0 || fssadmin.fss_quantum >= hz) 1127 return (EINVAL); 1128 fss_quantum = fssadmin.fss_quantum; 1129 break; 1130 case FSS_GETADMIN: 1131 fssadmin.fss_quantum = fss_quantum; 1132 if (copyout(&fssadmin, uaddr, sizeof (fssadmin_t))) 1133 return (EFAULT); 1134 break; 1135 default: 1136 return (EINVAL); 1137 } 1138 return (0); 1139 } 1140 1141 static int 1142 fss_getclinfo(void *infop) 1143 { 1144 fssinfo_t *fssinfo = (fssinfo_t *)infop; 1145 fssinfo->fss_maxupri = fss_maxupri; 1146 return (0); 1147 } 1148 1149 static int 1150 fss_parmsin(void *parmsp) 1151 { 1152 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1153 1154 /* 1155 * Check validity of parameters. 1156 */ 1157 if ((fssparmsp->fss_uprilim > fss_maxupri || 1158 fssparmsp->fss_uprilim < -fss_maxupri) && 1159 fssparmsp->fss_uprilim != FSS_NOCHANGE) 1160 return (EINVAL); 1161 1162 if ((fssparmsp->fss_upri > fss_maxupri || 1163 fssparmsp->fss_upri < -fss_maxupri) && 1164 fssparmsp->fss_upri != FSS_NOCHANGE) 1165 return (EINVAL); 1166 1167 return (0); 1168 } 1169 1170 /*ARGSUSED*/ 1171 static int 1172 fss_parmsout(void *parmsp, pc_vaparms_t *vaparmsp) 1173 { 1174 return (0); 1175 } 1176 1177 static int 1178 fss_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp) 1179 { 1180 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1181 int priflag = 0; 1182 int limflag = 0; 1183 uint_t cnt; 1184 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 1185 1186 /* 1187 * FSS_NOCHANGE (-32768) is outside of the range of values for 1188 * fss_uprilim and fss_upri. If the structure fssparms_t is changed, 1189 * FSS_NOCHANGE should be replaced by a flag word. 1190 */ 1191 fssparmsp->fss_uprilim = FSS_NOCHANGE; 1192 fssparmsp->fss_upri = FSS_NOCHANGE; 1193 1194 /* 1195 * Get the varargs parameter and check validity of parameters. 1196 */ 1197 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 1198 return (EINVAL); 1199 1200 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 1201 switch (vpp->pc_key) { 1202 case FSS_KY_UPRILIM: 1203 if (limflag++) 1204 return (EINVAL); 1205 fssparmsp->fss_uprilim = (pri_t)vpp->pc_parm; 1206 if (fssparmsp->fss_uprilim > fss_maxupri || 1207 fssparmsp->fss_uprilim < -fss_maxupri) 1208 return (EINVAL); 1209 break; 1210 case FSS_KY_UPRI: 1211 if (priflag++) 1212 return (EINVAL); 1213 fssparmsp->fss_upri = (pri_t)vpp->pc_parm; 1214 if (fssparmsp->fss_upri > fss_maxupri || 1215 fssparmsp->fss_upri < -fss_maxupri) 1216 return (EINVAL); 1217 break; 1218 default: 1219 return (EINVAL); 1220 } 1221 } 1222 1223 if (vaparmsp->pc_vaparmscnt == 0) { 1224 /* 1225 * Use default parameters. 1226 */ 1227 fssparmsp->fss_upri = fssparmsp->fss_uprilim = 0; 1228 } 1229 1230 return (0); 1231 } 1232 1233 /* 1234 * Copy all selected fair-sharing class parameters to the user. The parameters 1235 * are specified by a key. 1236 */ 1237 static int 1238 fss_vaparmsout(void *parmsp, pc_vaparms_t *vaparmsp) 1239 { 1240 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1241 int priflag = 0; 1242 int limflag = 0; 1243 uint_t cnt; 1244 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 1245 1246 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock)); 1247 1248 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 1249 return (EINVAL); 1250 1251 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 1252 switch (vpp->pc_key) { 1253 case FSS_KY_UPRILIM: 1254 if (limflag++) 1255 return (EINVAL); 1256 if (copyout(&fssparmsp->fss_uprilim, 1257 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1258 return (EFAULT); 1259 break; 1260 case FSS_KY_UPRI: 1261 if (priflag++) 1262 return (EINVAL); 1263 if (copyout(&fssparmsp->fss_upri, 1264 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1265 return (EFAULT); 1266 break; 1267 default: 1268 return (EINVAL); 1269 } 1270 } 1271 1272 return (0); 1273 } 1274 1275 /* 1276 * Return the user mode scheduling priority range. 1277 */ 1278 static int 1279 fss_getclpri(pcpri_t *pcprip) 1280 { 1281 pcprip->pc_clpmax = fss_maxupri; 1282 pcprip->pc_clpmin = -fss_maxupri; 1283 return (0); 1284 } 1285 1286 static int 1287 fss_alloc(void **p, int flag) 1288 { 1289 void *bufp; 1290 1291 if ((bufp = kmem_zalloc(sizeof (fssproc_t), flag)) == NULL) { 1292 return (ENOMEM); 1293 } else { 1294 *p = bufp; 1295 return (0); 1296 } 1297 } 1298 1299 static void 1300 fss_free(void *bufp) 1301 { 1302 if (bufp) 1303 kmem_free(bufp, sizeof (fssproc_t)); 1304 } 1305 1306 /* 1307 * Thread functions 1308 */ 1309 static int 1310 fss_enterclass(kthread_t *t, id_t cid, void *parmsp, cred_t *reqpcredp, 1311 void *bufp) 1312 { 1313 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1314 fssproc_t *fssproc; 1315 pri_t reqfssuprilim; 1316 pri_t reqfssupri; 1317 static uint32_t fssexists = 0; 1318 fsspset_t *fsspset; 1319 fssproj_t *fssproj; 1320 fsszone_t *fsszone; 1321 kproject_t *kpj; 1322 zone_t *zone; 1323 int fsszone_allocated = 0; 1324 1325 fssproc = (fssproc_t *)bufp; 1326 ASSERT(fssproc != NULL); 1327 1328 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 1329 1330 /* 1331 * Only root can move threads to FSS class. 1332 */ 1333 if (reqpcredp != NULL && secpolicy_setpriority(reqpcredp) != 0) 1334 return (EPERM); 1335 /* 1336 * Initialize the fssproc structure. 1337 */ 1338 fssproc->fss_umdpri = fss_maxumdpri / 2; 1339 1340 if (fssparmsp == NULL) { 1341 /* 1342 * Use default values. 1343 */ 1344 fssproc->fss_nice = NZERO; 1345 fssproc->fss_uprilim = fssproc->fss_upri = 0; 1346 } else { 1347 /* 1348 * Use supplied values. 1349 */ 1350 if (fssparmsp->fss_uprilim == FSS_NOCHANGE) { 1351 reqfssuprilim = 0; 1352 } else { 1353 if (fssparmsp->fss_uprilim > 0 && 1354 secpolicy_setpriority(reqpcredp) != 0) 1355 return (EPERM); 1356 reqfssuprilim = fssparmsp->fss_uprilim; 1357 } 1358 if (fssparmsp->fss_upri == FSS_NOCHANGE) { 1359 reqfssupri = reqfssuprilim; 1360 } else { 1361 if (fssparmsp->fss_upri > 0 && 1362 secpolicy_setpriority(reqpcredp) != 0) 1363 return (EPERM); 1364 /* 1365 * Set the user priority to the requested value or 1366 * the upri limit, whichever is lower. 1367 */ 1368 reqfssupri = fssparmsp->fss_upri; 1369 if (reqfssupri > reqfssuprilim) 1370 reqfssupri = reqfssuprilim; 1371 } 1372 fssproc->fss_uprilim = reqfssuprilim; 1373 fssproc->fss_upri = reqfssupri; 1374 fssproc->fss_nice = NZERO - (NZERO * reqfssupri) / fss_maxupri; 1375 if (fssproc->fss_nice > FSS_NICE_MAX) 1376 fssproc->fss_nice = FSS_NICE_MAX; 1377 } 1378 1379 fssproc->fss_timeleft = fss_quantum; 1380 fssproc->fss_tp = t; 1381 cpucaps_sc_init(&fssproc->fss_caps); 1382 1383 /* 1384 * Put a lock on our fsspset structure. 1385 */ 1386 mutex_enter(&fsspsets_lock); 1387 fsspset = fss_find_fsspset(t->t_cpupart); 1388 mutex_enter(&fsspset->fssps_lock); 1389 mutex_exit(&fsspsets_lock); 1390 1391 zone = ttoproc(t)->p_zone; 1392 if ((fsszone = fss_find_fsszone(fsspset, zone)) == NULL) { 1393 if ((fsszone = kmem_zalloc(sizeof (fsszone_t), KM_NOSLEEP)) 1394 == NULL) { 1395 mutex_exit(&fsspset->fssps_lock); 1396 return (ENOMEM); 1397 } else { 1398 fsszone_allocated = 1; 1399 fss_insert_fsszone(fsspset, zone, fsszone); 1400 } 1401 } 1402 kpj = ttoproj(t); 1403 if ((fssproj = fss_find_fssproj(fsspset, kpj)) == NULL) { 1404 if ((fssproj = kmem_zalloc(sizeof (fssproj_t), KM_NOSLEEP)) 1405 == NULL) { 1406 if (fsszone_allocated) { 1407 fss_remove_fsszone(fsspset, fsszone); 1408 kmem_free(fsszone, sizeof (fsszone_t)); 1409 } 1410 mutex_exit(&fsspset->fssps_lock); 1411 return (ENOMEM); 1412 } else { 1413 fss_insert_fssproj(fsspset, kpj, fsszone, fssproj); 1414 } 1415 } 1416 fssproj->fssp_threads++; 1417 fssproc->fss_proj = fssproj; 1418 1419 /* 1420 * Reset priority. Process goes to a "user mode" priority here 1421 * regardless of whether or not it has slept since entering the kernel. 1422 */ 1423 thread_lock(t); 1424 t->t_clfuncs = &(sclass[cid].cl_funcs->thread); 1425 t->t_cid = cid; 1426 t->t_cldata = (void *)fssproc; 1427 t->t_schedflag |= TS_RUNQMATCH; 1428 fss_change_priority(t, fssproc); 1429 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC || 1430 t->t_state == TS_WAIT) 1431 fss_active(t); 1432 thread_unlock(t); 1433 1434 mutex_exit(&fsspset->fssps_lock); 1435 1436 /* 1437 * Link new structure into fssproc list. 1438 */ 1439 FSS_LIST_INSERT(fssproc); 1440 1441 /* 1442 * If this is the first fair-sharing thread to occur since boot, 1443 * we set up the initial call to fss_update() here. Use an atomic 1444 * compare-and-swap since that's easier and faster than a mutex 1445 * (but check with an ordinary load first since most of the time 1446 * this will already be done). 1447 */ 1448 if (fssexists == 0 && cas32(&fssexists, 0, 1) == 0) 1449 (void) timeout(fss_update, NULL, hz); 1450 1451 return (0); 1452 } 1453 1454 /* 1455 * Remove fssproc_t from the list. 1456 */ 1457 static void 1458 fss_exitclass(void *procp) 1459 { 1460 fssproc_t *fssproc = (fssproc_t *)procp; 1461 fssproj_t *fssproj; 1462 fsspset_t *fsspset; 1463 fsszone_t *fsszone; 1464 kthread_t *t = fssproc->fss_tp; 1465 1466 /* 1467 * We should be either getting this thread off the deathrow or 1468 * this thread has already moved to another scheduling class and 1469 * we're being called with its old cldata buffer pointer. In both 1470 * cases, the content of this buffer can not be changed while we're 1471 * here. 1472 */ 1473 mutex_enter(&fsspsets_lock); 1474 thread_lock(t); 1475 if (t->t_cid != fss_cid) { 1476 /* 1477 * We're being called as a result of the priocntl() system 1478 * call -- someone is trying to move our thread to another 1479 * scheduling class. We can't call fss_inactive() here 1480 * because our thread's t_cldata pointer already points 1481 * to another scheduling class specific data. 1482 */ 1483 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 1484 1485 fssproj = FSSPROC2FSSPROJ(fssproc); 1486 fsspset = FSSPROJ2FSSPSET(fssproj); 1487 fsszone = fssproj->fssp_fsszone; 1488 1489 if (fssproc->fss_runnable) { 1490 disp_lock_enter_high(&fsspset->fssps_displock); 1491 if (--fssproj->fssp_runnable == 0) { 1492 fsszone->fssz_shares -= fssproj->fssp_shares; 1493 if (--fsszone->fssz_runnable == 0) 1494 fsspset->fssps_shares -= 1495 fsszone->fssz_rshares; 1496 } 1497 disp_lock_exit_high(&fsspset->fssps_displock); 1498 } 1499 thread_unlock(t); 1500 1501 mutex_enter(&fsspset->fssps_lock); 1502 if (--fssproj->fssp_threads == 0) { 1503 fss_remove_fssproj(fsspset, fssproj); 1504 if (fsszone->fssz_nproj == 0) 1505 kmem_free(fsszone, sizeof (fsszone_t)); 1506 kmem_free(fssproj, sizeof (fssproj_t)); 1507 } 1508 mutex_exit(&fsspset->fssps_lock); 1509 1510 } else { 1511 ASSERT(t->t_state == TS_FREE); 1512 /* 1513 * We're being called from thread_free() when our thread 1514 * is removed from the deathrow. There is nothing we need 1515 * do here since everything should've been done earlier 1516 * in fss_exit(). 1517 */ 1518 thread_unlock(t); 1519 } 1520 mutex_exit(&fsspsets_lock); 1521 1522 FSS_LIST_DELETE(fssproc); 1523 fss_free(fssproc); 1524 } 1525 1526 /*ARGSUSED*/ 1527 static int 1528 fss_canexit(kthread_t *t, cred_t *credp) 1529 { 1530 /* 1531 * A thread is allowed to exit FSS only if we have sufficient 1532 * privileges. 1533 */ 1534 if (credp != NULL && secpolicy_setpriority(credp) != 0) 1535 return (EPERM); 1536 else 1537 return (0); 1538 } 1539 1540 /* 1541 * Initialize fair-share class specific proc structure for a child. 1542 */ 1543 static int 1544 fss_fork(kthread_t *pt, kthread_t *ct, void *bufp) 1545 { 1546 fssproc_t *pfssproc; /* ptr to parent's fssproc structure */ 1547 fssproc_t *cfssproc; /* ptr to child's fssproc structure */ 1548 fssproj_t *fssproj; 1549 fsspset_t *fsspset; 1550 1551 ASSERT(MUTEX_HELD(&ttoproc(pt)->p_lock)); 1552 ASSERT(ct->t_state == TS_STOPPED); 1553 1554 cfssproc = (fssproc_t *)bufp; 1555 ASSERT(cfssproc != NULL); 1556 bzero(cfssproc, sizeof (fssproc_t)); 1557 1558 thread_lock(pt); 1559 pfssproc = FSSPROC(pt); 1560 fssproj = FSSPROC2FSSPROJ(pfssproc); 1561 fsspset = FSSPROJ2FSSPSET(fssproj); 1562 thread_unlock(pt); 1563 1564 mutex_enter(&fsspset->fssps_lock); 1565 /* 1566 * Initialize child's fssproc structure. 1567 */ 1568 thread_lock(pt); 1569 ASSERT(FSSPROJ(pt) == fssproj); 1570 cfssproc->fss_proj = fssproj; 1571 cfssproc->fss_timeleft = fss_quantum; 1572 cfssproc->fss_umdpri = pfssproc->fss_umdpri; 1573 cfssproc->fss_fsspri = 0; 1574 cfssproc->fss_uprilim = pfssproc->fss_uprilim; 1575 cfssproc->fss_upri = pfssproc->fss_upri; 1576 cfssproc->fss_tp = ct; 1577 cfssproc->fss_nice = pfssproc->fss_nice; 1578 cpucaps_sc_init(&cfssproc->fss_caps); 1579 1580 cfssproc->fss_flags = 1581 pfssproc->fss_flags & ~(FSSKPRI | FSSBACKQ | FSSRESTORE); 1582 ct->t_cldata = (void *)cfssproc; 1583 ct->t_schedflag |= TS_RUNQMATCH; 1584 thread_unlock(pt); 1585 1586 fssproj->fssp_threads++; 1587 mutex_exit(&fsspset->fssps_lock); 1588 1589 /* 1590 * Link new structure into fssproc hash table. 1591 */ 1592 FSS_LIST_INSERT(cfssproc); 1593 return (0); 1594 } 1595 1596 /* 1597 * Child is placed at back of dispatcher queue and parent gives up processor 1598 * so that the child runs first after the fork. This allows the child 1599 * immediately execing to break the multiple use of copy on write pages with no 1600 * disk home. The parent will get to steal them back rather than uselessly 1601 * copying them. 1602 */ 1603 static void 1604 fss_forkret(kthread_t *t, kthread_t *ct) 1605 { 1606 proc_t *pp = ttoproc(t); 1607 proc_t *cp = ttoproc(ct); 1608 fssproc_t *fssproc; 1609 1610 ASSERT(t == curthread); 1611 ASSERT(MUTEX_HELD(&pidlock)); 1612 1613 /* 1614 * Grab the child's p_lock before dropping pidlock to ensure the 1615 * process does not disappear before we set it running. 1616 */ 1617 mutex_enter(&cp->p_lock); 1618 mutex_exit(&pidlock); 1619 continuelwps(cp); 1620 mutex_exit(&cp->p_lock); 1621 1622 mutex_enter(&pp->p_lock); 1623 continuelwps(pp); 1624 mutex_exit(&pp->p_lock); 1625 1626 thread_lock(t); 1627 1628 fssproc = FSSPROC(t); 1629 fss_newpri(fssproc); 1630 fssproc->fss_timeleft = fss_quantum; 1631 t->t_pri = fssproc->fss_umdpri; 1632 ASSERT(t->t_pri >= 0 && t->t_pri <= fss_maxglobpri); 1633 fssproc->fss_flags &= ~FSSKPRI; 1634 THREAD_TRANSITION(t); 1635 1636 /* 1637 * We don't want to call fss_setrun(t) here because it may call 1638 * fss_active, which we don't need. 1639 */ 1640 fssproc->fss_flags &= ~FSSBACKQ; 1641 1642 if (t->t_disp_time != ddi_get_lbolt()) 1643 setbackdq(t); 1644 else 1645 setfrontdq(t); 1646 1647 thread_unlock(t); 1648 1649 swtch(); 1650 } 1651 1652 /* 1653 * Get the fair-sharing parameters of the thread pointed to by fssprocp into 1654 * the buffer pointed by fssparmsp. 1655 */ 1656 static void 1657 fss_parmsget(kthread_t *t, void *parmsp) 1658 { 1659 fssproc_t *fssproc = FSSPROC(t); 1660 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1661 1662 fssparmsp->fss_uprilim = fssproc->fss_uprilim; 1663 fssparmsp->fss_upri = fssproc->fss_upri; 1664 } 1665 1666 /*ARGSUSED*/ 1667 static int 1668 fss_parmsset(kthread_t *t, void *parmsp, id_t reqpcid, cred_t *reqpcredp) 1669 { 1670 char nice; 1671 pri_t reqfssuprilim; 1672 pri_t reqfssupri; 1673 fssproc_t *fssproc = FSSPROC(t); 1674 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1675 1676 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 1677 1678 if (fssparmsp->fss_uprilim == FSS_NOCHANGE) 1679 reqfssuprilim = fssproc->fss_uprilim; 1680 else 1681 reqfssuprilim = fssparmsp->fss_uprilim; 1682 1683 if (fssparmsp->fss_upri == FSS_NOCHANGE) 1684 reqfssupri = fssproc->fss_upri; 1685 else 1686 reqfssupri = fssparmsp->fss_upri; 1687 1688 /* 1689 * Make sure the user priority doesn't exceed the upri limit. 1690 */ 1691 if (reqfssupri > reqfssuprilim) 1692 reqfssupri = reqfssuprilim; 1693 1694 /* 1695 * Basic permissions enforced by generic kernel code for all classes 1696 * require that a thread attempting to change the scheduling parameters 1697 * of a target thread be privileged or have a real or effective UID 1698 * matching that of the target thread. We are not called unless these 1699 * basic permission checks have already passed. The fair-sharing class 1700 * requires in addition that the calling thread be privileged if it 1701 * is attempting to raise the upri limit above its current value. 1702 * This may have been checked previously but if our caller passed us 1703 * a non-NULL credential pointer we assume it hasn't and we check it 1704 * here. 1705 */ 1706 if ((reqpcredp != NULL) && 1707 (reqfssuprilim > fssproc->fss_uprilim) && 1708 secpolicy_setpriority(reqpcredp) != 0) 1709 return (EPERM); 1710 1711 /* 1712 * Set fss_nice to the nice value corresponding to the user priority we 1713 * are setting. Note that setting the nice field of the parameter 1714 * struct won't affect upri or nice. 1715 */ 1716 nice = NZERO - (reqfssupri * NZERO) / fss_maxupri; 1717 if (nice > FSS_NICE_MAX) 1718 nice = FSS_NICE_MAX; 1719 1720 thread_lock(t); 1721 1722 fssproc->fss_uprilim = reqfssuprilim; 1723 fssproc->fss_upri = reqfssupri; 1724 fssproc->fss_nice = nice; 1725 fss_newpri(fssproc); 1726 1727 if ((fssproc->fss_flags & FSSKPRI) != 0) { 1728 thread_unlock(t); 1729 return (0); 1730 } 1731 1732 fss_change_priority(t, fssproc); 1733 thread_unlock(t); 1734 return (0); 1735 1736 } 1737 1738 /* 1739 * The thread is being stopped. 1740 */ 1741 /*ARGSUSED*/ 1742 static void 1743 fss_stop(kthread_t *t, int why, int what) 1744 { 1745 ASSERT(THREAD_LOCK_HELD(t)); 1746 ASSERT(t == curthread); 1747 1748 fss_inactive(t); 1749 } 1750 1751 /* 1752 * The current thread is exiting, do necessary adjustments to its project 1753 */ 1754 static void 1755 fss_exit(kthread_t *t) 1756 { 1757 fsspset_t *fsspset; 1758 fssproj_t *fssproj; 1759 fssproc_t *fssproc; 1760 fsszone_t *fsszone; 1761 int free = 0; 1762 1763 /* 1764 * Thread t here is either a current thread (in which case we hold 1765 * its process' p_lock), or a thread being destroyed by forklwp_fail(), 1766 * in which case we hold pidlock and thread is no longer on the 1767 * thread list. 1768 */ 1769 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock) || MUTEX_HELD(&pidlock)); 1770 1771 fssproc = FSSPROC(t); 1772 fssproj = FSSPROC2FSSPROJ(fssproc); 1773 fsspset = FSSPROJ2FSSPSET(fssproj); 1774 fsszone = fssproj->fssp_fsszone; 1775 1776 mutex_enter(&fsspsets_lock); 1777 mutex_enter(&fsspset->fssps_lock); 1778 1779 thread_lock(t); 1780 disp_lock_enter_high(&fsspset->fssps_displock); 1781 if (t->t_state == TS_ONPROC || t->t_state == TS_RUN) { 1782 if (--fssproj->fssp_runnable == 0) { 1783 fsszone->fssz_shares -= fssproj->fssp_shares; 1784 if (--fsszone->fssz_runnable == 0) 1785 fsspset->fssps_shares -= fsszone->fssz_rshares; 1786 } 1787 ASSERT(fssproc->fss_runnable == 1); 1788 fssproc->fss_runnable = 0; 1789 } 1790 if (--fssproj->fssp_threads == 0) { 1791 fss_remove_fssproj(fsspset, fssproj); 1792 free = 1; 1793 } 1794 disp_lock_exit_high(&fsspset->fssps_displock); 1795 fssproc->fss_proj = NULL; /* mark this thread as already exited */ 1796 thread_unlock(t); 1797 1798 if (free) { 1799 if (fsszone->fssz_nproj == 0) 1800 kmem_free(fsszone, sizeof (fsszone_t)); 1801 kmem_free(fssproj, sizeof (fssproj_t)); 1802 } 1803 mutex_exit(&fsspset->fssps_lock); 1804 mutex_exit(&fsspsets_lock); 1805 1806 /* 1807 * A thread could be exiting in between clock ticks, so we need to 1808 * calculate how much CPU time it used since it was charged last time. 1809 * 1810 * CPU caps are not enforced on exiting processes - it is usually 1811 * desirable to exit as soon as possible to free resources. 1812 */ 1813 if (CPUCAPS_ON()) { 1814 thread_lock(t); 1815 fssproc = FSSPROC(t); 1816 (void) cpucaps_charge(t, &fssproc->fss_caps, 1817 CPUCAPS_CHARGE_ONLY); 1818 thread_unlock(t); 1819 } 1820 } 1821 1822 static void 1823 fss_nullsys() 1824 { 1825 } 1826 1827 /* 1828 * fss_swapin() returns -1 if the thread is loaded or is not eligible to be 1829 * swapped in. Otherwise, it returns the thread's effective priority based 1830 * on swapout time and size of process (0 <= epri <= 0 SHRT_MAX). 1831 */ 1832 /*ARGSUSED*/ 1833 static pri_t 1834 fss_swapin(kthread_t *t, int flags) 1835 { 1836 fssproc_t *fssproc = FSSPROC(t); 1837 long epri = -1; 1838 proc_t *pp = ttoproc(t); 1839 1840 ASSERT(THREAD_LOCK_HELD(t)); 1841 1842 if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) { 1843 time_t swapout_time; 1844 1845 swapout_time = (ddi_get_lbolt() - t->t_stime) / hz; 1846 if (INHERITED(t) || (fssproc->fss_flags & FSSKPRI)) { 1847 epri = (long)DISP_PRIO(t) + swapout_time; 1848 } else { 1849 /* 1850 * Threads which have been out for a long time, 1851 * have high user mode priority and are associated 1852 * with a small address space are more deserving. 1853 */ 1854 epri = fssproc->fss_umdpri; 1855 ASSERT(epri >= 0 && epri <= fss_maxumdpri); 1856 epri += swapout_time - pp->p_swrss / nz(maxpgio)/2; 1857 } 1858 /* 1859 * Scale epri so that SHRT_MAX / 2 represents zero priority. 1860 */ 1861 epri += SHRT_MAX / 2; 1862 if (epri < 0) 1863 epri = 0; 1864 else if (epri > SHRT_MAX) 1865 epri = SHRT_MAX; 1866 } 1867 return ((pri_t)epri); 1868 } 1869 1870 /* 1871 * fss_swapout() returns -1 if the thread isn't loaded or is not eligible to 1872 * be swapped out. Otherwise, it returns the thread's effective priority 1873 * based on if the swapper is in softswap or hardswap mode. 1874 */ 1875 static pri_t 1876 fss_swapout(kthread_t *t, int flags) 1877 { 1878 fssproc_t *fssproc = FSSPROC(t); 1879 long epri = -1; 1880 proc_t *pp = ttoproc(t); 1881 time_t swapin_time; 1882 1883 ASSERT(THREAD_LOCK_HELD(t)); 1884 1885 if (INHERITED(t) || 1886 (fssproc->fss_flags & FSSKPRI) || 1887 (t->t_proc_flag & TP_LWPEXIT) || 1888 (t->t_state & (TS_ZOMB|TS_FREE|TS_STOPPED|TS_ONPROC|TS_WAIT)) || 1889 !(t->t_schedflag & TS_LOAD) || 1890 !(SWAP_OK(t))) 1891 return (-1); 1892 1893 ASSERT(t->t_state & (TS_SLEEP | TS_RUN)); 1894 1895 swapin_time = (ddi_get_lbolt() - t->t_stime) / hz; 1896 1897 if (flags == SOFTSWAP) { 1898 if (t->t_state == TS_SLEEP && swapin_time > maxslp) { 1899 epri = 0; 1900 } else { 1901 return ((pri_t)epri); 1902 } 1903 } else { 1904 pri_t pri; 1905 1906 if ((t->t_state == TS_SLEEP && swapin_time > fss_minslp) || 1907 (t->t_state == TS_RUN && swapin_time > fss_minrun)) { 1908 pri = fss_maxumdpri; 1909 epri = swapin_time - 1910 (rm_asrss(pp->p_as) / nz(maxpgio)/2) - (long)pri; 1911 } else { 1912 return ((pri_t)epri); 1913 } 1914 } 1915 1916 /* 1917 * Scale epri so that SHRT_MAX / 2 represents zero priority. 1918 */ 1919 epri += SHRT_MAX / 2; 1920 if (epri < 0) 1921 epri = 0; 1922 else if (epri > SHRT_MAX) 1923 epri = SHRT_MAX; 1924 1925 return ((pri_t)epri); 1926 } 1927 1928 /* 1929 * If thread is currently at a kernel mode priority (has slept) and is 1930 * returning to the userland we assign it the appropriate user mode priority 1931 * and time quantum here. If we're lowering the thread's priority below that 1932 * of other runnable threads then we will set runrun via cpu_surrender() to 1933 * cause preemption. 1934 */ 1935 static void 1936 fss_trapret(kthread_t *t) 1937 { 1938 fssproc_t *fssproc = FSSPROC(t); 1939 cpu_t *cp = CPU; 1940 1941 ASSERT(THREAD_LOCK_HELD(t)); 1942 ASSERT(t == curthread); 1943 ASSERT(cp->cpu_dispthread == t); 1944 ASSERT(t->t_state == TS_ONPROC); 1945 1946 t->t_kpri_req = 0; 1947 if (fssproc->fss_flags & FSSKPRI) { 1948 /* 1949 * If thread has blocked in the kernel 1950 */ 1951 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri); 1952 cp->cpu_dispatch_pri = DISP_PRIO(t); 1953 ASSERT(t->t_pri >= 0 && t->t_pri <= fss_maxglobpri); 1954 fssproc->fss_flags &= ~FSSKPRI; 1955 1956 if (DISP_MUST_SURRENDER(t)) 1957 cpu_surrender(t); 1958 } 1959 1960 /* 1961 * Swapout lwp if the swapper is waiting for this thread to reach 1962 * a safe point. 1963 */ 1964 if (t->t_schedflag & TS_SWAPENQ) { 1965 thread_unlock(t); 1966 swapout_lwp(ttolwp(t)); 1967 thread_lock(t); 1968 } 1969 } 1970 1971 /* 1972 * Arrange for thread to be placed in appropriate location on dispatcher queue. 1973 * This is called with the current thread in TS_ONPROC and locked. 1974 */ 1975 static void 1976 fss_preempt(kthread_t *t) 1977 { 1978 fssproc_t *fssproc = FSSPROC(t); 1979 klwp_t *lwp; 1980 uint_t flags; 1981 1982 ASSERT(t == curthread); 1983 ASSERT(THREAD_LOCK_HELD(curthread)); 1984 ASSERT(t->t_state == TS_ONPROC); 1985 1986 /* 1987 * If preempted in the kernel, make sure the thread has a kernel 1988 * priority if needed. 1989 */ 1990 lwp = curthread->t_lwp; 1991 if (!(fssproc->fss_flags & FSSKPRI) && lwp != NULL && t->t_kpri_req) { 1992 fssproc->fss_flags |= FSSKPRI; 1993 THREAD_CHANGE_PRI(t, minclsyspri); 1994 ASSERT(t->t_pri >= 0 && t->t_pri <= fss_maxglobpri); 1995 t->t_trapret = 1; /* so that fss_trapret will run */ 1996 aston(t); 1997 } 1998 1999 /* 2000 * This thread may be placed on wait queue by CPU Caps. In this case we 2001 * do not need to do anything until it is removed from the wait queue. 2002 * Do not enforce CPU caps on threads running at a kernel priority 2003 */ 2004 if (CPUCAPS_ON()) { 2005 (void) cpucaps_charge(t, &fssproc->fss_caps, 2006 CPUCAPS_CHARGE_ENFORCE); 2007 2008 if (!(fssproc->fss_flags & FSSKPRI) && CPUCAPS_ENFORCE(t)) 2009 return; 2010 } 2011 2012 /* 2013 * If preempted in user-land mark the thread as swappable because it 2014 * cannot be holding any kernel locks. 2015 */ 2016 ASSERT(t->t_schedflag & TS_DONT_SWAP); 2017 if (lwp != NULL && lwp->lwp_state == LWP_USER) 2018 t->t_schedflag &= ~TS_DONT_SWAP; 2019 2020 /* 2021 * Check to see if we're doing "preemption control" here. If 2022 * we are, and if the user has requested that this thread not 2023 * be preempted, and if preemptions haven't been put off for 2024 * too long, let the preemption happen here but try to make 2025 * sure the thread is rescheduled as soon as possible. We do 2026 * this by putting it on the front of the highest priority run 2027 * queue in the FSS class. If the preemption has been put off 2028 * for too long, clear the "nopreempt" bit and let the thread 2029 * be preempted. 2030 */ 2031 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 2032 if (fssproc->fss_timeleft > -SC_MAX_TICKS) { 2033 DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t); 2034 if (!(fssproc->fss_flags & FSSKPRI)) { 2035 /* 2036 * If not already remembered, remember current 2037 * priority for restoration in fss_yield(). 2038 */ 2039 if (!(fssproc->fss_flags & FSSRESTORE)) { 2040 fssproc->fss_scpri = t->t_pri; 2041 fssproc->fss_flags |= FSSRESTORE; 2042 } 2043 THREAD_CHANGE_PRI(t, fss_maxumdpri); 2044 t->t_schedflag |= TS_DONT_SWAP; 2045 } 2046 schedctl_set_yield(t, 1); 2047 setfrontdq(t); 2048 return; 2049 } else { 2050 if (fssproc->fss_flags & FSSRESTORE) { 2051 THREAD_CHANGE_PRI(t, fssproc->fss_scpri); 2052 fssproc->fss_flags &= ~FSSRESTORE; 2053 } 2054 schedctl_set_nopreempt(t, 0); 2055 DTRACE_SCHED1(schedctl__preempt, kthread_t *, t); 2056 /* 2057 * Fall through and be preempted below. 2058 */ 2059 } 2060 } 2061 2062 flags = fssproc->fss_flags & (FSSBACKQ | FSSKPRI); 2063 2064 if (flags == FSSBACKQ) { 2065 fssproc->fss_timeleft = fss_quantum; 2066 fssproc->fss_flags &= ~FSSBACKQ; 2067 setbackdq(t); 2068 } else if (flags == (FSSBACKQ | FSSKPRI)) { 2069 fssproc->fss_flags &= ~FSSBACKQ; 2070 setbackdq(t); 2071 } else { 2072 setfrontdq(t); 2073 } 2074 } 2075 2076 /* 2077 * Called when a thread is waking up and is to be placed on the run queue. 2078 */ 2079 static void 2080 fss_setrun(kthread_t *t) 2081 { 2082 fssproc_t *fssproc = FSSPROC(t); 2083 2084 ASSERT(THREAD_LOCK_HELD(t)); /* t should be in transition */ 2085 2086 if (t->t_state == TS_SLEEP || t->t_state == TS_STOPPED) 2087 fss_active(t); 2088 2089 fssproc->fss_timeleft = fss_quantum; 2090 2091 fssproc->fss_flags &= ~FSSBACKQ; 2092 /* 2093 * If previously were running at the kernel priority then keep that 2094 * priority and the fss_timeleft doesn't matter. 2095 */ 2096 if ((fssproc->fss_flags & FSSKPRI) == 0) 2097 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri); 2098 2099 if (t->t_disp_time != ddi_get_lbolt()) 2100 setbackdq(t); 2101 else 2102 setfrontdq(t); 2103 } 2104 2105 /* 2106 * Prepare thread for sleep. We reset the thread priority so it will run at the 2107 * kernel priority level when it wakes up. 2108 */ 2109 static void 2110 fss_sleep(kthread_t *t) 2111 { 2112 fssproc_t *fssproc = FSSPROC(t); 2113 2114 ASSERT(t == curthread); 2115 ASSERT(THREAD_LOCK_HELD(t)); 2116 2117 ASSERT(t->t_state == TS_ONPROC); 2118 2119 /* 2120 * Account for time spent on CPU before going to sleep. 2121 */ 2122 (void) CPUCAPS_CHARGE(t, &fssproc->fss_caps, CPUCAPS_CHARGE_ENFORCE); 2123 2124 fss_inactive(t); 2125 2126 /* 2127 * Assign a system priority to the thread and arrange for it to be 2128 * retained when the thread is next placed on the run queue (i.e., 2129 * when it wakes up) instead of being given a new pri. Also arrange 2130 * for trapret processing as the thread leaves the system call so it 2131 * will drop back to normal priority range. 2132 */ 2133 if (t->t_kpri_req) { 2134 THREAD_CHANGE_PRI(t, minclsyspri); 2135 fssproc->fss_flags |= FSSKPRI; 2136 t->t_trapret = 1; /* so that fss_trapret will run */ 2137 aston(t); 2138 } else if (fssproc->fss_flags & FSSKPRI) { 2139 /* 2140 * The thread has done a THREAD_KPRI_REQUEST(), slept, then 2141 * done THREAD_KPRI_RELEASE() (so no t_kpri_req is 0 again), 2142 * then slept again all without finishing the current system 2143 * call so trapret won't have cleared FSSKPRI 2144 */ 2145 fssproc->fss_flags &= ~FSSKPRI; 2146 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri); 2147 if (DISP_MUST_SURRENDER(curthread)) 2148 cpu_surrender(t); 2149 } 2150 t->t_stime = ddi_get_lbolt(); /* time stamp for the swapper */ 2151 } 2152 2153 /* 2154 * A tick interrupt has ocurrend on a running thread. Check to see if our 2155 * time slice has expired. We must also clear the TS_DONT_SWAP flag in 2156 * t_schedflag if the thread is eligible to be swapped out. 2157 */ 2158 static void 2159 fss_tick(kthread_t *t) 2160 { 2161 fssproc_t *fssproc; 2162 fssproj_t *fssproj; 2163 klwp_t *lwp; 2164 boolean_t call_cpu_surrender = B_FALSE; 2165 boolean_t cpucaps_enforce = B_FALSE; 2166 2167 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 2168 2169 /* 2170 * It's safe to access fsspset and fssproj structures because we're 2171 * holding our p_lock here. 2172 */ 2173 thread_lock(t); 2174 fssproc = FSSPROC(t); 2175 fssproj = FSSPROC2FSSPROJ(fssproc); 2176 if (fssproj != NULL) { 2177 fsspset_t *fsspset = FSSPROJ2FSSPSET(fssproj); 2178 disp_lock_enter_high(&fsspset->fssps_displock); 2179 fssproj->fssp_ticks += fss_nice_tick[fssproc->fss_nice]; 2180 fssproc->fss_ticks++; 2181 disp_lock_exit_high(&fsspset->fssps_displock); 2182 } 2183 2184 /* 2185 * Keep track of thread's project CPU usage. Note that projects 2186 * get charged even when threads are running in the kernel. 2187 * Do not surrender CPU if running in the SYS class. 2188 */ 2189 if (CPUCAPS_ON()) { 2190 cpucaps_enforce = cpucaps_charge(t, 2191 &fssproc->fss_caps, CPUCAPS_CHARGE_ENFORCE) && 2192 !(fssproc->fss_flags & FSSKPRI); 2193 } 2194 2195 /* 2196 * A thread's execution time for threads running in the SYS class 2197 * is not tracked. 2198 */ 2199 if ((fssproc->fss_flags & FSSKPRI) == 0) { 2200 /* 2201 * If thread is not in kernel mode, decrement its fss_timeleft 2202 */ 2203 if (--fssproc->fss_timeleft <= 0) { 2204 pri_t new_pri; 2205 2206 /* 2207 * If we're doing preemption control and trying to 2208 * avoid preempting this thread, just note that the 2209 * thread should yield soon and let it keep running 2210 * (unless it's been a while). 2211 */ 2212 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 2213 if (fssproc->fss_timeleft > -SC_MAX_TICKS) { 2214 DTRACE_SCHED1(schedctl__nopreempt, 2215 kthread_t *, t); 2216 schedctl_set_yield(t, 1); 2217 thread_unlock_nopreempt(t); 2218 return; 2219 } 2220 } 2221 fssproc->fss_flags &= ~FSSRESTORE; 2222 2223 fss_newpri(fssproc); 2224 new_pri = fssproc->fss_umdpri; 2225 ASSERT(new_pri >= 0 && new_pri <= fss_maxglobpri); 2226 2227 /* 2228 * When the priority of a thread is changed, it may 2229 * be necessary to adjust its position on a sleep queue 2230 * or dispatch queue. The function thread_change_pri 2231 * accomplishes this. 2232 */ 2233 if (thread_change_pri(t, new_pri, 0)) { 2234 if ((t->t_schedflag & TS_LOAD) && 2235 (lwp = t->t_lwp) && 2236 lwp->lwp_state == LWP_USER) 2237 t->t_schedflag &= ~TS_DONT_SWAP; 2238 fssproc->fss_timeleft = fss_quantum; 2239 } else { 2240 call_cpu_surrender = B_TRUE; 2241 } 2242 } else if (t->t_state == TS_ONPROC && 2243 t->t_pri < t->t_disp_queue->disp_maxrunpri) { 2244 /* 2245 * If there is a higher-priority thread which is 2246 * waiting for a processor, then thread surrenders 2247 * the processor. 2248 */ 2249 call_cpu_surrender = B_TRUE; 2250 } 2251 } 2252 2253 if (cpucaps_enforce && 2 * fssproc->fss_timeleft > fss_quantum) { 2254 /* 2255 * The thread used more than half of its quantum, so assume that 2256 * it used the whole quantum. 2257 * 2258 * Update thread's priority just before putting it on the wait 2259 * queue so that it gets charged for the CPU time from its 2260 * quantum even before that quantum expires. 2261 */ 2262 fss_newpri(fssproc); 2263 if (t->t_pri != fssproc->fss_umdpri) 2264 fss_change_priority(t, fssproc); 2265 2266 /* 2267 * We need to call cpu_surrender for this thread due to cpucaps 2268 * enforcement, but fss_change_priority may have already done 2269 * so. In this case FSSBACKQ is set and there is no need to call 2270 * cpu-surrender again. 2271 */ 2272 if (!(fssproc->fss_flags & FSSBACKQ)) 2273 call_cpu_surrender = B_TRUE; 2274 } 2275 2276 if (call_cpu_surrender) { 2277 fssproc->fss_flags |= FSSBACKQ; 2278 cpu_surrender(t); 2279 } 2280 2281 thread_unlock_nopreempt(t); /* clock thread can't be preempted */ 2282 } 2283 2284 /* 2285 * Processes waking up go to the back of their queue. We don't need to assign 2286 * a time quantum here because thread is still at a kernel mode priority and 2287 * the time slicing is not done for threads running in the kernel after 2288 * sleeping. The proper time quantum will be assigned by fss_trapret before the 2289 * thread returns to user mode. 2290 */ 2291 static void 2292 fss_wakeup(kthread_t *t) 2293 { 2294 fssproc_t *fssproc; 2295 2296 ASSERT(THREAD_LOCK_HELD(t)); 2297 ASSERT(t->t_state == TS_SLEEP); 2298 2299 fss_active(t); 2300 2301 t->t_stime = ddi_get_lbolt(); /* time stamp for the swapper */ 2302 fssproc = FSSPROC(t); 2303 fssproc->fss_flags &= ~FSSBACKQ; 2304 2305 if (fssproc->fss_flags & FSSKPRI) { 2306 /* 2307 * If we already have a kernel priority assigned, then we 2308 * just use it. 2309 */ 2310 setbackdq(t); 2311 } else if (t->t_kpri_req) { 2312 /* 2313 * Give thread a priority boost if we were asked. 2314 */ 2315 fssproc->fss_flags |= FSSKPRI; 2316 THREAD_CHANGE_PRI(t, minclsyspri); 2317 setbackdq(t); 2318 t->t_trapret = 1; /* so that fss_trapret will run */ 2319 aston(t); 2320 } else { 2321 /* 2322 * Otherwise, we recalculate the priority. 2323 */ 2324 if (t->t_disp_time == ddi_get_lbolt()) { 2325 setfrontdq(t); 2326 } else { 2327 fssproc->fss_timeleft = fss_quantum; 2328 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri); 2329 setbackdq(t); 2330 } 2331 } 2332 } 2333 2334 /* 2335 * fss_donice() is called when a nice(1) command is issued on the thread to 2336 * alter the priority. The nice(1) command exists in Solaris for compatibility. 2337 * Thread priority adjustments should be done via priocntl(1). 2338 */ 2339 static int 2340 fss_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp) 2341 { 2342 int newnice; 2343 fssproc_t *fssproc = FSSPROC(t); 2344 fssparms_t fssparms; 2345 2346 /* 2347 * If there is no change to priority, just return current setting. 2348 */ 2349 if (incr == 0) { 2350 if (retvalp) 2351 *retvalp = fssproc->fss_nice - NZERO; 2352 return (0); 2353 } 2354 2355 if ((incr < 0 || incr > 2 * NZERO) && secpolicy_setpriority(cr) != 0) 2356 return (EPERM); 2357 2358 /* 2359 * Specifying a nice increment greater than the upper limit of 2360 * FSS_NICE_MAX (== 2 * NZERO - 1) will result in the thread's nice 2361 * value being set to the upper limit. We check for this before 2362 * computing the new value because otherwise we could get overflow 2363 * if a privileged user specified some ridiculous increment. 2364 */ 2365 if (incr > FSS_NICE_MAX) 2366 incr = FSS_NICE_MAX; 2367 2368 newnice = fssproc->fss_nice + incr; 2369 if (newnice > FSS_NICE_MAX) 2370 newnice = FSS_NICE_MAX; 2371 else if (newnice < FSS_NICE_MIN) 2372 newnice = FSS_NICE_MIN; 2373 2374 fssparms.fss_uprilim = fssparms.fss_upri = 2375 -((newnice - NZERO) * fss_maxupri) / NZERO; 2376 2377 /* 2378 * Reset the uprilim and upri values of the thread. 2379 */ 2380 (void) fss_parmsset(t, (void *)&fssparms, (id_t)0, (cred_t *)NULL); 2381 2382 /* 2383 * Although fss_parmsset already reset fss_nice it may not have been 2384 * set to precisely the value calculated above because fss_parmsset 2385 * determines the nice value from the user priority and we may have 2386 * truncated during the integer conversion from nice value to user 2387 * priority and back. We reset fss_nice to the value we calculated 2388 * above. 2389 */ 2390 fssproc->fss_nice = (char)newnice; 2391 2392 if (retvalp) 2393 *retvalp = newnice - NZERO; 2394 return (0); 2395 } 2396 2397 /* 2398 * Increment the priority of the specified thread by incr and 2399 * return the new value in *retvalp. 2400 */ 2401 static int 2402 fss_doprio(kthread_t *t, cred_t *cr, int incr, int *retvalp) 2403 { 2404 int newpri; 2405 fssproc_t *fssproc = FSSPROC(t); 2406 fssparms_t fssparms; 2407 2408 /* 2409 * If there is no change to priority, just return current setting. 2410 */ 2411 if (incr == 0) { 2412 *retvalp = fssproc->fss_upri; 2413 return (0); 2414 } 2415 2416 newpri = fssproc->fss_upri + incr; 2417 if (newpri > fss_maxupri || newpri < -fss_maxupri) 2418 return (EINVAL); 2419 2420 *retvalp = newpri; 2421 fssparms.fss_uprilim = fssparms.fss_upri = newpri; 2422 2423 /* 2424 * Reset the uprilim and upri values of the thread. 2425 */ 2426 return (fss_parmsset(t, &fssparms, (id_t)0, cr)); 2427 } 2428 2429 /* 2430 * Return the global scheduling priority that would be assigned to a thread 2431 * entering the fair-sharing class with the fss_upri. 2432 */ 2433 /*ARGSUSED*/ 2434 static pri_t 2435 fss_globpri(kthread_t *t) 2436 { 2437 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 2438 2439 return (fss_maxumdpri / 2); 2440 } 2441 2442 /* 2443 * Called from the yield(2) system call when a thread is yielding (surrendering) 2444 * the processor. The kernel thread is placed at the back of a dispatch queue. 2445 */ 2446 static void 2447 fss_yield(kthread_t *t) 2448 { 2449 fssproc_t *fssproc = FSSPROC(t); 2450 2451 ASSERT(t == curthread); 2452 ASSERT(THREAD_LOCK_HELD(t)); 2453 2454 /* 2455 * Collect CPU usage spent before yielding 2456 */ 2457 (void) CPUCAPS_CHARGE(t, &fssproc->fss_caps, CPUCAPS_CHARGE_ENFORCE); 2458 2459 /* 2460 * Clear the preemption control "yield" bit since the user is 2461 * doing a yield. 2462 */ 2463 if (t->t_schedctl) 2464 schedctl_set_yield(t, 0); 2465 /* 2466 * If fss_preempt() artifically increased the thread's priority 2467 * to avoid preemption, restore the original priority now. 2468 */ 2469 if (fssproc->fss_flags & FSSRESTORE) { 2470 THREAD_CHANGE_PRI(t, fssproc->fss_scpri); 2471 fssproc->fss_flags &= ~FSSRESTORE; 2472 } 2473 if (fssproc->fss_timeleft < 0) { 2474 /* 2475 * Time slice was artificially extended to avoid preemption, 2476 * so pretend we're preempting it now. 2477 */ 2478 DTRACE_SCHED1(schedctl__yield, int, -fssproc->fss_timeleft); 2479 fssproc->fss_timeleft = fss_quantum; 2480 } 2481 fssproc->fss_flags &= ~FSSBACKQ; 2482 setbackdq(t); 2483 } 2484 2485 void 2486 fss_changeproj(kthread_t *t, void *kp, void *zp, fssbuf_t *projbuf, 2487 fssbuf_t *zonebuf) 2488 { 2489 kproject_t *kpj_new = kp; 2490 zone_t *zone = zp; 2491 fssproj_t *fssproj_old, *fssproj_new; 2492 fsspset_t *fsspset; 2493 kproject_t *kpj_old; 2494 fssproc_t *fssproc; 2495 fsszone_t *fsszone_old, *fsszone_new; 2496 int free = 0; 2497 int id; 2498 2499 ASSERT(MUTEX_HELD(&cpu_lock)); 2500 ASSERT(MUTEX_HELD(&pidlock)); 2501 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 2502 2503 if (t->t_cid != fss_cid) 2504 return; 2505 2506 fssproc = FSSPROC(t); 2507 mutex_enter(&fsspsets_lock); 2508 fssproj_old = FSSPROC2FSSPROJ(fssproc); 2509 if (fssproj_old == NULL) { 2510 mutex_exit(&fsspsets_lock); 2511 return; 2512 } 2513 2514 fsspset = FSSPROJ2FSSPSET(fssproj_old); 2515 mutex_enter(&fsspset->fssps_lock); 2516 kpj_old = FSSPROJ2KPROJ(fssproj_old); 2517 fsszone_old = fssproj_old->fssp_fsszone; 2518 2519 ASSERT(t->t_cpupart == fsspset->fssps_cpupart); 2520 2521 if (kpj_old == kpj_new) { 2522 mutex_exit(&fsspset->fssps_lock); 2523 mutex_exit(&fsspsets_lock); 2524 return; 2525 } 2526 2527 if ((fsszone_new = fss_find_fsszone(fsspset, zone)) == NULL) { 2528 /* 2529 * If the zone for the new project is not currently active on 2530 * the cpu partition we're on, get one of the pre-allocated 2531 * buffers and link it in our per-pset zone list. Such buffers 2532 * should already exist. 2533 */ 2534 for (id = 0; id < zonebuf->fssb_size; id++) { 2535 if ((fsszone_new = zonebuf->fssb_list[id]) != NULL) { 2536 fss_insert_fsszone(fsspset, zone, fsszone_new); 2537 zonebuf->fssb_list[id] = NULL; 2538 break; 2539 } 2540 } 2541 } 2542 ASSERT(fsszone_new != NULL); 2543 if ((fssproj_new = fss_find_fssproj(fsspset, kpj_new)) == NULL) { 2544 /* 2545 * If our new project is not currently running 2546 * on the cpu partition we're on, get one of the 2547 * pre-allocated buffers and link it in our new cpu 2548 * partition doubly linked list. Such buffers should already 2549 * exist. 2550 */ 2551 for (id = 0; id < projbuf->fssb_size; id++) { 2552 if ((fssproj_new = projbuf->fssb_list[id]) != NULL) { 2553 fss_insert_fssproj(fsspset, kpj_new, 2554 fsszone_new, fssproj_new); 2555 projbuf->fssb_list[id] = NULL; 2556 break; 2557 } 2558 } 2559 } 2560 ASSERT(fssproj_new != NULL); 2561 2562 thread_lock(t); 2563 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC || 2564 t->t_state == TS_WAIT) 2565 fss_inactive(t); 2566 ASSERT(fssproj_old->fssp_threads > 0); 2567 if (--fssproj_old->fssp_threads == 0) { 2568 fss_remove_fssproj(fsspset, fssproj_old); 2569 free = 1; 2570 } 2571 fssproc->fss_proj = fssproj_new; 2572 fssproc->fss_fsspri = 0; 2573 fssproj_new->fssp_threads++; 2574 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC || 2575 t->t_state == TS_WAIT) 2576 fss_active(t); 2577 thread_unlock(t); 2578 if (free) { 2579 if (fsszone_old->fssz_nproj == 0) 2580 kmem_free(fsszone_old, sizeof (fsszone_t)); 2581 kmem_free(fssproj_old, sizeof (fssproj_t)); 2582 } 2583 2584 mutex_exit(&fsspset->fssps_lock); 2585 mutex_exit(&fsspsets_lock); 2586 } 2587 2588 void 2589 fss_changepset(kthread_t *t, void *newcp, fssbuf_t *projbuf, 2590 fssbuf_t *zonebuf) 2591 { 2592 fsspset_t *fsspset_old, *fsspset_new; 2593 fssproj_t *fssproj_old, *fssproj_new; 2594 fsszone_t *fsszone_old, *fsszone_new; 2595 fssproc_t *fssproc; 2596 kproject_t *kpj; 2597 zone_t *zone; 2598 int id; 2599 2600 ASSERT(MUTEX_HELD(&cpu_lock)); 2601 ASSERT(MUTEX_HELD(&pidlock)); 2602 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 2603 2604 if (t->t_cid != fss_cid) 2605 return; 2606 2607 fssproc = FSSPROC(t); 2608 zone = ttoproc(t)->p_zone; 2609 mutex_enter(&fsspsets_lock); 2610 fssproj_old = FSSPROC2FSSPROJ(fssproc); 2611 if (fssproj_old == NULL) { 2612 mutex_exit(&fsspsets_lock); 2613 return; 2614 } 2615 fsszone_old = fssproj_old->fssp_fsszone; 2616 fsspset_old = FSSPROJ2FSSPSET(fssproj_old); 2617 kpj = FSSPROJ2KPROJ(fssproj_old); 2618 2619 if (fsspset_old->fssps_cpupart == newcp) { 2620 mutex_exit(&fsspsets_lock); 2621 return; 2622 } 2623 2624 ASSERT(ttoproj(t) == kpj); 2625 2626 fsspset_new = fss_find_fsspset(newcp); 2627 2628 mutex_enter(&fsspset_new->fssps_lock); 2629 if ((fsszone_new = fss_find_fsszone(fsspset_new, zone)) == NULL) { 2630 for (id = 0; id < zonebuf->fssb_size; id++) { 2631 if ((fsszone_new = zonebuf->fssb_list[id]) != NULL) { 2632 fss_insert_fsszone(fsspset_new, zone, 2633 fsszone_new); 2634 zonebuf->fssb_list[id] = NULL; 2635 break; 2636 } 2637 } 2638 } 2639 ASSERT(fsszone_new != NULL); 2640 if ((fssproj_new = fss_find_fssproj(fsspset_new, kpj)) == NULL) { 2641 for (id = 0; id < projbuf->fssb_size; id++) { 2642 if ((fssproj_new = projbuf->fssb_list[id]) != NULL) { 2643 fss_insert_fssproj(fsspset_new, kpj, 2644 fsszone_new, fssproj_new); 2645 projbuf->fssb_list[id] = NULL; 2646 break; 2647 } 2648 } 2649 } 2650 ASSERT(fssproj_new != NULL); 2651 2652 fssproj_new->fssp_threads++; 2653 thread_lock(t); 2654 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC || 2655 t->t_state == TS_WAIT) 2656 fss_inactive(t); 2657 fssproc->fss_proj = fssproj_new; 2658 fssproc->fss_fsspri = 0; 2659 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC || 2660 t->t_state == TS_WAIT) 2661 fss_active(t); 2662 thread_unlock(t); 2663 mutex_exit(&fsspset_new->fssps_lock); 2664 2665 mutex_enter(&fsspset_old->fssps_lock); 2666 if (--fssproj_old->fssp_threads == 0) { 2667 fss_remove_fssproj(fsspset_old, fssproj_old); 2668 if (fsszone_old->fssz_nproj == 0) 2669 kmem_free(fsszone_old, sizeof (fsszone_t)); 2670 kmem_free(fssproj_old, sizeof (fssproj_t)); 2671 } 2672 mutex_exit(&fsspset_old->fssps_lock); 2673 2674 mutex_exit(&fsspsets_lock); 2675 } 2676