1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/param.h> 28 #include <sys/sysmacros.h> 29 #include <sys/cred.h> 30 #include <sys/proc.h> 31 #include <sys/strsubr.h> 32 #include <sys/priocntl.h> 33 #include <sys/class.h> 34 #include <sys/disp.h> 35 #include <sys/procset.h> 36 #include <sys/debug.h> 37 #include <sys/kmem.h> 38 #include <sys/errno.h> 39 #include <sys/systm.h> 40 #include <sys/schedctl.h> 41 #include <sys/vmsystm.h> 42 #include <sys/atomic.h> 43 #include <sys/project.h> 44 #include <sys/modctl.h> 45 #include <sys/fss.h> 46 #include <sys/fsspriocntl.h> 47 #include <sys/cpupart.h> 48 #include <sys/zone.h> 49 #include <vm/rm.h> 50 #include <vm/seg_kmem.h> 51 #include <sys/tnf_probe.h> 52 #include <sys/policy.h> 53 #include <sys/sdt.h> 54 #include <sys/cpucaps.h> 55 56 /* 57 * FSS Data Structures: 58 * 59 * fsszone 60 * ----- ----- 61 * ----- | | | | 62 * | |-------->| |<------->| |<---->... 63 * | | ----- ----- 64 * | | ^ ^ ^ 65 * | |--- | \ \ 66 * ----- | | \ \ 67 * fsspset | | \ \ 68 * | | \ \ 69 * | ----- ----- ----- 70 * -->| |<--->| |<--->| | 71 * | | | | | | 72 * ----- ----- ----- 73 * fssproj 74 * 75 * 76 * That is, fsspsets contain a list of fsszone's that are currently active in 77 * the pset, and a list of fssproj's, corresponding to projects with runnable 78 * threads on the pset. fssproj's in turn point to the fsszone which they 79 * are a member of. 80 * 81 * An fssproj_t is removed when there are no threads in it. 82 * 83 * An fsszone_t is removed when there are no projects with threads in it. 84 * 85 * Projects in a zone compete with each other for cpu time, receiving cpu 86 * allocation within a zone proportional to fssproj->fssp_shares 87 * (project.cpu-shares); at a higher level zones compete with each other, 88 * receiving allocation in a pset proportional to fsszone->fssz_shares 89 * (zone.cpu-shares). See fss_decay_usage() for the precise formula. 90 */ 91 92 static pri_t fss_init(id_t, int, classfuncs_t **); 93 94 static struct sclass fss = { 95 "FSS", 96 fss_init, 97 0 98 }; 99 100 extern struct mod_ops mod_schedops; 101 102 /* 103 * Module linkage information for the kernel. 104 */ 105 static struct modlsched modlsched = { 106 &mod_schedops, "fair share scheduling class", &fss 107 }; 108 109 static struct modlinkage modlinkage = { 110 MODREV_1, (void *)&modlsched, NULL 111 }; 112 113 #define FSS_MAXUPRI 60 114 115 /* 116 * The fssproc_t structures are kept in an array of circular doubly linked 117 * lists. A hash on the thread pointer is used to determine which list each 118 * thread should be placed in. Each list has a dummy "head" which is never 119 * removed, so the list is never empty. fss_update traverses these lists to 120 * update the priorities of threads that have been waiting on the run queue. 121 */ 122 #define FSS_LISTS 16 /* number of lists, must be power of 2 */ 123 #define FSS_LIST_HASH(t) (((uintptr_t)(t) >> 9) & (FSS_LISTS - 1)) 124 #define FSS_LIST_NEXT(i) (((i) + 1) & (FSS_LISTS - 1)) 125 126 #define FSS_LIST_INSERT(fssproc) \ 127 { \ 128 int index = FSS_LIST_HASH(fssproc->fss_tp); \ 129 kmutex_t *lockp = &fss_listlock[index]; \ 130 fssproc_t *headp = &fss_listhead[index]; \ 131 mutex_enter(lockp); \ 132 fssproc->fss_next = headp->fss_next; \ 133 fssproc->fss_prev = headp; \ 134 headp->fss_next->fss_prev = fssproc; \ 135 headp->fss_next = fssproc; \ 136 mutex_exit(lockp); \ 137 } 138 139 #define FSS_LIST_DELETE(fssproc) \ 140 { \ 141 int index = FSS_LIST_HASH(fssproc->fss_tp); \ 142 kmutex_t *lockp = &fss_listlock[index]; \ 143 mutex_enter(lockp); \ 144 fssproc->fss_prev->fss_next = fssproc->fss_next; \ 145 fssproc->fss_next->fss_prev = fssproc->fss_prev; \ 146 mutex_exit(lockp); \ 147 } 148 149 #define FSS_TICK_COST 1000 /* tick cost for threads with nice level = 0 */ 150 151 /* 152 * Decay rate percentages are based on n/128 rather than n/100 so that 153 * calculations can avoid having to do an integer divide by 100 (divide 154 * by FSS_DECAY_BASE == 128 optimizes to an arithmetic shift). 155 * 156 * FSS_DECAY_MIN = 83/128 ~= 65% 157 * FSS_DECAY_MAX = 108/128 ~= 85% 158 * FSS_DECAY_USG = 96/128 ~= 75% 159 */ 160 #define FSS_DECAY_MIN 83 /* fsspri decay pct for threads w/ nice -20 */ 161 #define FSS_DECAY_MAX 108 /* fsspri decay pct for threads w/ nice +19 */ 162 #define FSS_DECAY_USG 96 /* fssusage decay pct for projects */ 163 #define FSS_DECAY_BASE 128 /* base for decay percentages above */ 164 165 #define FSS_NICE_MIN 0 166 #define FSS_NICE_MAX (2 * NZERO - 1) 167 #define FSS_NICE_RANGE (FSS_NICE_MAX - FSS_NICE_MIN + 1) 168 169 static int fss_nice_tick[FSS_NICE_RANGE]; 170 static int fss_nice_decay[FSS_NICE_RANGE]; 171 172 static pri_t fss_maxupri = FSS_MAXUPRI; /* maximum FSS user priority */ 173 static pri_t fss_maxumdpri; /* maximum user mode fss priority */ 174 static pri_t fss_maxglobpri; /* maximum global priority used by fss class */ 175 static pri_t fss_minglobpri; /* minimum global priority */ 176 177 static fssproc_t fss_listhead[FSS_LISTS]; 178 static kmutex_t fss_listlock[FSS_LISTS]; 179 180 static fsspset_t *fsspsets; 181 static kmutex_t fsspsets_lock; /* protects fsspsets */ 182 183 static id_t fss_cid; 184 185 static time_t fss_minrun = 2; /* t_pri becomes 59 within 2 secs */ 186 static time_t fss_minslp = 2; /* min time on sleep queue for hardswap */ 187 static int fss_quantum = 11; 188 189 static void fss_newpri(fssproc_t *); 190 static void fss_update(void *); 191 static int fss_update_list(int); 192 static void fss_change_priority(kthread_t *, fssproc_t *); 193 194 static int fss_admin(caddr_t, cred_t *); 195 static int fss_getclinfo(void *); 196 static int fss_parmsin(void *); 197 static int fss_parmsout(void *, pc_vaparms_t *); 198 static int fss_vaparmsin(void *, pc_vaparms_t *); 199 static int fss_vaparmsout(void *, pc_vaparms_t *); 200 static int fss_getclpri(pcpri_t *); 201 static int fss_alloc(void **, int); 202 static void fss_free(void *); 203 204 static int fss_enterclass(kthread_t *, id_t, void *, cred_t *, void *); 205 static void fss_exitclass(void *); 206 static int fss_canexit(kthread_t *, cred_t *); 207 static int fss_fork(kthread_t *, kthread_t *, void *); 208 static void fss_forkret(kthread_t *, kthread_t *); 209 static void fss_parmsget(kthread_t *, void *); 210 static int fss_parmsset(kthread_t *, void *, id_t, cred_t *); 211 static void fss_stop(kthread_t *, int, int); 212 static void fss_exit(kthread_t *); 213 static void fss_active(kthread_t *); 214 static void fss_inactive(kthread_t *); 215 static pri_t fss_swapin(kthread_t *, int); 216 static pri_t fss_swapout(kthread_t *, int); 217 static void fss_trapret(kthread_t *); 218 static void fss_preempt(kthread_t *); 219 static void fss_setrun(kthread_t *); 220 static void fss_sleep(kthread_t *); 221 static void fss_tick(kthread_t *); 222 static void fss_wakeup(kthread_t *); 223 static int fss_donice(kthread_t *, cred_t *, int, int *); 224 static int fss_doprio(kthread_t *, cred_t *, int, int *); 225 static pri_t fss_globpri(kthread_t *); 226 static void fss_yield(kthread_t *); 227 static void fss_nullsys(); 228 229 static struct classfuncs fss_classfuncs = { 230 /* class functions */ 231 fss_admin, 232 fss_getclinfo, 233 fss_parmsin, 234 fss_parmsout, 235 fss_vaparmsin, 236 fss_vaparmsout, 237 fss_getclpri, 238 fss_alloc, 239 fss_free, 240 241 /* thread functions */ 242 fss_enterclass, 243 fss_exitclass, 244 fss_canexit, 245 fss_fork, 246 fss_forkret, 247 fss_parmsget, 248 fss_parmsset, 249 fss_stop, 250 fss_exit, 251 fss_active, 252 fss_inactive, 253 fss_swapin, 254 fss_swapout, 255 fss_trapret, 256 fss_preempt, 257 fss_setrun, 258 fss_sleep, 259 fss_tick, 260 fss_wakeup, 261 fss_donice, 262 fss_globpri, 263 fss_nullsys, /* set_process_group */ 264 fss_yield, 265 fss_doprio, 266 }; 267 268 int 269 _init() 270 { 271 return (mod_install(&modlinkage)); 272 } 273 274 int 275 _fini() 276 { 277 return (EBUSY); 278 } 279 280 int 281 _info(struct modinfo *modinfop) 282 { 283 return (mod_info(&modlinkage, modinfop)); 284 } 285 286 /*ARGSUSED*/ 287 static int 288 fss_project_walker(kproject_t *kpj, void *buf) 289 { 290 return (0); 291 } 292 293 void * 294 fss_allocbuf(int op, int type) 295 { 296 fssbuf_t *fssbuf; 297 void **fsslist; 298 int cnt; 299 int i; 300 size_t size; 301 302 ASSERT(op == FSS_NPSET_BUF || op == FSS_NPROJ_BUF || op == FSS_ONE_BUF); 303 ASSERT(type == FSS_ALLOC_PROJ || type == FSS_ALLOC_ZONE); 304 ASSERT(MUTEX_HELD(&cpu_lock)); 305 306 fssbuf = kmem_zalloc(sizeof (fssbuf_t), KM_SLEEP); 307 switch (op) { 308 case FSS_NPSET_BUF: 309 cnt = cpupart_list(NULL, 0, CP_NONEMPTY); 310 break; 311 case FSS_NPROJ_BUF: 312 cnt = project_walk_all(ALL_ZONES, fss_project_walker, NULL); 313 break; 314 case FSS_ONE_BUF: 315 cnt = 1; 316 break; 317 } 318 319 switch (type) { 320 case FSS_ALLOC_PROJ: 321 size = sizeof (fssproj_t); 322 break; 323 case FSS_ALLOC_ZONE: 324 size = sizeof (fsszone_t); 325 break; 326 } 327 fsslist = kmem_zalloc(cnt * sizeof (void *), KM_SLEEP); 328 fssbuf->fssb_size = cnt; 329 fssbuf->fssb_list = fsslist; 330 for (i = 0; i < cnt; i++) 331 fsslist[i] = kmem_zalloc(size, KM_SLEEP); 332 return (fssbuf); 333 } 334 335 void 336 fss_freebuf(fssbuf_t *fssbuf, int type) 337 { 338 void **fsslist; 339 int i; 340 size_t size; 341 342 ASSERT(fssbuf != NULL); 343 ASSERT(type == FSS_ALLOC_PROJ || type == FSS_ALLOC_ZONE); 344 fsslist = fssbuf->fssb_list; 345 346 switch (type) { 347 case FSS_ALLOC_PROJ: 348 size = sizeof (fssproj_t); 349 break; 350 case FSS_ALLOC_ZONE: 351 size = sizeof (fsszone_t); 352 break; 353 } 354 355 for (i = 0; i < fssbuf->fssb_size; i++) { 356 if (fsslist[i] != NULL) 357 kmem_free(fsslist[i], size); 358 } 359 kmem_free(fsslist, sizeof (void *) * fssbuf->fssb_size); 360 kmem_free(fssbuf, sizeof (fssbuf_t)); 361 } 362 363 static fsspset_t * 364 fss_find_fsspset(cpupart_t *cpupart) 365 { 366 int i; 367 fsspset_t *fsspset = NULL; 368 int found = 0; 369 370 ASSERT(cpupart != NULL); 371 ASSERT(MUTEX_HELD(&fsspsets_lock)); 372 373 /* 374 * Search for the cpupart pointer in the array of fsspsets. 375 */ 376 for (i = 0; i < max_ncpus; i++) { 377 fsspset = &fsspsets[i]; 378 if (fsspset->fssps_cpupart == cpupart) { 379 ASSERT(fsspset->fssps_nproj > 0); 380 found = 1; 381 break; 382 } 383 } 384 if (found == 0) { 385 /* 386 * If we didn't find anything, then use the first 387 * available slot in the fsspsets array. 388 */ 389 for (i = 0; i < max_ncpus; i++) { 390 fsspset = &fsspsets[i]; 391 if (fsspset->fssps_cpupart == NULL) { 392 ASSERT(fsspset->fssps_nproj == 0); 393 found = 1; 394 break; 395 } 396 } 397 fsspset->fssps_cpupart = cpupart; 398 } 399 ASSERT(found == 1); 400 return (fsspset); 401 } 402 403 static void 404 fss_del_fsspset(fsspset_t *fsspset) 405 { 406 ASSERT(MUTEX_HELD(&fsspsets_lock)); 407 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 408 ASSERT(fsspset->fssps_nproj == 0); 409 ASSERT(fsspset->fssps_list == NULL); 410 ASSERT(fsspset->fssps_zones == NULL); 411 fsspset->fssps_cpupart = NULL; 412 fsspset->fssps_maxfsspri = 0; 413 fsspset->fssps_shares = 0; 414 } 415 416 /* 417 * The following routine returns a pointer to the fsszone structure which 418 * belongs to zone "zone" and cpu partition fsspset, if such structure exists. 419 */ 420 static fsszone_t * 421 fss_find_fsszone(fsspset_t *fsspset, zone_t *zone) 422 { 423 fsszone_t *fsszone; 424 425 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 426 427 if (fsspset->fssps_list != NULL) { 428 /* 429 * There are projects/zones active on this cpu partition 430 * already. Try to find our zone among them. 431 */ 432 fsszone = fsspset->fssps_zones; 433 do { 434 if (fsszone->fssz_zone == zone) { 435 return (fsszone); 436 } 437 fsszone = fsszone->fssz_next; 438 } while (fsszone != fsspset->fssps_zones); 439 } 440 return (NULL); 441 } 442 443 /* 444 * The following routine links new fsszone structure into doubly linked list of 445 * zones active on the specified cpu partition. 446 */ 447 static void 448 fss_insert_fsszone(fsspset_t *fsspset, zone_t *zone, fsszone_t *fsszone) 449 { 450 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 451 452 fsszone->fssz_zone = zone; 453 fsszone->fssz_rshares = zone->zone_shares; 454 455 if (fsspset->fssps_zones == NULL) { 456 /* 457 * This will be the first fsszone for this fsspset 458 */ 459 fsszone->fssz_next = fsszone->fssz_prev = fsszone; 460 fsspset->fssps_zones = fsszone; 461 } else { 462 /* 463 * Insert this fsszone to the doubly linked list. 464 */ 465 fsszone_t *fssz_head = fsspset->fssps_zones; 466 467 fsszone->fssz_next = fssz_head; 468 fsszone->fssz_prev = fssz_head->fssz_prev; 469 fssz_head->fssz_prev->fssz_next = fsszone; 470 fssz_head->fssz_prev = fsszone; 471 fsspset->fssps_zones = fsszone; 472 } 473 } 474 475 /* 476 * The following routine removes a single fsszone structure from the doubly 477 * linked list of zones active on the specified cpu partition. Note that 478 * global fsspsets_lock must be held in case this fsszone structure is the last 479 * on the above mentioned list. Also note that the fsszone structure is not 480 * freed here, it is the responsibility of the caller to call kmem_free for it. 481 */ 482 static void 483 fss_remove_fsszone(fsspset_t *fsspset, fsszone_t *fsszone) 484 { 485 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 486 ASSERT(fsszone->fssz_nproj == 0); 487 ASSERT(fsszone->fssz_shares == 0); 488 ASSERT(fsszone->fssz_runnable == 0); 489 490 if (fsszone->fssz_next != fsszone) { 491 /* 492 * This is not the last zone in the list. 493 */ 494 fsszone->fssz_prev->fssz_next = fsszone->fssz_next; 495 fsszone->fssz_next->fssz_prev = fsszone->fssz_prev; 496 if (fsspset->fssps_zones == fsszone) 497 fsspset->fssps_zones = fsszone->fssz_next; 498 } else { 499 /* 500 * This was the last zone active in this cpu partition. 501 */ 502 fsspset->fssps_zones = NULL; 503 } 504 } 505 506 /* 507 * The following routine returns a pointer to the fssproj structure 508 * which belongs to project kpj and cpu partition fsspset, if such structure 509 * exists. 510 */ 511 static fssproj_t * 512 fss_find_fssproj(fsspset_t *fsspset, kproject_t *kpj) 513 { 514 fssproj_t *fssproj; 515 516 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 517 518 if (fsspset->fssps_list != NULL) { 519 /* 520 * There are projects running on this cpu partition already. 521 * Try to find our project among them. 522 */ 523 fssproj = fsspset->fssps_list; 524 do { 525 if (fssproj->fssp_proj == kpj) { 526 ASSERT(fssproj->fssp_pset == fsspset); 527 return (fssproj); 528 } 529 fssproj = fssproj->fssp_next; 530 } while (fssproj != fsspset->fssps_list); 531 } 532 return (NULL); 533 } 534 535 /* 536 * The following routine links new fssproj structure into doubly linked list 537 * of projects running on the specified cpu partition. 538 */ 539 static void 540 fss_insert_fssproj(fsspset_t *fsspset, kproject_t *kpj, fsszone_t *fsszone, 541 fssproj_t *fssproj) 542 { 543 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 544 545 fssproj->fssp_pset = fsspset; 546 fssproj->fssp_proj = kpj; 547 fssproj->fssp_shares = kpj->kpj_shares; 548 549 fsspset->fssps_nproj++; 550 551 if (fsspset->fssps_list == NULL) { 552 /* 553 * This will be the first fssproj for this fsspset 554 */ 555 fssproj->fssp_next = fssproj->fssp_prev = fssproj; 556 fsspset->fssps_list = fssproj; 557 } else { 558 /* 559 * Insert this fssproj to the doubly linked list. 560 */ 561 fssproj_t *fssp_head = fsspset->fssps_list; 562 563 fssproj->fssp_next = fssp_head; 564 fssproj->fssp_prev = fssp_head->fssp_prev; 565 fssp_head->fssp_prev->fssp_next = fssproj; 566 fssp_head->fssp_prev = fssproj; 567 fsspset->fssps_list = fssproj; 568 } 569 fssproj->fssp_fsszone = fsszone; 570 fsszone->fssz_nproj++; 571 ASSERT(fsszone->fssz_nproj != 0); 572 } 573 574 /* 575 * The following routine removes a single fssproj structure from the doubly 576 * linked list of projects running on the specified cpu partition. Note that 577 * global fsspsets_lock must be held in case if this fssproj structure is the 578 * last on the above mentioned list. Also note that the fssproj structure is 579 * not freed here, it is the responsibility of the caller to call kmem_free 580 * for it. 581 */ 582 static void 583 fss_remove_fssproj(fsspset_t *fsspset, fssproj_t *fssproj) 584 { 585 fsszone_t *fsszone; 586 587 ASSERT(MUTEX_HELD(&fsspsets_lock)); 588 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 589 ASSERT(fssproj->fssp_runnable == 0); 590 591 fsspset->fssps_nproj--; 592 593 fsszone = fssproj->fssp_fsszone; 594 fsszone->fssz_nproj--; 595 596 if (fssproj->fssp_next != fssproj) { 597 /* 598 * This is not the last part in the list. 599 */ 600 fssproj->fssp_prev->fssp_next = fssproj->fssp_next; 601 fssproj->fssp_next->fssp_prev = fssproj->fssp_prev; 602 if (fsspset->fssps_list == fssproj) 603 fsspset->fssps_list = fssproj->fssp_next; 604 if (fsszone->fssz_nproj == 0) 605 fss_remove_fsszone(fsspset, fsszone); 606 } else { 607 /* 608 * This was the last project part running 609 * at this cpu partition. 610 */ 611 fsspset->fssps_list = NULL; 612 ASSERT(fsspset->fssps_nproj == 0); 613 ASSERT(fsszone->fssz_nproj == 0); 614 fss_remove_fsszone(fsspset, fsszone); 615 fss_del_fsspset(fsspset); 616 } 617 } 618 619 static void 620 fss_inactive(kthread_t *t) 621 { 622 fssproc_t *fssproc; 623 fssproj_t *fssproj; 624 fsspset_t *fsspset; 625 fsszone_t *fsszone; 626 627 ASSERT(THREAD_LOCK_HELD(t)); 628 fssproc = FSSPROC(t); 629 fssproj = FSSPROC2FSSPROJ(fssproc); 630 if (fssproj == NULL) /* if this thread already exited */ 631 return; 632 fsspset = FSSPROJ2FSSPSET(fssproj); 633 fsszone = fssproj->fssp_fsszone; 634 disp_lock_enter_high(&fsspset->fssps_displock); 635 ASSERT(fssproj->fssp_runnable > 0); 636 if (--fssproj->fssp_runnable == 0) { 637 fsszone->fssz_shares -= fssproj->fssp_shares; 638 if (--fsszone->fssz_runnable == 0) 639 fsspset->fssps_shares -= fsszone->fssz_rshares; 640 } 641 ASSERT(fssproc->fss_runnable == 1); 642 fssproc->fss_runnable = 0; 643 disp_lock_exit_high(&fsspset->fssps_displock); 644 } 645 646 static void 647 fss_active(kthread_t *t) 648 { 649 fssproc_t *fssproc; 650 fssproj_t *fssproj; 651 fsspset_t *fsspset; 652 fsszone_t *fsszone; 653 654 ASSERT(THREAD_LOCK_HELD(t)); 655 fssproc = FSSPROC(t); 656 fssproj = FSSPROC2FSSPROJ(fssproc); 657 if (fssproj == NULL) /* if this thread already exited */ 658 return; 659 fsspset = FSSPROJ2FSSPSET(fssproj); 660 fsszone = fssproj->fssp_fsszone; 661 disp_lock_enter_high(&fsspset->fssps_displock); 662 if (++fssproj->fssp_runnable == 1) { 663 fsszone->fssz_shares += fssproj->fssp_shares; 664 if (++fsszone->fssz_runnable == 1) 665 fsspset->fssps_shares += fsszone->fssz_rshares; 666 } 667 ASSERT(fssproc->fss_runnable == 0); 668 fssproc->fss_runnable = 1; 669 disp_lock_exit_high(&fsspset->fssps_displock); 670 } 671 672 /* 673 * Fair share scheduler initialization. Called by dispinit() at boot time. 674 * We can ignore clparmsz argument since we know that the smallest possible 675 * parameter buffer is big enough for us. 676 */ 677 /*ARGSUSED*/ 678 static pri_t 679 fss_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp) 680 { 681 int i; 682 683 ASSERT(MUTEX_HELD(&cpu_lock)); 684 685 fss_cid = cid; 686 fss_maxumdpri = minclsyspri - 1; 687 fss_maxglobpri = minclsyspri; 688 fss_minglobpri = 0; 689 fsspsets = kmem_zalloc(sizeof (fsspset_t) * max_ncpus, KM_SLEEP); 690 691 /* 692 * Initialize the fssproc hash table. 693 */ 694 for (i = 0; i < FSS_LISTS; i++) 695 fss_listhead[i].fss_next = fss_listhead[i].fss_prev = 696 &fss_listhead[i]; 697 698 *clfuncspp = &fss_classfuncs; 699 700 /* 701 * Fill in fss_nice_tick and fss_nice_decay arrays: 702 * The cost of a tick is lower at positive nice values (so that it 703 * will not increase its project's usage as much as normal) with 50% 704 * drop at the maximum level and 50% increase at the minimum level. 705 * The fsspri decay is slower at positive nice values. fsspri values 706 * of processes with negative nice levels must decay faster to receive 707 * time slices more frequently than normal. 708 */ 709 for (i = 0; i < FSS_NICE_RANGE; i++) { 710 fss_nice_tick[i] = (FSS_TICK_COST * (((3 * FSS_NICE_RANGE) / 2) 711 - i)) / FSS_NICE_RANGE; 712 fss_nice_decay[i] = FSS_DECAY_MIN + 713 ((FSS_DECAY_MAX - FSS_DECAY_MIN) * i) / 714 (FSS_NICE_RANGE - 1); 715 } 716 717 return (fss_maxglobpri); 718 } 719 720 /* 721 * Calculate the new cpupri based on the usage, the number of shares and 722 * the number of active threads. Reset the tick counter for this thread. 723 */ 724 static void 725 fss_newpri(fssproc_t *fssproc) 726 { 727 kthread_t *tp; 728 fssproj_t *fssproj; 729 fsspset_t *fsspset; 730 fsszone_t *fsszone; 731 fsspri_t fsspri, maxfsspri; 732 pri_t invpri; 733 uint32_t ticks; 734 735 tp = fssproc->fss_tp; 736 ASSERT(tp != NULL); 737 738 if (tp->t_cid != fss_cid) 739 return; 740 741 ASSERT(THREAD_LOCK_HELD(tp)); 742 743 fssproj = FSSPROC2FSSPROJ(fssproc); 744 fsszone = FSSPROJ2FSSZONE(fssproj); 745 if (fssproj == NULL) 746 /* 747 * No need to change priority of exited threads. 748 */ 749 return; 750 751 fsspset = FSSPROJ2FSSPSET(fssproj); 752 disp_lock_enter_high(&fsspset->fssps_displock); 753 754 if (fssproj->fssp_shares == 0 || fsszone->fssz_rshares == 0) { 755 /* 756 * Special case: threads with no shares. 757 */ 758 fssproc->fss_umdpri = fss_minglobpri; 759 fssproc->fss_ticks = 0; 760 disp_lock_exit_high(&fsspset->fssps_displock); 761 return; 762 } 763 764 /* 765 * fsspri += shusage * nrunnable * ticks 766 */ 767 ticks = fssproc->fss_ticks; 768 fssproc->fss_ticks = 0; 769 fsspri = fssproc->fss_fsspri; 770 fsspri += fssproj->fssp_shusage * fssproj->fssp_runnable * ticks; 771 fssproc->fss_fsspri = fsspri; 772 773 if (fsspri < fss_maxumdpri) 774 fsspri = fss_maxumdpri; /* so that maxfsspri is != 0 */ 775 776 /* 777 * The general priority formula: 778 * 779 * (fsspri * umdprirange) 780 * pri = maxumdpri - ------------------------ 781 * maxfsspri 782 * 783 * If this thread's fsspri is greater than the previous largest 784 * fsspri, then record it as the new high and priority for this 785 * thread will be one (the lowest priority assigned to a thread 786 * that has non-zero shares). 787 * Note that this formula cannot produce out of bounds priority 788 * values; if it is changed, additional checks may need to be 789 * added. 790 */ 791 maxfsspri = fsspset->fssps_maxfsspri; 792 if (fsspri >= maxfsspri) { 793 fsspset->fssps_maxfsspri = fsspri; 794 disp_lock_exit_high(&fsspset->fssps_displock); 795 fssproc->fss_umdpri = 1; 796 } else { 797 disp_lock_exit_high(&fsspset->fssps_displock); 798 invpri = (fsspri * (fss_maxumdpri - 1)) / maxfsspri; 799 fssproc->fss_umdpri = fss_maxumdpri - invpri; 800 } 801 } 802 803 /* 804 * Decays usages of all running projects and resets their tick counters. 805 * Called once per second from fss_update() after updating priorities. 806 */ 807 static void 808 fss_decay_usage() 809 { 810 uint32_t zone_ext_shares, zone_int_shares; 811 uint32_t kpj_shares, pset_shares; 812 fsspset_t *fsspset; 813 fssproj_t *fssproj; 814 fsszone_t *fsszone; 815 fsspri_t maxfsspri; 816 int psetid; 817 818 mutex_enter(&fsspsets_lock); 819 /* 820 * Go through all active processor sets and decay usages of projects 821 * running on them. 822 */ 823 for (psetid = 0; psetid < max_ncpus; psetid++) { 824 fsspset = &fsspsets[psetid]; 825 mutex_enter(&fsspset->fssps_lock); 826 827 if (fsspset->fssps_cpupart == NULL || 828 (fssproj = fsspset->fssps_list) == NULL) { 829 mutex_exit(&fsspset->fssps_lock); 830 continue; 831 } 832 833 /* 834 * Decay maxfsspri for this cpu partition with the 835 * fastest possible decay rate. 836 */ 837 disp_lock_enter(&fsspset->fssps_displock); 838 839 maxfsspri = (fsspset->fssps_maxfsspri * 840 fss_nice_decay[NZERO]) / FSS_DECAY_BASE; 841 if (maxfsspri < fss_maxumdpri) 842 maxfsspri = fss_maxumdpri; 843 fsspset->fssps_maxfsspri = maxfsspri; 844 845 do { 846 /* 847 * Decay usage for each project running on 848 * this cpu partition. 849 */ 850 fssproj->fssp_usage = 851 (fssproj->fssp_usage * FSS_DECAY_USG) / 852 FSS_DECAY_BASE + fssproj->fssp_ticks; 853 fssproj->fssp_ticks = 0; 854 855 fsszone = fssproj->fssp_fsszone; 856 /* 857 * Readjust the project's number of shares if it has 858 * changed since we checked it last time. 859 */ 860 kpj_shares = fssproj->fssp_proj->kpj_shares; 861 if (fssproj->fssp_shares != kpj_shares) { 862 if (fssproj->fssp_runnable != 0) { 863 fsszone->fssz_shares -= 864 fssproj->fssp_shares; 865 fsszone->fssz_shares += kpj_shares; 866 } 867 fssproj->fssp_shares = kpj_shares; 868 } 869 870 /* 871 * Readjust the zone's number of shares if it 872 * has changed since we checked it last time. 873 */ 874 zone_ext_shares = fsszone->fssz_zone->zone_shares; 875 if (fsszone->fssz_rshares != zone_ext_shares) { 876 if (fsszone->fssz_runnable != 0) { 877 fsspset->fssps_shares -= 878 fsszone->fssz_rshares; 879 fsspset->fssps_shares += 880 zone_ext_shares; 881 } 882 fsszone->fssz_rshares = zone_ext_shares; 883 } 884 zone_int_shares = fsszone->fssz_shares; 885 pset_shares = fsspset->fssps_shares; 886 /* 887 * Calculate fssp_shusage value to be used 888 * for fsspri increments for the next second. 889 */ 890 if (kpj_shares == 0 || zone_ext_shares == 0) { 891 fssproj->fssp_shusage = 0; 892 } else if (FSSPROJ2KPROJ(fssproj) == proj0p) { 893 /* 894 * Project 0 in the global zone has 50% 895 * of its zone. 896 */ 897 fssproj->fssp_shusage = (fssproj->fssp_usage * 898 zone_int_shares * zone_int_shares) / 899 (zone_ext_shares * zone_ext_shares); 900 } else { 901 /* 902 * Thread's priority is based on its project's 903 * normalized usage (shusage) value which gets 904 * calculated this way: 905 * 906 * pset_shares^2 zone_int_shares^2 907 * usage * ------------- * ------------------ 908 * kpj_shares^2 zone_ext_shares^2 909 * 910 * Where zone_int_shares is the sum of shares 911 * of all active projects within the zone (and 912 * the pset), and zone_ext_shares is the number 913 * of zone shares (ie, zone.cpu-shares). 914 * 915 * If there is only one zone active on the pset 916 * the above reduces to: 917 * 918 * zone_int_shares^2 919 * shusage = usage * --------------------- 920 * kpj_shares^2 921 * 922 * If there's only one project active in the 923 * zone this formula reduces to: 924 * 925 * pset_shares^2 926 * shusage = usage * ---------------------- 927 * zone_ext_shares^2 928 */ 929 fssproj->fssp_shusage = fssproj->fssp_usage * 930 pset_shares * zone_int_shares; 931 fssproj->fssp_shusage /= 932 kpj_shares * zone_ext_shares; 933 fssproj->fssp_shusage *= 934 pset_shares * zone_int_shares; 935 fssproj->fssp_shusage /= 936 kpj_shares * zone_ext_shares; 937 } 938 fssproj = fssproj->fssp_next; 939 } while (fssproj != fsspset->fssps_list); 940 941 disp_lock_exit(&fsspset->fssps_displock); 942 mutex_exit(&fsspset->fssps_lock); 943 } 944 mutex_exit(&fsspsets_lock); 945 } 946 947 static void 948 fss_change_priority(kthread_t *t, fssproc_t *fssproc) 949 { 950 pri_t new_pri; 951 952 ASSERT(THREAD_LOCK_HELD(t)); 953 new_pri = fssproc->fss_umdpri; 954 ASSERT(new_pri >= 0 && new_pri <= fss_maxglobpri); 955 956 t->t_cpri = fssproc->fss_upri; 957 fssproc->fss_flags &= ~FSSRESTORE; 958 if (t == curthread || t->t_state == TS_ONPROC) { 959 /* 960 * curthread is always onproc 961 */ 962 cpu_t *cp = t->t_disp_queue->disp_cpu; 963 THREAD_CHANGE_PRI(t, new_pri); 964 if (t == cp->cpu_dispthread) 965 cp->cpu_dispatch_pri = DISP_PRIO(t); 966 if (DISP_MUST_SURRENDER(t)) { 967 fssproc->fss_flags |= FSSBACKQ; 968 cpu_surrender(t); 969 } else { 970 fssproc->fss_timeleft = fss_quantum; 971 } 972 } else { 973 /* 974 * When the priority of a thread is changed, it may be 975 * necessary to adjust its position on a sleep queue or 976 * dispatch queue. The function thread_change_pri accomplishes 977 * this. 978 */ 979 if (thread_change_pri(t, new_pri, 0)) { 980 /* 981 * The thread was on a run queue. 982 */ 983 fssproc->fss_timeleft = fss_quantum; 984 } else { 985 fssproc->fss_flags |= FSSBACKQ; 986 } 987 } 988 } 989 990 /* 991 * Update priorities of all fair-sharing threads that are currently runnable 992 * at a user mode priority based on the number of shares and current usage. 993 * Called once per second via timeout which we reset here. 994 * 995 * There are several lists of fair-sharing threads broken up by a hash on the 996 * thread pointer. Each list has its own lock. This avoids blocking all 997 * fss_enterclass, fss_fork, and fss_exitclass operations while fss_update runs. 998 * fss_update traverses each list in turn. 999 */ 1000 static void 1001 fss_update(void *arg) 1002 { 1003 int i; 1004 int new_marker = -1; 1005 static int fss_update_marker; 1006 1007 /* 1008 * Decay and update usages for all projects. 1009 */ 1010 fss_decay_usage(); 1011 1012 /* 1013 * Start with the fss_update_marker list, then do the rest. 1014 */ 1015 i = fss_update_marker; 1016 1017 /* 1018 * Go around all threads, set new priorities and decay 1019 * per-thread CPU usages. 1020 */ 1021 do { 1022 /* 1023 * If this is the first list after the current marker to have 1024 * threads with priorities updates, advance the marker to this 1025 * list for the next time fss_update runs. 1026 */ 1027 if (fss_update_list(i) && 1028 new_marker == -1 && i != fss_update_marker) 1029 new_marker = i; 1030 } while ((i = FSS_LIST_NEXT(i)) != fss_update_marker); 1031 1032 /* 1033 * Advance marker for the next fss_update call 1034 */ 1035 if (new_marker != -1) 1036 fss_update_marker = new_marker; 1037 1038 (void) timeout(fss_update, arg, hz); 1039 } 1040 1041 /* 1042 * Updates priority for a list of threads. Returns 1 if the priority of one 1043 * of the threads was actually updated, 0 if none were for various reasons 1044 * (thread is no longer in the FSS class, is not runnable, has the preemption 1045 * control no-preempt bit set, etc.) 1046 */ 1047 static int 1048 fss_update_list(int i) 1049 { 1050 fssproc_t *fssproc; 1051 fssproj_t *fssproj; 1052 fsspri_t fsspri; 1053 kthread_t *t; 1054 int updated = 0; 1055 1056 mutex_enter(&fss_listlock[i]); 1057 for (fssproc = fss_listhead[i].fss_next; fssproc != &fss_listhead[i]; 1058 fssproc = fssproc->fss_next) { 1059 t = fssproc->fss_tp; 1060 /* 1061 * Lock the thread and verify the state. 1062 */ 1063 thread_lock(t); 1064 /* 1065 * Skip the thread if it is no longer in the FSS class or 1066 * is running with kernel mode priority. 1067 */ 1068 if (t->t_cid != fss_cid) 1069 goto next; 1070 if ((fssproc->fss_flags & FSSKPRI) != 0) 1071 goto next; 1072 1073 fssproj = FSSPROC2FSSPROJ(fssproc); 1074 if (fssproj == NULL) 1075 goto next; 1076 if (fssproj->fssp_shares != 0) { 1077 /* 1078 * Decay fsspri value. 1079 */ 1080 fsspri = fssproc->fss_fsspri; 1081 fsspri = (fsspri * fss_nice_decay[fssproc->fss_nice]) / 1082 FSS_DECAY_BASE; 1083 fssproc->fss_fsspri = fsspri; 1084 } 1085 1086 if (t->t_schedctl && schedctl_get_nopreempt(t)) 1087 goto next; 1088 if (t->t_state != TS_RUN && t->t_state != TS_WAIT) { 1089 /* 1090 * Make next syscall/trap call fss_trapret 1091 */ 1092 t->t_trapret = 1; 1093 aston(t); 1094 goto next; 1095 } 1096 fss_newpri(fssproc); 1097 updated = 1; 1098 1099 /* 1100 * Only dequeue the thread if it needs to be moved; otherwise 1101 * it should just round-robin here. 1102 */ 1103 if (t->t_pri != fssproc->fss_umdpri) 1104 fss_change_priority(t, fssproc); 1105 next: 1106 thread_unlock(t); 1107 } 1108 mutex_exit(&fss_listlock[i]); 1109 return (updated); 1110 } 1111 1112 /*ARGSUSED*/ 1113 static int 1114 fss_admin(caddr_t uaddr, cred_t *reqpcredp) 1115 { 1116 fssadmin_t fssadmin; 1117 1118 if (copyin(uaddr, &fssadmin, sizeof (fssadmin_t))) 1119 return (EFAULT); 1120 1121 switch (fssadmin.fss_cmd) { 1122 case FSS_SETADMIN: 1123 if (secpolicy_dispadm(reqpcredp) != 0) 1124 return (EPERM); 1125 if (fssadmin.fss_quantum <= 0 || fssadmin.fss_quantum >= hz) 1126 return (EINVAL); 1127 fss_quantum = fssadmin.fss_quantum; 1128 break; 1129 case FSS_GETADMIN: 1130 fssadmin.fss_quantum = fss_quantum; 1131 if (copyout(&fssadmin, uaddr, sizeof (fssadmin_t))) 1132 return (EFAULT); 1133 break; 1134 default: 1135 return (EINVAL); 1136 } 1137 return (0); 1138 } 1139 1140 static int 1141 fss_getclinfo(void *infop) 1142 { 1143 fssinfo_t *fssinfo = (fssinfo_t *)infop; 1144 fssinfo->fss_maxupri = fss_maxupri; 1145 return (0); 1146 } 1147 1148 static int 1149 fss_parmsin(void *parmsp) 1150 { 1151 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1152 1153 /* 1154 * Check validity of parameters. 1155 */ 1156 if ((fssparmsp->fss_uprilim > fss_maxupri || 1157 fssparmsp->fss_uprilim < -fss_maxupri) && 1158 fssparmsp->fss_uprilim != FSS_NOCHANGE) 1159 return (EINVAL); 1160 1161 if ((fssparmsp->fss_upri > fss_maxupri || 1162 fssparmsp->fss_upri < -fss_maxupri) && 1163 fssparmsp->fss_upri != FSS_NOCHANGE) 1164 return (EINVAL); 1165 1166 return (0); 1167 } 1168 1169 /*ARGSUSED*/ 1170 static int 1171 fss_parmsout(void *parmsp, pc_vaparms_t *vaparmsp) 1172 { 1173 return (0); 1174 } 1175 1176 static int 1177 fss_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp) 1178 { 1179 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1180 int priflag = 0; 1181 int limflag = 0; 1182 uint_t cnt; 1183 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 1184 1185 /* 1186 * FSS_NOCHANGE (-32768) is outside of the range of values for 1187 * fss_uprilim and fss_upri. If the structure fssparms_t is changed, 1188 * FSS_NOCHANGE should be replaced by a flag word. 1189 */ 1190 fssparmsp->fss_uprilim = FSS_NOCHANGE; 1191 fssparmsp->fss_upri = FSS_NOCHANGE; 1192 1193 /* 1194 * Get the varargs parameter and check validity of parameters. 1195 */ 1196 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 1197 return (EINVAL); 1198 1199 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 1200 switch (vpp->pc_key) { 1201 case FSS_KY_UPRILIM: 1202 if (limflag++) 1203 return (EINVAL); 1204 fssparmsp->fss_uprilim = (pri_t)vpp->pc_parm; 1205 if (fssparmsp->fss_uprilim > fss_maxupri || 1206 fssparmsp->fss_uprilim < -fss_maxupri) 1207 return (EINVAL); 1208 break; 1209 case FSS_KY_UPRI: 1210 if (priflag++) 1211 return (EINVAL); 1212 fssparmsp->fss_upri = (pri_t)vpp->pc_parm; 1213 if (fssparmsp->fss_upri > fss_maxupri || 1214 fssparmsp->fss_upri < -fss_maxupri) 1215 return (EINVAL); 1216 break; 1217 default: 1218 return (EINVAL); 1219 } 1220 } 1221 1222 if (vaparmsp->pc_vaparmscnt == 0) { 1223 /* 1224 * Use default parameters. 1225 */ 1226 fssparmsp->fss_upri = fssparmsp->fss_uprilim = 0; 1227 } 1228 1229 return (0); 1230 } 1231 1232 /* 1233 * Copy all selected fair-sharing class parameters to the user. The parameters 1234 * are specified by a key. 1235 */ 1236 static int 1237 fss_vaparmsout(void *parmsp, pc_vaparms_t *vaparmsp) 1238 { 1239 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1240 int priflag = 0; 1241 int limflag = 0; 1242 uint_t cnt; 1243 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 1244 1245 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock)); 1246 1247 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 1248 return (EINVAL); 1249 1250 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 1251 switch (vpp->pc_key) { 1252 case FSS_KY_UPRILIM: 1253 if (limflag++) 1254 return (EINVAL); 1255 if (copyout(&fssparmsp->fss_uprilim, 1256 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1257 return (EFAULT); 1258 break; 1259 case FSS_KY_UPRI: 1260 if (priflag++) 1261 return (EINVAL); 1262 if (copyout(&fssparmsp->fss_upri, 1263 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1264 return (EFAULT); 1265 break; 1266 default: 1267 return (EINVAL); 1268 } 1269 } 1270 1271 return (0); 1272 } 1273 1274 /* 1275 * Return the user mode scheduling priority range. 1276 */ 1277 static int 1278 fss_getclpri(pcpri_t *pcprip) 1279 { 1280 pcprip->pc_clpmax = fss_maxupri; 1281 pcprip->pc_clpmin = -fss_maxupri; 1282 return (0); 1283 } 1284 1285 static int 1286 fss_alloc(void **p, int flag) 1287 { 1288 void *bufp; 1289 1290 if ((bufp = kmem_zalloc(sizeof (fssproc_t), flag)) == NULL) { 1291 return (ENOMEM); 1292 } else { 1293 *p = bufp; 1294 return (0); 1295 } 1296 } 1297 1298 static void 1299 fss_free(void *bufp) 1300 { 1301 if (bufp) 1302 kmem_free(bufp, sizeof (fssproc_t)); 1303 } 1304 1305 /* 1306 * Thread functions 1307 */ 1308 static int 1309 fss_enterclass(kthread_t *t, id_t cid, void *parmsp, cred_t *reqpcredp, 1310 void *bufp) 1311 { 1312 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1313 fssproc_t *fssproc; 1314 pri_t reqfssuprilim; 1315 pri_t reqfssupri; 1316 static uint32_t fssexists = 0; 1317 fsspset_t *fsspset; 1318 fssproj_t *fssproj; 1319 fsszone_t *fsszone; 1320 kproject_t *kpj; 1321 zone_t *zone; 1322 int fsszone_allocated = 0; 1323 1324 fssproc = (fssproc_t *)bufp; 1325 ASSERT(fssproc != NULL); 1326 1327 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 1328 1329 /* 1330 * Only root can move threads to FSS class. 1331 */ 1332 if (reqpcredp != NULL && secpolicy_setpriority(reqpcredp) != 0) 1333 return (EPERM); 1334 /* 1335 * Initialize the fssproc structure. 1336 */ 1337 fssproc->fss_umdpri = fss_maxumdpri / 2; 1338 1339 if (fssparmsp == NULL) { 1340 /* 1341 * Use default values. 1342 */ 1343 fssproc->fss_nice = NZERO; 1344 fssproc->fss_uprilim = fssproc->fss_upri = 0; 1345 } else { 1346 /* 1347 * Use supplied values. 1348 */ 1349 if (fssparmsp->fss_uprilim == FSS_NOCHANGE) { 1350 reqfssuprilim = 0; 1351 } else { 1352 if (fssparmsp->fss_uprilim > 0 && 1353 secpolicy_setpriority(reqpcredp) != 0) 1354 return (EPERM); 1355 reqfssuprilim = fssparmsp->fss_uprilim; 1356 } 1357 if (fssparmsp->fss_upri == FSS_NOCHANGE) { 1358 reqfssupri = reqfssuprilim; 1359 } else { 1360 if (fssparmsp->fss_upri > 0 && 1361 secpolicy_setpriority(reqpcredp) != 0) 1362 return (EPERM); 1363 /* 1364 * Set the user priority to the requested value or 1365 * the upri limit, whichever is lower. 1366 */ 1367 reqfssupri = fssparmsp->fss_upri; 1368 if (reqfssupri > reqfssuprilim) 1369 reqfssupri = reqfssuprilim; 1370 } 1371 fssproc->fss_uprilim = reqfssuprilim; 1372 fssproc->fss_upri = reqfssupri; 1373 fssproc->fss_nice = NZERO - (NZERO * reqfssupri) / fss_maxupri; 1374 if (fssproc->fss_nice > FSS_NICE_MAX) 1375 fssproc->fss_nice = FSS_NICE_MAX; 1376 } 1377 1378 fssproc->fss_timeleft = fss_quantum; 1379 fssproc->fss_tp = t; 1380 cpucaps_sc_init(&fssproc->fss_caps); 1381 1382 /* 1383 * Put a lock on our fsspset structure. 1384 */ 1385 mutex_enter(&fsspsets_lock); 1386 fsspset = fss_find_fsspset(t->t_cpupart); 1387 mutex_enter(&fsspset->fssps_lock); 1388 mutex_exit(&fsspsets_lock); 1389 1390 zone = ttoproc(t)->p_zone; 1391 if ((fsszone = fss_find_fsszone(fsspset, zone)) == NULL) { 1392 if ((fsszone = kmem_zalloc(sizeof (fsszone_t), KM_NOSLEEP)) 1393 == NULL) { 1394 mutex_exit(&fsspset->fssps_lock); 1395 return (ENOMEM); 1396 } else { 1397 fsszone_allocated = 1; 1398 fss_insert_fsszone(fsspset, zone, fsszone); 1399 } 1400 } 1401 kpj = ttoproj(t); 1402 if ((fssproj = fss_find_fssproj(fsspset, kpj)) == NULL) { 1403 if ((fssproj = kmem_zalloc(sizeof (fssproj_t), KM_NOSLEEP)) 1404 == NULL) { 1405 if (fsszone_allocated) { 1406 fss_remove_fsszone(fsspset, fsszone); 1407 kmem_free(fsszone, sizeof (fsszone_t)); 1408 } 1409 mutex_exit(&fsspset->fssps_lock); 1410 return (ENOMEM); 1411 } else { 1412 fss_insert_fssproj(fsspset, kpj, fsszone, fssproj); 1413 } 1414 } 1415 fssproj->fssp_threads++; 1416 fssproc->fss_proj = fssproj; 1417 1418 /* 1419 * Reset priority. Process goes to a "user mode" priority here 1420 * regardless of whether or not it has slept since entering the kernel. 1421 */ 1422 thread_lock(t); 1423 t->t_clfuncs = &(sclass[cid].cl_funcs->thread); 1424 t->t_cid = cid; 1425 t->t_cldata = (void *)fssproc; 1426 t->t_schedflag |= TS_RUNQMATCH; 1427 fss_change_priority(t, fssproc); 1428 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC || 1429 t->t_state == TS_WAIT) 1430 fss_active(t); 1431 thread_unlock(t); 1432 1433 mutex_exit(&fsspset->fssps_lock); 1434 1435 /* 1436 * Link new structure into fssproc list. 1437 */ 1438 FSS_LIST_INSERT(fssproc); 1439 1440 /* 1441 * If this is the first fair-sharing thread to occur since boot, 1442 * we set up the initial call to fss_update() here. Use an atomic 1443 * compare-and-swap since that's easier and faster than a mutex 1444 * (but check with an ordinary load first since most of the time 1445 * this will already be done). 1446 */ 1447 if (fssexists == 0 && cas32(&fssexists, 0, 1) == 0) 1448 (void) timeout(fss_update, NULL, hz); 1449 1450 return (0); 1451 } 1452 1453 /* 1454 * Remove fssproc_t from the list. 1455 */ 1456 static void 1457 fss_exitclass(void *procp) 1458 { 1459 fssproc_t *fssproc = (fssproc_t *)procp; 1460 fssproj_t *fssproj; 1461 fsspset_t *fsspset; 1462 fsszone_t *fsszone; 1463 kthread_t *t = fssproc->fss_tp; 1464 1465 /* 1466 * We should be either getting this thread off the deathrow or 1467 * this thread has already moved to another scheduling class and 1468 * we're being called with its old cldata buffer pointer. In both 1469 * cases, the content of this buffer can not be changed while we're 1470 * here. 1471 */ 1472 mutex_enter(&fsspsets_lock); 1473 thread_lock(t); 1474 if (t->t_cid != fss_cid) { 1475 /* 1476 * We're being called as a result of the priocntl() system 1477 * call -- someone is trying to move our thread to another 1478 * scheduling class. We can't call fss_inactive() here 1479 * because our thread's t_cldata pointer already points 1480 * to another scheduling class specific data. 1481 */ 1482 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 1483 1484 fssproj = FSSPROC2FSSPROJ(fssproc); 1485 fsspset = FSSPROJ2FSSPSET(fssproj); 1486 fsszone = fssproj->fssp_fsszone; 1487 1488 if (fssproc->fss_runnable) { 1489 disp_lock_enter_high(&fsspset->fssps_displock); 1490 if (--fssproj->fssp_runnable == 0) { 1491 fsszone->fssz_shares -= fssproj->fssp_shares; 1492 if (--fsszone->fssz_runnable == 0) 1493 fsspset->fssps_shares -= 1494 fsszone->fssz_rshares; 1495 } 1496 disp_lock_exit_high(&fsspset->fssps_displock); 1497 } 1498 thread_unlock(t); 1499 1500 mutex_enter(&fsspset->fssps_lock); 1501 if (--fssproj->fssp_threads == 0) { 1502 fss_remove_fssproj(fsspset, fssproj); 1503 if (fsszone->fssz_nproj == 0) 1504 kmem_free(fsszone, sizeof (fsszone_t)); 1505 kmem_free(fssproj, sizeof (fssproj_t)); 1506 } 1507 mutex_exit(&fsspset->fssps_lock); 1508 1509 } else { 1510 ASSERT(t->t_state == TS_FREE); 1511 /* 1512 * We're being called from thread_free() when our thread 1513 * is removed from the deathrow. There is nothing we need 1514 * do here since everything should've been done earlier 1515 * in fss_exit(). 1516 */ 1517 thread_unlock(t); 1518 } 1519 mutex_exit(&fsspsets_lock); 1520 1521 FSS_LIST_DELETE(fssproc); 1522 fss_free(fssproc); 1523 } 1524 1525 /*ARGSUSED*/ 1526 static int 1527 fss_canexit(kthread_t *t, cred_t *credp) 1528 { 1529 /* 1530 * A thread is allowed to exit FSS only if we have sufficient 1531 * privileges. 1532 */ 1533 if (credp != NULL && secpolicy_setpriority(credp) != 0) 1534 return (EPERM); 1535 else 1536 return (0); 1537 } 1538 1539 /* 1540 * Initialize fair-share class specific proc structure for a child. 1541 */ 1542 static int 1543 fss_fork(kthread_t *pt, kthread_t *ct, void *bufp) 1544 { 1545 fssproc_t *pfssproc; /* ptr to parent's fssproc structure */ 1546 fssproc_t *cfssproc; /* ptr to child's fssproc structure */ 1547 fssproj_t *fssproj; 1548 fsspset_t *fsspset; 1549 1550 ASSERT(MUTEX_HELD(&ttoproc(pt)->p_lock)); 1551 ASSERT(ct->t_state == TS_STOPPED); 1552 1553 cfssproc = (fssproc_t *)bufp; 1554 ASSERT(cfssproc != NULL); 1555 bzero(cfssproc, sizeof (fssproc_t)); 1556 1557 thread_lock(pt); 1558 pfssproc = FSSPROC(pt); 1559 fssproj = FSSPROC2FSSPROJ(pfssproc); 1560 fsspset = FSSPROJ2FSSPSET(fssproj); 1561 thread_unlock(pt); 1562 1563 mutex_enter(&fsspset->fssps_lock); 1564 /* 1565 * Initialize child's fssproc structure. 1566 */ 1567 thread_lock(pt); 1568 ASSERT(FSSPROJ(pt) == fssproj); 1569 cfssproc->fss_proj = fssproj; 1570 cfssproc->fss_timeleft = fss_quantum; 1571 cfssproc->fss_umdpri = pfssproc->fss_umdpri; 1572 cfssproc->fss_fsspri = 0; 1573 cfssproc->fss_uprilim = pfssproc->fss_uprilim; 1574 cfssproc->fss_upri = pfssproc->fss_upri; 1575 cfssproc->fss_tp = ct; 1576 cfssproc->fss_nice = pfssproc->fss_nice; 1577 cpucaps_sc_init(&cfssproc->fss_caps); 1578 1579 cfssproc->fss_flags = 1580 pfssproc->fss_flags & ~(FSSKPRI | FSSBACKQ | FSSRESTORE); 1581 ct->t_cldata = (void *)cfssproc; 1582 ct->t_schedflag |= TS_RUNQMATCH; 1583 thread_unlock(pt); 1584 1585 fssproj->fssp_threads++; 1586 mutex_exit(&fsspset->fssps_lock); 1587 1588 /* 1589 * Link new structure into fssproc hash table. 1590 */ 1591 FSS_LIST_INSERT(cfssproc); 1592 return (0); 1593 } 1594 1595 /* 1596 * Child is placed at back of dispatcher queue and parent gives up processor 1597 * so that the child runs first after the fork. This allows the child 1598 * immediately execing to break the multiple use of copy on write pages with no 1599 * disk home. The parent will get to steal them back rather than uselessly 1600 * copying them. 1601 */ 1602 static void 1603 fss_forkret(kthread_t *t, kthread_t *ct) 1604 { 1605 proc_t *pp = ttoproc(t); 1606 proc_t *cp = ttoproc(ct); 1607 fssproc_t *fssproc; 1608 1609 ASSERT(t == curthread); 1610 ASSERT(MUTEX_HELD(&pidlock)); 1611 1612 /* 1613 * Grab the child's p_lock before dropping pidlock to ensure the 1614 * process does not disappear before we set it running. 1615 */ 1616 mutex_enter(&cp->p_lock); 1617 continuelwps(cp); 1618 mutex_exit(&cp->p_lock); 1619 1620 mutex_enter(&pp->p_lock); 1621 mutex_exit(&pidlock); 1622 continuelwps(pp); 1623 1624 thread_lock(t); 1625 1626 fssproc = FSSPROC(t); 1627 fss_newpri(fssproc); 1628 fssproc->fss_timeleft = fss_quantum; 1629 t->t_pri = fssproc->fss_umdpri; 1630 ASSERT(t->t_pri >= 0 && t->t_pri <= fss_maxglobpri); 1631 fssproc->fss_flags &= ~FSSKPRI; 1632 THREAD_TRANSITION(t); 1633 1634 /* 1635 * We don't want to call fss_setrun(t) here because it may call 1636 * fss_active, which we don't need. 1637 */ 1638 fssproc->fss_flags &= ~FSSBACKQ; 1639 1640 if (t->t_disp_time != ddi_get_lbolt()) 1641 setbackdq(t); 1642 else 1643 setfrontdq(t); 1644 1645 thread_unlock(t); 1646 /* 1647 * Safe to drop p_lock now since it is safe to change 1648 * the scheduling class after this point. 1649 */ 1650 mutex_exit(&pp->p_lock); 1651 1652 swtch(); 1653 } 1654 1655 /* 1656 * Get the fair-sharing parameters of the thread pointed to by fssprocp into 1657 * the buffer pointed by fssparmsp. 1658 */ 1659 static void 1660 fss_parmsget(kthread_t *t, void *parmsp) 1661 { 1662 fssproc_t *fssproc = FSSPROC(t); 1663 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1664 1665 fssparmsp->fss_uprilim = fssproc->fss_uprilim; 1666 fssparmsp->fss_upri = fssproc->fss_upri; 1667 } 1668 1669 /*ARGSUSED*/ 1670 static int 1671 fss_parmsset(kthread_t *t, void *parmsp, id_t reqpcid, cred_t *reqpcredp) 1672 { 1673 char nice; 1674 pri_t reqfssuprilim; 1675 pri_t reqfssupri; 1676 fssproc_t *fssproc = FSSPROC(t); 1677 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1678 1679 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 1680 1681 if (fssparmsp->fss_uprilim == FSS_NOCHANGE) 1682 reqfssuprilim = fssproc->fss_uprilim; 1683 else 1684 reqfssuprilim = fssparmsp->fss_uprilim; 1685 1686 if (fssparmsp->fss_upri == FSS_NOCHANGE) 1687 reqfssupri = fssproc->fss_upri; 1688 else 1689 reqfssupri = fssparmsp->fss_upri; 1690 1691 /* 1692 * Make sure the user priority doesn't exceed the upri limit. 1693 */ 1694 if (reqfssupri > reqfssuprilim) 1695 reqfssupri = reqfssuprilim; 1696 1697 /* 1698 * Basic permissions enforced by generic kernel code for all classes 1699 * require that a thread attempting to change the scheduling parameters 1700 * of a target thread be privileged or have a real or effective UID 1701 * matching that of the target thread. We are not called unless these 1702 * basic permission checks have already passed. The fair-sharing class 1703 * requires in addition that the calling thread be privileged if it 1704 * is attempting to raise the upri limit above its current value. 1705 * This may have been checked previously but if our caller passed us 1706 * a non-NULL credential pointer we assume it hasn't and we check it 1707 * here. 1708 */ 1709 if ((reqpcredp != NULL) && 1710 (reqfssuprilim > fssproc->fss_uprilim) && 1711 secpolicy_setpriority(reqpcredp) != 0) 1712 return (EPERM); 1713 1714 /* 1715 * Set fss_nice to the nice value corresponding to the user priority we 1716 * are setting. Note that setting the nice field of the parameter 1717 * struct won't affect upri or nice. 1718 */ 1719 nice = NZERO - (reqfssupri * NZERO) / fss_maxupri; 1720 if (nice > FSS_NICE_MAX) 1721 nice = FSS_NICE_MAX; 1722 1723 thread_lock(t); 1724 1725 fssproc->fss_uprilim = reqfssuprilim; 1726 fssproc->fss_upri = reqfssupri; 1727 fssproc->fss_nice = nice; 1728 fss_newpri(fssproc); 1729 1730 if ((fssproc->fss_flags & FSSKPRI) != 0) { 1731 thread_unlock(t); 1732 return (0); 1733 } 1734 1735 fss_change_priority(t, fssproc); 1736 thread_unlock(t); 1737 return (0); 1738 1739 } 1740 1741 /* 1742 * The thread is being stopped. 1743 */ 1744 /*ARGSUSED*/ 1745 static void 1746 fss_stop(kthread_t *t, int why, int what) 1747 { 1748 ASSERT(THREAD_LOCK_HELD(t)); 1749 ASSERT(t == curthread); 1750 1751 fss_inactive(t); 1752 } 1753 1754 /* 1755 * The current thread is exiting, do necessary adjustments to its project 1756 */ 1757 static void 1758 fss_exit(kthread_t *t) 1759 { 1760 fsspset_t *fsspset; 1761 fssproj_t *fssproj; 1762 fssproc_t *fssproc; 1763 fsszone_t *fsszone; 1764 int free = 0; 1765 1766 /* 1767 * Thread t here is either a current thread (in which case we hold 1768 * its process' p_lock), or a thread being destroyed by forklwp_fail(), 1769 * in which case we hold pidlock and thread is no longer on the 1770 * thread list. 1771 */ 1772 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock) || MUTEX_HELD(&pidlock)); 1773 1774 fssproc = FSSPROC(t); 1775 fssproj = FSSPROC2FSSPROJ(fssproc); 1776 fsspset = FSSPROJ2FSSPSET(fssproj); 1777 fsszone = fssproj->fssp_fsszone; 1778 1779 mutex_enter(&fsspsets_lock); 1780 mutex_enter(&fsspset->fssps_lock); 1781 1782 thread_lock(t); 1783 disp_lock_enter_high(&fsspset->fssps_displock); 1784 if (t->t_state == TS_ONPROC || t->t_state == TS_RUN) { 1785 if (--fssproj->fssp_runnable == 0) { 1786 fsszone->fssz_shares -= fssproj->fssp_shares; 1787 if (--fsszone->fssz_runnable == 0) 1788 fsspset->fssps_shares -= fsszone->fssz_rshares; 1789 } 1790 ASSERT(fssproc->fss_runnable == 1); 1791 fssproc->fss_runnable = 0; 1792 } 1793 if (--fssproj->fssp_threads == 0) { 1794 fss_remove_fssproj(fsspset, fssproj); 1795 free = 1; 1796 } 1797 disp_lock_exit_high(&fsspset->fssps_displock); 1798 fssproc->fss_proj = NULL; /* mark this thread as already exited */ 1799 thread_unlock(t); 1800 1801 if (free) { 1802 if (fsszone->fssz_nproj == 0) 1803 kmem_free(fsszone, sizeof (fsszone_t)); 1804 kmem_free(fssproj, sizeof (fssproj_t)); 1805 } 1806 mutex_exit(&fsspset->fssps_lock); 1807 mutex_exit(&fsspsets_lock); 1808 1809 /* 1810 * A thread could be exiting in between clock ticks, so we need to 1811 * calculate how much CPU time it used since it was charged last time. 1812 * 1813 * CPU caps are not enforced on exiting processes - it is usually 1814 * desirable to exit as soon as possible to free resources. 1815 */ 1816 if (CPUCAPS_ON()) { 1817 thread_lock(t); 1818 fssproc = FSSPROC(t); 1819 (void) cpucaps_charge(t, &fssproc->fss_caps, 1820 CPUCAPS_CHARGE_ONLY); 1821 thread_unlock(t); 1822 } 1823 } 1824 1825 static void 1826 fss_nullsys() 1827 { 1828 } 1829 1830 /* 1831 * fss_swapin() returns -1 if the thread is loaded or is not eligible to be 1832 * swapped in. Otherwise, it returns the thread's effective priority based 1833 * on swapout time and size of process (0 <= epri <= 0 SHRT_MAX). 1834 */ 1835 /*ARGSUSED*/ 1836 static pri_t 1837 fss_swapin(kthread_t *t, int flags) 1838 { 1839 fssproc_t *fssproc = FSSPROC(t); 1840 long epri = -1; 1841 proc_t *pp = ttoproc(t); 1842 1843 ASSERT(THREAD_LOCK_HELD(t)); 1844 1845 if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) { 1846 time_t swapout_time; 1847 1848 swapout_time = (ddi_get_lbolt() - t->t_stime) / hz; 1849 if (INHERITED(t) || (fssproc->fss_flags & FSSKPRI)) { 1850 epri = (long)DISP_PRIO(t) + swapout_time; 1851 } else { 1852 /* 1853 * Threads which have been out for a long time, 1854 * have high user mode priority and are associated 1855 * with a small address space are more deserving. 1856 */ 1857 epri = fssproc->fss_umdpri; 1858 ASSERT(epri >= 0 && epri <= fss_maxumdpri); 1859 epri += swapout_time - pp->p_swrss / nz(maxpgio)/2; 1860 } 1861 /* 1862 * Scale epri so that SHRT_MAX / 2 represents zero priority. 1863 */ 1864 epri += SHRT_MAX / 2; 1865 if (epri < 0) 1866 epri = 0; 1867 else if (epri > SHRT_MAX) 1868 epri = SHRT_MAX; 1869 } 1870 return ((pri_t)epri); 1871 } 1872 1873 /* 1874 * fss_swapout() returns -1 if the thread isn't loaded or is not eligible to 1875 * be swapped out. Otherwise, it returns the thread's effective priority 1876 * based on if the swapper is in softswap or hardswap mode. 1877 */ 1878 static pri_t 1879 fss_swapout(kthread_t *t, int flags) 1880 { 1881 fssproc_t *fssproc = FSSPROC(t); 1882 long epri = -1; 1883 proc_t *pp = ttoproc(t); 1884 time_t swapin_time; 1885 1886 ASSERT(THREAD_LOCK_HELD(t)); 1887 1888 if (INHERITED(t) || 1889 (fssproc->fss_flags & FSSKPRI) || 1890 (t->t_proc_flag & TP_LWPEXIT) || 1891 (t->t_state & (TS_ZOMB|TS_FREE|TS_STOPPED|TS_ONPROC|TS_WAIT)) || 1892 !(t->t_schedflag & TS_LOAD) || 1893 !(SWAP_OK(t))) 1894 return (-1); 1895 1896 ASSERT(t->t_state & (TS_SLEEP | TS_RUN)); 1897 1898 swapin_time = (ddi_get_lbolt() - t->t_stime) / hz; 1899 1900 if (flags == SOFTSWAP) { 1901 if (t->t_state == TS_SLEEP && swapin_time > maxslp) { 1902 epri = 0; 1903 } else { 1904 return ((pri_t)epri); 1905 } 1906 } else { 1907 pri_t pri; 1908 1909 if ((t->t_state == TS_SLEEP && swapin_time > fss_minslp) || 1910 (t->t_state == TS_RUN && swapin_time > fss_minrun)) { 1911 pri = fss_maxumdpri; 1912 epri = swapin_time - 1913 (rm_asrss(pp->p_as) / nz(maxpgio)/2) - (long)pri; 1914 } else { 1915 return ((pri_t)epri); 1916 } 1917 } 1918 1919 /* 1920 * Scale epri so that SHRT_MAX / 2 represents zero priority. 1921 */ 1922 epri += SHRT_MAX / 2; 1923 if (epri < 0) 1924 epri = 0; 1925 else if (epri > SHRT_MAX) 1926 epri = SHRT_MAX; 1927 1928 return ((pri_t)epri); 1929 } 1930 1931 /* 1932 * If thread is currently at a kernel mode priority (has slept) and is 1933 * returning to the userland we assign it the appropriate user mode priority 1934 * and time quantum here. If we're lowering the thread's priority below that 1935 * of other runnable threads then we will set runrun via cpu_surrender() to 1936 * cause preemption. 1937 */ 1938 static void 1939 fss_trapret(kthread_t *t) 1940 { 1941 fssproc_t *fssproc = FSSPROC(t); 1942 cpu_t *cp = CPU; 1943 1944 ASSERT(THREAD_LOCK_HELD(t)); 1945 ASSERT(t == curthread); 1946 ASSERT(cp->cpu_dispthread == t); 1947 ASSERT(t->t_state == TS_ONPROC); 1948 1949 t->t_kpri_req = 0; 1950 if (fssproc->fss_flags & FSSKPRI) { 1951 /* 1952 * If thread has blocked in the kernel 1953 */ 1954 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri); 1955 cp->cpu_dispatch_pri = DISP_PRIO(t); 1956 ASSERT(t->t_pri >= 0 && t->t_pri <= fss_maxglobpri); 1957 fssproc->fss_flags &= ~FSSKPRI; 1958 1959 if (DISP_MUST_SURRENDER(t)) 1960 cpu_surrender(t); 1961 } 1962 1963 /* 1964 * Swapout lwp if the swapper is waiting for this thread to reach 1965 * a safe point. 1966 */ 1967 if (t->t_schedflag & TS_SWAPENQ) { 1968 thread_unlock(t); 1969 swapout_lwp(ttolwp(t)); 1970 thread_lock(t); 1971 } 1972 } 1973 1974 /* 1975 * Arrange for thread to be placed in appropriate location on dispatcher queue. 1976 * This is called with the current thread in TS_ONPROC and locked. 1977 */ 1978 static void 1979 fss_preempt(kthread_t *t) 1980 { 1981 fssproc_t *fssproc = FSSPROC(t); 1982 klwp_t *lwp; 1983 uint_t flags; 1984 1985 ASSERT(t == curthread); 1986 ASSERT(THREAD_LOCK_HELD(curthread)); 1987 ASSERT(t->t_state == TS_ONPROC); 1988 1989 /* 1990 * If preempted in the kernel, make sure the thread has a kernel 1991 * priority if needed. 1992 */ 1993 lwp = curthread->t_lwp; 1994 if (!(fssproc->fss_flags & FSSKPRI) && lwp != NULL && t->t_kpri_req) { 1995 fssproc->fss_flags |= FSSKPRI; 1996 THREAD_CHANGE_PRI(t, minclsyspri); 1997 ASSERT(t->t_pri >= 0 && t->t_pri <= fss_maxglobpri); 1998 t->t_trapret = 1; /* so that fss_trapret will run */ 1999 aston(t); 2000 } 2001 2002 /* 2003 * This thread may be placed on wait queue by CPU Caps. In this case we 2004 * do not need to do anything until it is removed from the wait queue. 2005 * Do not enforce CPU caps on threads running at a kernel priority 2006 */ 2007 if (CPUCAPS_ON()) { 2008 (void) cpucaps_charge(t, &fssproc->fss_caps, 2009 CPUCAPS_CHARGE_ENFORCE); 2010 2011 if (!(fssproc->fss_flags & FSSKPRI) && CPUCAPS_ENFORCE(t)) 2012 return; 2013 } 2014 2015 /* 2016 * If preempted in user-land mark the thread as swappable because it 2017 * cannot be holding any kernel locks. 2018 */ 2019 ASSERT(t->t_schedflag & TS_DONT_SWAP); 2020 if (lwp != NULL && lwp->lwp_state == LWP_USER) 2021 t->t_schedflag &= ~TS_DONT_SWAP; 2022 2023 /* 2024 * Check to see if we're doing "preemption control" here. If 2025 * we are, and if the user has requested that this thread not 2026 * be preempted, and if preemptions haven't been put off for 2027 * too long, let the preemption happen here but try to make 2028 * sure the thread is rescheduled as soon as possible. We do 2029 * this by putting it on the front of the highest priority run 2030 * queue in the FSS class. If the preemption has been put off 2031 * for too long, clear the "nopreempt" bit and let the thread 2032 * be preempted. 2033 */ 2034 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 2035 if (fssproc->fss_timeleft > -SC_MAX_TICKS) { 2036 DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t); 2037 if (!(fssproc->fss_flags & FSSKPRI)) { 2038 /* 2039 * If not already remembered, remember current 2040 * priority for restoration in fss_yield(). 2041 */ 2042 if (!(fssproc->fss_flags & FSSRESTORE)) { 2043 fssproc->fss_scpri = t->t_pri; 2044 fssproc->fss_flags |= FSSRESTORE; 2045 } 2046 THREAD_CHANGE_PRI(t, fss_maxumdpri); 2047 t->t_schedflag |= TS_DONT_SWAP; 2048 } 2049 schedctl_set_yield(t, 1); 2050 setfrontdq(t); 2051 return; 2052 } else { 2053 if (fssproc->fss_flags & FSSRESTORE) { 2054 THREAD_CHANGE_PRI(t, fssproc->fss_scpri); 2055 fssproc->fss_flags &= ~FSSRESTORE; 2056 } 2057 schedctl_set_nopreempt(t, 0); 2058 DTRACE_SCHED1(schedctl__preempt, kthread_t *, t); 2059 /* 2060 * Fall through and be preempted below. 2061 */ 2062 } 2063 } 2064 2065 flags = fssproc->fss_flags & (FSSBACKQ | FSSKPRI); 2066 2067 if (flags == FSSBACKQ) { 2068 fssproc->fss_timeleft = fss_quantum; 2069 fssproc->fss_flags &= ~FSSBACKQ; 2070 setbackdq(t); 2071 } else if (flags == (FSSBACKQ | FSSKPRI)) { 2072 fssproc->fss_flags &= ~FSSBACKQ; 2073 setbackdq(t); 2074 } else { 2075 setfrontdq(t); 2076 } 2077 } 2078 2079 /* 2080 * Called when a thread is waking up and is to be placed on the run queue. 2081 */ 2082 static void 2083 fss_setrun(kthread_t *t) 2084 { 2085 fssproc_t *fssproc = FSSPROC(t); 2086 2087 ASSERT(THREAD_LOCK_HELD(t)); /* t should be in transition */ 2088 2089 if (t->t_state == TS_SLEEP || t->t_state == TS_STOPPED) 2090 fss_active(t); 2091 2092 fssproc->fss_timeleft = fss_quantum; 2093 2094 fssproc->fss_flags &= ~FSSBACKQ; 2095 /* 2096 * If previously were running at the kernel priority then keep that 2097 * priority and the fss_timeleft doesn't matter. 2098 */ 2099 if ((fssproc->fss_flags & FSSKPRI) == 0) 2100 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri); 2101 2102 if (t->t_disp_time != ddi_get_lbolt()) 2103 setbackdq(t); 2104 else 2105 setfrontdq(t); 2106 } 2107 2108 /* 2109 * Prepare thread for sleep. We reset the thread priority so it will run at the 2110 * kernel priority level when it wakes up. 2111 */ 2112 static void 2113 fss_sleep(kthread_t *t) 2114 { 2115 fssproc_t *fssproc = FSSPROC(t); 2116 2117 ASSERT(t == curthread); 2118 ASSERT(THREAD_LOCK_HELD(t)); 2119 2120 ASSERT(t->t_state == TS_ONPROC); 2121 2122 /* 2123 * Account for time spent on CPU before going to sleep. 2124 */ 2125 (void) CPUCAPS_CHARGE(t, &fssproc->fss_caps, CPUCAPS_CHARGE_ENFORCE); 2126 2127 fss_inactive(t); 2128 2129 /* 2130 * Assign a system priority to the thread and arrange for it to be 2131 * retained when the thread is next placed on the run queue (i.e., 2132 * when it wakes up) instead of being given a new pri. Also arrange 2133 * for trapret processing as the thread leaves the system call so it 2134 * will drop back to normal priority range. 2135 */ 2136 if (t->t_kpri_req) { 2137 THREAD_CHANGE_PRI(t, minclsyspri); 2138 fssproc->fss_flags |= FSSKPRI; 2139 t->t_trapret = 1; /* so that fss_trapret will run */ 2140 aston(t); 2141 } else if (fssproc->fss_flags & FSSKPRI) { 2142 /* 2143 * The thread has done a THREAD_KPRI_REQUEST(), slept, then 2144 * done THREAD_KPRI_RELEASE() (so no t_kpri_req is 0 again), 2145 * then slept again all without finishing the current system 2146 * call so trapret won't have cleared FSSKPRI 2147 */ 2148 fssproc->fss_flags &= ~FSSKPRI; 2149 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri); 2150 if (DISP_MUST_SURRENDER(curthread)) 2151 cpu_surrender(t); 2152 } 2153 t->t_stime = ddi_get_lbolt(); /* time stamp for the swapper */ 2154 } 2155 2156 /* 2157 * A tick interrupt has ocurrend on a running thread. Check to see if our 2158 * time slice has expired. We must also clear the TS_DONT_SWAP flag in 2159 * t_schedflag if the thread is eligible to be swapped out. 2160 */ 2161 static void 2162 fss_tick(kthread_t *t) 2163 { 2164 fssproc_t *fssproc; 2165 fssproj_t *fssproj; 2166 klwp_t *lwp; 2167 boolean_t call_cpu_surrender = B_FALSE; 2168 boolean_t cpucaps_enforce = B_FALSE; 2169 2170 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 2171 2172 /* 2173 * It's safe to access fsspset and fssproj structures because we're 2174 * holding our p_lock here. 2175 */ 2176 thread_lock(t); 2177 fssproc = FSSPROC(t); 2178 fssproj = FSSPROC2FSSPROJ(fssproc); 2179 if (fssproj != NULL) { 2180 fsspset_t *fsspset = FSSPROJ2FSSPSET(fssproj); 2181 disp_lock_enter_high(&fsspset->fssps_displock); 2182 fssproj->fssp_ticks += fss_nice_tick[fssproc->fss_nice]; 2183 fssproc->fss_ticks++; 2184 disp_lock_exit_high(&fsspset->fssps_displock); 2185 } 2186 2187 /* 2188 * Keep track of thread's project CPU usage. Note that projects 2189 * get charged even when threads are running in the kernel. 2190 * Do not surrender CPU if running in the SYS class. 2191 */ 2192 if (CPUCAPS_ON()) { 2193 cpucaps_enforce = cpucaps_charge(t, 2194 &fssproc->fss_caps, CPUCAPS_CHARGE_ENFORCE) && 2195 !(fssproc->fss_flags & FSSKPRI); 2196 } 2197 2198 /* 2199 * A thread's execution time for threads running in the SYS class 2200 * is not tracked. 2201 */ 2202 if ((fssproc->fss_flags & FSSKPRI) == 0) { 2203 /* 2204 * If thread is not in kernel mode, decrement its fss_timeleft 2205 */ 2206 if (--fssproc->fss_timeleft <= 0) { 2207 pri_t new_pri; 2208 2209 /* 2210 * If we're doing preemption control and trying to 2211 * avoid preempting this thread, just note that the 2212 * thread should yield soon and let it keep running 2213 * (unless it's been a while). 2214 */ 2215 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 2216 if (fssproc->fss_timeleft > -SC_MAX_TICKS) { 2217 DTRACE_SCHED1(schedctl__nopreempt, 2218 kthread_t *, t); 2219 schedctl_set_yield(t, 1); 2220 thread_unlock_nopreempt(t); 2221 return; 2222 } 2223 } 2224 fssproc->fss_flags &= ~FSSRESTORE; 2225 2226 fss_newpri(fssproc); 2227 new_pri = fssproc->fss_umdpri; 2228 ASSERT(new_pri >= 0 && new_pri <= fss_maxglobpri); 2229 2230 /* 2231 * When the priority of a thread is changed, it may 2232 * be necessary to adjust its position on a sleep queue 2233 * or dispatch queue. The function thread_change_pri 2234 * accomplishes this. 2235 */ 2236 if (thread_change_pri(t, new_pri, 0)) { 2237 if ((t->t_schedflag & TS_LOAD) && 2238 (lwp = t->t_lwp) && 2239 lwp->lwp_state == LWP_USER) 2240 t->t_schedflag &= ~TS_DONT_SWAP; 2241 fssproc->fss_timeleft = fss_quantum; 2242 } else { 2243 call_cpu_surrender = B_TRUE; 2244 } 2245 } else if (t->t_state == TS_ONPROC && 2246 t->t_pri < t->t_disp_queue->disp_maxrunpri) { 2247 /* 2248 * If there is a higher-priority thread which is 2249 * waiting for a processor, then thread surrenders 2250 * the processor. 2251 */ 2252 call_cpu_surrender = B_TRUE; 2253 } 2254 } 2255 2256 if (cpucaps_enforce && 2 * fssproc->fss_timeleft > fss_quantum) { 2257 /* 2258 * The thread used more than half of its quantum, so assume that 2259 * it used the whole quantum. 2260 * 2261 * Update thread's priority just before putting it on the wait 2262 * queue so that it gets charged for the CPU time from its 2263 * quantum even before that quantum expires. 2264 */ 2265 fss_newpri(fssproc); 2266 if (t->t_pri != fssproc->fss_umdpri) 2267 fss_change_priority(t, fssproc); 2268 2269 /* 2270 * We need to call cpu_surrender for this thread due to cpucaps 2271 * enforcement, but fss_change_priority may have already done 2272 * so. In this case FSSBACKQ is set and there is no need to call 2273 * cpu-surrender again. 2274 */ 2275 if (!(fssproc->fss_flags & FSSBACKQ)) 2276 call_cpu_surrender = B_TRUE; 2277 } 2278 2279 if (call_cpu_surrender) { 2280 fssproc->fss_flags |= FSSBACKQ; 2281 cpu_surrender(t); 2282 } 2283 2284 thread_unlock_nopreempt(t); /* clock thread can't be preempted */ 2285 } 2286 2287 /* 2288 * Processes waking up go to the back of their queue. We don't need to assign 2289 * a time quantum here because thread is still at a kernel mode priority and 2290 * the time slicing is not done for threads running in the kernel after 2291 * sleeping. The proper time quantum will be assigned by fss_trapret before the 2292 * thread returns to user mode. 2293 */ 2294 static void 2295 fss_wakeup(kthread_t *t) 2296 { 2297 fssproc_t *fssproc; 2298 2299 ASSERT(THREAD_LOCK_HELD(t)); 2300 ASSERT(t->t_state == TS_SLEEP); 2301 2302 fss_active(t); 2303 2304 t->t_stime = ddi_get_lbolt(); /* time stamp for the swapper */ 2305 fssproc = FSSPROC(t); 2306 fssproc->fss_flags &= ~FSSBACKQ; 2307 2308 if (fssproc->fss_flags & FSSKPRI) { 2309 /* 2310 * If we already have a kernel priority assigned, then we 2311 * just use it. 2312 */ 2313 setbackdq(t); 2314 } else if (t->t_kpri_req) { 2315 /* 2316 * Give thread a priority boost if we were asked. 2317 */ 2318 fssproc->fss_flags |= FSSKPRI; 2319 THREAD_CHANGE_PRI(t, minclsyspri); 2320 setbackdq(t); 2321 t->t_trapret = 1; /* so that fss_trapret will run */ 2322 aston(t); 2323 } else { 2324 /* 2325 * Otherwise, we recalculate the priority. 2326 */ 2327 if (t->t_disp_time == ddi_get_lbolt()) { 2328 setfrontdq(t); 2329 } else { 2330 fssproc->fss_timeleft = fss_quantum; 2331 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri); 2332 setbackdq(t); 2333 } 2334 } 2335 } 2336 2337 /* 2338 * fss_donice() is called when a nice(1) command is issued on the thread to 2339 * alter the priority. The nice(1) command exists in Solaris for compatibility. 2340 * Thread priority adjustments should be done via priocntl(1). 2341 */ 2342 static int 2343 fss_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp) 2344 { 2345 int newnice; 2346 fssproc_t *fssproc = FSSPROC(t); 2347 fssparms_t fssparms; 2348 2349 /* 2350 * If there is no change to priority, just return current setting. 2351 */ 2352 if (incr == 0) { 2353 if (retvalp) 2354 *retvalp = fssproc->fss_nice - NZERO; 2355 return (0); 2356 } 2357 2358 if ((incr < 0 || incr > 2 * NZERO) && secpolicy_setpriority(cr) != 0) 2359 return (EPERM); 2360 2361 /* 2362 * Specifying a nice increment greater than the upper limit of 2363 * FSS_NICE_MAX (== 2 * NZERO - 1) will result in the thread's nice 2364 * value being set to the upper limit. We check for this before 2365 * computing the new value because otherwise we could get overflow 2366 * if a privileged user specified some ridiculous increment. 2367 */ 2368 if (incr > FSS_NICE_MAX) 2369 incr = FSS_NICE_MAX; 2370 2371 newnice = fssproc->fss_nice + incr; 2372 if (newnice > FSS_NICE_MAX) 2373 newnice = FSS_NICE_MAX; 2374 else if (newnice < FSS_NICE_MIN) 2375 newnice = FSS_NICE_MIN; 2376 2377 fssparms.fss_uprilim = fssparms.fss_upri = 2378 -((newnice - NZERO) * fss_maxupri) / NZERO; 2379 2380 /* 2381 * Reset the uprilim and upri values of the thread. 2382 */ 2383 (void) fss_parmsset(t, (void *)&fssparms, (id_t)0, (cred_t *)NULL); 2384 2385 /* 2386 * Although fss_parmsset already reset fss_nice it may not have been 2387 * set to precisely the value calculated above because fss_parmsset 2388 * determines the nice value from the user priority and we may have 2389 * truncated during the integer conversion from nice value to user 2390 * priority and back. We reset fss_nice to the value we calculated 2391 * above. 2392 */ 2393 fssproc->fss_nice = (char)newnice; 2394 2395 if (retvalp) 2396 *retvalp = newnice - NZERO; 2397 return (0); 2398 } 2399 2400 /* 2401 * Increment the priority of the specified thread by incr and 2402 * return the new value in *retvalp. 2403 */ 2404 static int 2405 fss_doprio(kthread_t *t, cred_t *cr, int incr, int *retvalp) 2406 { 2407 int newpri; 2408 fssproc_t *fssproc = FSSPROC(t); 2409 fssparms_t fssparms; 2410 2411 /* 2412 * If there is no change to priority, just return current setting. 2413 */ 2414 if (incr == 0) { 2415 *retvalp = fssproc->fss_upri; 2416 return (0); 2417 } 2418 2419 newpri = fssproc->fss_upri + incr; 2420 if (newpri > fss_maxupri || newpri < -fss_maxupri) 2421 return (EINVAL); 2422 2423 *retvalp = newpri; 2424 fssparms.fss_uprilim = fssparms.fss_upri = newpri; 2425 2426 /* 2427 * Reset the uprilim and upri values of the thread. 2428 */ 2429 return (fss_parmsset(t, &fssparms, (id_t)0, cr)); 2430 } 2431 2432 /* 2433 * Return the global scheduling priority that would be assigned to a thread 2434 * entering the fair-sharing class with the fss_upri. 2435 */ 2436 /*ARGSUSED*/ 2437 static pri_t 2438 fss_globpri(kthread_t *t) 2439 { 2440 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 2441 2442 return (fss_maxumdpri / 2); 2443 } 2444 2445 /* 2446 * Called from the yield(2) system call when a thread is yielding (surrendering) 2447 * the processor. The kernel thread is placed at the back of a dispatch queue. 2448 */ 2449 static void 2450 fss_yield(kthread_t *t) 2451 { 2452 fssproc_t *fssproc = FSSPROC(t); 2453 2454 ASSERT(t == curthread); 2455 ASSERT(THREAD_LOCK_HELD(t)); 2456 2457 /* 2458 * Collect CPU usage spent before yielding 2459 */ 2460 (void) CPUCAPS_CHARGE(t, &fssproc->fss_caps, CPUCAPS_CHARGE_ENFORCE); 2461 2462 /* 2463 * Clear the preemption control "yield" bit since the user is 2464 * doing a yield. 2465 */ 2466 if (t->t_schedctl) 2467 schedctl_set_yield(t, 0); 2468 /* 2469 * If fss_preempt() artifically increased the thread's priority 2470 * to avoid preemption, restore the original priority now. 2471 */ 2472 if (fssproc->fss_flags & FSSRESTORE) { 2473 THREAD_CHANGE_PRI(t, fssproc->fss_scpri); 2474 fssproc->fss_flags &= ~FSSRESTORE; 2475 } 2476 if (fssproc->fss_timeleft < 0) { 2477 /* 2478 * Time slice was artificially extended to avoid preemption, 2479 * so pretend we're preempting it now. 2480 */ 2481 DTRACE_SCHED1(schedctl__yield, int, -fssproc->fss_timeleft); 2482 fssproc->fss_timeleft = fss_quantum; 2483 } 2484 fssproc->fss_flags &= ~FSSBACKQ; 2485 setbackdq(t); 2486 } 2487 2488 void 2489 fss_changeproj(kthread_t *t, void *kp, void *zp, fssbuf_t *projbuf, 2490 fssbuf_t *zonebuf) 2491 { 2492 kproject_t *kpj_new = kp; 2493 zone_t *zone = zp; 2494 fssproj_t *fssproj_old, *fssproj_new; 2495 fsspset_t *fsspset; 2496 kproject_t *kpj_old; 2497 fssproc_t *fssproc; 2498 fsszone_t *fsszone_old, *fsszone_new; 2499 int free = 0; 2500 int id; 2501 2502 ASSERT(MUTEX_HELD(&cpu_lock)); 2503 ASSERT(MUTEX_HELD(&pidlock)); 2504 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 2505 2506 if (t->t_cid != fss_cid) 2507 return; 2508 2509 fssproc = FSSPROC(t); 2510 mutex_enter(&fsspsets_lock); 2511 fssproj_old = FSSPROC2FSSPROJ(fssproc); 2512 if (fssproj_old == NULL) { 2513 mutex_exit(&fsspsets_lock); 2514 return; 2515 } 2516 2517 fsspset = FSSPROJ2FSSPSET(fssproj_old); 2518 mutex_enter(&fsspset->fssps_lock); 2519 kpj_old = FSSPROJ2KPROJ(fssproj_old); 2520 fsszone_old = fssproj_old->fssp_fsszone; 2521 2522 ASSERT(t->t_cpupart == fsspset->fssps_cpupart); 2523 2524 if (kpj_old == kpj_new) { 2525 mutex_exit(&fsspset->fssps_lock); 2526 mutex_exit(&fsspsets_lock); 2527 return; 2528 } 2529 2530 if ((fsszone_new = fss_find_fsszone(fsspset, zone)) == NULL) { 2531 /* 2532 * If the zone for the new project is not currently active on 2533 * the cpu partition we're on, get one of the pre-allocated 2534 * buffers and link it in our per-pset zone list. Such buffers 2535 * should already exist. 2536 */ 2537 for (id = 0; id < zonebuf->fssb_size; id++) { 2538 if ((fsszone_new = zonebuf->fssb_list[id]) != NULL) { 2539 fss_insert_fsszone(fsspset, zone, fsszone_new); 2540 zonebuf->fssb_list[id] = NULL; 2541 break; 2542 } 2543 } 2544 } 2545 ASSERT(fsszone_new != NULL); 2546 if ((fssproj_new = fss_find_fssproj(fsspset, kpj_new)) == NULL) { 2547 /* 2548 * If our new project is not currently running 2549 * on the cpu partition we're on, get one of the 2550 * pre-allocated buffers and link it in our new cpu 2551 * partition doubly linked list. Such buffers should already 2552 * exist. 2553 */ 2554 for (id = 0; id < projbuf->fssb_size; id++) { 2555 if ((fssproj_new = projbuf->fssb_list[id]) != NULL) { 2556 fss_insert_fssproj(fsspset, kpj_new, 2557 fsszone_new, fssproj_new); 2558 projbuf->fssb_list[id] = NULL; 2559 break; 2560 } 2561 } 2562 } 2563 ASSERT(fssproj_new != NULL); 2564 2565 thread_lock(t); 2566 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC || 2567 t->t_state == TS_WAIT) 2568 fss_inactive(t); 2569 ASSERT(fssproj_old->fssp_threads > 0); 2570 if (--fssproj_old->fssp_threads == 0) { 2571 fss_remove_fssproj(fsspset, fssproj_old); 2572 free = 1; 2573 } 2574 fssproc->fss_proj = fssproj_new; 2575 fssproc->fss_fsspri = 0; 2576 fssproj_new->fssp_threads++; 2577 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC || 2578 t->t_state == TS_WAIT) 2579 fss_active(t); 2580 thread_unlock(t); 2581 if (free) { 2582 if (fsszone_old->fssz_nproj == 0) 2583 kmem_free(fsszone_old, sizeof (fsszone_t)); 2584 kmem_free(fssproj_old, sizeof (fssproj_t)); 2585 } 2586 2587 mutex_exit(&fsspset->fssps_lock); 2588 mutex_exit(&fsspsets_lock); 2589 } 2590 2591 void 2592 fss_changepset(kthread_t *t, void *newcp, fssbuf_t *projbuf, 2593 fssbuf_t *zonebuf) 2594 { 2595 fsspset_t *fsspset_old, *fsspset_new; 2596 fssproj_t *fssproj_old, *fssproj_new; 2597 fsszone_t *fsszone_old, *fsszone_new; 2598 fssproc_t *fssproc; 2599 kproject_t *kpj; 2600 zone_t *zone; 2601 int id; 2602 2603 ASSERT(MUTEX_HELD(&cpu_lock)); 2604 ASSERT(MUTEX_HELD(&pidlock)); 2605 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 2606 2607 if (t->t_cid != fss_cid) 2608 return; 2609 2610 fssproc = FSSPROC(t); 2611 zone = ttoproc(t)->p_zone; 2612 mutex_enter(&fsspsets_lock); 2613 fssproj_old = FSSPROC2FSSPROJ(fssproc); 2614 if (fssproj_old == NULL) { 2615 mutex_exit(&fsspsets_lock); 2616 return; 2617 } 2618 fsszone_old = fssproj_old->fssp_fsszone; 2619 fsspset_old = FSSPROJ2FSSPSET(fssproj_old); 2620 kpj = FSSPROJ2KPROJ(fssproj_old); 2621 2622 if (fsspset_old->fssps_cpupart == newcp) { 2623 mutex_exit(&fsspsets_lock); 2624 return; 2625 } 2626 2627 ASSERT(ttoproj(t) == kpj); 2628 2629 fsspset_new = fss_find_fsspset(newcp); 2630 2631 mutex_enter(&fsspset_new->fssps_lock); 2632 if ((fsszone_new = fss_find_fsszone(fsspset_new, zone)) == NULL) { 2633 for (id = 0; id < zonebuf->fssb_size; id++) { 2634 if ((fsszone_new = zonebuf->fssb_list[id]) != NULL) { 2635 fss_insert_fsszone(fsspset_new, zone, 2636 fsszone_new); 2637 zonebuf->fssb_list[id] = NULL; 2638 break; 2639 } 2640 } 2641 } 2642 ASSERT(fsszone_new != NULL); 2643 if ((fssproj_new = fss_find_fssproj(fsspset_new, kpj)) == NULL) { 2644 for (id = 0; id < projbuf->fssb_size; id++) { 2645 if ((fssproj_new = projbuf->fssb_list[id]) != NULL) { 2646 fss_insert_fssproj(fsspset_new, kpj, 2647 fsszone_new, fssproj_new); 2648 projbuf->fssb_list[id] = NULL; 2649 break; 2650 } 2651 } 2652 } 2653 ASSERT(fssproj_new != NULL); 2654 2655 fssproj_new->fssp_threads++; 2656 thread_lock(t); 2657 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC || 2658 t->t_state == TS_WAIT) 2659 fss_inactive(t); 2660 fssproc->fss_proj = fssproj_new; 2661 fssproc->fss_fsspri = 0; 2662 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC || 2663 t->t_state == TS_WAIT) 2664 fss_active(t); 2665 thread_unlock(t); 2666 mutex_exit(&fsspset_new->fssps_lock); 2667 2668 mutex_enter(&fsspset_old->fssps_lock); 2669 if (--fssproj_old->fssp_threads == 0) { 2670 fss_remove_fssproj(fsspset_old, fssproj_old); 2671 if (fsszone_old->fssz_nproj == 0) 2672 kmem_free(fsszone_old, sizeof (fsszone_t)); 2673 kmem_free(fssproj_old, sizeof (fssproj_t)); 2674 } 2675 mutex_exit(&fsspset_old->fssps_lock); 2676 2677 mutex_exit(&fsspsets_lock); 2678 } 2679