1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 25 * Use is subject to license terms. 26 */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/cred.h> 34 #include <sys/proc.h> 35 #include <sys/strsubr.h> 36 #include <sys/priocntl.h> 37 #include <sys/class.h> 38 #include <sys/disp.h> 39 #include <sys/procset.h> 40 #include <sys/debug.h> 41 #include <sys/kmem.h> 42 #include <sys/errno.h> 43 #include <sys/systm.h> 44 #include <sys/schedctl.h> 45 #include <sys/vmsystm.h> 46 #include <sys/atomic.h> 47 #include <sys/project.h> 48 #include <sys/modctl.h> 49 #include <sys/fss.h> 50 #include <sys/fsspriocntl.h> 51 #include <sys/cpupart.h> 52 #include <sys/zone.h> 53 #include <vm/rm.h> 54 #include <vm/seg_kmem.h> 55 #include <sys/tnf_probe.h> 56 #include <sys/policy.h> 57 #include <sys/sdt.h> 58 59 /* 60 * FSS Data Structures: 61 * 62 * fsszone 63 * ----- ----- 64 * ----- | | | | 65 * | |-------->| |<------->| |<---->... 66 * | | ----- ----- 67 * | | ^ ^ ^ 68 * | |--- | \ \ 69 * ----- | | \ \ 70 * fsspset | | \ \ 71 * | | \ \ 72 * | ----- ----- ----- 73 * -->| |<--->| |<--->| | 74 * | | | | | | 75 * ----- ----- ----- 76 * fssproj 77 * 78 * 79 * That is, fsspsets contain a list of fsszone's that are currently active in 80 * the pset, and a list of fssproj's, corresponding to projects with runnable 81 * threads on the pset. fssproj's in turn point to the fsszone which they 82 * are a member of. 83 * 84 * An fssproj_t is removed when there are no threads in it. 85 * 86 * An fsszone_t is removed when there are no projects with threads in it. 87 * 88 * Projects in a zone compete with each other for cpu time, receiving cpu 89 * allocation within a zone proportional to fssproj->fssp_shares 90 * (project.cpu-shares); at a higher level zones compete with each other, 91 * receiving allocation in a pset proportional to fsszone->fssz_shares 92 * (zone.cpu-shares). See fss_decay_usage() for the precise formula. 93 */ 94 95 static pri_t fss_init(id_t, int, classfuncs_t **); 96 97 static struct sclass fss = { 98 "FSS", 99 fss_init, 100 0 101 }; 102 103 extern struct mod_ops mod_schedops; 104 105 /* 106 * Module linkage information for the kernel. 107 */ 108 static struct modlsched modlsched = { 109 &mod_schedops, "fair share scheduling class", &fss 110 }; 111 112 static struct modlinkage modlinkage = { 113 MODREV_1, (void *)&modlsched, NULL 114 }; 115 116 #define FSS_MAXUPRI 60 117 118 /* 119 * The fssproc_t structures are kept in an array of circular doubly linked 120 * lists. A hash on the thread pointer is used to determine which list each 121 * thread should be placed in. Each list has a dummy "head" which is never 122 * removed, so the list is never empty. fss_update traverses these lists to 123 * update the priorities of threads that have been waiting on the run queue. 124 */ 125 #define FSS_LISTS 16 /* number of lists, must be power of 2 */ 126 #define FSS_LIST_HASH(t) (((uintptr_t)(t) >> 9) & (FSS_LISTS - 1)) 127 #define FSS_LIST_NEXT(i) (((i) + 1) & (FSS_LISTS - 1)) 128 129 #define FSS_LIST_INSERT(fssproc) \ 130 { \ 131 int index = FSS_LIST_HASH(fssproc->fss_tp); \ 132 kmutex_t *lockp = &fss_listlock[index]; \ 133 fssproc_t *headp = &fss_listhead[index]; \ 134 mutex_enter(lockp); \ 135 fssproc->fss_next = headp->fss_next; \ 136 fssproc->fss_prev = headp; \ 137 headp->fss_next->fss_prev = fssproc; \ 138 headp->fss_next = fssproc; \ 139 mutex_exit(lockp); \ 140 } 141 142 #define FSS_LIST_DELETE(fssproc) \ 143 { \ 144 int index = FSS_LIST_HASH(fssproc->fss_tp); \ 145 kmutex_t *lockp = &fss_listlock[index]; \ 146 mutex_enter(lockp); \ 147 fssproc->fss_prev->fss_next = fssproc->fss_next; \ 148 fssproc->fss_next->fss_prev = fssproc->fss_prev; \ 149 mutex_exit(lockp); \ 150 } 151 152 #define FSS_TICK_COST 1000 /* tick cost for threads with nice level = 0 */ 153 154 /* 155 * Decay rate percentages are based on n/128 rather than n/100 so that 156 * calculations can avoid having to do an integer divide by 100 (divide 157 * by FSS_DECAY_BASE == 128 optimizes to an arithmetic shift). 158 * 159 * FSS_DECAY_MIN = 83/128 ~= 65% 160 * FSS_DECAY_MAX = 108/128 ~= 85% 161 * FSS_DECAY_USG = 96/128 ~= 75% 162 */ 163 #define FSS_DECAY_MIN 83 /* fsspri decay pct for threads w/ nice -20 */ 164 #define FSS_DECAY_MAX 108 /* fsspri decay pct for threads w/ nice +19 */ 165 #define FSS_DECAY_USG 96 /* fssusage decay pct for projects */ 166 #define FSS_DECAY_BASE 128 /* base for decay percentages above */ 167 168 #define FSS_NICE_MIN 0 169 #define FSS_NICE_MAX (2 * NZERO - 1) 170 #define FSS_NICE_RANGE (FSS_NICE_MAX - FSS_NICE_MIN + 1) 171 172 static int fss_nice_tick[FSS_NICE_RANGE]; 173 static int fss_nice_decay[FSS_NICE_RANGE]; 174 175 static pri_t fss_maxupri = FSS_MAXUPRI; /* maximum FSS user priority */ 176 static pri_t fss_maxumdpri; /* maximum user mode fss priority */ 177 static pri_t fss_maxglobpri; /* maximum global priority used by fss class */ 178 static pri_t fss_minglobpri; /* minimum global priority */ 179 180 static fssproc_t fss_listhead[FSS_LISTS]; 181 static kmutex_t fss_listlock[FSS_LISTS]; 182 183 static fsspset_t *fsspsets; 184 static kmutex_t fsspsets_lock; /* protects fsspsets */ 185 186 static id_t fss_cid; 187 188 static time_t fss_minrun = 2; /* t_pri becomes 59 within 2 secs */ 189 static time_t fss_minslp = 2; /* min time on sleep queue for hardswap */ 190 static int fss_quantum = 11; 191 192 static void fss_newpri(fssproc_t *); 193 static void fss_update(void *); 194 static int fss_update_list(int); 195 static void fss_change_priority(kthread_t *, fssproc_t *); 196 197 static int fss_admin(caddr_t, cred_t *); 198 static int fss_getclinfo(void *); 199 static int fss_parmsin(void *); 200 static int fss_parmsout(void *, pc_vaparms_t *); 201 static int fss_vaparmsin(void *, pc_vaparms_t *); 202 static int fss_vaparmsout(void *, pc_vaparms_t *); 203 static int fss_getclpri(pcpri_t *); 204 static int fss_alloc(void **, int); 205 static void fss_free(void *); 206 207 static int fss_enterclass(kthread_t *, id_t, void *, cred_t *, void *); 208 static void fss_exitclass(void *); 209 static int fss_canexit(kthread_t *, cred_t *); 210 static int fss_fork(kthread_t *, kthread_t *, void *); 211 static void fss_forkret(kthread_t *, kthread_t *); 212 static void fss_parmsget(kthread_t *, void *); 213 static int fss_parmsset(kthread_t *, void *, id_t, cred_t *); 214 static void fss_stop(kthread_t *, int, int); 215 static void fss_exit(kthread_t *); 216 static void fss_active(kthread_t *); 217 static void fss_inactive(kthread_t *); 218 static pri_t fss_swapin(kthread_t *, int); 219 static pri_t fss_swapout(kthread_t *, int); 220 static void fss_trapret(kthread_t *); 221 static void fss_preempt(kthread_t *); 222 static void fss_setrun(kthread_t *); 223 static void fss_sleep(kthread_t *); 224 static void fss_tick(kthread_t *); 225 static void fss_wakeup(kthread_t *); 226 static int fss_donice(kthread_t *, cred_t *, int, int *); 227 static pri_t fss_globpri(kthread_t *); 228 static void fss_yield(kthread_t *); 229 static void fss_nullsys(); 230 231 static struct classfuncs fss_classfuncs = { 232 /* class functions */ 233 fss_admin, 234 fss_getclinfo, 235 fss_parmsin, 236 fss_parmsout, 237 fss_vaparmsin, 238 fss_vaparmsout, 239 fss_getclpri, 240 fss_alloc, 241 fss_free, 242 243 /* thread functions */ 244 fss_enterclass, 245 fss_exitclass, 246 fss_canexit, 247 fss_fork, 248 fss_forkret, 249 fss_parmsget, 250 fss_parmsset, 251 fss_stop, 252 fss_exit, 253 fss_active, 254 fss_inactive, 255 fss_swapin, 256 fss_swapout, 257 fss_trapret, 258 fss_preempt, 259 fss_setrun, 260 fss_sleep, 261 fss_tick, 262 fss_wakeup, 263 fss_donice, 264 fss_globpri, 265 fss_nullsys, /* set_process_group */ 266 fss_yield 267 }; 268 269 int 270 _init() 271 { 272 return (mod_install(&modlinkage)); 273 } 274 275 int 276 _fini() 277 { 278 return (EBUSY); 279 } 280 281 int 282 _info(struct modinfo *modinfop) 283 { 284 return (mod_info(&modlinkage, modinfop)); 285 } 286 287 /*ARGSUSED*/ 288 static int 289 fss_project_walker(kproject_t *kpj, void *buf) 290 { 291 return (0); 292 } 293 294 void * 295 fss_allocbuf(int op, int type) 296 { 297 fssbuf_t *fssbuf; 298 void **fsslist; 299 int cnt; 300 int i; 301 size_t size; 302 303 ASSERT(op == FSS_NPSET_BUF || op == FSS_NPROJ_BUF || op == FSS_ONE_BUF); 304 ASSERT(type == FSS_ALLOC_PROJ || type == FSS_ALLOC_ZONE); 305 ASSERT(MUTEX_HELD(&cpu_lock)); 306 307 fssbuf = kmem_zalloc(sizeof (fssbuf_t), KM_SLEEP); 308 switch (op) { 309 case FSS_NPSET_BUF: 310 cnt = cpupart_list(NULL, 0, CP_NONEMPTY); 311 break; 312 case FSS_NPROJ_BUF: 313 cnt = project_walk_all(ALL_ZONES, fss_project_walker, NULL); 314 break; 315 case FSS_ONE_BUF: 316 cnt = 1; 317 break; 318 } 319 320 switch (type) { 321 case FSS_ALLOC_PROJ: 322 size = sizeof (fssproj_t); 323 break; 324 case FSS_ALLOC_ZONE: 325 size = sizeof (fsszone_t); 326 break; 327 } 328 fsslist = kmem_zalloc(cnt * sizeof (void *), KM_SLEEP); 329 fssbuf->fssb_size = cnt; 330 fssbuf->fssb_list = fsslist; 331 for (i = 0; i < cnt; i++) 332 fsslist[i] = kmem_zalloc(size, KM_SLEEP); 333 return (fssbuf); 334 } 335 336 void 337 fss_freebuf(fssbuf_t *fssbuf, int type) 338 { 339 void **fsslist; 340 int i; 341 size_t size; 342 343 ASSERT(fssbuf != NULL); 344 ASSERT(type == FSS_ALLOC_PROJ || type == FSS_ALLOC_ZONE); 345 fsslist = fssbuf->fssb_list; 346 347 switch (type) { 348 case FSS_ALLOC_PROJ: 349 size = sizeof (fssproj_t); 350 break; 351 case FSS_ALLOC_ZONE: 352 size = sizeof (fsszone_t); 353 break; 354 } 355 356 for (i = 0; i < fssbuf->fssb_size; i++) { 357 if (fsslist[i] != NULL) 358 kmem_free(fsslist[i], size); 359 } 360 kmem_free(fsslist, sizeof (void *) * fssbuf->fssb_size); 361 kmem_free(fssbuf, sizeof (fssbuf_t)); 362 } 363 364 static fsspset_t * 365 fss_find_fsspset(cpupart_t *cpupart) 366 { 367 int i; 368 fsspset_t *fsspset = NULL; 369 int found = 0; 370 371 ASSERT(cpupart != NULL); 372 ASSERT(MUTEX_HELD(&fsspsets_lock)); 373 374 /* 375 * Search for the cpupart pointer in the array of fsspsets. 376 */ 377 for (i = 0; i < max_ncpus; i++) { 378 fsspset = &fsspsets[i]; 379 if (fsspset->fssps_cpupart == cpupart) { 380 ASSERT(fsspset->fssps_nproj > 0); 381 found = 1; 382 break; 383 } 384 } 385 if (found == 0) { 386 /* 387 * If we didn't find anything, then use the first 388 * available slot in the fsspsets array. 389 */ 390 for (i = 0; i < max_ncpus; i++) { 391 fsspset = &fsspsets[i]; 392 if (fsspset->fssps_cpupart == NULL) { 393 ASSERT(fsspset->fssps_nproj == 0); 394 found = 1; 395 break; 396 } 397 } 398 fsspset->fssps_cpupart = cpupart; 399 } 400 ASSERT(found == 1); 401 return (fsspset); 402 } 403 404 static void 405 fss_del_fsspset(fsspset_t *fsspset) 406 { 407 ASSERT(MUTEX_HELD(&fsspsets_lock)); 408 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 409 ASSERT(fsspset->fssps_nproj == 0); 410 ASSERT(fsspset->fssps_list == NULL); 411 ASSERT(fsspset->fssps_zones == NULL); 412 fsspset->fssps_cpupart = NULL; 413 fsspset->fssps_maxfsspri = 0; 414 fsspset->fssps_shares = 0; 415 } 416 417 /* 418 * The following routine returns a pointer to the fsszone structure which 419 * belongs to zone "zone" and cpu partition fsspset, if such structure exists. 420 */ 421 static fsszone_t * 422 fss_find_fsszone(fsspset_t *fsspset, zone_t *zone) 423 { 424 fsszone_t *fsszone; 425 426 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 427 428 if (fsspset->fssps_list != NULL) { 429 /* 430 * There are projects/zones active on this cpu partition 431 * already. Try to find our zone among them. 432 */ 433 fsszone = fsspset->fssps_zones; 434 do { 435 if (fsszone->fssz_zone == zone) { 436 return (fsszone); 437 } 438 fsszone = fsszone->fssz_next; 439 } while (fsszone != fsspset->fssps_zones); 440 } 441 return (NULL); 442 } 443 444 /* 445 * The following routine links new fsszone structure into doubly linked list of 446 * zones active on the specified cpu partition. 447 */ 448 static void 449 fss_insert_fsszone(fsspset_t *fsspset, zone_t *zone, fsszone_t *fsszone) 450 { 451 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 452 453 fsszone->fssz_zone = zone; 454 fsszone->fssz_rshares = zone->zone_shares; 455 456 if (fsspset->fssps_zones == NULL) { 457 /* 458 * This will be the first fsszone for this fsspset 459 */ 460 fsszone->fssz_next = fsszone->fssz_prev = fsszone; 461 fsspset->fssps_zones = fsszone; 462 } else { 463 /* 464 * Insert this fsszone to the doubly linked list. 465 */ 466 fsszone_t *fssz_head = fsspset->fssps_zones; 467 468 fsszone->fssz_next = fssz_head; 469 fsszone->fssz_prev = fssz_head->fssz_prev; 470 fssz_head->fssz_prev->fssz_next = fsszone; 471 fssz_head->fssz_prev = fsszone; 472 fsspset->fssps_zones = fsszone; 473 } 474 } 475 476 /* 477 * The following routine removes a single fsszone structure from the doubly 478 * linked list of zones active on the specified cpu partition. Note that 479 * global fsspsets_lock must be held in case this fsszone structure is the last 480 * on the above mentioned list. Also note that the fsszone structure is not 481 * freed here, it is the responsibility of the caller to call kmem_free for it. 482 */ 483 static void 484 fss_remove_fsszone(fsspset_t *fsspset, fsszone_t *fsszone) 485 { 486 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 487 ASSERT(fsszone->fssz_nproj == 0); 488 ASSERT(fsszone->fssz_shares == 0); 489 ASSERT(fsszone->fssz_runnable == 0); 490 491 if (fsszone->fssz_next != fsszone) { 492 /* 493 * This is not the last zone in the list. 494 */ 495 fsszone->fssz_prev->fssz_next = fsszone->fssz_next; 496 fsszone->fssz_next->fssz_prev = fsszone->fssz_prev; 497 if (fsspset->fssps_zones == fsszone) 498 fsspset->fssps_zones = fsszone->fssz_next; 499 } else { 500 /* 501 * This was the last zone active in this cpu partition. 502 */ 503 fsspset->fssps_zones = NULL; 504 } 505 } 506 507 /* 508 * The following routine returns a pointer to the fssproj structure 509 * which belongs to project kpj and cpu partition fsspset, if such structure 510 * exists. 511 */ 512 static fssproj_t * 513 fss_find_fssproj(fsspset_t *fsspset, kproject_t *kpj) 514 { 515 fssproj_t *fssproj; 516 517 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 518 519 if (fsspset->fssps_list != NULL) { 520 /* 521 * There are projects running on this cpu partition already. 522 * Try to find our project among them. 523 */ 524 fssproj = fsspset->fssps_list; 525 do { 526 if (fssproj->fssp_proj == kpj) { 527 ASSERT(fssproj->fssp_pset == fsspset); 528 return (fssproj); 529 } 530 fssproj = fssproj->fssp_next; 531 } while (fssproj != fsspset->fssps_list); 532 } 533 return (NULL); 534 } 535 536 /* 537 * The following routine links new fssproj structure into doubly linked list 538 * of projects running on the specified cpu partition. 539 */ 540 static void 541 fss_insert_fssproj(fsspset_t *fsspset, kproject_t *kpj, fsszone_t *fsszone, 542 fssproj_t *fssproj) 543 { 544 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 545 546 fssproj->fssp_pset = fsspset; 547 fssproj->fssp_proj = kpj; 548 fssproj->fssp_shares = kpj->kpj_shares; 549 550 fsspset->fssps_nproj++; 551 552 if (fsspset->fssps_list == NULL) { 553 /* 554 * This will be the first fssproj for this fsspset 555 */ 556 fssproj->fssp_next = fssproj->fssp_prev = fssproj; 557 fsspset->fssps_list = fssproj; 558 } else { 559 /* 560 * Insert this fssproj to the doubly linked list. 561 */ 562 fssproj_t *fssp_head = fsspset->fssps_list; 563 564 fssproj->fssp_next = fssp_head; 565 fssproj->fssp_prev = fssp_head->fssp_prev; 566 fssp_head->fssp_prev->fssp_next = fssproj; 567 fssp_head->fssp_prev = fssproj; 568 fsspset->fssps_list = fssproj; 569 } 570 fssproj->fssp_fsszone = fsszone; 571 fsszone->fssz_nproj++; 572 ASSERT(fsszone->fssz_nproj != 0); 573 } 574 575 /* 576 * The following routine removes a single fssproj structure from the doubly 577 * linked list of projects running on the specified cpu partition. Note that 578 * global fsspsets_lock must be held in case if this fssproj structure is the 579 * last on the above mentioned list. Also note that the fssproj structure is 580 * not freed here, it is the responsibility of the caller to call kmem_free 581 * for it. 582 */ 583 static void 584 fss_remove_fssproj(fsspset_t *fsspset, fssproj_t *fssproj) 585 { 586 fsszone_t *fsszone; 587 588 ASSERT(MUTEX_HELD(&fsspsets_lock)); 589 ASSERT(MUTEX_HELD(&fsspset->fssps_lock)); 590 ASSERT(fssproj->fssp_runnable == 0); 591 592 fsspset->fssps_nproj--; 593 594 fsszone = fssproj->fssp_fsszone; 595 fsszone->fssz_nproj--; 596 597 if (fssproj->fssp_next != fssproj) { 598 /* 599 * This is not the last part in the list. 600 */ 601 fssproj->fssp_prev->fssp_next = fssproj->fssp_next; 602 fssproj->fssp_next->fssp_prev = fssproj->fssp_prev; 603 if (fsspset->fssps_list == fssproj) 604 fsspset->fssps_list = fssproj->fssp_next; 605 if (fsszone->fssz_nproj == 0) 606 fss_remove_fsszone(fsspset, fsszone); 607 } else { 608 /* 609 * This was the last project part running 610 * at this cpu partition. 611 */ 612 fsspset->fssps_list = NULL; 613 ASSERT(fsspset->fssps_nproj == 0); 614 ASSERT(fsszone->fssz_nproj == 0); 615 fss_remove_fsszone(fsspset, fsszone); 616 fss_del_fsspset(fsspset); 617 } 618 } 619 620 static void 621 fss_inactive(kthread_t *t) 622 { 623 fssproc_t *fssproc; 624 fssproj_t *fssproj; 625 fsspset_t *fsspset; 626 fsszone_t *fsszone; 627 628 ASSERT(THREAD_LOCK_HELD(t)); 629 fssproc = FSSPROC(t); 630 fssproj = FSSPROC2FSSPROJ(fssproc); 631 if (fssproj == NULL) /* if this thread already exited */ 632 return; 633 fsspset = FSSPROJ2FSSPSET(fssproj); 634 fsszone = fssproj->fssp_fsszone; 635 disp_lock_enter_high(&fsspset->fssps_displock); 636 ASSERT(fssproj->fssp_runnable > 0); 637 if (--fssproj->fssp_runnable == 0) { 638 fsszone->fssz_shares -= fssproj->fssp_shares; 639 if (--fsszone->fssz_runnable == 0) 640 fsspset->fssps_shares -= fsszone->fssz_rshares; 641 } 642 ASSERT(fssproc->fss_runnable == 1); 643 fssproc->fss_runnable = 0; 644 disp_lock_exit_high(&fsspset->fssps_displock); 645 } 646 647 static void 648 fss_active(kthread_t *t) 649 { 650 fssproc_t *fssproc; 651 fssproj_t *fssproj; 652 fsspset_t *fsspset; 653 fsszone_t *fsszone; 654 655 ASSERT(THREAD_LOCK_HELD(t)); 656 fssproc = FSSPROC(t); 657 fssproj = FSSPROC2FSSPROJ(fssproc); 658 if (fssproj == NULL) /* if this thread already exited */ 659 return; 660 fsspset = FSSPROJ2FSSPSET(fssproj); 661 fsszone = fssproj->fssp_fsszone; 662 disp_lock_enter_high(&fsspset->fssps_displock); 663 if (++fssproj->fssp_runnable == 1) { 664 fsszone->fssz_shares += fssproj->fssp_shares; 665 if (++fsszone->fssz_runnable == 1) 666 fsspset->fssps_shares += fsszone->fssz_rshares; 667 } 668 ASSERT(fssproc->fss_runnable == 0); 669 fssproc->fss_runnable = 1; 670 disp_lock_exit_high(&fsspset->fssps_displock); 671 } 672 673 /* 674 * Fair share scheduler initialization. Called by dispinit() at boot time. 675 * We can ignore clparmsz argument since we know that the smallest possible 676 * parameter buffer is big enough for us. 677 */ 678 /*ARGSUSED*/ 679 static pri_t 680 fss_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp) 681 { 682 int i; 683 684 ASSERT(MUTEX_HELD(&cpu_lock)); 685 686 fss_cid = cid; 687 fss_maxumdpri = minclsyspri - 1; 688 fss_maxglobpri = minclsyspri; 689 fss_minglobpri = 0; 690 fsspsets = kmem_zalloc(sizeof (fsspset_t) * max_ncpus, KM_SLEEP); 691 692 /* 693 * Initialize the fssproc hash table. 694 */ 695 for (i = 0; i < FSS_LISTS; i++) 696 fss_listhead[i].fss_next = fss_listhead[i].fss_prev = 697 &fss_listhead[i]; 698 699 *clfuncspp = &fss_classfuncs; 700 701 /* 702 * Fill in fss_nice_tick and fss_nice_decay arrays: 703 * The cost of a tick is lower at positive nice values (so that it 704 * will not increase its project's usage as much as normal) with 50% 705 * drop at the maximum level and 50% increase at the minimum level. 706 * The fsspri decay is slower at positive nice values. fsspri values 707 * of processes with negative nice levels must decay faster to receive 708 * time slices more frequently than normal. 709 */ 710 for (i = 0; i < FSS_NICE_RANGE; i++) { 711 fss_nice_tick[i] = (FSS_TICK_COST * (((3 * FSS_NICE_RANGE) / 2) 712 - i)) / FSS_NICE_RANGE; 713 fss_nice_decay[i] = FSS_DECAY_MIN + 714 ((FSS_DECAY_MAX - FSS_DECAY_MIN) * i) / 715 (FSS_NICE_RANGE - 1); 716 } 717 718 return (fss_maxglobpri); 719 } 720 721 /* 722 * Calculate the new cpupri based on the usage, the number of shares and 723 * the number of active threads. Reset the tick counter for this thread. 724 */ 725 static void 726 fss_newpri(fssproc_t *fssproc) 727 { 728 kthread_t *tp; 729 fssproj_t *fssproj; 730 fsspset_t *fsspset; 731 fsszone_t *fsszone; 732 fsspri_t fsspri, maxfsspri; 733 pri_t invpri; 734 uint32_t ticks; 735 736 tp = fssproc->fss_tp; 737 ASSERT(tp != NULL); 738 739 if (tp->t_cid != fss_cid) 740 return; 741 742 ASSERT(THREAD_LOCK_HELD(tp)); 743 744 fssproj = FSSPROC2FSSPROJ(fssproc); 745 fsszone = FSSPROJ2FSSZONE(fssproj); 746 if (fssproj == NULL) 747 /* 748 * No need to change priority of exited threads. 749 */ 750 return; 751 752 fsspset = FSSPROJ2FSSPSET(fssproj); 753 disp_lock_enter_high(&fsspset->fssps_displock); 754 755 if (fssproj->fssp_shares == 0 || fsszone->fssz_rshares == 0) { 756 /* 757 * Special case: threads with no shares. 758 */ 759 fssproc->fss_umdpri = fss_minglobpri; 760 fssproc->fss_ticks = 0; 761 disp_lock_exit_high(&fsspset->fssps_displock); 762 return; 763 } 764 765 /* 766 * fsspri += shusage * nrunnable * ticks 767 */ 768 ticks = fssproc->fss_ticks; 769 fssproc->fss_ticks = 0; 770 fsspri = fssproc->fss_fsspri; 771 fsspri += fssproj->fssp_shusage * fssproj->fssp_runnable * ticks; 772 fssproc->fss_fsspri = fsspri; 773 774 if (fsspri < fss_maxumdpri) 775 fsspri = fss_maxumdpri; /* so that maxfsspri is != 0 */ 776 777 /* 778 * The general priority formula: 779 * 780 * (fsspri * umdprirange) 781 * pri = maxumdpri - ------------------------ 782 * maxfsspri 783 * 784 * If this thread's fsspri is greater than the previous largest 785 * fsspri, then record it as the new high and priority for this 786 * thread will be one (the lowest priority assigned to a thread 787 * that has non-zero shares). 788 * Note that this formula cannot produce out of bounds priority 789 * values; if it is changed, additional checks may need to be 790 * added. 791 */ 792 maxfsspri = fsspset->fssps_maxfsspri; 793 if (fsspri >= maxfsspri) { 794 fsspset->fssps_maxfsspri = fsspri; 795 disp_lock_exit_high(&fsspset->fssps_displock); 796 fssproc->fss_umdpri = 1; 797 } else { 798 disp_lock_exit_high(&fsspset->fssps_displock); 799 invpri = (fsspri * (fss_maxumdpri - 1)) / maxfsspri; 800 fssproc->fss_umdpri = fss_maxumdpri - invpri; 801 } 802 } 803 804 /* 805 * Decays usages of all running projects and resets their tick counters. 806 * Called once per second from fss_update() after updating priorities. 807 */ 808 static void 809 fss_decay_usage() 810 { 811 uint32_t zone_ext_shares, zone_int_shares; 812 uint32_t kpj_shares, pset_shares; 813 fsspset_t *fsspset; 814 fssproj_t *fssproj; 815 fsszone_t *fsszone; 816 fsspri_t maxfsspri; 817 int psetid; 818 819 mutex_enter(&fsspsets_lock); 820 /* 821 * Go through all active processor sets and decay usages of projects 822 * running on them. 823 */ 824 for (psetid = 0; psetid < max_ncpus; psetid++) { 825 fsspset = &fsspsets[psetid]; 826 mutex_enter(&fsspset->fssps_lock); 827 828 if (fsspset->fssps_cpupart == NULL || 829 (fssproj = fsspset->fssps_list) == NULL) { 830 mutex_exit(&fsspset->fssps_lock); 831 continue; 832 } 833 834 /* 835 * Decay maxfsspri for this cpu partition with the 836 * fastest possible decay rate. 837 */ 838 disp_lock_enter(&fsspset->fssps_displock); 839 840 maxfsspri = (fsspset->fssps_maxfsspri * 841 fss_nice_decay[NZERO]) / FSS_DECAY_BASE; 842 if (maxfsspri < fss_maxumdpri) 843 maxfsspri = fss_maxumdpri; 844 fsspset->fssps_maxfsspri = maxfsspri; 845 846 do { 847 /* 848 * Decay usage for each project running on 849 * this cpu partition. 850 */ 851 fssproj->fssp_usage = 852 (fssproj->fssp_usage * FSS_DECAY_USG) / 853 FSS_DECAY_BASE + fssproj->fssp_ticks; 854 fssproj->fssp_ticks = 0; 855 856 fsszone = fssproj->fssp_fsszone; 857 /* 858 * Readjust the project's number of shares if it has 859 * changed since we checked it last time. 860 */ 861 kpj_shares = fssproj->fssp_proj->kpj_shares; 862 if (fssproj->fssp_shares != kpj_shares) { 863 if (fssproj->fssp_runnable != 0) { 864 fsszone->fssz_shares -= 865 fssproj->fssp_shares; 866 fsszone->fssz_shares += kpj_shares; 867 } 868 fssproj->fssp_shares = kpj_shares; 869 } 870 871 /* 872 * Readjust the zone's number of shares if it 873 * has changed since we checked it last time. 874 */ 875 zone_ext_shares = fsszone->fssz_zone->zone_shares; 876 if (fsszone->fssz_rshares != zone_ext_shares) { 877 if (fsszone->fssz_runnable != 0) { 878 fsspset->fssps_shares -= 879 fsszone->fssz_rshares; 880 fsspset->fssps_shares += 881 zone_ext_shares; 882 } 883 fsszone->fssz_rshares = zone_ext_shares; 884 } 885 zone_int_shares = fsszone->fssz_shares; 886 pset_shares = fsspset->fssps_shares; 887 /* 888 * Calculate fssp_shusage value to be used 889 * for fsspri increments for the next second. 890 */ 891 if (kpj_shares == 0 || zone_ext_shares == 0) { 892 fssproj->fssp_shusage = 0; 893 } else if (FSSPROJ2KPROJ(fssproj) == proj0p) { 894 /* 895 * Project 0 in the global zone has 50% 896 * of its zone. 897 */ 898 fssproj->fssp_shusage = (fssproj->fssp_usage * 899 zone_int_shares * zone_int_shares) / 900 (zone_ext_shares * zone_ext_shares); 901 } else { 902 /* 903 * Thread's priority is based on its project's 904 * normalized usage (shusage) value which gets 905 * calculated this way: 906 * 907 * pset_shares^2 zone_int_shares^2 908 * usage * ------------- * ------------------ 909 * kpj_shares^2 zone_ext_shares^2 910 * 911 * Where zone_int_shares is the sum of shares 912 * of all active projects within the zone (and 913 * the pset), and zone_ext_shares is the number 914 * of zone shares (ie, zone.cpu-shares). 915 * 916 * If there is only one zone active on the pset 917 * the above reduces to: 918 * 919 * zone_int_shares^2 920 * shusage = usage * --------------------- 921 * kpj_shares^2 922 * 923 * If there's only one project active in the 924 * zone this formula reduces to: 925 * 926 * pset_shares^2 927 * shusage = usage * ---------------------- 928 * zone_ext_shares^2 929 */ 930 fssproj->fssp_shusage = fssproj->fssp_usage * 931 pset_shares * zone_int_shares; 932 fssproj->fssp_shusage /= 933 kpj_shares * zone_ext_shares; 934 fssproj->fssp_shusage *= 935 pset_shares * zone_int_shares; 936 fssproj->fssp_shusage /= 937 kpj_shares * zone_ext_shares; 938 } 939 fssproj = fssproj->fssp_next; 940 } while (fssproj != fsspset->fssps_list); 941 942 disp_lock_exit(&fsspset->fssps_displock); 943 mutex_exit(&fsspset->fssps_lock); 944 } 945 mutex_exit(&fsspsets_lock); 946 } 947 948 static void 949 fss_change_priority(kthread_t *t, fssproc_t *fssproc) 950 { 951 pri_t new_pri; 952 953 ASSERT(THREAD_LOCK_HELD(t)); 954 new_pri = fssproc->fss_umdpri; 955 ASSERT(new_pri >= 0 && new_pri <= fss_maxglobpri); 956 957 fssproc->fss_flags &= ~FSSRESTORE; 958 if (t == curthread || t->t_state == TS_ONPROC) { 959 /* 960 * curthread is always onproc 961 */ 962 cpu_t *cp = t->t_disp_queue->disp_cpu; 963 THREAD_CHANGE_PRI(t, new_pri); 964 if (t == cp->cpu_dispthread) 965 cp->cpu_dispatch_pri = DISP_PRIO(t); 966 if (DISP_MUST_SURRENDER(t)) { 967 fssproc->fss_flags |= FSSBACKQ; 968 cpu_surrender(t); 969 } else { 970 fssproc->fss_timeleft = fss_quantum; 971 } 972 } else { 973 /* 974 * When the priority of a thread is changed, it may be 975 * necessary to adjust its position on a sleep queue or 976 * dispatch queue. The function thread_change_pri accomplishes 977 * this. 978 */ 979 if (thread_change_pri(t, new_pri, 0)) { 980 /* 981 * The thread was on a run queue. 982 */ 983 fssproc->fss_timeleft = fss_quantum; 984 } else { 985 fssproc->fss_flags |= FSSBACKQ; 986 } 987 } 988 } 989 990 /* 991 * Update priorities of all fair-sharing threads that are currently runnable 992 * at a user mode priority based on the number of shares and current usage. 993 * Called once per second via timeout which we reset here. 994 * 995 * There are several lists of fair-sharing threads broken up by a hash on the 996 * thread pointer. Each list has its own lock. This avoids blocking all 997 * fss_enterclass, fss_fork, and fss_exitclass operations while fss_update runs. 998 * fss_update traverses each list in turn. 999 */ 1000 static void 1001 fss_update(void *arg) 1002 { 1003 int i; 1004 int new_marker = -1; 1005 static int fss_update_marker; 1006 1007 /* 1008 * Decay and update usages for all projects. 1009 */ 1010 fss_decay_usage(); 1011 1012 /* 1013 * Start with the fss_update_marker list, then do the rest. 1014 */ 1015 i = fss_update_marker; 1016 1017 /* 1018 * Go around all threads, set new priorities and decay 1019 * per-thread CPU usages. 1020 */ 1021 do { 1022 /* 1023 * If this is the first list after the current marker to have 1024 * threads with priorities updates, advance the marker to this 1025 * list for the next time fss_update runs. 1026 */ 1027 if (fss_update_list(i) && 1028 new_marker == -1 && i != fss_update_marker) 1029 new_marker = i; 1030 } while ((i = FSS_LIST_NEXT(i)) != fss_update_marker); 1031 1032 /* 1033 * Advance marker for the next fss_update call 1034 */ 1035 if (new_marker != -1) 1036 fss_update_marker = new_marker; 1037 1038 (void) timeout(fss_update, arg, hz); 1039 } 1040 1041 /* 1042 * Updates priority for a list of threads. Returns 1 if the priority of one 1043 * of the threads was actually updated, 0 if none were for various reasons 1044 * (thread is no longer in the FSS class, is not runnable, has the preemption 1045 * control no-preempt bit set, etc.) 1046 */ 1047 static int 1048 fss_update_list(int i) 1049 { 1050 fssproc_t *fssproc; 1051 fssproj_t *fssproj; 1052 fsspri_t fsspri; 1053 kthread_t *t; 1054 int updated = 0; 1055 1056 mutex_enter(&fss_listlock[i]); 1057 for (fssproc = fss_listhead[i].fss_next; fssproc != &fss_listhead[i]; 1058 fssproc = fssproc->fss_next) { 1059 t = fssproc->fss_tp; 1060 /* 1061 * Lock the thread and verify the state. 1062 */ 1063 thread_lock(t); 1064 /* 1065 * Skip the thread if it is no longer in the FSS class or 1066 * is running with kernel mode priority. 1067 */ 1068 if (t->t_cid != fss_cid) 1069 goto next; 1070 if ((fssproc->fss_flags & FSSKPRI) != 0) 1071 goto next; 1072 fssproj = FSSPROC2FSSPROJ(fssproc); 1073 if (fssproj == NULL) 1074 goto next; 1075 if (fssproj->fssp_shares != 0) { 1076 /* 1077 * Decay fsspri value. 1078 */ 1079 fsspri = fssproc->fss_fsspri; 1080 fsspri = (fsspri * fss_nice_decay[fssproc->fss_nice]) / 1081 FSS_DECAY_BASE; 1082 fssproc->fss_fsspri = fsspri; 1083 } 1084 1085 if (t->t_schedctl && schedctl_get_nopreempt(t)) 1086 goto next; 1087 if (t->t_state != TS_RUN) { 1088 /* 1089 * Make next syscall/trap call fss_trapret 1090 */ 1091 t->t_trapret = 1; 1092 aston(t); 1093 goto next; 1094 } 1095 fss_newpri(fssproc); 1096 updated = 1; 1097 1098 /* 1099 * Only dequeue the thread if it needs to be moved; otherwise 1100 * it should just round-robin here. 1101 */ 1102 if (t->t_pri != fssproc->fss_umdpri) 1103 fss_change_priority(t, fssproc); 1104 next: 1105 thread_unlock(t); 1106 } 1107 mutex_exit(&fss_listlock[i]); 1108 return (updated); 1109 } 1110 1111 /*ARGSUSED*/ 1112 static int 1113 fss_admin(caddr_t uaddr, cred_t *reqpcredp) 1114 { 1115 fssadmin_t fssadmin; 1116 1117 if (copyin(uaddr, &fssadmin, sizeof (fssadmin_t))) 1118 return (EFAULT); 1119 1120 switch (fssadmin.fss_cmd) { 1121 case FSS_SETADMIN: 1122 if (secpolicy_dispadm(reqpcredp) != 0) 1123 return (EPERM); 1124 if (fssadmin.fss_quantum <= 0 || fssadmin.fss_quantum >= hz) 1125 return (EINVAL); 1126 fss_quantum = fssadmin.fss_quantum; 1127 break; 1128 case FSS_GETADMIN: 1129 fssadmin.fss_quantum = fss_quantum; 1130 if (copyout(&fssadmin, uaddr, sizeof (fssadmin_t))) 1131 return (EFAULT); 1132 break; 1133 default: 1134 return (EINVAL); 1135 } 1136 return (0); 1137 } 1138 1139 static int 1140 fss_getclinfo(void *infop) 1141 { 1142 fssinfo_t *fssinfo = (fssinfo_t *)infop; 1143 fssinfo->fss_maxupri = fss_maxupri; 1144 return (0); 1145 } 1146 1147 static int 1148 fss_parmsin(void *parmsp) 1149 { 1150 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1151 1152 /* 1153 * Check validity of parameters. 1154 */ 1155 if ((fssparmsp->fss_uprilim > fss_maxupri || 1156 fssparmsp->fss_uprilim < -fss_maxupri) && 1157 fssparmsp->fss_uprilim != FSS_NOCHANGE) 1158 return (EINVAL); 1159 1160 if ((fssparmsp->fss_upri > fss_maxupri || 1161 fssparmsp->fss_upri < -fss_maxupri) && 1162 fssparmsp->fss_upri != FSS_NOCHANGE) 1163 return (EINVAL); 1164 1165 return (0); 1166 } 1167 1168 /*ARGSUSED*/ 1169 static int 1170 fss_parmsout(void *parmsp, pc_vaparms_t *vaparmsp) 1171 { 1172 return (0); 1173 } 1174 1175 static int 1176 fss_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp) 1177 { 1178 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1179 int priflag = 0; 1180 int limflag = 0; 1181 uint_t cnt; 1182 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 1183 1184 /* 1185 * FSS_NOCHANGE (-32768) is outside of the range of values for 1186 * fss_uprilim and fss_upri. If the structure fssparms_t is changed, 1187 * FSS_NOCHANGE should be replaced by a flag word. 1188 */ 1189 fssparmsp->fss_uprilim = FSS_NOCHANGE; 1190 fssparmsp->fss_upri = FSS_NOCHANGE; 1191 1192 /* 1193 * Get the varargs parameter and check validity of parameters. 1194 */ 1195 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 1196 return (EINVAL); 1197 1198 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 1199 switch (vpp->pc_key) { 1200 case FSS_KY_UPRILIM: 1201 if (limflag++) 1202 return (EINVAL); 1203 fssparmsp->fss_uprilim = (pri_t)vpp->pc_parm; 1204 if (fssparmsp->fss_uprilim > fss_maxupri || 1205 fssparmsp->fss_uprilim < -fss_maxupri) 1206 return (EINVAL); 1207 break; 1208 case FSS_KY_UPRI: 1209 if (priflag++) 1210 return (EINVAL); 1211 fssparmsp->fss_upri = (pri_t)vpp->pc_parm; 1212 if (fssparmsp->fss_upri > fss_maxupri || 1213 fssparmsp->fss_upri < -fss_maxupri) 1214 return (EINVAL); 1215 break; 1216 default: 1217 return (EINVAL); 1218 } 1219 } 1220 1221 if (vaparmsp->pc_vaparmscnt == 0) { 1222 /* 1223 * Use default parameters. 1224 */ 1225 fssparmsp->fss_upri = fssparmsp->fss_uprilim = 0; 1226 } 1227 1228 return (0); 1229 } 1230 1231 /* 1232 * Copy all selected fair-sharing class parameters to the user. The parameters 1233 * are specified by a key. 1234 */ 1235 static int 1236 fss_vaparmsout(void *parmsp, pc_vaparms_t *vaparmsp) 1237 { 1238 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1239 int priflag = 0; 1240 int limflag = 0; 1241 uint_t cnt; 1242 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; 1243 1244 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock)); 1245 1246 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) 1247 return (EINVAL); 1248 1249 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { 1250 switch (vpp->pc_key) { 1251 case FSS_KY_UPRILIM: 1252 if (limflag++) 1253 return (EINVAL); 1254 if (copyout(&fssparmsp->fss_uprilim, 1255 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1256 return (EFAULT); 1257 break; 1258 case FSS_KY_UPRI: 1259 if (priflag++) 1260 return (EINVAL); 1261 if (copyout(&fssparmsp->fss_upri, 1262 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) 1263 return (EFAULT); 1264 break; 1265 default: 1266 return (EINVAL); 1267 } 1268 } 1269 1270 return (0); 1271 } 1272 1273 static int 1274 fss_getclpri(pcpri_t *pcprip) 1275 { 1276 pcprip->pc_clpmax = fss_maxumdpri; 1277 pcprip->pc_clpmin = 0; 1278 return (0); 1279 } 1280 1281 static int 1282 fss_alloc(void **p, int flag) 1283 { 1284 void *bufp; 1285 1286 if ((bufp = kmem_zalloc(sizeof (fssproc_t), flag)) == NULL) { 1287 return (ENOMEM); 1288 } else { 1289 *p = bufp; 1290 return (0); 1291 } 1292 } 1293 1294 static void 1295 fss_free(void *bufp) 1296 { 1297 if (bufp) 1298 kmem_free(bufp, sizeof (fssproc_t)); 1299 } 1300 1301 /* 1302 * Thread functions 1303 */ 1304 static int 1305 fss_enterclass(kthread_t *t, id_t cid, void *parmsp, cred_t *reqpcredp, 1306 void *bufp) 1307 { 1308 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1309 fssproc_t *fssproc; 1310 pri_t reqfssuprilim; 1311 pri_t reqfssupri; 1312 static uint32_t fssexists = 0; 1313 fsspset_t *fsspset; 1314 fssproj_t *fssproj; 1315 fsszone_t *fsszone; 1316 kproject_t *kpj; 1317 zone_t *zone; 1318 int fsszone_allocated = 0; 1319 1320 fssproc = (fssproc_t *)bufp; 1321 ASSERT(fssproc != NULL); 1322 1323 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 1324 1325 /* 1326 * Only root can move threads to FSS class. 1327 */ 1328 if (reqpcredp != NULL && secpolicy_setpriority(reqpcredp) != 0) 1329 return (EPERM); 1330 /* 1331 * Initialize the fssproc structure. 1332 */ 1333 fssproc->fss_umdpri = fss_maxumdpri / 2; 1334 1335 if (fssparmsp == NULL) { 1336 /* 1337 * Use default values. 1338 */ 1339 fssproc->fss_nice = NZERO; 1340 fssproc->fss_uprilim = fssproc->fss_upri = 0; 1341 } else { 1342 /* 1343 * Use supplied values. 1344 */ 1345 if (fssparmsp->fss_uprilim == FSS_NOCHANGE) { 1346 reqfssuprilim = 0; 1347 } else { 1348 if (fssparmsp->fss_uprilim > 0 && 1349 secpolicy_setpriority(reqpcredp) != 0) 1350 return (EPERM); 1351 reqfssuprilim = fssparmsp->fss_uprilim; 1352 } 1353 if (fssparmsp->fss_upri == FSS_NOCHANGE) { 1354 reqfssupri = reqfssuprilim; 1355 } else { 1356 if (fssparmsp->fss_upri > 0 && 1357 secpolicy_setpriority(reqpcredp) != 0) 1358 return (EPERM); 1359 /* 1360 * Set the user priority to the requested value or 1361 * the upri limit, whichever is lower. 1362 */ 1363 reqfssupri = fssparmsp->fss_upri; 1364 if (reqfssupri > reqfssuprilim) 1365 reqfssupri = reqfssuprilim; 1366 } 1367 fssproc->fss_uprilim = reqfssuprilim; 1368 fssproc->fss_upri = reqfssupri; 1369 fssproc->fss_nice = NZERO - (NZERO * reqfssupri) / fss_maxupri; 1370 if (fssproc->fss_nice > FSS_NICE_MAX) 1371 fssproc->fss_nice = FSS_NICE_MAX; 1372 } 1373 1374 fssproc->fss_timeleft = fss_quantum; 1375 fssproc->fss_tp = t; 1376 1377 /* 1378 * Put a lock on our fsspset structure. 1379 */ 1380 mutex_enter(&fsspsets_lock); 1381 fsspset = fss_find_fsspset(t->t_cpupart); 1382 mutex_enter(&fsspset->fssps_lock); 1383 mutex_exit(&fsspsets_lock); 1384 1385 zone = ttoproc(t)->p_zone; 1386 if ((fsszone = fss_find_fsszone(fsspset, zone)) == NULL) { 1387 if ((fsszone = kmem_zalloc(sizeof (fsszone_t), KM_NOSLEEP)) 1388 == NULL) { 1389 mutex_exit(&fsspset->fssps_lock); 1390 return (ENOMEM); 1391 } else { 1392 fsszone_allocated = 1; 1393 fss_insert_fsszone(fsspset, zone, fsszone); 1394 } 1395 } 1396 kpj = ttoproj(t); 1397 if ((fssproj = fss_find_fssproj(fsspset, kpj)) == NULL) { 1398 if ((fssproj = kmem_zalloc(sizeof (fssproj_t), KM_NOSLEEP)) 1399 == NULL) { 1400 if (fsszone_allocated) { 1401 fss_remove_fsszone(fsspset, fsszone); 1402 kmem_free(fsszone, sizeof (fsszone_t)); 1403 } 1404 mutex_exit(&fsspset->fssps_lock); 1405 return (ENOMEM); 1406 } else { 1407 fss_insert_fssproj(fsspset, kpj, fsszone, fssproj); 1408 } 1409 } 1410 fssproj->fssp_threads++; 1411 fssproc->fss_proj = fssproj; 1412 1413 /* 1414 * Reset priority. Process goes to a "user mode" priority here 1415 * regardless of whether or not it has slept since entering the kernel. 1416 */ 1417 thread_lock(t); 1418 t->t_clfuncs = &(sclass[cid].cl_funcs->thread); 1419 t->t_cid = cid; 1420 t->t_cldata = (void *)fssproc; 1421 t->t_schedflag |= TS_RUNQMATCH; 1422 fss_change_priority(t, fssproc); 1423 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC) 1424 fss_active(t); 1425 thread_unlock(t); 1426 1427 mutex_exit(&fsspset->fssps_lock); 1428 1429 /* 1430 * Link new structure into fssproc list. 1431 */ 1432 FSS_LIST_INSERT(fssproc); 1433 1434 /* 1435 * If this is the first fair-sharing thread to occur since boot, 1436 * we set up the initial call to fss_update() here. Use an atomic 1437 * compare-and-swap since that's easier and faster than a mutex 1438 * (but check with an ordinary load first since most of the time 1439 * this will already be done). 1440 */ 1441 if (fssexists == 0 && cas32(&fssexists, 0, 1) == 0) 1442 (void) timeout(fss_update, NULL, hz); 1443 1444 return (0); 1445 } 1446 1447 /* 1448 * Remove fssproc_t from the list. 1449 */ 1450 static void 1451 fss_exitclass(void *procp) 1452 { 1453 fssproc_t *fssproc = (fssproc_t *)procp; 1454 fssproj_t *fssproj; 1455 fsspset_t *fsspset; 1456 fsszone_t *fsszone; 1457 kthread_t *t = fssproc->fss_tp; 1458 1459 /* 1460 * We should be either getting this thread off the deathrow or 1461 * this thread has already moved to another scheduling class and 1462 * we're being called with its old cldata buffer pointer. In both 1463 * cases, the content of this buffer can not be changed while we're 1464 * here. 1465 */ 1466 mutex_enter(&fsspsets_lock); 1467 thread_lock(t); 1468 if (t->t_cid != fss_cid) { 1469 /* 1470 * We're being called as a result of the priocntl() system 1471 * call -- someone is trying to move our thread to another 1472 * scheduling class. We can't call fss_inactive() here 1473 * because our thread's t_cldata pointer already points 1474 * to another scheduling class specific data. 1475 */ 1476 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 1477 1478 fssproj = FSSPROC2FSSPROJ(fssproc); 1479 fsspset = FSSPROJ2FSSPSET(fssproj); 1480 fsszone = fssproj->fssp_fsszone; 1481 1482 if (fssproc->fss_runnable) { 1483 disp_lock_enter_high(&fsspset->fssps_displock); 1484 if (--fssproj->fssp_runnable == 0) { 1485 fsszone->fssz_shares -= fssproj->fssp_shares; 1486 if (--fsszone->fssz_runnable == 0) 1487 fsspset->fssps_shares -= 1488 fsszone->fssz_rshares; 1489 } 1490 disp_lock_exit_high(&fsspset->fssps_displock); 1491 } 1492 thread_unlock(t); 1493 1494 mutex_enter(&fsspset->fssps_lock); 1495 if (--fssproj->fssp_threads == 0) { 1496 fss_remove_fssproj(fsspset, fssproj); 1497 if (fsszone->fssz_nproj == 0) 1498 kmem_free(fsszone, sizeof (fsszone_t)); 1499 kmem_free(fssproj, sizeof (fssproj_t)); 1500 } 1501 mutex_exit(&fsspset->fssps_lock); 1502 1503 } else { 1504 ASSERT(t->t_state == TS_FREE); 1505 /* 1506 * We're being called from thread_free() when our thread 1507 * is removed from the deathrow. There is nothing we need 1508 * do here since everything should've been done earlier 1509 * in fss_exit(). 1510 */ 1511 thread_unlock(t); 1512 } 1513 mutex_exit(&fsspsets_lock); 1514 1515 FSS_LIST_DELETE(fssproc); 1516 fss_free(fssproc); 1517 } 1518 1519 /*ARGSUSED*/ 1520 static int 1521 fss_canexit(kthread_t *t, cred_t *credp) 1522 { 1523 /* 1524 * A thread is allowed to exit FSS only if we have sufficient 1525 * privileges. 1526 */ 1527 if (credp != NULL && secpolicy_setpriority(credp) != 0) 1528 return (EPERM); 1529 else 1530 return (0); 1531 } 1532 1533 /* 1534 * Initialize fair-share class specific proc structure for a child. 1535 */ 1536 static int 1537 fss_fork(kthread_t *pt, kthread_t *ct, void *bufp) 1538 { 1539 fssproc_t *pfssproc; /* ptr to parent's fssproc structure */ 1540 fssproc_t *cfssproc; /* ptr to child's fssproc structure */ 1541 fssproj_t *fssproj; 1542 fsspset_t *fsspset; 1543 1544 ASSERT(MUTEX_HELD(&ttoproc(pt)->p_lock)); 1545 ASSERT(ct->t_state == TS_STOPPED); 1546 1547 cfssproc = (fssproc_t *)bufp; 1548 ASSERT(cfssproc != NULL); 1549 bzero(cfssproc, sizeof (fssproc_t)); 1550 1551 thread_lock(pt); 1552 pfssproc = FSSPROC(pt); 1553 fssproj = FSSPROC2FSSPROJ(pfssproc); 1554 fsspset = FSSPROJ2FSSPSET(fssproj); 1555 thread_unlock(pt); 1556 1557 mutex_enter(&fsspset->fssps_lock); 1558 /* 1559 * Initialize child's fssproc structure. 1560 */ 1561 thread_lock(pt); 1562 ASSERT(FSSPROJ(pt) == fssproj); 1563 cfssproc->fss_proj = fssproj; 1564 cfssproc->fss_timeleft = fss_quantum; 1565 cfssproc->fss_umdpri = pfssproc->fss_umdpri; 1566 cfssproc->fss_fsspri = 0; 1567 cfssproc->fss_uprilim = pfssproc->fss_uprilim; 1568 cfssproc->fss_upri = pfssproc->fss_upri; 1569 cfssproc->fss_tp = ct; 1570 cfssproc->fss_nice = pfssproc->fss_nice; 1571 cfssproc->fss_flags = 1572 pfssproc->fss_flags & ~(FSSKPRI | FSSBACKQ | FSSRESTORE); 1573 ct->t_cldata = (void *)cfssproc; 1574 ct->t_schedflag |= TS_RUNQMATCH; 1575 thread_unlock(pt); 1576 1577 fssproj->fssp_threads++; 1578 mutex_exit(&fsspset->fssps_lock); 1579 1580 /* 1581 * Link new structure into fssproc hash table. 1582 */ 1583 FSS_LIST_INSERT(cfssproc); 1584 return (0); 1585 } 1586 1587 /* 1588 * Child is placed at back of dispatcher queue and parent gives up processor 1589 * so that the child runs first after the fork. This allows the child 1590 * immediately execing to break the multiple use of copy on write pages with no 1591 * disk home. The parent will get to steal them back rather than uselessly 1592 * copying them. 1593 */ 1594 static void 1595 fss_forkret(kthread_t *t, kthread_t *ct) 1596 { 1597 proc_t *pp = ttoproc(t); 1598 proc_t *cp = ttoproc(ct); 1599 fssproc_t *fssproc; 1600 1601 ASSERT(t == curthread); 1602 ASSERT(MUTEX_HELD(&pidlock)); 1603 1604 /* 1605 * Grab the child's p_lock before dropping pidlock to ensure the 1606 * process does not disappear before we set it running. 1607 */ 1608 mutex_enter(&cp->p_lock); 1609 mutex_exit(&pidlock); 1610 continuelwps(cp); 1611 mutex_exit(&cp->p_lock); 1612 1613 mutex_enter(&pp->p_lock); 1614 continuelwps(pp); 1615 mutex_exit(&pp->p_lock); 1616 1617 thread_lock(t); 1618 1619 fssproc = FSSPROC(t); 1620 fss_newpri(fssproc); 1621 fssproc->fss_timeleft = fss_quantum; 1622 t->t_pri = fssproc->fss_umdpri; 1623 ASSERT(t->t_pri >= 0 && t->t_pri <= fss_maxglobpri); 1624 fssproc->fss_flags &= ~FSSKPRI; 1625 THREAD_TRANSITION(t); 1626 1627 /* 1628 * We don't want to call fss_setrun(t) here because it may call 1629 * fss_active, which we don't need. 1630 */ 1631 fssproc->fss_flags &= ~FSSBACKQ; 1632 1633 if (t->t_disp_time != lbolt) 1634 setbackdq(t); 1635 else 1636 setfrontdq(t); 1637 1638 thread_unlock(t); 1639 1640 swtch(); 1641 } 1642 1643 /* 1644 * Get the fair-sharing parameters of the thread pointed to by fssprocp into 1645 * the buffer pointed by fssparmsp. 1646 */ 1647 static void 1648 fss_parmsget(kthread_t *t, void *parmsp) 1649 { 1650 fssproc_t *fssproc = FSSPROC(t); 1651 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1652 1653 fssparmsp->fss_uprilim = fssproc->fss_uprilim; 1654 fssparmsp->fss_upri = fssproc->fss_upri; 1655 } 1656 1657 /*ARGSUSED*/ 1658 static int 1659 fss_parmsset(kthread_t *t, void *parmsp, id_t reqpcid, cred_t *reqpcredp) 1660 { 1661 char nice; 1662 pri_t reqfssuprilim; 1663 pri_t reqfssupri; 1664 fssproc_t *fssproc = FSSPROC(t); 1665 fssparms_t *fssparmsp = (fssparms_t *)parmsp; 1666 1667 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 1668 1669 if (fssparmsp->fss_uprilim == FSS_NOCHANGE) 1670 reqfssuprilim = fssproc->fss_uprilim; 1671 else 1672 reqfssuprilim = fssparmsp->fss_uprilim; 1673 1674 if (fssparmsp->fss_upri == FSS_NOCHANGE) 1675 reqfssupri = fssproc->fss_upri; 1676 else 1677 reqfssupri = fssparmsp->fss_upri; 1678 1679 /* 1680 * Make sure the user priority doesn't exceed the upri limit. 1681 */ 1682 if (reqfssupri > reqfssuprilim) 1683 reqfssupri = reqfssuprilim; 1684 1685 /* 1686 * Basic permissions enforced by generic kernel code for all classes 1687 * require that a thread attempting to change the scheduling parameters 1688 * of a target thread be privileged or have a real or effective UID 1689 * matching that of the target thread. We are not called unless these 1690 * basic permission checks have already passed. The fair-sharing class 1691 * requires in addition that the calling thread be privileged if it 1692 * is attempting to raise the upri limit above its current value. 1693 * This may have been checked previously but if our caller passed us 1694 * a non-NULL credential pointer we assume it hasn't and we check it 1695 * here. 1696 */ 1697 if ((reqpcredp != NULL) && 1698 (reqfssuprilim > fssproc->fss_uprilim) && 1699 secpolicy_setpriority(reqpcredp) != 0) 1700 return (EPERM); 1701 1702 /* 1703 * Set fss_nice to the nice value corresponding to the user priority we 1704 * are setting. Note that setting the nice field of the parameter 1705 * struct won't affect upri or nice. 1706 */ 1707 nice = NZERO - (reqfssupri * NZERO) / fss_maxupri; 1708 if (nice > FSS_NICE_MAX) 1709 nice = FSS_NICE_MAX; 1710 1711 thread_lock(t); 1712 1713 fssproc->fss_uprilim = reqfssuprilim; 1714 fssproc->fss_upri = reqfssupri; 1715 fssproc->fss_nice = nice; 1716 fss_newpri(fssproc); 1717 1718 if ((fssproc->fss_flags & FSSKPRI) != 0) { 1719 thread_unlock(t); 1720 return (0); 1721 } 1722 1723 fss_change_priority(t, fssproc); 1724 thread_unlock(t); 1725 return (0); 1726 1727 } 1728 1729 /* 1730 * The thread is being stopped. 1731 */ 1732 /*ARGSUSED*/ 1733 static void 1734 fss_stop(kthread_t *t, int why, int what) 1735 { 1736 ASSERT(THREAD_LOCK_HELD(t)); 1737 ASSERT(t == curthread); 1738 1739 fss_inactive(t); 1740 } 1741 1742 /* 1743 * The current thread is exiting, do necessary adjustments to its project 1744 */ 1745 static void 1746 fss_exit(kthread_t *t) 1747 { 1748 fsspset_t *fsspset; 1749 fssproj_t *fssproj; 1750 fssproc_t *fssproc; 1751 fsszone_t *fsszone; 1752 int free = 0; 1753 1754 /* 1755 * Thread t here is either a current thread (in which case we hold 1756 * its process' p_lock), or a thread being destroyed by forklwp_fail(), 1757 * in which case we hold pidlock and thread is no longer on the 1758 * thread list. 1759 */ 1760 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock) || MUTEX_HELD(&pidlock)); 1761 1762 fssproc = FSSPROC(t); 1763 fssproj = FSSPROC2FSSPROJ(fssproc); 1764 fsspset = FSSPROJ2FSSPSET(fssproj); 1765 fsszone = fssproj->fssp_fsszone; 1766 1767 mutex_enter(&fsspsets_lock); 1768 mutex_enter(&fsspset->fssps_lock); 1769 1770 thread_lock(t); 1771 disp_lock_enter_high(&fsspset->fssps_displock); 1772 if (t->t_state == TS_ONPROC || t->t_state == TS_RUN) { 1773 if (--fssproj->fssp_runnable == 0) { 1774 fsszone->fssz_shares -= fssproj->fssp_shares; 1775 if (--fsszone->fssz_runnable == 0) 1776 fsspset->fssps_shares -= fsszone->fssz_rshares; 1777 } 1778 ASSERT(fssproc->fss_runnable == 1); 1779 fssproc->fss_runnable = 0; 1780 } 1781 if (--fssproj->fssp_threads == 0) { 1782 fss_remove_fssproj(fsspset, fssproj); 1783 free = 1; 1784 } 1785 disp_lock_exit_high(&fsspset->fssps_displock); 1786 fssproc->fss_proj = NULL; /* mark this thread as already exited */ 1787 thread_unlock(t); 1788 1789 if (free) { 1790 if (fsszone->fssz_nproj == 0) 1791 kmem_free(fsszone, sizeof (fsszone_t)); 1792 kmem_free(fssproj, sizeof (fssproj_t)); 1793 } 1794 mutex_exit(&fsspset->fssps_lock); 1795 mutex_exit(&fsspsets_lock); 1796 } 1797 1798 static void 1799 fss_nullsys() 1800 { 1801 } 1802 1803 /* 1804 * fss_swapin() returns -1 if the thread is loaded or is not eligible to be 1805 * swapped in. Otherwise, it returns the thread's effective priority based 1806 * on swapout time and size of process (0 <= epri <= 0 SHRT_MAX). 1807 */ 1808 /*ARGSUSED*/ 1809 static pri_t 1810 fss_swapin(kthread_t *t, int flags) 1811 { 1812 fssproc_t *fssproc = FSSPROC(t); 1813 long epri = -1; 1814 proc_t *pp = ttoproc(t); 1815 1816 ASSERT(THREAD_LOCK_HELD(t)); 1817 1818 if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) { 1819 time_t swapout_time; 1820 1821 swapout_time = (lbolt - t->t_stime) / hz; 1822 if (INHERITED(t) || (fssproc->fss_flags & FSSKPRI)) { 1823 epri = (long)DISP_PRIO(t) + swapout_time; 1824 } else { 1825 /* 1826 * Threads which have been out for a long time, 1827 * have high user mode priority and are associated 1828 * with a small address space are more deserving. 1829 */ 1830 epri = fssproc->fss_umdpri; 1831 ASSERT(epri >= 0 && epri <= fss_maxumdpri); 1832 epri += swapout_time - pp->p_swrss / nz(maxpgio)/2; 1833 } 1834 /* 1835 * Scale epri so that SHRT_MAX / 2 represents zero priority. 1836 */ 1837 epri += SHRT_MAX / 2; 1838 if (epri < 0) 1839 epri = 0; 1840 else if (epri > SHRT_MAX) 1841 epri = SHRT_MAX; 1842 } 1843 return ((pri_t)epri); 1844 } 1845 1846 /* 1847 * fss_swapout() returns -1 if the thread isn't loaded or is not eligible to 1848 * be swapped out. Otherwise, it returns the thread's effective priority 1849 * based on if the swapper is in softswap or hardswap mode. 1850 */ 1851 static pri_t 1852 fss_swapout(kthread_t *t, int flags) 1853 { 1854 fssproc_t *fssproc = FSSPROC(t); 1855 long epri = -1; 1856 proc_t *pp = ttoproc(t); 1857 time_t swapin_time; 1858 1859 ASSERT(THREAD_LOCK_HELD(t)); 1860 1861 if (INHERITED(t) || 1862 (fssproc->fss_flags & FSSKPRI) || 1863 (t->t_proc_flag & TP_LWPEXIT) || 1864 (t->t_state & (TS_ZOMB | TS_FREE | TS_STOPPED | TS_ONPROC)) || 1865 !(t->t_schedflag & TS_LOAD) || 1866 !(SWAP_OK(t))) 1867 return (-1); 1868 1869 ASSERT(t->t_state & (TS_SLEEP | TS_RUN)); 1870 1871 swapin_time = (lbolt - t->t_stime) / hz; 1872 1873 if (flags == SOFTSWAP) { 1874 if (t->t_state == TS_SLEEP && swapin_time > maxslp) { 1875 epri = 0; 1876 } else { 1877 return ((pri_t)epri); 1878 } 1879 } else { 1880 pri_t pri; 1881 1882 if ((t->t_state == TS_SLEEP && swapin_time > fss_minslp) || 1883 (t->t_state == TS_RUN && swapin_time > fss_minrun)) { 1884 pri = fss_maxumdpri; 1885 epri = swapin_time - 1886 (rm_asrss(pp->p_as) / nz(maxpgio)/2) - (long)pri; 1887 } else { 1888 return ((pri_t)epri); 1889 } 1890 } 1891 1892 /* 1893 * Scale epri so that SHRT_MAX / 2 represents zero priority. 1894 */ 1895 epri += SHRT_MAX / 2; 1896 if (epri < 0) 1897 epri = 0; 1898 else if (epri > SHRT_MAX) 1899 epri = SHRT_MAX; 1900 1901 return ((pri_t)epri); 1902 } 1903 1904 /* 1905 * If thread is currently at a kernel mode priority (has slept) and is 1906 * returning to the userland we assign it the appropriate user mode priority 1907 * and time quantum here. If we're lowering the thread's priority below that 1908 * of other runnable threads then we will set runrun via cpu_surrender() to 1909 * cause preemption. 1910 */ 1911 static void 1912 fss_trapret(kthread_t *t) 1913 { 1914 fssproc_t *fssproc = FSSPROC(t); 1915 cpu_t *cp = CPU; 1916 1917 ASSERT(THREAD_LOCK_HELD(t)); 1918 ASSERT(t == curthread); 1919 ASSERT(cp->cpu_dispthread == t); 1920 ASSERT(t->t_state == TS_ONPROC); 1921 1922 t->t_kpri_req = 0; 1923 if (fssproc->fss_flags & FSSKPRI) { 1924 /* 1925 * If thread has blocked in the kernel 1926 */ 1927 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri); 1928 cp->cpu_dispatch_pri = DISP_PRIO(t); 1929 ASSERT(t->t_pri >= 0 && t->t_pri <= fss_maxglobpri); 1930 fssproc->fss_flags &= ~FSSKPRI; 1931 1932 if (DISP_MUST_SURRENDER(t)) 1933 cpu_surrender(t); 1934 } 1935 1936 /* 1937 * Swapout lwp if the swapper is waiting for this thread to reach 1938 * a safe point. 1939 */ 1940 if (t->t_schedflag & TS_SWAPENQ) { 1941 thread_unlock(t); 1942 swapout_lwp(ttolwp(t)); 1943 thread_lock(t); 1944 } 1945 } 1946 1947 /* 1948 * Arrange for thread to be placed in appropriate location on dispatcher queue. 1949 * This is called with the current thread in TS_ONPROC and locked. 1950 */ 1951 static void 1952 fss_preempt(kthread_t *t) 1953 { 1954 fssproc_t *fssproc = FSSPROC(t); 1955 klwp_t *lwp; 1956 uint_t flags; 1957 1958 ASSERT(t == curthread); 1959 ASSERT(THREAD_LOCK_HELD(curthread)); 1960 ASSERT(t->t_state == TS_ONPROC); 1961 1962 /* 1963 * If preempted in the kernel, make sure the thread has a kernel 1964 * priority if needed. 1965 */ 1966 lwp = curthread->t_lwp; 1967 if (!(fssproc->fss_flags & FSSKPRI) && lwp != NULL && t->t_kpri_req) { 1968 fssproc->fss_flags |= FSSKPRI; 1969 THREAD_CHANGE_PRI(t, minclsyspri); 1970 ASSERT(t->t_pri >= 0 && t->t_pri <= fss_maxglobpri); 1971 t->t_trapret = 1; /* so that fss_trapret will run */ 1972 aston(t); 1973 } 1974 /* 1975 * If preempted in user-land mark the thread as swappable because it 1976 * cannot be holding any kernel locks. 1977 */ 1978 ASSERT(t->t_schedflag & TS_DONT_SWAP); 1979 if (lwp != NULL && lwp->lwp_state == LWP_USER) 1980 t->t_schedflag &= ~TS_DONT_SWAP; 1981 1982 /* 1983 * Check to see if we're doing "preemption control" here. If 1984 * we are, and if the user has requested that this thread not 1985 * be preempted, and if preemptions haven't been put off for 1986 * too long, let the preemption happen here but try to make 1987 * sure the thread is rescheduled as soon as possible. We do 1988 * this by putting it on the front of the highest priority run 1989 * queue in the FSS class. If the preemption has been put off 1990 * for too long, clear the "nopreempt" bit and let the thread 1991 * be preempted. 1992 */ 1993 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 1994 if (fssproc->fss_timeleft > -SC_MAX_TICKS) { 1995 DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t); 1996 if (!(fssproc->fss_flags & FSSKPRI)) { 1997 /* 1998 * If not already remembered, remember current 1999 * priority for restoration in fss_yield(). 2000 */ 2001 if (!(fssproc->fss_flags & FSSRESTORE)) { 2002 fssproc->fss_scpri = t->t_pri; 2003 fssproc->fss_flags |= FSSRESTORE; 2004 } 2005 THREAD_CHANGE_PRI(t, fss_maxumdpri); 2006 t->t_schedflag |= TS_DONT_SWAP; 2007 } 2008 schedctl_set_yield(t, 1); 2009 setfrontdq(t); 2010 return; 2011 } else { 2012 if (fssproc->fss_flags & FSSRESTORE) { 2013 THREAD_CHANGE_PRI(t, fssproc->fss_scpri); 2014 fssproc->fss_flags &= ~FSSRESTORE; 2015 } 2016 schedctl_set_nopreempt(t, 0); 2017 DTRACE_SCHED1(schedctl__preempt, kthread_t *, t); 2018 /* 2019 * Fall through and be preempted below. 2020 */ 2021 } 2022 } 2023 2024 flags = fssproc->fss_flags & (FSSBACKQ | FSSKPRI); 2025 2026 if (flags == FSSBACKQ) { 2027 fssproc->fss_timeleft = fss_quantum; 2028 fssproc->fss_flags &= ~FSSBACKQ; 2029 setbackdq(t); 2030 } else if (flags == (FSSBACKQ | FSSKPRI)) { 2031 fssproc->fss_flags &= ~FSSBACKQ; 2032 setbackdq(t); 2033 } else { 2034 setfrontdq(t); 2035 } 2036 } 2037 2038 /* 2039 * Called when a thread is waking up and is to be placed on the run queue. 2040 */ 2041 static void 2042 fss_setrun(kthread_t *t) 2043 { 2044 fssproc_t *fssproc = FSSPROC(t); 2045 2046 ASSERT(THREAD_LOCK_HELD(t)); /* t should be in transition */ 2047 2048 if (t->t_state == TS_SLEEP || t->t_state == TS_STOPPED) 2049 fss_active(t); 2050 2051 fssproc->fss_timeleft = fss_quantum; 2052 2053 fssproc->fss_flags &= ~FSSBACKQ; 2054 /* 2055 * If previously were running at the kernel priority then keep that 2056 * priority and the fss_timeleft doesn't matter. 2057 */ 2058 if ((fssproc->fss_flags & FSSKPRI) == 0) 2059 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri); 2060 2061 if (t->t_disp_time != lbolt) 2062 setbackdq(t); 2063 else 2064 setfrontdq(t); 2065 } 2066 2067 /* 2068 * Prepare thread for sleep. We reset the thread priority so it will run at the 2069 * kernel priority level when it wakes up. 2070 */ 2071 static void 2072 fss_sleep(kthread_t *t) 2073 { 2074 fssproc_t *fssproc = FSSPROC(t); 2075 2076 ASSERT(t == curthread); 2077 ASSERT(THREAD_LOCK_HELD(t)); 2078 2079 ASSERT(t->t_state == TS_ONPROC); 2080 fss_inactive(t); 2081 2082 /* 2083 * Assign a system priority to the thread and arrange for it to be 2084 * retained when the thread is next placed on the run queue (i.e., 2085 * when it wakes up) instead of being given a new pri. Also arrange 2086 * for trapret processing as the thread leaves the system call so it 2087 * will drop back to normal priority range. 2088 */ 2089 if (t->t_kpri_req) { 2090 THREAD_CHANGE_PRI(t, minclsyspri); 2091 fssproc->fss_flags |= FSSKPRI; 2092 t->t_trapret = 1; /* so that fss_trapret will run */ 2093 aston(t); 2094 } else if (fssproc->fss_flags & FSSKPRI) { 2095 /* 2096 * The thread has done a THREAD_KPRI_REQUEST(), slept, then 2097 * done THREAD_KPRI_RELEASE() (so no t_kpri_req is 0 again), 2098 * then slept again all without finishing the current system 2099 * call so trapret won't have cleared FSSKPRI 2100 */ 2101 fssproc->fss_flags &= ~FSSKPRI; 2102 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri); 2103 if (DISP_MUST_SURRENDER(curthread)) 2104 cpu_surrender(t); 2105 } 2106 t->t_stime = lbolt; /* time stamp for the swapper */ 2107 } 2108 2109 /* 2110 * A tick interrupt has ocurrend on a running thread. Check to see if our 2111 * time slice has expired. We must also clear the TS_DONT_SWAP flag in 2112 * t_schedflag if the thread is eligible to be swapped out. 2113 */ 2114 static void 2115 fss_tick(kthread_t *t) 2116 { 2117 fssproc_t *fssproc; 2118 fssproj_t *fssproj; 2119 klwp_t *lwp; 2120 2121 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); 2122 2123 /* 2124 * It's safe to access fsspset and fssproj structures because we're 2125 * holding our p_lock here. 2126 */ 2127 thread_lock(t); 2128 fssproc = FSSPROC(t); 2129 fssproj = FSSPROC2FSSPROJ(fssproc); 2130 if (fssproj != NULL) { 2131 fsspset_t *fsspset = FSSPROJ2FSSPSET(fssproj); 2132 disp_lock_enter_high(&fsspset->fssps_displock); 2133 fssproj->fssp_ticks += fss_nice_tick[fssproc->fss_nice]; 2134 fssproc->fss_ticks++; 2135 disp_lock_exit_high(&fsspset->fssps_displock); 2136 } 2137 2138 /* 2139 * A thread's execution time for threads running in the SYS class 2140 * is not tracked. 2141 */ 2142 if ((fssproc->fss_flags & FSSKPRI) == 0) { 2143 /* 2144 * If thread is not in kernel mode, decrement its fss_timeleft 2145 */ 2146 if (--fssproc->fss_timeleft <= 0) { 2147 pri_t new_pri; 2148 2149 /* 2150 * If we're doing preemption control and trying to 2151 * avoid preempting this thread, just note that the 2152 * thread should yield soon and let it keep running 2153 * (unless it's been a while). 2154 */ 2155 if (t->t_schedctl && schedctl_get_nopreempt(t)) { 2156 if (fssproc->fss_timeleft > -SC_MAX_TICKS) { 2157 DTRACE_SCHED1(schedctl__nopreempt, 2158 kthread_t *, t); 2159 schedctl_set_yield(t, 1); 2160 thread_unlock_nopreempt(t); 2161 return; 2162 } 2163 } 2164 fssproc->fss_flags &= ~FSSRESTORE; 2165 2166 fss_newpri(fssproc); 2167 new_pri = fssproc->fss_umdpri; 2168 ASSERT(new_pri >= 0 && new_pri <= fss_maxglobpri); 2169 2170 /* 2171 * When the priority of a thread is changed, it may 2172 * be necessary to adjust its position on a sleep queue 2173 * or dispatch queue. The function thread_change_pri 2174 * accomplishes this. 2175 */ 2176 if (thread_change_pri(t, new_pri, 0)) { 2177 if ((t->t_schedflag & TS_LOAD) && 2178 (lwp = t->t_lwp) && 2179 lwp->lwp_state == LWP_USER) 2180 t->t_schedflag &= ~TS_DONT_SWAP; 2181 fssproc->fss_timeleft = fss_quantum; 2182 } else { 2183 fssproc->fss_flags |= FSSBACKQ; 2184 cpu_surrender(t); 2185 } 2186 } else if (t->t_state == TS_ONPROC && 2187 t->t_pri < t->t_disp_queue->disp_maxrunpri) { 2188 /* 2189 * If there is a higher-priority thread which is 2190 * waiting for a processor, then thread surrenders 2191 * the processor. 2192 */ 2193 fssproc->fss_flags |= FSSBACKQ; 2194 cpu_surrender(t); 2195 } 2196 } 2197 thread_unlock_nopreempt(t); /* clock thread can't be preempted */ 2198 } 2199 2200 /* 2201 * Processes waking up go to the back of their queue. We don't need to assign 2202 * a time quantum here because thread is still at a kernel mode priority and 2203 * the time slicing is not done for threads running in the kernel after 2204 * sleeping. The proper time quantum will be assigned by fss_trapret before the 2205 * thread returns to user mode. 2206 */ 2207 static void 2208 fss_wakeup(kthread_t *t) 2209 { 2210 fssproc_t *fssproc; 2211 2212 ASSERT(THREAD_LOCK_HELD(t)); 2213 ASSERT(t->t_state == TS_SLEEP); 2214 2215 fss_active(t); 2216 2217 t->t_stime = lbolt; /* time stamp for the swapper */ 2218 fssproc = FSSPROC(t); 2219 fssproc->fss_flags &= ~FSSBACKQ; 2220 2221 if (fssproc->fss_flags & FSSKPRI) { 2222 /* 2223 * If we already have a kernel priority assigned, then we 2224 * just use it. 2225 */ 2226 setbackdq(t); 2227 } else if (t->t_kpri_req) { 2228 /* 2229 * Give thread a priority boost if we were asked. 2230 */ 2231 fssproc->fss_flags |= FSSKPRI; 2232 THREAD_CHANGE_PRI(t, minclsyspri); 2233 setbackdq(t); 2234 t->t_trapret = 1; /* so that fss_trapret will run */ 2235 aston(t); 2236 } else { 2237 /* 2238 * Otherwise, we recalculate the priority. 2239 */ 2240 if (t->t_disp_time == lbolt) { 2241 setfrontdq(t); 2242 } else { 2243 fssproc->fss_timeleft = fss_quantum; 2244 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri); 2245 setbackdq(t); 2246 } 2247 } 2248 } 2249 2250 /* 2251 * fss_donice() is called when a nice(1) command is issued on the thread to 2252 * alter the priority. The nice(1) command exists in Solaris for compatibility. 2253 * Thread priority adjustments should be done via priocntl(1). 2254 */ 2255 static int 2256 fss_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp) 2257 { 2258 int newnice; 2259 fssproc_t *fssproc = FSSPROC(t); 2260 fssparms_t fssparms; 2261 2262 /* 2263 * If there is no change to priority, just return current setting. 2264 */ 2265 if (incr == 0) { 2266 if (retvalp) 2267 *retvalp = fssproc->fss_nice - NZERO; 2268 return (0); 2269 } 2270 2271 if ((incr < 0 || incr > 2 * NZERO) && secpolicy_setpriority(cr) != 0) 2272 return (EPERM); 2273 2274 /* 2275 * Specifying a nice increment greater than the upper limit of 2276 * FSS_NICE_MAX (== 2 * NZERO - 1) will result in the thread's nice 2277 * value being set to the upper limit. We check for this before 2278 * computing the new value because otherwise we could get overflow 2279 * if a privileged user specified some ridiculous increment. 2280 */ 2281 if (incr > FSS_NICE_MAX) 2282 incr = FSS_NICE_MAX; 2283 2284 newnice = fssproc->fss_nice + incr; 2285 if (newnice > FSS_NICE_MAX) 2286 newnice = FSS_NICE_MAX; 2287 else if (newnice < FSS_NICE_MIN) 2288 newnice = FSS_NICE_MIN; 2289 2290 fssparms.fss_uprilim = fssparms.fss_upri = 2291 -((newnice - NZERO) * fss_maxupri) / NZERO; 2292 2293 /* 2294 * Reset the uprilim and upri values of the thread. 2295 */ 2296 (void) fss_parmsset(t, (void *)&fssparms, (id_t)0, (cred_t *)NULL); 2297 2298 /* 2299 * Although fss_parmsset already reset fss_nice it may not have been 2300 * set to precisely the value calculated above because fss_parmsset 2301 * determines the nice value from the user priority and we may have 2302 * truncated during the integer conversion from nice value to user 2303 * priority and back. We reset fss_nice to the value we calculated 2304 * above. 2305 */ 2306 fssproc->fss_nice = (char)newnice; 2307 2308 if (retvalp) 2309 *retvalp = newnice - NZERO; 2310 return (0); 2311 } 2312 2313 /* 2314 * Return the global scheduling priority that would be assigned to a thread 2315 * entering the fair-sharing class with the fss_upri. 2316 */ 2317 /*ARGSUSED*/ 2318 static pri_t 2319 fss_globpri(kthread_t *t) 2320 { 2321 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 2322 2323 return (fss_maxumdpri / 2); 2324 } 2325 2326 /* 2327 * Called from the yield(2) system call when a thread is yielding (surrendering) 2328 * the processor. The kernel thread is placed at the back of a dispatch queue. 2329 */ 2330 static void 2331 fss_yield(kthread_t *t) 2332 { 2333 fssproc_t *fssproc = FSSPROC(t); 2334 2335 ASSERT(t == curthread); 2336 ASSERT(THREAD_LOCK_HELD(t)); 2337 2338 /* 2339 * Clear the preemption control "yield" bit since the user is 2340 * doing a yield. 2341 */ 2342 if (t->t_schedctl) 2343 schedctl_set_yield(t, 0); 2344 /* 2345 * If fss_preempt() artifically increased the thread's priority 2346 * to avoid preemption, restore the original priority now. 2347 */ 2348 if (fssproc->fss_flags & FSSRESTORE) { 2349 THREAD_CHANGE_PRI(t, fssproc->fss_scpri); 2350 fssproc->fss_flags &= ~FSSRESTORE; 2351 } 2352 if (fssproc->fss_timeleft < 0) { 2353 /* 2354 * Time slice was artificially extended to avoid preemption, 2355 * so pretend we're preempting it now. 2356 */ 2357 DTRACE_SCHED1(schedctl__yield, int, -fssproc->fss_timeleft); 2358 fssproc->fss_timeleft = fss_quantum; 2359 } 2360 fssproc->fss_flags &= ~FSSBACKQ; 2361 setbackdq(t); 2362 } 2363 2364 void 2365 fss_changeproj(kthread_t *t, void *kp, void *zp, fssbuf_t *projbuf, 2366 fssbuf_t *zonebuf) 2367 { 2368 kproject_t *kpj_new = kp; 2369 zone_t *zone = zp; 2370 fssproj_t *fssproj_old, *fssproj_new; 2371 fsspset_t *fsspset; 2372 kproject_t *kpj_old; 2373 fssproc_t *fssproc; 2374 fsszone_t *fsszone_old, *fsszone_new; 2375 int free = 0; 2376 int id; 2377 2378 ASSERT(MUTEX_HELD(&cpu_lock)); 2379 ASSERT(MUTEX_HELD(&pidlock)); 2380 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 2381 2382 if (t->t_cid != fss_cid) 2383 return; 2384 2385 fssproc = FSSPROC(t); 2386 mutex_enter(&fsspsets_lock); 2387 fssproj_old = FSSPROC2FSSPROJ(fssproc); 2388 if (fssproj_old == NULL) { 2389 mutex_exit(&fsspsets_lock); 2390 return; 2391 } 2392 2393 fsspset = FSSPROJ2FSSPSET(fssproj_old); 2394 mutex_enter(&fsspset->fssps_lock); 2395 kpj_old = FSSPROJ2KPROJ(fssproj_old); 2396 fsszone_old = fssproj_old->fssp_fsszone; 2397 2398 ASSERT(t->t_cpupart == fsspset->fssps_cpupart); 2399 2400 if (kpj_old == kpj_new) { 2401 mutex_exit(&fsspset->fssps_lock); 2402 mutex_exit(&fsspsets_lock); 2403 return; 2404 } 2405 2406 if ((fsszone_new = fss_find_fsszone(fsspset, zone)) == NULL) { 2407 /* 2408 * If the zone for the new project is not currently active on 2409 * the cpu partition we're on, get one of the pre-allocated 2410 * buffers and link it in our per-pset zone list. Such buffers 2411 * should already exist. 2412 */ 2413 for (id = 0; id < zonebuf->fssb_size; id++) { 2414 if ((fsszone_new = zonebuf->fssb_list[id]) != NULL) { 2415 fss_insert_fsszone(fsspset, zone, fsszone_new); 2416 zonebuf->fssb_list[id] = NULL; 2417 break; 2418 } 2419 } 2420 } 2421 ASSERT(fsszone_new != NULL); 2422 if ((fssproj_new = fss_find_fssproj(fsspset, kpj_new)) == NULL) { 2423 /* 2424 * If our new project is not currently running 2425 * on the cpu partition we're on, get one of the 2426 * pre-allocated buffers and link it in our new cpu 2427 * partition doubly linked list. Such buffers should already 2428 * exist. 2429 */ 2430 for (id = 0; id < projbuf->fssb_size; id++) { 2431 if ((fssproj_new = projbuf->fssb_list[id]) != NULL) { 2432 fss_insert_fssproj(fsspset, kpj_new, 2433 fsszone_new, fssproj_new); 2434 projbuf->fssb_list[id] = NULL; 2435 break; 2436 } 2437 } 2438 } 2439 ASSERT(fssproj_new != NULL); 2440 2441 thread_lock(t); 2442 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC) 2443 fss_inactive(t); 2444 ASSERT(fssproj_old->fssp_threads > 0); 2445 if (--fssproj_old->fssp_threads == 0) { 2446 fss_remove_fssproj(fsspset, fssproj_old); 2447 free = 1; 2448 } 2449 fssproc->fss_proj = fssproj_new; 2450 fssproc->fss_fsspri = 0; 2451 fssproj_new->fssp_threads++; 2452 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC) 2453 fss_active(t); 2454 thread_unlock(t); 2455 if (free) { 2456 if (fsszone_old->fssz_nproj == 0) 2457 kmem_free(fsszone_old, sizeof (fsszone_t)); 2458 kmem_free(fssproj_old, sizeof (fssproj_t)); 2459 } 2460 2461 mutex_exit(&fsspset->fssps_lock); 2462 mutex_exit(&fsspsets_lock); 2463 } 2464 2465 void 2466 fss_changepset(kthread_t *t, void *newcp, fssbuf_t *projbuf, 2467 fssbuf_t *zonebuf) 2468 { 2469 fsspset_t *fsspset_old, *fsspset_new; 2470 fssproj_t *fssproj_old, *fssproj_new; 2471 fsszone_t *fsszone_old, *fsszone_new; 2472 fssproc_t *fssproc; 2473 kproject_t *kpj; 2474 zone_t *zone; 2475 int id; 2476 2477 ASSERT(MUTEX_HELD(&cpu_lock)); 2478 ASSERT(MUTEX_HELD(&pidlock)); 2479 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 2480 2481 if (t->t_cid != fss_cid) 2482 return; 2483 2484 fssproc = FSSPROC(t); 2485 zone = ttoproc(t)->p_zone; 2486 mutex_enter(&fsspsets_lock); 2487 fssproj_old = FSSPROC2FSSPROJ(fssproc); 2488 if (fssproj_old == NULL) { 2489 mutex_exit(&fsspsets_lock); 2490 return; 2491 } 2492 fsszone_old = fssproj_old->fssp_fsszone; 2493 fsspset_old = FSSPROJ2FSSPSET(fssproj_old); 2494 kpj = FSSPROJ2KPROJ(fssproj_old); 2495 2496 if (fsspset_old->fssps_cpupart == newcp) { 2497 mutex_exit(&fsspsets_lock); 2498 return; 2499 } 2500 2501 ASSERT(ttoproj(t) == kpj); 2502 2503 fsspset_new = fss_find_fsspset(newcp); 2504 2505 mutex_enter(&fsspset_new->fssps_lock); 2506 if ((fsszone_new = fss_find_fsszone(fsspset_new, zone)) == NULL) { 2507 for (id = 0; id < zonebuf->fssb_size; id++) { 2508 if ((fsszone_new = zonebuf->fssb_list[id]) != NULL) { 2509 fss_insert_fsszone(fsspset_new, zone, 2510 fsszone_new); 2511 zonebuf->fssb_list[id] = NULL; 2512 break; 2513 } 2514 } 2515 } 2516 ASSERT(fsszone_new != NULL); 2517 if ((fssproj_new = fss_find_fssproj(fsspset_new, kpj)) == NULL) { 2518 for (id = 0; id < projbuf->fssb_size; id++) { 2519 if ((fssproj_new = projbuf->fssb_list[id]) != NULL) { 2520 fss_insert_fssproj(fsspset_new, kpj, 2521 fsszone_new, fssproj_new); 2522 projbuf->fssb_list[id] = NULL; 2523 break; 2524 } 2525 } 2526 } 2527 ASSERT(fssproj_new != NULL); 2528 2529 fssproj_new->fssp_threads++; 2530 thread_lock(t); 2531 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC) 2532 fss_inactive(t); 2533 fssproc->fss_proj = fssproj_new; 2534 fssproc->fss_fsspri = 0; 2535 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC) 2536 fss_active(t); 2537 thread_unlock(t); 2538 mutex_exit(&fsspset_new->fssps_lock); 2539 2540 mutex_enter(&fsspset_old->fssps_lock); 2541 if (--fssproj_old->fssp_threads == 0) { 2542 fss_remove_fssproj(fsspset_old, fssproj_old); 2543 if (fsszone_old->fssz_nproj == 0) 2544 kmem_free(fsszone_old, sizeof (fsszone_t)); 2545 kmem_free(fssproj_old, sizeof (fssproj_t)); 2546 } 2547 mutex_exit(&fsspset_old->fssps_lock); 2548 2549 mutex_exit(&fsspsets_lock); 2550 } 2551