1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 30 #pragma ident "%Z%%M% %I% %E% SMI" /* from SVr4.0 1.30 */ 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/sysmacros.h> 35 #include <sys/signal.h> 36 #include <sys/user.h> 37 #include <sys/systm.h> 38 #include <sys/sysinfo.h> 39 #include <sys/var.h> 40 #include <sys/errno.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/inline.h> 44 #include <sys/disp.h> 45 #include <sys/class.h> 46 #include <sys/bitmap.h> 47 #include <sys/kmem.h> 48 #include <sys/cpuvar.h> 49 #include <sys/vtrace.h> 50 #include <sys/tnf.h> 51 #include <sys/cpupart.h> 52 #include <sys/lgrp.h> 53 #include <sys/pg.h> 54 #include <sys/cmt.h> 55 #include <sys/bitset.h> 56 #include <sys/schedctl.h> 57 #include <sys/atomic.h> 58 #include <sys/dtrace.h> 59 #include <sys/sdt.h> 60 61 #include <vm/as.h> 62 63 #define BOUND_CPU 0x1 64 #define BOUND_PARTITION 0x2 65 #define BOUND_INTR 0x4 66 67 /* Dispatch queue allocation structure and functions */ 68 struct disp_queue_info { 69 disp_t *dp; 70 dispq_t *olddispq; 71 dispq_t *newdispq; 72 ulong_t *olddqactmap; 73 ulong_t *newdqactmap; 74 int oldnglobpris; 75 }; 76 static void disp_dq_alloc(struct disp_queue_info *dptr, int numpris, 77 disp_t *dp); 78 static void disp_dq_assign(struct disp_queue_info *dptr, int numpris); 79 static void disp_dq_free(struct disp_queue_info *dptr); 80 81 /* platform-specific routine to call when processor is idle */ 82 static void generic_idle_cpu(); 83 void (*idle_cpu)() = generic_idle_cpu; 84 85 /* routines invoked when a CPU enters/exits the idle loop */ 86 static void idle_enter(); 87 static void idle_exit(); 88 89 /* platform-specific routine to call when thread is enqueued */ 90 static void generic_enq_thread(cpu_t *, int); 91 void (*disp_enq_thread)(cpu_t *, int) = generic_enq_thread; 92 93 pri_t kpreemptpri; /* priority where kernel preemption applies */ 94 pri_t upreemptpri = 0; /* priority where normal preemption applies */ 95 pri_t intr_pri; /* interrupt thread priority base level */ 96 97 #define KPQPRI -1 /* pri where cpu affinity is dropped for kpq */ 98 pri_t kpqpri = KPQPRI; /* can be set in /etc/system */ 99 disp_t cpu0_disp; /* boot CPU's dispatch queue */ 100 disp_lock_t swapped_lock; /* lock swapped threads and swap queue */ 101 int nswapped; /* total number of swapped threads */ 102 void disp_swapped_enq(kthread_t *tp); 103 static void disp_swapped_setrun(kthread_t *tp); 104 static void cpu_resched(cpu_t *cp, pri_t tpri); 105 106 /* 107 * If this is set, only interrupt threads will cause kernel preemptions. 108 * This is done by changing the value of kpreemptpri. kpreemptpri 109 * will either be the max sysclass pri + 1 or the min interrupt pri. 110 */ 111 int only_intr_kpreempt; 112 113 extern void set_idle_cpu(int cpun); 114 extern void unset_idle_cpu(int cpun); 115 static void setkpdq(kthread_t *tp, int borf); 116 #define SETKP_BACK 0 117 #define SETKP_FRONT 1 118 /* 119 * Parameter that determines how recently a thread must have run 120 * on the CPU to be considered loosely-bound to that CPU to reduce 121 * cold cache effects. The interval is in hertz. 122 */ 123 #define RECHOOSE_INTERVAL 3 124 int rechoose_interval = RECHOOSE_INTERVAL; 125 static cpu_t *cpu_choose(kthread_t *, pri_t); 126 127 /* 128 * Parameter that determines how long (in nanoseconds) a thread must 129 * be sitting on a run queue before it can be stolen by another CPU 130 * to reduce migrations. The interval is in nanoseconds. 131 * 132 * The nosteal_nsec should be set by a platform code to an appropriate value. 133 * Setting it to 0 effectively disables the nosteal 'protection' 134 */ 135 hrtime_t nosteal_nsec = -1; 136 137 id_t defaultcid; /* system "default" class; see dispadmin(1M) */ 138 139 disp_lock_t transition_lock; /* lock on transitioning threads */ 140 disp_lock_t stop_lock; /* lock on stopped threads */ 141 142 static void cpu_dispqalloc(int numpris); 143 144 /* 145 * This gets returned by disp_getwork/disp_getbest if we couldn't steal 146 * a thread because it was sitting on its run queue for a very short 147 * period of time. 148 */ 149 #define T_DONTSTEAL (kthread_t *)(-1) /* returned by disp_getwork/getbest */ 150 151 static kthread_t *disp_getwork(cpu_t *to); 152 static kthread_t *disp_getbest(disp_t *from); 153 static kthread_t *disp_ratify(kthread_t *tp, disp_t *kpq); 154 155 void swtch_to(kthread_t *); 156 157 /* 158 * dispatcher and scheduler initialization 159 */ 160 161 /* 162 * disp_setup - Common code to calculate and allocate dispatcher 163 * variables and structures based on the maximum priority. 164 */ 165 static void 166 disp_setup(pri_t maxglobpri, pri_t oldnglobpris) 167 { 168 pri_t newnglobpris; 169 170 ASSERT(MUTEX_HELD(&cpu_lock)); 171 172 newnglobpris = maxglobpri + 1 + LOCK_LEVEL; 173 174 if (newnglobpris > oldnglobpris) { 175 /* 176 * Allocate new kp queues for each CPU partition. 177 */ 178 cpupart_kpqalloc(newnglobpris); 179 180 /* 181 * Allocate new dispatch queues for each CPU. 182 */ 183 cpu_dispqalloc(newnglobpris); 184 185 /* 186 * compute new interrupt thread base priority 187 */ 188 intr_pri = maxglobpri; 189 if (only_intr_kpreempt) { 190 kpreemptpri = intr_pri + 1; 191 if (kpqpri == KPQPRI) 192 kpqpri = kpreemptpri; 193 } 194 v.v_nglobpris = newnglobpris; 195 } 196 } 197 198 /* 199 * dispinit - Called to initialize all loaded classes and the 200 * dispatcher framework. 201 */ 202 void 203 dispinit(void) 204 { 205 id_t cid; 206 pri_t maxglobpri; 207 pri_t cl_maxglobpri; 208 209 maxglobpri = -1; 210 211 /* 212 * Initialize transition lock, which will always be set. 213 */ 214 DISP_LOCK_INIT(&transition_lock); 215 disp_lock_enter_high(&transition_lock); 216 DISP_LOCK_INIT(&stop_lock); 217 218 mutex_enter(&cpu_lock); 219 CPU->cpu_disp->disp_maxrunpri = -1; 220 CPU->cpu_disp->disp_max_unbound_pri = -1; 221 222 /* 223 * Initialize the default CPU partition. 224 */ 225 cpupart_initialize_default(); 226 /* 227 * Call the class specific initialization functions for 228 * all pre-installed schedulers. 229 * 230 * We pass the size of a class specific parameter 231 * buffer to each of the initialization functions 232 * to try to catch problems with backward compatibility 233 * of class modules. 234 * 235 * For example a new class module running on an old system 236 * which didn't provide sufficiently large parameter buffers 237 * would be bad news. Class initialization modules can check for 238 * this and take action if they detect a problem. 239 */ 240 241 for (cid = 0; cid < nclass; cid++) { 242 sclass_t *sc; 243 244 sc = &sclass[cid]; 245 if (SCHED_INSTALLED(sc)) { 246 cl_maxglobpri = sc->cl_init(cid, PC_CLPARMSZ, 247 &sc->cl_funcs); 248 if (cl_maxglobpri > maxglobpri) 249 maxglobpri = cl_maxglobpri; 250 } 251 } 252 kpreemptpri = (pri_t)v.v_maxsyspri + 1; 253 if (kpqpri == KPQPRI) 254 kpqpri = kpreemptpri; 255 256 ASSERT(maxglobpri >= 0); 257 disp_setup(maxglobpri, 0); 258 259 mutex_exit(&cpu_lock); 260 261 /* 262 * Get the default class ID; this may be later modified via 263 * dispadmin(1M). This will load the class (normally TS) and that will 264 * call disp_add(), which is why we had to drop cpu_lock first. 265 */ 266 if (getcid(defaultclass, &defaultcid) != 0) { 267 cmn_err(CE_PANIC, "Couldn't load default scheduling class '%s'", 268 defaultclass); 269 } 270 } 271 272 /* 273 * disp_add - Called with class pointer to initialize the dispatcher 274 * for a newly loaded class. 275 */ 276 void 277 disp_add(sclass_t *clp) 278 { 279 pri_t maxglobpri; 280 pri_t cl_maxglobpri; 281 282 mutex_enter(&cpu_lock); 283 /* 284 * Initialize the scheduler class. 285 */ 286 maxglobpri = (pri_t)(v.v_nglobpris - LOCK_LEVEL - 1); 287 cl_maxglobpri = clp->cl_init(clp - sclass, PC_CLPARMSZ, &clp->cl_funcs); 288 if (cl_maxglobpri > maxglobpri) 289 maxglobpri = cl_maxglobpri; 290 291 /* 292 * Save old queue information. Since we're initializing a 293 * new scheduling class which has just been loaded, then 294 * the size of the dispq may have changed. We need to handle 295 * that here. 296 */ 297 disp_setup(maxglobpri, v.v_nglobpris); 298 299 mutex_exit(&cpu_lock); 300 } 301 302 303 /* 304 * For each CPU, allocate new dispatch queues 305 * with the stated number of priorities. 306 */ 307 static void 308 cpu_dispqalloc(int numpris) 309 { 310 cpu_t *cpup; 311 struct disp_queue_info *disp_mem; 312 int i, num; 313 314 ASSERT(MUTEX_HELD(&cpu_lock)); 315 316 disp_mem = kmem_zalloc(NCPU * 317 sizeof (struct disp_queue_info), KM_SLEEP); 318 319 /* 320 * This routine must allocate all of the memory before stopping 321 * the cpus because it must not sleep in kmem_alloc while the 322 * CPUs are stopped. Locks they hold will not be freed until they 323 * are restarted. 324 */ 325 i = 0; 326 cpup = cpu_list; 327 do { 328 disp_dq_alloc(&disp_mem[i], numpris, cpup->cpu_disp); 329 i++; 330 cpup = cpup->cpu_next; 331 } while (cpup != cpu_list); 332 num = i; 333 334 pause_cpus(NULL); 335 for (i = 0; i < num; i++) 336 disp_dq_assign(&disp_mem[i], numpris); 337 start_cpus(); 338 339 /* 340 * I must free all of the memory after starting the cpus because 341 * I can not risk sleeping in kmem_free while the cpus are stopped. 342 */ 343 for (i = 0; i < num; i++) 344 disp_dq_free(&disp_mem[i]); 345 346 kmem_free(disp_mem, NCPU * sizeof (struct disp_queue_info)); 347 } 348 349 static void 350 disp_dq_alloc(struct disp_queue_info *dptr, int numpris, disp_t *dp) 351 { 352 dptr->newdispq = kmem_zalloc(numpris * sizeof (dispq_t), KM_SLEEP); 353 dptr->newdqactmap = kmem_zalloc(((numpris / BT_NBIPUL) + 1) * 354 sizeof (long), KM_SLEEP); 355 dptr->dp = dp; 356 } 357 358 static void 359 disp_dq_assign(struct disp_queue_info *dptr, int numpris) 360 { 361 disp_t *dp; 362 363 dp = dptr->dp; 364 dptr->olddispq = dp->disp_q; 365 dptr->olddqactmap = dp->disp_qactmap; 366 dptr->oldnglobpris = dp->disp_npri; 367 368 ASSERT(dptr->oldnglobpris < numpris); 369 370 if (dptr->olddispq != NULL) { 371 /* 372 * Use kcopy because bcopy is platform-specific 373 * and could block while we might have paused the cpus. 374 */ 375 (void) kcopy(dptr->olddispq, dptr->newdispq, 376 dptr->oldnglobpris * sizeof (dispq_t)); 377 (void) kcopy(dptr->olddqactmap, dptr->newdqactmap, 378 ((dptr->oldnglobpris / BT_NBIPUL) + 1) * 379 sizeof (long)); 380 } 381 dp->disp_q = dptr->newdispq; 382 dp->disp_qactmap = dptr->newdqactmap; 383 dp->disp_q_limit = &dptr->newdispq[numpris]; 384 dp->disp_npri = numpris; 385 } 386 387 static void 388 disp_dq_free(struct disp_queue_info *dptr) 389 { 390 if (dptr->olddispq != NULL) 391 kmem_free(dptr->olddispq, 392 dptr->oldnglobpris * sizeof (dispq_t)); 393 if (dptr->olddqactmap != NULL) 394 kmem_free(dptr->olddqactmap, 395 ((dptr->oldnglobpris / BT_NBIPUL) + 1) * sizeof (long)); 396 } 397 398 /* 399 * For a newly created CPU, initialize the dispatch queue. 400 * This is called before the CPU is known through cpu[] or on any lists. 401 */ 402 void 403 disp_cpu_init(cpu_t *cp) 404 { 405 disp_t *dp; 406 dispq_t *newdispq; 407 ulong_t *newdqactmap; 408 409 ASSERT(MUTEX_HELD(&cpu_lock)); /* protect dispatcher queue sizes */ 410 411 if (cp == cpu0_disp.disp_cpu) 412 dp = &cpu0_disp; 413 else 414 dp = kmem_alloc(sizeof (disp_t), KM_SLEEP); 415 bzero(dp, sizeof (disp_t)); 416 cp->cpu_disp = dp; 417 dp->disp_cpu = cp; 418 dp->disp_maxrunpri = -1; 419 dp->disp_max_unbound_pri = -1; 420 DISP_LOCK_INIT(&cp->cpu_thread_lock); 421 /* 422 * Allocate memory for the dispatcher queue headers 423 * and the active queue bitmap. 424 */ 425 newdispq = kmem_zalloc(v.v_nglobpris * sizeof (dispq_t), KM_SLEEP); 426 newdqactmap = kmem_zalloc(((v.v_nglobpris / BT_NBIPUL) + 1) * 427 sizeof (long), KM_SLEEP); 428 dp->disp_q = newdispq; 429 dp->disp_qactmap = newdqactmap; 430 dp->disp_q_limit = &newdispq[v.v_nglobpris]; 431 dp->disp_npri = v.v_nglobpris; 432 } 433 434 void 435 disp_cpu_fini(cpu_t *cp) 436 { 437 ASSERT(MUTEX_HELD(&cpu_lock)); 438 439 disp_kp_free(cp->cpu_disp); 440 if (cp->cpu_disp != &cpu0_disp) 441 kmem_free(cp->cpu_disp, sizeof (disp_t)); 442 } 443 444 /* 445 * Allocate new, larger kpreempt dispatch queue to replace the old one. 446 */ 447 void 448 disp_kp_alloc(disp_t *dq, pri_t npri) 449 { 450 struct disp_queue_info mem_info; 451 452 if (npri > dq->disp_npri) { 453 /* 454 * Allocate memory for the new array. 455 */ 456 disp_dq_alloc(&mem_info, npri, dq); 457 458 /* 459 * We need to copy the old structures to the new 460 * and free the old. 461 */ 462 disp_dq_assign(&mem_info, npri); 463 disp_dq_free(&mem_info); 464 } 465 } 466 467 /* 468 * Free dispatch queue. 469 * Used for the kpreempt queues for a removed CPU partition and 470 * for the per-CPU queues of deleted CPUs. 471 */ 472 void 473 disp_kp_free(disp_t *dq) 474 { 475 struct disp_queue_info mem_info; 476 477 mem_info.olddispq = dq->disp_q; 478 mem_info.olddqactmap = dq->disp_qactmap; 479 mem_info.oldnglobpris = dq->disp_npri; 480 disp_dq_free(&mem_info); 481 } 482 483 /* 484 * End dispatcher and scheduler initialization. 485 */ 486 487 /* 488 * See if there's anything to do other than remain idle. 489 * Return non-zero if there is. 490 * 491 * This function must be called with high spl, or with 492 * kernel preemption disabled to prevent the partition's 493 * active cpu list from changing while being traversed. 494 * 495 */ 496 int 497 disp_anywork(void) 498 { 499 cpu_t *cp = CPU; 500 cpu_t *ocp; 501 502 if (cp->cpu_disp->disp_nrunnable != 0) 503 return (1); 504 505 if (!(cp->cpu_flags & CPU_OFFLINE)) { 506 if (CP_MAXRUNPRI(cp->cpu_part) >= 0) 507 return (1); 508 509 /* 510 * Work can be taken from another CPU if: 511 * - There is unbound work on the run queue 512 * - That work isn't a thread undergoing a 513 * - context switch on an otherwise empty queue. 514 * - The CPU isn't running the idle loop. 515 */ 516 for (ocp = cp->cpu_next_part; ocp != cp; 517 ocp = ocp->cpu_next_part) { 518 ASSERT(CPU_ACTIVE(ocp)); 519 520 if (ocp->cpu_disp->disp_max_unbound_pri != -1 && 521 !((ocp->cpu_disp_flags & CPU_DISP_DONTSTEAL) && 522 ocp->cpu_disp->disp_nrunnable == 1) && 523 ocp->cpu_dispatch_pri != -1) 524 return (1); 525 } 526 } 527 return (0); 528 } 529 530 /* 531 * Called when CPU enters the idle loop 532 */ 533 static void 534 idle_enter() 535 { 536 cpu_t *cp = CPU; 537 538 new_cpu_mstate(CMS_IDLE, gethrtime_unscaled()); 539 CPU_STATS_ADDQ(cp, sys, idlethread, 1); 540 set_idle_cpu(cp->cpu_id); /* arch-dependent hook */ 541 } 542 543 /* 544 * Called when CPU exits the idle loop 545 */ 546 static void 547 idle_exit() 548 { 549 cpu_t *cp = CPU; 550 551 new_cpu_mstate(CMS_SYSTEM, gethrtime_unscaled()); 552 unset_idle_cpu(cp->cpu_id); /* arch-dependent hook */ 553 } 554 555 /* 556 * Idle loop. 557 */ 558 void 559 idle() 560 { 561 struct cpu *cp = CPU; /* pointer to this CPU */ 562 kthread_t *t; /* taken thread */ 563 564 idle_enter(); 565 566 /* 567 * Uniprocessor version of idle loop. 568 * Do this until notified that we're on an actual multiprocessor. 569 */ 570 while (ncpus == 1) { 571 if (cp->cpu_disp->disp_nrunnable == 0) { 572 (*idle_cpu)(); 573 continue; 574 } 575 idle_exit(); 576 swtch(); 577 578 idle_enter(); /* returned from swtch */ 579 } 580 581 /* 582 * Multiprocessor idle loop. 583 */ 584 for (;;) { 585 /* 586 * If CPU is completely quiesced by p_online(2), just wait 587 * here with minimal bus traffic until put online. 588 */ 589 while (cp->cpu_flags & CPU_QUIESCED) 590 (*idle_cpu)(); 591 592 if (cp->cpu_disp->disp_nrunnable != 0) { 593 idle_exit(); 594 swtch(); 595 } else { 596 if (cp->cpu_flags & CPU_OFFLINE) 597 continue; 598 if ((t = disp_getwork(cp)) == NULL) { 599 if (cp->cpu_chosen_level != -1) { 600 disp_t *dp = cp->cpu_disp; 601 disp_t *kpq; 602 603 disp_lock_enter(&dp->disp_lock); 604 /* 605 * Set kpq under lock to prevent 606 * migration between partitions. 607 */ 608 kpq = &cp->cpu_part->cp_kp_queue; 609 if (kpq->disp_maxrunpri == -1) 610 cp->cpu_chosen_level = -1; 611 disp_lock_exit(&dp->disp_lock); 612 } 613 (*idle_cpu)(); 614 continue; 615 } 616 /* 617 * If there was a thread but we couldn't steal 618 * it, then keep trying. 619 */ 620 if (t == T_DONTSTEAL) 621 continue; 622 idle_exit(); 623 swtch_to(t); 624 } 625 idle_enter(); /* returned from swtch/swtch_to */ 626 } 627 } 628 629 630 /* 631 * Preempt the currently running thread in favor of the highest 632 * priority thread. The class of the current thread controls 633 * where it goes on the dispatcher queues. If panicking, turn 634 * preemption off. 635 */ 636 void 637 preempt() 638 { 639 kthread_t *t = curthread; 640 klwp_t *lwp = ttolwp(curthread); 641 642 if (panicstr) 643 return; 644 645 TRACE_0(TR_FAC_DISP, TR_PREEMPT_START, "preempt_start"); 646 647 thread_lock(t); 648 649 if (t->t_state != TS_ONPROC || t->t_disp_queue != CPU->cpu_disp) { 650 /* 651 * this thread has already been chosen to be run on 652 * another CPU. Clear kprunrun on this CPU since we're 653 * already headed for swtch(). 654 */ 655 CPU->cpu_kprunrun = 0; 656 thread_unlock_nopreempt(t); 657 TRACE_0(TR_FAC_DISP, TR_PREEMPT_END, "preempt_end"); 658 } else { 659 if (lwp != NULL) 660 lwp->lwp_ru.nivcsw++; 661 CPU_STATS_ADDQ(CPU, sys, inv_swtch, 1); 662 THREAD_TRANSITION(t); 663 CL_PREEMPT(t); 664 DTRACE_SCHED(preempt); 665 thread_unlock_nopreempt(t); 666 667 TRACE_0(TR_FAC_DISP, TR_PREEMPT_END, "preempt_end"); 668 669 swtch(); /* clears CPU->cpu_runrun via disp() */ 670 } 671 } 672 673 extern kthread_t *thread_unpin(); 674 675 /* 676 * disp() - find the highest priority thread for this processor to run, and 677 * set it in TS_ONPROC state so that resume() can be called to run it. 678 */ 679 static kthread_t * 680 disp() 681 { 682 cpu_t *cpup; 683 disp_t *dp; 684 kthread_t *tp; 685 dispq_t *dq; 686 int maxrunword; 687 pri_t pri; 688 disp_t *kpq; 689 690 TRACE_0(TR_FAC_DISP, TR_DISP_START, "disp_start"); 691 692 cpup = CPU; 693 /* 694 * Find the highest priority loaded, runnable thread. 695 */ 696 dp = cpup->cpu_disp; 697 698 reschedule: 699 /* 700 * If there is more important work on the global queue with a better 701 * priority than the maximum on this CPU, take it now. 702 */ 703 kpq = &cpup->cpu_part->cp_kp_queue; 704 while ((pri = kpq->disp_maxrunpri) >= 0 && 705 pri >= dp->disp_maxrunpri && 706 (cpup->cpu_flags & CPU_OFFLINE) == 0 && 707 (tp = disp_getbest(kpq)) != NULL) { 708 if (disp_ratify(tp, kpq) != NULL) { 709 TRACE_1(TR_FAC_DISP, TR_DISP_END, 710 "disp_end:tid %p", tp); 711 return (tp); 712 } 713 } 714 715 disp_lock_enter(&dp->disp_lock); 716 pri = dp->disp_maxrunpri; 717 718 /* 719 * If there is nothing to run, look at what's runnable on other queues. 720 * Choose the idle thread if the CPU is quiesced. 721 * Note that CPUs that have the CPU_OFFLINE flag set can still run 722 * interrupt threads, which will be the only threads on the CPU's own 723 * queue, but cannot run threads from other queues. 724 */ 725 if (pri == -1) { 726 if (!(cpup->cpu_flags & CPU_OFFLINE)) { 727 disp_lock_exit(&dp->disp_lock); 728 if ((tp = disp_getwork(cpup)) == NULL || 729 tp == T_DONTSTEAL) { 730 tp = cpup->cpu_idle_thread; 731 (void) splhigh(); 732 THREAD_ONPROC(tp, cpup); 733 cpup->cpu_dispthread = tp; 734 cpup->cpu_dispatch_pri = -1; 735 cpup->cpu_runrun = cpup->cpu_kprunrun = 0; 736 cpup->cpu_chosen_level = -1; 737 } 738 } else { 739 disp_lock_exit_high(&dp->disp_lock); 740 tp = cpup->cpu_idle_thread; 741 THREAD_ONPROC(tp, cpup); 742 cpup->cpu_dispthread = tp; 743 cpup->cpu_dispatch_pri = -1; 744 cpup->cpu_runrun = cpup->cpu_kprunrun = 0; 745 cpup->cpu_chosen_level = -1; 746 } 747 TRACE_1(TR_FAC_DISP, TR_DISP_END, 748 "disp_end:tid %p", tp); 749 return (tp); 750 } 751 752 dq = &dp->disp_q[pri]; 753 tp = dq->dq_first; 754 755 ASSERT(tp != NULL); 756 ASSERT(tp->t_schedflag & TS_LOAD); /* thread must be swapped in */ 757 758 DTRACE_SCHED2(dequeue, kthread_t *, tp, disp_t *, dp); 759 760 /* 761 * Found it so remove it from queue. 762 */ 763 dp->disp_nrunnable--; 764 dq->dq_sruncnt--; 765 if ((dq->dq_first = tp->t_link) == NULL) { 766 ulong_t *dqactmap = dp->disp_qactmap; 767 768 ASSERT(dq->dq_sruncnt == 0); 769 dq->dq_last = NULL; 770 771 /* 772 * The queue is empty, so the corresponding bit needs to be 773 * turned off in dqactmap. If nrunnable != 0 just took the 774 * last runnable thread off the 775 * highest queue, so recompute disp_maxrunpri. 776 */ 777 maxrunword = pri >> BT_ULSHIFT; 778 dqactmap[maxrunword] &= ~BT_BIW(pri); 779 780 if (dp->disp_nrunnable == 0) { 781 dp->disp_max_unbound_pri = -1; 782 dp->disp_maxrunpri = -1; 783 } else { 784 int ipri; 785 786 ipri = bt_gethighbit(dqactmap, maxrunword); 787 dp->disp_maxrunpri = ipri; 788 if (ipri < dp->disp_max_unbound_pri) 789 dp->disp_max_unbound_pri = ipri; 790 } 791 } else { 792 tp->t_link = NULL; 793 } 794 795 /* 796 * Set TS_DONT_SWAP flag to prevent another processor from swapping 797 * out this thread before we have a chance to run it. 798 * While running, it is protected against swapping by t_lock. 799 */ 800 tp->t_schedflag |= TS_DONT_SWAP; 801 cpup->cpu_dispthread = tp; /* protected by spl only */ 802 cpup->cpu_dispatch_pri = pri; 803 ASSERT(pri == DISP_PRIO(tp)); 804 thread_onproc(tp, cpup); /* set t_state to TS_ONPROC */ 805 disp_lock_exit_high(&dp->disp_lock); /* drop run queue lock */ 806 807 ASSERT(tp != NULL); 808 TRACE_1(TR_FAC_DISP, TR_DISP_END, 809 "disp_end:tid %p", tp); 810 811 if (disp_ratify(tp, kpq) == NULL) 812 goto reschedule; 813 814 return (tp); 815 } 816 817 /* 818 * swtch() 819 * Find best runnable thread and run it. 820 * Called with the current thread already switched to a new state, 821 * on a sleep queue, run queue, stopped, and not zombied. 822 * May be called at any spl level less than or equal to LOCK_LEVEL. 823 * Always drops spl to the base level (spl0()). 824 */ 825 void 826 swtch() 827 { 828 kthread_t *t = curthread; 829 kthread_t *next; 830 cpu_t *cp; 831 832 TRACE_0(TR_FAC_DISP, TR_SWTCH_START, "swtch_start"); 833 834 if (t->t_flag & T_INTR_THREAD) 835 cpu_intr_swtch_enter(t); 836 837 if (t->t_intr != NULL) { 838 /* 839 * We are an interrupt thread. Setup and return 840 * the interrupted thread to be resumed. 841 */ 842 (void) splhigh(); /* block other scheduler action */ 843 cp = CPU; /* now protected against migration */ 844 ASSERT(CPU_ON_INTR(cp) == 0); /* not called with PIL > 10 */ 845 CPU_STATS_ADDQ(cp, sys, pswitch, 1); 846 CPU_STATS_ADDQ(cp, sys, intrblk, 1); 847 next = thread_unpin(); 848 TRACE_0(TR_FAC_DISP, TR_RESUME_START, "resume_start"); 849 resume_from_intr(next); 850 } else { 851 #ifdef DEBUG 852 if (t->t_state == TS_ONPROC && 853 t->t_disp_queue->disp_cpu == CPU && 854 t->t_preempt == 0) { 855 thread_lock(t); 856 ASSERT(t->t_state != TS_ONPROC || 857 t->t_disp_queue->disp_cpu != CPU || 858 t->t_preempt != 0); /* cannot migrate */ 859 thread_unlock_nopreempt(t); 860 } 861 #endif /* DEBUG */ 862 cp = CPU; 863 next = disp(); /* returns with spl high */ 864 ASSERT(CPU_ON_INTR(cp) == 0); /* not called with PIL > 10 */ 865 866 /* OK to steal anything left on run queue */ 867 cp->cpu_disp_flags &= ~CPU_DISP_DONTSTEAL; 868 869 if (next != t) { 870 if (t == cp->cpu_idle_thread) { 871 PG_NRUN_UPDATE(cp, 1); 872 } else if (next == cp->cpu_idle_thread) { 873 PG_NRUN_UPDATE(cp, -1); 874 } 875 876 /* 877 * If t was previously in the TS_ONPROC state, 878 * setfrontdq and setbackdq won't have set its t_waitrq. 879 * Since we now finally know that we're switching away 880 * from this thread, set its t_waitrq if it is on a run 881 * queue. 882 */ 883 if ((t->t_state == TS_RUN) && (t->t_waitrq == 0)) { 884 t->t_waitrq = gethrtime_unscaled(); 885 } 886 887 /* 888 * restore mstate of thread that we are switching to 889 */ 890 restore_mstate(next); 891 892 CPU_STATS_ADDQ(cp, sys, pswitch, 1); 893 cp->cpu_last_swtch = t->t_disp_time = lbolt; 894 TRACE_0(TR_FAC_DISP, TR_RESUME_START, "resume_start"); 895 896 if (dtrace_vtime_active) 897 dtrace_vtime_switch(next); 898 899 resume(next); 900 /* 901 * The TR_RESUME_END and TR_SWTCH_END trace points 902 * appear at the end of resume(), because we may not 903 * return here 904 */ 905 } else { 906 if (t->t_flag & T_INTR_THREAD) 907 cpu_intr_swtch_exit(t); 908 909 DTRACE_SCHED(remain__cpu); 910 TRACE_0(TR_FAC_DISP, TR_SWTCH_END, "swtch_end"); 911 (void) spl0(); 912 } 913 } 914 } 915 916 /* 917 * swtch_from_zombie() 918 * Special case of swtch(), which allows checks for TS_ZOMB to be 919 * eliminated from normal resume. 920 * Find best runnable thread and run it. 921 * Called with the current thread zombied. 922 * Zombies cannot migrate, so CPU references are safe. 923 */ 924 void 925 swtch_from_zombie() 926 { 927 kthread_t *next; 928 cpu_t *cpu = CPU; 929 930 TRACE_0(TR_FAC_DISP, TR_SWTCH_START, "swtch_start"); 931 932 ASSERT(curthread->t_state == TS_ZOMB); 933 934 next = disp(); /* returns with spl high */ 935 ASSERT(CPU_ON_INTR(CPU) == 0); /* not called with PIL > 10 */ 936 CPU_STATS_ADDQ(CPU, sys, pswitch, 1); 937 ASSERT(next != curthread); 938 TRACE_0(TR_FAC_DISP, TR_RESUME_START, "resume_start"); 939 940 if (next == cpu->cpu_idle_thread) 941 PG_NRUN_UPDATE(cpu, -1); 942 943 restore_mstate(next); 944 945 if (dtrace_vtime_active) 946 dtrace_vtime_switch(next); 947 948 resume_from_zombie(next); 949 /* 950 * The TR_RESUME_END and TR_SWTCH_END trace points 951 * appear at the end of resume(), because we certainly will not 952 * return here 953 */ 954 } 955 956 #if defined(DEBUG) && (defined(DISP_DEBUG) || defined(lint)) 957 static int 958 thread_on_queue(kthread_t *tp) 959 { 960 cpu_t *cp; 961 cpu_t *self; 962 disp_t *dp; 963 964 self = CPU; 965 cp = self->cpu_next_onln; 966 dp = cp->cpu_disp; 967 for (;;) { 968 dispq_t *dq; 969 dispq_t *eq; 970 971 disp_lock_enter_high(&dp->disp_lock); 972 for (dq = dp->disp_q, eq = dp->disp_q_limit; dq < eq; ++dq) { 973 kthread_t *rp; 974 975 ASSERT(dq->dq_last == NULL || 976 dq->dq_last->t_link == NULL); 977 for (rp = dq->dq_first; rp; rp = rp->t_link) 978 if (tp == rp) { 979 disp_lock_exit_high(&dp->disp_lock); 980 return (1); 981 } 982 } 983 disp_lock_exit_high(&dp->disp_lock); 984 if (cp == NULL) 985 break; 986 if (cp == self) { 987 cp = NULL; 988 dp = &cp->cpu_part->cp_kp_queue; 989 } else { 990 cp = cp->cpu_next_onln; 991 dp = cp->cpu_disp; 992 } 993 } 994 return (0); 995 } /* end of thread_on_queue */ 996 #else 997 998 #define thread_on_queue(tp) 0 /* ASSERT must be !thread_on_queue */ 999 1000 #endif /* DEBUG */ 1001 1002 /* 1003 * like swtch(), but switch to a specified thread taken from another CPU. 1004 * called with spl high.. 1005 */ 1006 void 1007 swtch_to(kthread_t *next) 1008 { 1009 cpu_t *cp = CPU; 1010 1011 TRACE_0(TR_FAC_DISP, TR_SWTCH_START, "swtch_start"); 1012 1013 /* 1014 * Update context switch statistics. 1015 */ 1016 CPU_STATS_ADDQ(cp, sys, pswitch, 1); 1017 1018 TRACE_0(TR_FAC_DISP, TR_RESUME_START, "resume_start"); 1019 1020 if (curthread == cp->cpu_idle_thread) 1021 PG_NRUN_UPDATE(cp, 1); 1022 1023 /* OK to steal anything left on run queue */ 1024 cp->cpu_disp_flags &= ~CPU_DISP_DONTSTEAL; 1025 1026 /* record last execution time */ 1027 cp->cpu_last_swtch = curthread->t_disp_time = lbolt; 1028 1029 /* 1030 * If t was previously in the TS_ONPROC state, setfrontdq and setbackdq 1031 * won't have set its t_waitrq. Since we now finally know that we're 1032 * switching away from this thread, set its t_waitrq if it is on a run 1033 * queue. 1034 */ 1035 if ((curthread->t_state == TS_RUN) && (curthread->t_waitrq == 0)) { 1036 curthread->t_waitrq = gethrtime_unscaled(); 1037 } 1038 1039 /* restore next thread to previously running microstate */ 1040 restore_mstate(next); 1041 1042 if (dtrace_vtime_active) 1043 dtrace_vtime_switch(next); 1044 1045 resume(next); 1046 /* 1047 * The TR_RESUME_END and TR_SWTCH_END trace points 1048 * appear at the end of resume(), because we may not 1049 * return here 1050 */ 1051 } 1052 1053 1054 1055 #define CPU_IDLING(pri) ((pri) == -1) 1056 1057 static void 1058 cpu_resched(cpu_t *cp, pri_t tpri) 1059 { 1060 int call_poke_cpu = 0; 1061 pri_t cpupri = cp->cpu_dispatch_pri; 1062 1063 if (!CPU_IDLING(cpupri) && (cpupri < tpri)) { 1064 TRACE_2(TR_FAC_DISP, TR_CPU_RESCHED, 1065 "CPU_RESCHED:Tpri %d Cpupri %d", tpri, cpupri); 1066 if (tpri >= upreemptpri && cp->cpu_runrun == 0) { 1067 cp->cpu_runrun = 1; 1068 aston(cp->cpu_dispthread); 1069 if (tpri < kpreemptpri && cp != CPU) 1070 call_poke_cpu = 1; 1071 } 1072 if (tpri >= kpreemptpri && cp->cpu_kprunrun == 0) { 1073 cp->cpu_kprunrun = 1; 1074 if (cp != CPU) 1075 call_poke_cpu = 1; 1076 } 1077 } 1078 1079 /* 1080 * Propagate cpu_runrun, and cpu_kprunrun to global visibility. 1081 */ 1082 membar_enter(); 1083 1084 if (call_poke_cpu) 1085 poke_cpu(cp->cpu_id); 1086 } 1087 1088 /* 1089 * Perform multi-level CMT load balancing of running threads. 1090 * tp is the thread being enqueued 1091 * cp is the hint CPU (chosen by cpu_choose()). 1092 */ 1093 static cpu_t * 1094 cmt_balance(kthread_t *tp, cpu_t *cp) 1095 { 1096 int hint, i, cpu; 1097 int self = 0; 1098 group_t *cmt_pgs, *siblings; 1099 pg_cmt_t *pg, *pg_tmp, *tpg = NULL; 1100 int pg_nrun, tpg_nrun; 1101 int level = 0; 1102 cpu_t *newcp; 1103 1104 ASSERT(THREAD_LOCK_HELD(tp)); 1105 1106 cmt_pgs = &cp->cpu_pg->cmt_pgs; 1107 1108 if (GROUP_SIZE(cmt_pgs) == 0) 1109 return (cp); /* nothing to do */ 1110 1111 if (tp == curthread) 1112 self = 1; 1113 1114 /* 1115 * Balance across siblings in the CPUs CMT lineage 1116 */ 1117 do { 1118 pg = GROUP_ACCESS(cmt_pgs, level); 1119 1120 pg_nrun = pg->cmt_nrunning; 1121 if (self && 1122 bitset_in_set(&pg->cmt_cpus_actv_set, CPU->cpu_seqid)) 1123 pg_nrun--; /* Ignore curthread's effect */ 1124 1125 siblings = pg->cmt_siblings; 1126 hint = pg->cmt_hint; 1127 1128 /* 1129 * Check for validity of the hint 1130 * It should reference a valid sibling 1131 */ 1132 if (hint >= GROUP_SIZE(siblings)) 1133 hint = pg->cmt_hint = 0; 1134 else 1135 pg->cmt_hint++; 1136 1137 /* 1138 * Find a balancing candidate from among our siblings 1139 * "hint" is a hint for where to start looking 1140 */ 1141 i = hint; 1142 do { 1143 ASSERT(i < GROUP_SIZE(siblings)); 1144 pg_tmp = GROUP_ACCESS(siblings, i); 1145 1146 /* 1147 * The candidate must not be us, and must 1148 * have some CPU resources in the thread's 1149 * partition 1150 */ 1151 if (pg_tmp != pg && 1152 bitset_in_set(&tp->t_cpupart->cp_cmt_pgs, 1153 ((pg_t *)pg_tmp)->pg_id)) { 1154 tpg = pg_tmp; 1155 break; 1156 } 1157 1158 if (++i >= GROUP_SIZE(siblings)) 1159 i = 0; 1160 } while (i != hint); 1161 1162 if (!tpg) 1163 continue; /* no candidates at this level */ 1164 1165 /* 1166 * Check if the balancing target is underloaded 1167 * Decide to balance if the target is running fewer 1168 * threads, or if it's running the same number of threads 1169 * with more online CPUs 1170 */ 1171 tpg_nrun = tpg->cmt_nrunning; 1172 if (pg_nrun > tpg_nrun || 1173 (pg_nrun == tpg_nrun && 1174 (GROUP_SIZE(&tpg->cmt_cpus_actv) > 1175 GROUP_SIZE(&pg->cmt_cpus_actv)))) { 1176 break; 1177 } 1178 tpg = NULL; 1179 } while (++level < GROUP_SIZE(cmt_pgs)); 1180 1181 1182 if (tpg) { 1183 /* 1184 * Select an idle CPU from the target PG 1185 */ 1186 for (cpu = 0; cpu < GROUP_SIZE(&tpg->cmt_cpus_actv); cpu++) { 1187 newcp = GROUP_ACCESS(&tpg->cmt_cpus_actv, cpu); 1188 if (newcp->cpu_part == tp->t_cpupart && 1189 newcp->cpu_dispatch_pri == -1) { 1190 cp = newcp; 1191 break; 1192 } 1193 } 1194 } 1195 1196 return (cp); 1197 } 1198 1199 /* 1200 * setbackdq() keeps runqs balanced such that the difference in length 1201 * between the chosen runq and the next one is no more than RUNQ_MAX_DIFF. 1202 * For threads with priorities below RUNQ_MATCH_PRI levels, the runq's lengths 1203 * must match. When per-thread TS_RUNQMATCH flag is set, setbackdq() will 1204 * try to keep runqs perfectly balanced regardless of the thread priority. 1205 */ 1206 #define RUNQ_MATCH_PRI 16 /* pri below which queue lengths must match */ 1207 #define RUNQ_MAX_DIFF 2 /* maximum runq length difference */ 1208 #define RUNQ_LEN(cp, pri) ((cp)->cpu_disp->disp_q[pri].dq_sruncnt) 1209 1210 /* 1211 * Put the specified thread on the back of the dispatcher 1212 * queue corresponding to its current priority. 1213 * 1214 * Called with the thread in transition, onproc or stopped state 1215 * and locked (transition implies locked) and at high spl. 1216 * Returns with the thread in TS_RUN state and still locked. 1217 */ 1218 void 1219 setbackdq(kthread_t *tp) 1220 { 1221 dispq_t *dq; 1222 disp_t *dp; 1223 cpu_t *cp; 1224 pri_t tpri; 1225 int bound; 1226 1227 ASSERT(THREAD_LOCK_HELD(tp)); 1228 ASSERT((tp->t_schedflag & TS_ALLSTART) == 0); 1229 ASSERT(!thread_on_queue(tp)); /* make sure tp isn't on a runq */ 1230 1231 /* 1232 * If thread is "swapped" or on the swap queue don't 1233 * queue it, but wake sched. 1234 */ 1235 if ((tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ)) != TS_LOAD) { 1236 disp_swapped_setrun(tp); 1237 return; 1238 } 1239 1240 tpri = DISP_PRIO(tp); 1241 if (ncpus == 1) 1242 cp = tp->t_cpu; 1243 else if (!tp->t_bound_cpu && !tp->t_weakbound_cpu) { 1244 if (tpri >= kpqpri) { 1245 setkpdq(tp, SETKP_BACK); 1246 return; 1247 } 1248 /* 1249 * Let cpu_choose suggest a CPU. 1250 */ 1251 cp = cpu_choose(tp, tpri); 1252 1253 if (tp->t_cpupart == cp->cpu_part) { 1254 int qlen; 1255 1256 /* 1257 * Perform any CMT load balancing 1258 */ 1259 cp = cmt_balance(tp, cp); 1260 1261 /* 1262 * Balance across the run queues 1263 */ 1264 qlen = RUNQ_LEN(cp, tpri); 1265 if (tpri >= RUNQ_MATCH_PRI && 1266 !(tp->t_schedflag & TS_RUNQMATCH)) 1267 qlen -= RUNQ_MAX_DIFF; 1268 if (qlen > 0) { 1269 cpu_t *newcp; 1270 1271 if (tp->t_lpl->lpl_lgrpid == LGRP_ROOTID) { 1272 newcp = cp->cpu_next_part; 1273 } else if ((newcp = cp->cpu_next_lpl) == cp) { 1274 newcp = cp->cpu_next_part; 1275 } 1276 1277 if (RUNQ_LEN(newcp, tpri) < qlen) { 1278 DTRACE_PROBE3(runq__balance, 1279 kthread_t *, tp, 1280 cpu_t *, cp, cpu_t *, newcp); 1281 cp = newcp; 1282 } 1283 } 1284 } else { 1285 /* 1286 * Migrate to a cpu in the new partition. 1287 */ 1288 cp = disp_lowpri_cpu(tp->t_cpupart->cp_cpulist, 1289 tp->t_lpl, tp->t_pri, NULL); 1290 } 1291 bound = 0; 1292 ASSERT((cp->cpu_flags & CPU_QUIESCED) == 0); 1293 } else { 1294 /* 1295 * It is possible that t_weakbound_cpu != t_bound_cpu (for 1296 * a short time until weak binding that existed when the 1297 * strong binding was established has dropped) so we must 1298 * favour weak binding over strong. 1299 */ 1300 cp = tp->t_weakbound_cpu ? 1301 tp->t_weakbound_cpu : tp->t_bound_cpu; 1302 bound = 1; 1303 } 1304 /* 1305 * A thread that is ONPROC may be temporarily placed on the run queue 1306 * but then chosen to run again by disp. If the thread we're placing on 1307 * the queue is in TS_ONPROC state, don't set its t_waitrq until a 1308 * replacement process is actually scheduled in swtch(). In this 1309 * situation, curthread is the only thread that could be in the ONPROC 1310 * state. 1311 */ 1312 if ((tp != curthread) && (tp->t_waitrq == 0)) { 1313 hrtime_t curtime; 1314 1315 curtime = gethrtime_unscaled(); 1316 (void) cpu_update_pct(tp, curtime); 1317 tp->t_waitrq = curtime; 1318 } else { 1319 (void) cpu_update_pct(tp, gethrtime_unscaled()); 1320 } 1321 1322 dp = cp->cpu_disp; 1323 disp_lock_enter_high(&dp->disp_lock); 1324 1325 DTRACE_SCHED3(enqueue, kthread_t *, tp, disp_t *, dp, int, 0); 1326 TRACE_3(TR_FAC_DISP, TR_BACKQ, "setbackdq:pri %d cpu %p tid %p", 1327 tpri, cp, tp); 1328 1329 #ifndef NPROBE 1330 /* Kernel probe */ 1331 if (tnf_tracing_active) 1332 tnf_thread_queue(tp, cp, tpri); 1333 #endif /* NPROBE */ 1334 1335 ASSERT(tpri >= 0 && tpri < dp->disp_npri); 1336 1337 THREAD_RUN(tp, &dp->disp_lock); /* set t_state to TS_RUN */ 1338 tp->t_disp_queue = dp; 1339 tp->t_link = NULL; 1340 1341 dq = &dp->disp_q[tpri]; 1342 dp->disp_nrunnable++; 1343 if (!bound) 1344 dp->disp_steal = 0; 1345 membar_enter(); 1346 1347 if (dq->dq_sruncnt++ != 0) { 1348 ASSERT(dq->dq_first != NULL); 1349 dq->dq_last->t_link = tp; 1350 dq->dq_last = tp; 1351 } else { 1352 ASSERT(dq->dq_first == NULL); 1353 ASSERT(dq->dq_last == NULL); 1354 dq->dq_first = dq->dq_last = tp; 1355 BT_SET(dp->disp_qactmap, tpri); 1356 if (tpri > dp->disp_maxrunpri) { 1357 dp->disp_maxrunpri = tpri; 1358 membar_enter(); 1359 cpu_resched(cp, tpri); 1360 } 1361 } 1362 1363 if (!bound && tpri > dp->disp_max_unbound_pri) { 1364 if (tp == curthread && dp->disp_max_unbound_pri == -1 && 1365 cp == CPU) { 1366 /* 1367 * If there are no other unbound threads on the 1368 * run queue, don't allow other CPUs to steal 1369 * this thread while we are in the middle of a 1370 * context switch. We may just switch to it 1371 * again right away. CPU_DISP_DONTSTEAL is cleared 1372 * in swtch and swtch_to. 1373 */ 1374 cp->cpu_disp_flags |= CPU_DISP_DONTSTEAL; 1375 } 1376 dp->disp_max_unbound_pri = tpri; 1377 } 1378 (*disp_enq_thread)(cp, bound); 1379 } 1380 1381 /* 1382 * Put the specified thread on the front of the dispatcher 1383 * queue corresponding to its current priority. 1384 * 1385 * Called with the thread in transition, onproc or stopped state 1386 * and locked (transition implies locked) and at high spl. 1387 * Returns with the thread in TS_RUN state and still locked. 1388 */ 1389 void 1390 setfrontdq(kthread_t *tp) 1391 { 1392 disp_t *dp; 1393 dispq_t *dq; 1394 cpu_t *cp; 1395 pri_t tpri; 1396 int bound; 1397 1398 ASSERT(THREAD_LOCK_HELD(tp)); 1399 ASSERT((tp->t_schedflag & TS_ALLSTART) == 0); 1400 ASSERT(!thread_on_queue(tp)); /* make sure tp isn't on a runq */ 1401 1402 /* 1403 * If thread is "swapped" or on the swap queue don't 1404 * queue it, but wake sched. 1405 */ 1406 if ((tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ)) != TS_LOAD) { 1407 disp_swapped_setrun(tp); 1408 return; 1409 } 1410 1411 tpri = DISP_PRIO(tp); 1412 if (ncpus == 1) 1413 cp = tp->t_cpu; 1414 else if (!tp->t_bound_cpu && !tp->t_weakbound_cpu) { 1415 if (tpri >= kpqpri) { 1416 setkpdq(tp, SETKP_FRONT); 1417 return; 1418 } 1419 cp = tp->t_cpu; 1420 if (tp->t_cpupart == cp->cpu_part) { 1421 /* 1422 * If we are of higher or equal priority than 1423 * the highest priority runnable thread of 1424 * the current CPU, just pick this CPU. Otherwise 1425 * Let cpu_choose() select the CPU. If this cpu 1426 * is the target of an offline request then do not 1427 * pick it - a thread_nomigrate() on the in motion 1428 * cpu relies on this when it forces a preempt. 1429 */ 1430 if (tpri < cp->cpu_disp->disp_maxrunpri || 1431 cp == cpu_inmotion) 1432 cp = cpu_choose(tp, tpri); 1433 } else { 1434 /* 1435 * Migrate to a cpu in the new partition. 1436 */ 1437 cp = disp_lowpri_cpu(tp->t_cpupart->cp_cpulist, 1438 tp->t_lpl, tp->t_pri, NULL); 1439 } 1440 bound = 0; 1441 ASSERT((cp->cpu_flags & CPU_QUIESCED) == 0); 1442 } else { 1443 /* 1444 * It is possible that t_weakbound_cpu != t_bound_cpu (for 1445 * a short time until weak binding that existed when the 1446 * strong binding was established has dropped) so we must 1447 * favour weak binding over strong. 1448 */ 1449 cp = tp->t_weakbound_cpu ? 1450 tp->t_weakbound_cpu : tp->t_bound_cpu; 1451 bound = 1; 1452 } 1453 1454 /* 1455 * A thread that is ONPROC may be temporarily placed on the run queue 1456 * but then chosen to run again by disp. If the thread we're placing on 1457 * the queue is in TS_ONPROC state, don't set its t_waitrq until a 1458 * replacement process is actually scheduled in swtch(). In this 1459 * situation, curthread is the only thread that could be in the ONPROC 1460 * state. 1461 */ 1462 if ((tp != curthread) && (tp->t_waitrq == 0)) { 1463 hrtime_t curtime; 1464 1465 curtime = gethrtime_unscaled(); 1466 (void) cpu_update_pct(tp, curtime); 1467 tp->t_waitrq = curtime; 1468 } else { 1469 (void) cpu_update_pct(tp, gethrtime_unscaled()); 1470 } 1471 1472 dp = cp->cpu_disp; 1473 disp_lock_enter_high(&dp->disp_lock); 1474 1475 TRACE_2(TR_FAC_DISP, TR_FRONTQ, "frontq:pri %d tid %p", tpri, tp); 1476 DTRACE_SCHED3(enqueue, kthread_t *, tp, disp_t *, dp, int, 1); 1477 1478 #ifndef NPROBE 1479 /* Kernel probe */ 1480 if (tnf_tracing_active) 1481 tnf_thread_queue(tp, cp, tpri); 1482 #endif /* NPROBE */ 1483 1484 ASSERT(tpri >= 0 && tpri < dp->disp_npri); 1485 1486 THREAD_RUN(tp, &dp->disp_lock); /* set TS_RUN state and lock */ 1487 tp->t_disp_queue = dp; 1488 1489 dq = &dp->disp_q[tpri]; 1490 dp->disp_nrunnable++; 1491 if (!bound) 1492 dp->disp_steal = 0; 1493 membar_enter(); 1494 1495 if (dq->dq_sruncnt++ != 0) { 1496 ASSERT(dq->dq_last != NULL); 1497 tp->t_link = dq->dq_first; 1498 dq->dq_first = tp; 1499 } else { 1500 ASSERT(dq->dq_last == NULL); 1501 ASSERT(dq->dq_first == NULL); 1502 tp->t_link = NULL; 1503 dq->dq_first = dq->dq_last = tp; 1504 BT_SET(dp->disp_qactmap, tpri); 1505 if (tpri > dp->disp_maxrunpri) { 1506 dp->disp_maxrunpri = tpri; 1507 membar_enter(); 1508 cpu_resched(cp, tpri); 1509 } 1510 } 1511 1512 if (!bound && tpri > dp->disp_max_unbound_pri) { 1513 if (tp == curthread && dp->disp_max_unbound_pri == -1 && 1514 cp == CPU) { 1515 /* 1516 * If there are no other unbound threads on the 1517 * run queue, don't allow other CPUs to steal 1518 * this thread while we are in the middle of a 1519 * context switch. We may just switch to it 1520 * again right away. CPU_DISP_DONTSTEAL is cleared 1521 * in swtch and swtch_to. 1522 */ 1523 cp->cpu_disp_flags |= CPU_DISP_DONTSTEAL; 1524 } 1525 dp->disp_max_unbound_pri = tpri; 1526 } 1527 (*disp_enq_thread)(cp, bound); 1528 } 1529 1530 /* 1531 * Put a high-priority unbound thread on the kp queue 1532 */ 1533 static void 1534 setkpdq(kthread_t *tp, int borf) 1535 { 1536 dispq_t *dq; 1537 disp_t *dp; 1538 cpu_t *cp; 1539 pri_t tpri; 1540 1541 tpri = DISP_PRIO(tp); 1542 1543 dp = &tp->t_cpupart->cp_kp_queue; 1544 disp_lock_enter_high(&dp->disp_lock); 1545 1546 TRACE_2(TR_FAC_DISP, TR_FRONTQ, "frontq:pri %d tid %p", tpri, tp); 1547 1548 ASSERT(tpri >= 0 && tpri < dp->disp_npri); 1549 DTRACE_SCHED3(enqueue, kthread_t *, tp, disp_t *, dp, int, borf); 1550 THREAD_RUN(tp, &dp->disp_lock); /* set t_state to TS_RUN */ 1551 tp->t_disp_queue = dp; 1552 dp->disp_nrunnable++; 1553 dq = &dp->disp_q[tpri]; 1554 1555 if (dq->dq_sruncnt++ != 0) { 1556 if (borf == SETKP_BACK) { 1557 ASSERT(dq->dq_first != NULL); 1558 tp->t_link = NULL; 1559 dq->dq_last->t_link = tp; 1560 dq->dq_last = tp; 1561 } else { 1562 ASSERT(dq->dq_last != NULL); 1563 tp->t_link = dq->dq_first; 1564 dq->dq_first = tp; 1565 } 1566 } else { 1567 if (borf == SETKP_BACK) { 1568 ASSERT(dq->dq_first == NULL); 1569 ASSERT(dq->dq_last == NULL); 1570 dq->dq_first = dq->dq_last = tp; 1571 } else { 1572 ASSERT(dq->dq_last == NULL); 1573 ASSERT(dq->dq_first == NULL); 1574 tp->t_link = NULL; 1575 dq->dq_first = dq->dq_last = tp; 1576 } 1577 BT_SET(dp->disp_qactmap, tpri); 1578 if (tpri > dp->disp_max_unbound_pri) 1579 dp->disp_max_unbound_pri = tpri; 1580 if (tpri > dp->disp_maxrunpri) { 1581 dp->disp_maxrunpri = tpri; 1582 membar_enter(); 1583 } 1584 } 1585 1586 cp = tp->t_cpu; 1587 if (tp->t_cpupart != cp->cpu_part) { 1588 /* migrate to a cpu in the new partition */ 1589 cp = tp->t_cpupart->cp_cpulist; 1590 } 1591 cp = disp_lowpri_cpu(cp, tp->t_lpl, tp->t_pri, NULL); 1592 disp_lock_enter_high(&cp->cpu_disp->disp_lock); 1593 ASSERT((cp->cpu_flags & CPU_QUIESCED) == 0); 1594 1595 #ifndef NPROBE 1596 /* Kernel probe */ 1597 if (tnf_tracing_active) 1598 tnf_thread_queue(tp, cp, tpri); 1599 #endif /* NPROBE */ 1600 1601 if (cp->cpu_chosen_level < tpri) 1602 cp->cpu_chosen_level = tpri; 1603 cpu_resched(cp, tpri); 1604 disp_lock_exit_high(&cp->cpu_disp->disp_lock); 1605 (*disp_enq_thread)(cp, 0); 1606 } 1607 1608 /* 1609 * Remove a thread from the dispatcher queue if it is on it. 1610 * It is not an error if it is not found but we return whether 1611 * or not it was found in case the caller wants to check. 1612 */ 1613 int 1614 dispdeq(kthread_t *tp) 1615 { 1616 disp_t *dp; 1617 dispq_t *dq; 1618 kthread_t *rp; 1619 kthread_t *trp; 1620 kthread_t **ptp; 1621 int tpri; 1622 1623 ASSERT(THREAD_LOCK_HELD(tp)); 1624 1625 if (tp->t_state != TS_RUN) 1626 return (0); 1627 1628 /* 1629 * The thread is "swapped" or is on the swap queue and 1630 * hence no longer on the run queue, so return true. 1631 */ 1632 if ((tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ)) != TS_LOAD) 1633 return (1); 1634 1635 tpri = DISP_PRIO(tp); 1636 dp = tp->t_disp_queue; 1637 ASSERT(tpri < dp->disp_npri); 1638 dq = &dp->disp_q[tpri]; 1639 ptp = &dq->dq_first; 1640 rp = *ptp; 1641 trp = NULL; 1642 1643 ASSERT(dq->dq_last == NULL || dq->dq_last->t_link == NULL); 1644 1645 /* 1646 * Search for thread in queue. 1647 * Double links would simplify this at the expense of disp/setrun. 1648 */ 1649 while (rp != tp && rp != NULL) { 1650 trp = rp; 1651 ptp = &trp->t_link; 1652 rp = trp->t_link; 1653 } 1654 1655 if (rp == NULL) { 1656 panic("dispdeq: thread not on queue"); 1657 } 1658 1659 DTRACE_SCHED2(dequeue, kthread_t *, tp, disp_t *, dp); 1660 1661 /* 1662 * Found it so remove it from queue. 1663 */ 1664 if ((*ptp = rp->t_link) == NULL) 1665 dq->dq_last = trp; 1666 1667 dp->disp_nrunnable--; 1668 if (--dq->dq_sruncnt == 0) { 1669 dp->disp_qactmap[tpri >> BT_ULSHIFT] &= ~BT_BIW(tpri); 1670 if (dp->disp_nrunnable == 0) { 1671 dp->disp_max_unbound_pri = -1; 1672 dp->disp_maxrunpri = -1; 1673 } else if (tpri == dp->disp_maxrunpri) { 1674 int ipri; 1675 1676 ipri = bt_gethighbit(dp->disp_qactmap, 1677 dp->disp_maxrunpri >> BT_ULSHIFT); 1678 if (ipri < dp->disp_max_unbound_pri) 1679 dp->disp_max_unbound_pri = ipri; 1680 dp->disp_maxrunpri = ipri; 1681 } 1682 } 1683 tp->t_link = NULL; 1684 THREAD_TRANSITION(tp); /* put in intermediate state */ 1685 return (1); 1686 } 1687 1688 1689 /* 1690 * dq_sruninc and dq_srundec are public functions for 1691 * incrementing/decrementing the sruncnts when a thread on 1692 * a dispatcher queue is made schedulable/unschedulable by 1693 * resetting the TS_LOAD flag. 1694 * 1695 * The caller MUST have the thread lock and therefore the dispatcher 1696 * queue lock so that the operation which changes 1697 * the flag, the operation that checks the status of the thread to 1698 * determine if it's on a disp queue AND the call to this function 1699 * are one atomic operation with respect to interrupts. 1700 */ 1701 1702 /* 1703 * Called by sched AFTER TS_LOAD flag is set on a swapped, runnable thread. 1704 */ 1705 void 1706 dq_sruninc(kthread_t *t) 1707 { 1708 ASSERT(t->t_state == TS_RUN); 1709 ASSERT(t->t_schedflag & TS_LOAD); 1710 1711 THREAD_TRANSITION(t); 1712 setfrontdq(t); 1713 } 1714 1715 /* 1716 * See comment on calling conventions above. 1717 * Called by sched BEFORE TS_LOAD flag is cleared on a runnable thread. 1718 */ 1719 void 1720 dq_srundec(kthread_t *t) 1721 { 1722 ASSERT(t->t_schedflag & TS_LOAD); 1723 1724 (void) dispdeq(t); 1725 disp_swapped_enq(t); 1726 } 1727 1728 /* 1729 * Change the dispatcher lock of thread to the "swapped_lock" 1730 * and return with thread lock still held. 1731 * 1732 * Called with thread_lock held, in transition state, and at high spl. 1733 */ 1734 void 1735 disp_swapped_enq(kthread_t *tp) 1736 { 1737 ASSERT(THREAD_LOCK_HELD(tp)); 1738 ASSERT(tp->t_schedflag & TS_LOAD); 1739 1740 switch (tp->t_state) { 1741 case TS_RUN: 1742 disp_lock_enter_high(&swapped_lock); 1743 THREAD_SWAP(tp, &swapped_lock); /* set TS_RUN state and lock */ 1744 break; 1745 case TS_ONPROC: 1746 disp_lock_enter_high(&swapped_lock); 1747 THREAD_TRANSITION(tp); 1748 wake_sched_sec = 1; /* tell clock to wake sched */ 1749 THREAD_SWAP(tp, &swapped_lock); /* set TS_RUN state and lock */ 1750 break; 1751 default: 1752 panic("disp_swapped: tp: %p bad t_state", (void *)tp); 1753 } 1754 } 1755 1756 /* 1757 * This routine is called by setbackdq/setfrontdq if the thread is 1758 * not loaded or loaded and on the swap queue. 1759 * 1760 * Thread state TS_SLEEP implies that a swapped thread 1761 * has been woken up and needs to be swapped in by the swapper. 1762 * 1763 * Thread state TS_RUN, it implies that the priority of a swapped 1764 * thread is being increased by scheduling class (e.g. ts_update). 1765 */ 1766 static void 1767 disp_swapped_setrun(kthread_t *tp) 1768 { 1769 ASSERT(THREAD_LOCK_HELD(tp)); 1770 ASSERT((tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ)) != TS_LOAD); 1771 1772 switch (tp->t_state) { 1773 case TS_SLEEP: 1774 disp_lock_enter_high(&swapped_lock); 1775 /* 1776 * Wakeup sched immediately (i.e., next tick) if the 1777 * thread priority is above maxclsyspri. 1778 */ 1779 if (DISP_PRIO(tp) > maxclsyspri) 1780 wake_sched = 1; 1781 else 1782 wake_sched_sec = 1; 1783 THREAD_RUN(tp, &swapped_lock); /* set TS_RUN state and lock */ 1784 break; 1785 case TS_RUN: /* called from ts_update */ 1786 break; 1787 default: 1788 panic("disp_swapped_setrun: tp: %p bad t_state", tp); 1789 } 1790 } 1791 1792 1793 /* 1794 * Make a thread give up its processor. Find the processor on 1795 * which this thread is executing, and have that processor 1796 * preempt. 1797 */ 1798 void 1799 cpu_surrender(kthread_t *tp) 1800 { 1801 cpu_t *cpup; 1802 int max_pri; 1803 int max_run_pri; 1804 klwp_t *lwp; 1805 1806 ASSERT(THREAD_LOCK_HELD(tp)); 1807 1808 if (tp->t_state != TS_ONPROC) 1809 return; 1810 cpup = tp->t_disp_queue->disp_cpu; /* CPU thread dispatched to */ 1811 max_pri = cpup->cpu_disp->disp_maxrunpri; /* best pri of that CPU */ 1812 max_run_pri = CP_MAXRUNPRI(cpup->cpu_part); 1813 if (max_pri < max_run_pri) 1814 max_pri = max_run_pri; 1815 1816 cpup->cpu_runrun = 1; 1817 if (max_pri >= kpreemptpri && cpup->cpu_kprunrun == 0) { 1818 cpup->cpu_kprunrun = 1; 1819 } 1820 1821 /* 1822 * Propagate cpu_runrun, and cpu_kprunrun to global visibility. 1823 */ 1824 membar_enter(); 1825 1826 DTRACE_SCHED1(surrender, kthread_t *, tp); 1827 1828 /* 1829 * Make the target thread take an excursion through trap() 1830 * to do preempt() (unless we're already in trap or post_syscall, 1831 * calling cpu_surrender via CL_TRAPRET). 1832 */ 1833 if (tp != curthread || (lwp = tp->t_lwp) == NULL || 1834 lwp->lwp_state != LWP_USER) { 1835 aston(tp); 1836 if (cpup != CPU) 1837 poke_cpu(cpup->cpu_id); 1838 } 1839 TRACE_2(TR_FAC_DISP, TR_CPU_SURRENDER, 1840 "cpu_surrender:tid %p cpu %p", tp, cpup); 1841 } 1842 1843 1844 /* 1845 * Commit to and ratify a scheduling decision 1846 */ 1847 /*ARGSUSED*/ 1848 static kthread_t * 1849 disp_ratify(kthread_t *tp, disp_t *kpq) 1850 { 1851 pri_t tpri, maxpri; 1852 pri_t maxkpri; 1853 cpu_t *cpup; 1854 1855 ASSERT(tp != NULL); 1856 /* 1857 * Commit to, then ratify scheduling decision 1858 */ 1859 cpup = CPU; 1860 if (cpup->cpu_runrun != 0) 1861 cpup->cpu_runrun = 0; 1862 if (cpup->cpu_kprunrun != 0) 1863 cpup->cpu_kprunrun = 0; 1864 if (cpup->cpu_chosen_level != -1) 1865 cpup->cpu_chosen_level = -1; 1866 membar_enter(); 1867 tpri = DISP_PRIO(tp); 1868 maxpri = cpup->cpu_disp->disp_maxrunpri; 1869 maxkpri = kpq->disp_maxrunpri; 1870 if (maxpri < maxkpri) 1871 maxpri = maxkpri; 1872 if (tpri < maxpri) { 1873 /* 1874 * should have done better 1875 * put this one back and indicate to try again 1876 */ 1877 cpup->cpu_dispthread = curthread; /* fixup dispthread */ 1878 cpup->cpu_dispatch_pri = DISP_PRIO(curthread); 1879 thread_lock_high(tp); 1880 THREAD_TRANSITION(tp); 1881 setfrontdq(tp); 1882 thread_unlock_nopreempt(tp); 1883 1884 tp = NULL; 1885 } 1886 return (tp); 1887 } 1888 1889 /* 1890 * See if there is any work on the dispatcher queue for other CPUs. 1891 * If there is, dequeue the best thread and return. 1892 */ 1893 static kthread_t * 1894 disp_getwork(cpu_t *cp) 1895 { 1896 cpu_t *ocp; /* other CPU */ 1897 cpu_t *ocp_start; 1898 cpu_t *tcp; /* target local CPU */ 1899 kthread_t *tp; 1900 kthread_t *retval = NULL; 1901 pri_t maxpri; 1902 disp_t *kpq; /* kp queue for this partition */ 1903 lpl_t *lpl, *lpl_leaf; 1904 int hint, leafidx; 1905 hrtime_t stealtime; 1906 1907 maxpri = -1; 1908 tcp = NULL; 1909 1910 kpq = &cp->cpu_part->cp_kp_queue; 1911 while (kpq->disp_maxrunpri >= 0) { 1912 /* 1913 * Try to take a thread from the kp_queue. 1914 */ 1915 tp = (disp_getbest(kpq)); 1916 if (tp) 1917 return (disp_ratify(tp, kpq)); 1918 } 1919 1920 kpreempt_disable(); /* protect the cpu_active list */ 1921 1922 /* 1923 * Try to find something to do on another CPU's run queue. 1924 * Loop through all other CPUs looking for the one with the highest 1925 * priority unbound thread. 1926 * 1927 * On NUMA machines, the partition's CPUs are consulted in order of 1928 * distance from the current CPU. This way, the first available 1929 * work found is also the closest, and will suffer the least 1930 * from being migrated. 1931 */ 1932 lpl = lpl_leaf = cp->cpu_lpl; 1933 hint = leafidx = 0; 1934 1935 /* 1936 * This loop traverses the lpl hierarchy. Higher level lpls represent 1937 * broader levels of locality 1938 */ 1939 do { 1940 /* This loop iterates over the lpl's leaves */ 1941 do { 1942 if (lpl_leaf != cp->cpu_lpl) 1943 ocp = lpl_leaf->lpl_cpus; 1944 else 1945 ocp = cp->cpu_next_lpl; 1946 1947 /* This loop iterates over the CPUs in the leaf */ 1948 ocp_start = ocp; 1949 do { 1950 pri_t pri; 1951 1952 ASSERT(CPU_ACTIVE(ocp)); 1953 1954 /* 1955 * End our stroll around this lpl if: 1956 * 1957 * - Something became runnable on the local 1958 * queue...which also ends our stroll around 1959 * the partition. 1960 * 1961 * - We happen across another idle CPU. 1962 * Since it is patrolling the next portion 1963 * of the lpl's list (assuming it's not 1964 * halted), move to the next higher level 1965 * of locality. 1966 */ 1967 if (cp->cpu_disp->disp_nrunnable != 0) { 1968 kpreempt_enable(); 1969 return (NULL); 1970 } 1971 if (ocp->cpu_dispatch_pri == -1) { 1972 if (ocp->cpu_disp_flags & 1973 CPU_DISP_HALTED) 1974 continue; 1975 else 1976 break; 1977 } 1978 1979 /* 1980 * If there's only one thread and the CPU 1981 * is in the middle of a context switch, 1982 * or it's currently running the idle thread, 1983 * don't steal it. 1984 */ 1985 if ((ocp->cpu_disp_flags & 1986 CPU_DISP_DONTSTEAL) && 1987 ocp->cpu_disp->disp_nrunnable == 1) 1988 continue; 1989 1990 pri = ocp->cpu_disp->disp_max_unbound_pri; 1991 if (pri > maxpri) { 1992 /* 1993 * Don't steal threads that we attempted 1994 * to steal recently until they're ready 1995 * to be stolen again. 1996 */ 1997 stealtime = ocp->cpu_disp->disp_steal; 1998 if (stealtime == 0 || 1999 stealtime - gethrtime() <= 0) { 2000 maxpri = pri; 2001 tcp = ocp; 2002 } else { 2003 /* 2004 * Don't update tcp, just set 2005 * the retval to T_DONTSTEAL, so 2006 * that if no acceptable CPUs 2007 * are found the return value 2008 * will be T_DONTSTEAL rather 2009 * then NULL. 2010 */ 2011 retval = T_DONTSTEAL; 2012 } 2013 } 2014 } while ((ocp = ocp->cpu_next_lpl) != ocp_start); 2015 2016 if ((lpl_leaf = lpl->lpl_rset[++leafidx]) == NULL) { 2017 leafidx = 0; 2018 lpl_leaf = lpl->lpl_rset[leafidx]; 2019 } 2020 } while (leafidx != hint); 2021 2022 hint = leafidx = lpl->lpl_hint; 2023 if ((lpl = lpl->lpl_parent) != NULL) 2024 lpl_leaf = lpl->lpl_rset[hint]; 2025 } while (!tcp && lpl); 2026 2027 kpreempt_enable(); 2028 2029 /* 2030 * If another queue looks good, and there is still nothing on 2031 * the local queue, try to transfer one or more threads 2032 * from it to our queue. 2033 */ 2034 if (tcp && cp->cpu_disp->disp_nrunnable == 0) { 2035 tp = disp_getbest(tcp->cpu_disp); 2036 if (tp == NULL || tp == T_DONTSTEAL) 2037 return (tp); 2038 return (disp_ratify(tp, kpq)); 2039 } 2040 return (retval); 2041 } 2042 2043 2044 /* 2045 * disp_fix_unbound_pri() 2046 * Determines the maximum priority of unbound threads on the queue. 2047 * The priority is kept for the queue, but is only increased, never 2048 * reduced unless some CPU is looking for something on that queue. 2049 * 2050 * The priority argument is the known upper limit. 2051 * 2052 * Perhaps this should be kept accurately, but that probably means 2053 * separate bitmaps for bound and unbound threads. Since only idled 2054 * CPUs will have to do this recalculation, it seems better this way. 2055 */ 2056 static void 2057 disp_fix_unbound_pri(disp_t *dp, pri_t pri) 2058 { 2059 kthread_t *tp; 2060 dispq_t *dq; 2061 ulong_t *dqactmap = dp->disp_qactmap; 2062 ulong_t mapword; 2063 int wx; 2064 2065 ASSERT(DISP_LOCK_HELD(&dp->disp_lock)); 2066 2067 ASSERT(pri >= 0); /* checked by caller */ 2068 2069 /* 2070 * Start the search at the next lowest priority below the supplied 2071 * priority. This depends on the bitmap implementation. 2072 */ 2073 do { 2074 wx = pri >> BT_ULSHIFT; /* index of word in map */ 2075 2076 /* 2077 * Form mask for all lower priorities in the word. 2078 */ 2079 mapword = dqactmap[wx] & (BT_BIW(pri) - 1); 2080 2081 /* 2082 * Get next lower active priority. 2083 */ 2084 if (mapword != 0) { 2085 pri = (wx << BT_ULSHIFT) + highbit(mapword) - 1; 2086 } else if (wx > 0) { 2087 pri = bt_gethighbit(dqactmap, wx - 1); /* sign extend */ 2088 if (pri < 0) 2089 break; 2090 } else { 2091 pri = -1; 2092 break; 2093 } 2094 2095 /* 2096 * Search the queue for unbound, runnable threads. 2097 */ 2098 dq = &dp->disp_q[pri]; 2099 tp = dq->dq_first; 2100 2101 while (tp && (tp->t_bound_cpu || tp->t_weakbound_cpu)) { 2102 tp = tp->t_link; 2103 } 2104 2105 /* 2106 * If a thread was found, set the priority and return. 2107 */ 2108 } while (tp == NULL); 2109 2110 /* 2111 * pri holds the maximum unbound thread priority or -1. 2112 */ 2113 if (dp->disp_max_unbound_pri != pri) 2114 dp->disp_max_unbound_pri = pri; 2115 } 2116 2117 /* 2118 * disp_adjust_unbound_pri() - thread is becoming unbound, so we should 2119 * check if the CPU to which is was previously bound should have 2120 * its disp_max_unbound_pri increased. 2121 */ 2122 void 2123 disp_adjust_unbound_pri(kthread_t *tp) 2124 { 2125 disp_t *dp; 2126 pri_t tpri; 2127 2128 ASSERT(THREAD_LOCK_HELD(tp)); 2129 2130 /* 2131 * Don't do anything if the thread is not bound, or 2132 * currently not runnable or swapped out. 2133 */ 2134 if (tp->t_bound_cpu == NULL || 2135 tp->t_state != TS_RUN || 2136 tp->t_schedflag & TS_ON_SWAPQ) 2137 return; 2138 2139 tpri = DISP_PRIO(tp); 2140 dp = tp->t_bound_cpu->cpu_disp; 2141 ASSERT(tpri >= 0 && tpri < dp->disp_npri); 2142 if (tpri > dp->disp_max_unbound_pri) 2143 dp->disp_max_unbound_pri = tpri; 2144 } 2145 2146 /* 2147 * disp_getbest() 2148 * De-queue the highest priority unbound runnable thread. 2149 * Returns with the thread unlocked and onproc but at splhigh (like disp()). 2150 * Returns NULL if nothing found. 2151 * Returns T_DONTSTEAL if the thread was not stealable. 2152 * so that the caller will try again later. 2153 * 2154 * Passed a pointer to a dispatch queue not associated with this CPU, and 2155 * its type. 2156 */ 2157 static kthread_t * 2158 disp_getbest(disp_t *dp) 2159 { 2160 kthread_t *tp; 2161 dispq_t *dq; 2162 pri_t pri; 2163 cpu_t *cp, *tcp; 2164 boolean_t allbound; 2165 2166 disp_lock_enter(&dp->disp_lock); 2167 2168 /* 2169 * If there is nothing to run, or the CPU is in the middle of a 2170 * context switch of the only thread, return NULL. 2171 */ 2172 tcp = dp->disp_cpu; 2173 cp = CPU; 2174 pri = dp->disp_max_unbound_pri; 2175 if (pri == -1 || 2176 (tcp != NULL && (tcp->cpu_disp_flags & CPU_DISP_DONTSTEAL) && 2177 tcp->cpu_disp->disp_nrunnable == 1)) { 2178 disp_lock_exit_nopreempt(&dp->disp_lock); 2179 return (NULL); 2180 } 2181 2182 dq = &dp->disp_q[pri]; 2183 2184 2185 /* 2186 * Assume that all threads are bound on this queue, and change it 2187 * later when we find out that it is not the case. 2188 */ 2189 allbound = B_TRUE; 2190 for (tp = dq->dq_first; tp != NULL; tp = tp->t_link) { 2191 hrtime_t now, nosteal, rqtime; 2192 2193 /* 2194 * Skip over bound threads which could be here even 2195 * though disp_max_unbound_pri indicated this level. 2196 */ 2197 if (tp->t_bound_cpu || tp->t_weakbound_cpu) 2198 continue; 2199 2200 /* 2201 * We've got some unbound threads on this queue, so turn 2202 * the allbound flag off now. 2203 */ 2204 allbound = B_FALSE; 2205 2206 /* 2207 * The thread is a candidate for stealing from its run queue. We 2208 * don't want to steal threads that became runnable just a 2209 * moment ago. This improves CPU affinity for threads that get 2210 * preempted for short periods of time and go back on the run 2211 * queue. 2212 * 2213 * We want to let it stay on its run queue if it was only placed 2214 * there recently and it was running on the same CPU before that 2215 * to preserve its cache investment. For the thread to remain on 2216 * its run queue, ALL of the following conditions must be 2217 * satisfied: 2218 * 2219 * - the disp queue should not be the kernel preemption queue 2220 * - delayed idle stealing should not be disabled 2221 * - nosteal_nsec should be non-zero 2222 * - it should run with user priority 2223 * - it should be on the run queue of the CPU where it was 2224 * running before being placed on the run queue 2225 * - it should be the only thread on the run queue (to prevent 2226 * extra scheduling latency for other threads) 2227 * - it should sit on the run queue for less than per-chip 2228 * nosteal interval or global nosteal interval 2229 * - in case of CPUs with shared cache it should sit in a run 2230 * queue of a CPU from a different chip 2231 * 2232 * The checks are arranged so that the ones that are faster are 2233 * placed earlier. 2234 */ 2235 if (tcp == NULL || 2236 pri >= minclsyspri || 2237 tp->t_cpu != tcp) 2238 break; 2239 2240 /* 2241 * Steal immediately if, due to CMT processor architecture 2242 * migraiton between cp and tcp would incur no performance 2243 * penalty. 2244 */ 2245 if (pg_cmt_can_migrate(cp, tcp)) 2246 break; 2247 2248 nosteal = nosteal_nsec; 2249 if (nosteal == 0) 2250 break; 2251 2252 /* 2253 * Calculate time spent sitting on run queue 2254 */ 2255 now = gethrtime_unscaled(); 2256 rqtime = now - tp->t_waitrq; 2257 scalehrtime(&rqtime); 2258 2259 /* 2260 * Steal immediately if the time spent on this run queue is more 2261 * than allowed nosteal delay. 2262 * 2263 * Negative rqtime check is needed here to avoid infinite 2264 * stealing delays caused by unlikely but not impossible 2265 * drifts between CPU times on different CPUs. 2266 */ 2267 if (rqtime > nosteal || rqtime < 0) 2268 break; 2269 2270 DTRACE_PROBE4(nosteal, kthread_t *, tp, 2271 cpu_t *, tcp, cpu_t *, cp, hrtime_t, rqtime); 2272 scalehrtime(&now); 2273 /* 2274 * Calculate when this thread becomes stealable 2275 */ 2276 now += (nosteal - rqtime); 2277 2278 /* 2279 * Calculate time when some thread becomes stealable 2280 */ 2281 if (now < dp->disp_steal) 2282 dp->disp_steal = now; 2283 } 2284 2285 /* 2286 * If there were no unbound threads on this queue, find the queue 2287 * where they are and then return later. The value of 2288 * disp_max_unbound_pri is not always accurate because it isn't 2289 * reduced until another idle CPU looks for work. 2290 */ 2291 if (allbound) 2292 disp_fix_unbound_pri(dp, pri); 2293 2294 /* 2295 * If we reached the end of the queue and found no unbound threads 2296 * then return NULL so that other CPUs will be considered. If there 2297 * are unbound threads but they cannot yet be stolen, then 2298 * return T_DONTSTEAL and try again later. 2299 */ 2300 if (tp == NULL) { 2301 disp_lock_exit_nopreempt(&dp->disp_lock); 2302 return (allbound ? NULL : T_DONTSTEAL); 2303 } 2304 2305 /* 2306 * Found a runnable, unbound thread, so remove it from queue. 2307 * dispdeq() requires that we have the thread locked, and we do, 2308 * by virtue of holding the dispatch queue lock. dispdeq() will 2309 * put the thread in transition state, thereby dropping the dispq 2310 * lock. 2311 */ 2312 2313 #ifdef DEBUG 2314 { 2315 int thread_was_on_queue; 2316 2317 thread_was_on_queue = dispdeq(tp); /* drops disp_lock */ 2318 ASSERT(thread_was_on_queue); 2319 } 2320 2321 #else /* DEBUG */ 2322 (void) dispdeq(tp); /* drops disp_lock */ 2323 #endif /* DEBUG */ 2324 2325 /* 2326 * Reset the disp_queue steal time - we do not know what is the smallest 2327 * value across the queue is. 2328 */ 2329 dp->disp_steal = 0; 2330 2331 tp->t_schedflag |= TS_DONT_SWAP; 2332 2333 /* 2334 * Setup thread to run on the current CPU. 2335 */ 2336 tp->t_disp_queue = cp->cpu_disp; 2337 2338 cp->cpu_dispthread = tp; /* protected by spl only */ 2339 cp->cpu_dispatch_pri = pri; 2340 ASSERT(pri == DISP_PRIO(tp)); 2341 2342 DTRACE_PROBE3(steal, kthread_t *, tp, cpu_t *, tcp, cpu_t *, cp); 2343 2344 thread_onproc(tp, cp); /* set t_state to TS_ONPROC */ 2345 2346 /* 2347 * Return with spl high so that swtch() won't need to raise it. 2348 * The disp_lock was dropped by dispdeq(). 2349 */ 2350 2351 return (tp); 2352 } 2353 2354 /* 2355 * disp_bound_common() - common routine for higher level functions 2356 * that check for bound threads under certain conditions. 2357 * If 'threadlistsafe' is set then there is no need to acquire 2358 * pidlock to stop the thread list from changing (eg, if 2359 * disp_bound_* is called with cpus paused). 2360 */ 2361 static int 2362 disp_bound_common(cpu_t *cp, int threadlistsafe, int flag) 2363 { 2364 int found = 0; 2365 kthread_t *tp; 2366 2367 ASSERT(flag); 2368 2369 if (!threadlistsafe) 2370 mutex_enter(&pidlock); 2371 tp = curthread; /* faster than allthreads */ 2372 do { 2373 if (tp->t_state != TS_FREE) { 2374 /* 2375 * If an interrupt thread is busy, but the 2376 * caller doesn't care (i.e. BOUND_INTR is off), 2377 * then just ignore it and continue through. 2378 */ 2379 if ((tp->t_flag & T_INTR_THREAD) && 2380 !(flag & BOUND_INTR)) 2381 continue; 2382 2383 /* 2384 * Skip the idle thread for the CPU 2385 * we're about to set offline. 2386 */ 2387 if (tp == cp->cpu_idle_thread) 2388 continue; 2389 2390 /* 2391 * Skip the pause thread for the CPU 2392 * we're about to set offline. 2393 */ 2394 if (tp == cp->cpu_pause_thread) 2395 continue; 2396 2397 if ((flag & BOUND_CPU) && 2398 (tp->t_bound_cpu == cp || 2399 tp->t_bind_cpu == cp->cpu_id || 2400 tp->t_weakbound_cpu == cp)) { 2401 found = 1; 2402 break; 2403 } 2404 2405 if ((flag & BOUND_PARTITION) && 2406 (tp->t_cpupart == cp->cpu_part)) { 2407 found = 1; 2408 break; 2409 } 2410 } 2411 } while ((tp = tp->t_next) != curthread && found == 0); 2412 if (!threadlistsafe) 2413 mutex_exit(&pidlock); 2414 return (found); 2415 } 2416 2417 /* 2418 * disp_bound_threads - return nonzero if threads are bound to the processor. 2419 * Called infrequently. Keep this simple. 2420 * Includes threads that are asleep or stopped but not onproc. 2421 */ 2422 int 2423 disp_bound_threads(cpu_t *cp, int threadlistsafe) 2424 { 2425 return (disp_bound_common(cp, threadlistsafe, BOUND_CPU)); 2426 } 2427 2428 /* 2429 * disp_bound_anythreads - return nonzero if _any_ threads are bound 2430 * to the given processor, including interrupt threads. 2431 */ 2432 int 2433 disp_bound_anythreads(cpu_t *cp, int threadlistsafe) 2434 { 2435 return (disp_bound_common(cp, threadlistsafe, BOUND_CPU | BOUND_INTR)); 2436 } 2437 2438 /* 2439 * disp_bound_partition - return nonzero if threads are bound to the same 2440 * partition as the processor. 2441 * Called infrequently. Keep this simple. 2442 * Includes threads that are asleep or stopped but not onproc. 2443 */ 2444 int 2445 disp_bound_partition(cpu_t *cp, int threadlistsafe) 2446 { 2447 return (disp_bound_common(cp, threadlistsafe, BOUND_PARTITION)); 2448 } 2449 2450 /* 2451 * disp_cpu_inactive - make a CPU inactive by moving all of its unbound 2452 * threads to other CPUs. 2453 */ 2454 void 2455 disp_cpu_inactive(cpu_t *cp) 2456 { 2457 kthread_t *tp; 2458 disp_t *dp = cp->cpu_disp; 2459 dispq_t *dq; 2460 pri_t pri; 2461 int wasonq; 2462 2463 disp_lock_enter(&dp->disp_lock); 2464 while ((pri = dp->disp_max_unbound_pri) != -1) { 2465 dq = &dp->disp_q[pri]; 2466 tp = dq->dq_first; 2467 2468 /* 2469 * Skip over bound threads. 2470 */ 2471 while (tp != NULL && tp->t_bound_cpu != NULL) { 2472 tp = tp->t_link; 2473 } 2474 2475 if (tp == NULL) { 2476 /* disp_max_unbound_pri must be inaccurate, so fix it */ 2477 disp_fix_unbound_pri(dp, pri); 2478 continue; 2479 } 2480 2481 wasonq = dispdeq(tp); /* drops disp_lock */ 2482 ASSERT(wasonq); 2483 ASSERT(tp->t_weakbound_cpu == NULL); 2484 2485 setbackdq(tp); 2486 /* 2487 * Called from cpu_offline: 2488 * 2489 * cp has already been removed from the list of active cpus 2490 * and tp->t_cpu has been changed so there is no risk of 2491 * tp ending up back on cp. 2492 * 2493 * Called from cpupart_move_cpu: 2494 * 2495 * The cpu has moved to a new cpupart. Any threads that 2496 * were on it's dispatch queues before the move remain 2497 * in the old partition and can't run in the new partition. 2498 */ 2499 ASSERT(tp->t_cpu != cp); 2500 thread_unlock(tp); 2501 2502 disp_lock_enter(&dp->disp_lock); 2503 } 2504 disp_lock_exit(&dp->disp_lock); 2505 } 2506 2507 /* 2508 * disp_lowpri_cpu - find CPU running the lowest priority thread. 2509 * The hint passed in is used as a starting point so we don't favor 2510 * CPU 0 or any other CPU. The caller should pass in the most recently 2511 * used CPU for the thread. 2512 * 2513 * The lgroup and priority are used to determine the best CPU to run on 2514 * in a NUMA machine. The lgroup specifies which CPUs are closest while 2515 * the thread priority will indicate whether the thread will actually run 2516 * there. To pick the best CPU, the CPUs inside and outside of the given 2517 * lgroup which are running the lowest priority threads are found. The 2518 * remote CPU is chosen only if the thread will not run locally on a CPU 2519 * within the lgroup, but will run on the remote CPU. If the thread 2520 * cannot immediately run on any CPU, the best local CPU will be chosen. 2521 * 2522 * The lpl specified also identifies the cpu partition from which 2523 * disp_lowpri_cpu should select a CPU. 2524 * 2525 * curcpu is used to indicate that disp_lowpri_cpu is being called on 2526 * behalf of the current thread. (curthread is looking for a new cpu) 2527 * In this case, cpu_dispatch_pri for this thread's cpu should be 2528 * ignored. 2529 * 2530 * If a cpu is the target of an offline request then try to avoid it. 2531 * 2532 * This function must be called at either high SPL, or with preemption 2533 * disabled, so that the "hint" CPU cannot be removed from the online 2534 * CPU list while we are traversing it. 2535 */ 2536 cpu_t * 2537 disp_lowpri_cpu(cpu_t *hint, lpl_t *lpl, pri_t tpri, cpu_t *curcpu) 2538 { 2539 cpu_t *bestcpu; 2540 cpu_t *besthomecpu; 2541 cpu_t *cp, *cpstart; 2542 2543 pri_t bestpri; 2544 pri_t cpupri; 2545 2546 klgrpset_t done; 2547 klgrpset_t cur_set; 2548 2549 lpl_t *lpl_iter, *lpl_leaf; 2550 int i; 2551 2552 /* 2553 * Scan for a CPU currently running the lowest priority thread. 2554 * Cannot get cpu_lock here because it is adaptive. 2555 * We do not require lock on CPU list. 2556 */ 2557 ASSERT(hint != NULL); 2558 ASSERT(lpl != NULL); 2559 ASSERT(lpl->lpl_ncpu > 0); 2560 2561 /* 2562 * First examine local CPUs. Note that it's possible the hint CPU 2563 * passed in in remote to the specified home lgroup. If our priority 2564 * isn't sufficient enough such that we can run immediately at home, 2565 * then examine CPUs remote to our home lgroup. 2566 * We would like to give preference to CPUs closest to "home". 2567 * If we can't find a CPU where we'll run at a given level 2568 * of locality, we expand our search to include the next level. 2569 */ 2570 bestcpu = besthomecpu = NULL; 2571 klgrpset_clear(done); 2572 /* start with lpl we were passed */ 2573 2574 lpl_iter = lpl; 2575 2576 do { 2577 2578 bestpri = SHRT_MAX; 2579 klgrpset_clear(cur_set); 2580 2581 for (i = 0; i < lpl_iter->lpl_nrset; i++) { 2582 lpl_leaf = lpl_iter->lpl_rset[i]; 2583 if (klgrpset_ismember(done, lpl_leaf->lpl_lgrpid)) 2584 continue; 2585 2586 klgrpset_add(cur_set, lpl_leaf->lpl_lgrpid); 2587 2588 if (hint->cpu_lpl == lpl_leaf) 2589 cp = cpstart = hint; 2590 else 2591 cp = cpstart = lpl_leaf->lpl_cpus; 2592 2593 do { 2594 if (cp == curcpu) 2595 cpupri = -1; 2596 else if (cp == cpu_inmotion) 2597 cpupri = SHRT_MAX; 2598 else 2599 cpupri = cp->cpu_dispatch_pri; 2600 if (cp->cpu_disp->disp_maxrunpri > cpupri) 2601 cpupri = cp->cpu_disp->disp_maxrunpri; 2602 if (cp->cpu_chosen_level > cpupri) 2603 cpupri = cp->cpu_chosen_level; 2604 if (cpupri < bestpri) { 2605 if (CPU_IDLING(cpupri)) { 2606 ASSERT((cp->cpu_flags & 2607 CPU_QUIESCED) == 0); 2608 return (cp); 2609 } 2610 bestcpu = cp; 2611 bestpri = cpupri; 2612 } 2613 } while ((cp = cp->cpu_next_lpl) != cpstart); 2614 } 2615 2616 if (bestcpu && (tpri > bestpri)) { 2617 ASSERT((bestcpu->cpu_flags & CPU_QUIESCED) == 0); 2618 return (bestcpu); 2619 } 2620 if (besthomecpu == NULL) 2621 besthomecpu = bestcpu; 2622 /* 2623 * Add the lgrps we just considered to the "done" set 2624 */ 2625 klgrpset_or(done, cur_set); 2626 2627 } while ((lpl_iter = lpl_iter->lpl_parent) != NULL); 2628 2629 /* 2630 * The specified priority isn't high enough to run immediately 2631 * anywhere, so just return the best CPU from the home lgroup. 2632 */ 2633 ASSERT((besthomecpu->cpu_flags & CPU_QUIESCED) == 0); 2634 return (besthomecpu); 2635 } 2636 2637 /* 2638 * This routine provides the generic idle cpu function for all processors. 2639 * If a processor has some specific code to execute when idle (say, to stop 2640 * the pipeline and save power) then that routine should be defined in the 2641 * processors specific code (module_xx.c) and the global variable idle_cpu 2642 * set to that function. 2643 */ 2644 static void 2645 generic_idle_cpu(void) 2646 { 2647 } 2648 2649 /*ARGSUSED*/ 2650 static void 2651 generic_enq_thread(cpu_t *cpu, int bound) 2652 { 2653 } 2654 2655 /* 2656 * Select a CPU for this thread to run on. Choose t->t_cpu unless: 2657 * - t->t_cpu is not in this thread's assigned lgrp 2658 * - the time since the thread last came off t->t_cpu exceeds the 2659 * rechoose time for this cpu (ignore this if t is curthread in 2660 * which case it's on CPU and t->t_disp_time is inaccurate) 2661 * - t->t_cpu is presently the target of an offline or partition move 2662 * request 2663 */ 2664 static cpu_t * 2665 cpu_choose(kthread_t *t, pri_t tpri) 2666 { 2667 ASSERT(tpri < kpqpri); 2668 2669 if ((((lbolt - t->t_disp_time) > rechoose_interval) && 2670 t != curthread) || t->t_cpu == cpu_inmotion) { 2671 return (disp_lowpri_cpu(t->t_cpu, t->t_lpl, tpri, NULL)); 2672 } 2673 2674 /* 2675 * Take a trip through disp_lowpri_cpu() if the thread was 2676 * running outside it's home lgroup 2677 */ 2678 if (!klgrpset_ismember(t->t_lpl->lpl_lgrp->lgrp_set[LGRP_RSRC_CPU], 2679 t->t_cpu->cpu_lpl->lpl_lgrpid)) { 2680 return (disp_lowpri_cpu(t->t_cpu, t->t_lpl, tpri, 2681 (t == curthread) ? t->t_cpu : NULL)); 2682 } 2683 return (t->t_cpu); 2684 } 2685