1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * This file is part of the core Kernel Cryptographic Framework. 28 * It implements the SPI functions exported to cryptographic 29 * providers. 30 */ 31 32 #include <sys/ksynch.h> 33 #include <sys/cmn_err.h> 34 #include <sys/ddi.h> 35 #include <sys/sunddi.h> 36 #include <sys/modctl.h> 37 #include <sys/crypto/common.h> 38 #include <sys/crypto/impl.h> 39 #include <sys/crypto/sched_impl.h> 40 #include <sys/crypto/spi.h> 41 #include <sys/taskq.h> 42 #include <sys/disp.h> 43 #include <sys/kstat.h> 44 #include <sys/policy.h> 45 #include <sys/cpuvar.h> 46 47 /* 48 * minalloc and maxalloc values to be used for taskq_create(). 49 */ 50 int crypto_taskq_threads = CRYPTO_TASKQ_THREADS; 51 int crypto_taskq_minalloc = CYRPTO_TASKQ_MIN; 52 int crypto_taskq_maxalloc = CRYPTO_TASKQ_MAX; 53 54 static void remove_provider(kcf_provider_desc_t *); 55 static void process_logical_providers(crypto_provider_info_t *, 56 kcf_provider_desc_t *); 57 static int init_prov_mechs(crypto_provider_info_t *, kcf_provider_desc_t *); 58 static int kcf_prov_kstat_update(kstat_t *, int); 59 static void undo_register_provider_extra(kcf_provider_desc_t *); 60 static void delete_kstat(kcf_provider_desc_t *); 61 62 static kcf_prov_stats_t kcf_stats_ks_data_template = { 63 { "kcf_ops_total", KSTAT_DATA_UINT64 }, 64 { "kcf_ops_passed", KSTAT_DATA_UINT64 }, 65 { "kcf_ops_failed", KSTAT_DATA_UINT64 }, 66 { "kcf_ops_returned_busy", KSTAT_DATA_UINT64 } 67 }; 68 69 #define KCF_SPI_COPY_OPS(src, dst, ops) if ((src)->ops != NULL) \ 70 *((dst)->ops) = *((src)->ops); 71 72 /* 73 * Copy an ops vector from src to dst. Used during provider registration 74 * to copy the ops vector from the provider info structure to the 75 * provider descriptor maintained by KCF. 76 * Copying the ops vector specified by the provider is needed since the 77 * framework does not require the provider info structure to be 78 * persistent. 79 */ 80 static void 81 copy_ops_vector_v1(crypto_ops_t *src_ops, crypto_ops_t *dst_ops) 82 { 83 KCF_SPI_COPY_OPS(src_ops, dst_ops, co_control_ops); 84 KCF_SPI_COPY_OPS(src_ops, dst_ops, co_digest_ops); 85 KCF_SPI_COPY_OPS(src_ops, dst_ops, co_cipher_ops); 86 KCF_SPI_COPY_OPS(src_ops, dst_ops, co_mac_ops); 87 KCF_SPI_COPY_OPS(src_ops, dst_ops, co_sign_ops); 88 KCF_SPI_COPY_OPS(src_ops, dst_ops, co_verify_ops); 89 KCF_SPI_COPY_OPS(src_ops, dst_ops, co_dual_ops); 90 KCF_SPI_COPY_OPS(src_ops, dst_ops, co_dual_cipher_mac_ops); 91 KCF_SPI_COPY_OPS(src_ops, dst_ops, co_random_ops); 92 KCF_SPI_COPY_OPS(src_ops, dst_ops, co_session_ops); 93 KCF_SPI_COPY_OPS(src_ops, dst_ops, co_object_ops); 94 KCF_SPI_COPY_OPS(src_ops, dst_ops, co_key_ops); 95 KCF_SPI_COPY_OPS(src_ops, dst_ops, co_provider_ops); 96 KCF_SPI_COPY_OPS(src_ops, dst_ops, co_ctx_ops); 97 } 98 99 static void 100 copy_ops_vector_v2(crypto_ops_t *src_ops, crypto_ops_t *dst_ops) 101 { 102 KCF_SPI_COPY_OPS(src_ops, dst_ops, co_mech_ops); 103 } 104 105 static void 106 copy_ops_vector_v3(crypto_ops_t *src_ops, crypto_ops_t *dst_ops) 107 { 108 KCF_SPI_COPY_OPS(src_ops, dst_ops, co_nostore_key_ops); 109 } 110 111 /* 112 * This routine is used to add cryptographic providers to the KEF framework. 113 * Providers pass a crypto_provider_info structure to crypto_register_provider() 114 * and get back a handle. The crypto_provider_info structure contains a 115 * list of mechanisms supported by the provider and an ops vector containing 116 * provider entry points. Hardware providers call this routine in their attach 117 * routines. Software providers call this routine in their _init() routine. 118 */ 119 int 120 crypto_register_provider(crypto_provider_info_t *info, 121 crypto_kcf_provider_handle_t *handle) 122 { 123 int need_verify; 124 struct modctl *mcp; 125 char *name; 126 char ks_name[KSTAT_STRLEN]; 127 128 kcf_provider_desc_t *prov_desc = NULL; 129 int ret = CRYPTO_ARGUMENTS_BAD; 130 131 if (info->pi_interface_version > CRYPTO_SPI_VERSION_3) 132 return (CRYPTO_VERSION_MISMATCH); 133 134 /* 135 * Check provider type, must be software, hardware, or logical. 136 */ 137 if (info->pi_provider_type != CRYPTO_HW_PROVIDER && 138 info->pi_provider_type != CRYPTO_SW_PROVIDER && 139 info->pi_provider_type != CRYPTO_LOGICAL_PROVIDER) 140 return (CRYPTO_ARGUMENTS_BAD); 141 142 /* 143 * Allocate and initialize a new provider descriptor. We also 144 * hold it and release it when done. 145 */ 146 prov_desc = kcf_alloc_provider_desc(info); 147 KCF_PROV_REFHOLD(prov_desc); 148 149 prov_desc->pd_prov_type = info->pi_provider_type; 150 151 /* provider-private handle, opaque to KCF */ 152 prov_desc->pd_prov_handle = info->pi_provider_handle; 153 154 /* copy provider description string */ 155 if (info->pi_provider_description != NULL) { 156 /* 157 * pi_provider_descriptor is a string that can contain 158 * up to CRYPTO_PROVIDER_DESCR_MAX_LEN + 1 characters 159 * INCLUDING the terminating null character. A bcopy() 160 * is necessary here as pd_description should not have 161 * a null character. See comments in kcf_alloc_provider_desc() 162 * for details on pd_description field. 163 */ 164 bcopy(info->pi_provider_description, prov_desc->pd_description, 165 min(strlen(info->pi_provider_description), 166 CRYPTO_PROVIDER_DESCR_MAX_LEN)); 167 } 168 169 if (info->pi_provider_type != CRYPTO_LOGICAL_PROVIDER) { 170 if (info->pi_ops_vector == NULL) { 171 goto bail; 172 } 173 copy_ops_vector_v1(info->pi_ops_vector, 174 prov_desc->pd_ops_vector); 175 if (info->pi_interface_version >= CRYPTO_SPI_VERSION_2) { 176 copy_ops_vector_v2(info->pi_ops_vector, 177 prov_desc->pd_ops_vector); 178 prov_desc->pd_flags = info->pi_flags; 179 } 180 if (info->pi_interface_version == CRYPTO_SPI_VERSION_3) { 181 copy_ops_vector_v3(info->pi_ops_vector, 182 prov_desc->pd_ops_vector); 183 } 184 } 185 186 /* object_ops and nostore_key_ops are mutually exclusive */ 187 if (prov_desc->pd_ops_vector->co_object_ops && 188 prov_desc->pd_ops_vector->co_nostore_key_ops) { 189 goto bail; 190 } 191 /* 192 * For software providers, copy the module name and module ID. 193 * For hardware providers, copy the driver name and instance. 194 */ 195 switch (info->pi_provider_type) { 196 case CRYPTO_SW_PROVIDER: 197 if (info->pi_provider_dev.pd_sw == NULL) 198 goto bail; 199 200 if ((mcp = mod_getctl(info->pi_provider_dev.pd_sw)) == NULL) 201 goto bail; 202 203 prov_desc->pd_module_id = mcp->mod_id; 204 name = mcp->mod_modname; 205 break; 206 207 case CRYPTO_HW_PROVIDER: 208 case CRYPTO_LOGICAL_PROVIDER: 209 if (info->pi_provider_dev.pd_hw == NULL) 210 goto bail; 211 212 prov_desc->pd_instance = 213 ddi_get_instance(info->pi_provider_dev.pd_hw); 214 name = (char *)ddi_driver_name(info->pi_provider_dev.pd_hw); 215 break; 216 } 217 if (name == NULL) 218 goto bail; 219 220 prov_desc->pd_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 221 (void) strcpy(prov_desc->pd_name, name); 222 223 if ((prov_desc->pd_mctlp = kcf_get_modctl(info)) == NULL) 224 goto bail; 225 226 /* process the mechanisms supported by the provider */ 227 if ((ret = init_prov_mechs(info, prov_desc)) != CRYPTO_SUCCESS) 228 goto bail; 229 230 /* 231 * Add provider to providers tables, also sets the descriptor 232 * pd_prov_id field. 233 */ 234 if ((ret = kcf_prov_tab_add_provider(prov_desc)) != CRYPTO_SUCCESS) { 235 undo_register_provider(prov_desc, B_FALSE); 236 goto bail; 237 } 238 239 if ((need_verify = kcf_need_signature_verification(prov_desc)) == -1) { 240 undo_register_provider(prov_desc, B_TRUE); 241 ret = CRYPTO_MODVERIFICATION_FAILED; 242 goto bail; 243 } 244 245 /* 246 * We create a taskq only for a hardware provider. The global 247 * software queue is used for software providers. We handle ordering 248 * of multi-part requests in the taskq routine. So, it is safe to 249 * have multiple threads for the taskq. We pass TASKQ_PREPOPULATE flag 250 * to keep some entries cached to improve performance. 251 */ 252 if (prov_desc->pd_prov_type == CRYPTO_HW_PROVIDER) 253 prov_desc->pd_taskq = taskq_create("kcf_taskq", 254 crypto_taskq_threads, minclsyspri, 255 crypto_taskq_minalloc, crypto_taskq_maxalloc, 256 TASKQ_PREPOPULATE); 257 else 258 prov_desc->pd_taskq = NULL; 259 260 /* no kernel session to logical providers */ 261 if (prov_desc->pd_prov_type != CRYPTO_LOGICAL_PROVIDER) { 262 /* 263 * Open a session for session-oriented providers. This session 264 * is used for all kernel consumers. This is fine as a provider 265 * is required to support multiple thread access to a session. 266 * We can do this only after the taskq has been created as we 267 * do a kcf_submit_request() to open the session. 268 */ 269 if (KCF_PROV_SESSION_OPS(prov_desc) != NULL) { 270 kcf_req_params_t params; 271 272 KCF_WRAP_SESSION_OPS_PARAMS(¶ms, 273 KCF_OP_SESSION_OPEN, &prov_desc->pd_sid, 0, 274 CRYPTO_USER, NULL, 0, prov_desc); 275 ret = kcf_submit_request(prov_desc, NULL, NULL, ¶ms, 276 B_FALSE); 277 278 if (ret != CRYPTO_SUCCESS) { 279 undo_register_provider(prov_desc, B_TRUE); 280 ret = CRYPTO_FAILED; 281 goto bail; 282 } 283 } 284 } 285 286 if (prov_desc->pd_prov_type != CRYPTO_LOGICAL_PROVIDER) { 287 /* 288 * Create the kstat for this provider. There is a kstat 289 * installed for each successfully registered provider. 290 * This kstat is deleted, when the provider unregisters. 291 */ 292 if (prov_desc->pd_prov_type == CRYPTO_SW_PROVIDER) { 293 (void) snprintf(ks_name, KSTAT_STRLEN, "%s_%s", 294 prov_desc->pd_name, "provider_stats"); 295 } else { 296 (void) snprintf(ks_name, KSTAT_STRLEN, "%s_%d_%u_%s", 297 prov_desc->pd_name, prov_desc->pd_instance, 298 prov_desc->pd_prov_id, "provider_stats"); 299 } 300 301 prov_desc->pd_kstat = kstat_create("kcf", 0, ks_name, "crypto", 302 KSTAT_TYPE_NAMED, sizeof (kcf_prov_stats_t) / 303 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 304 305 if (prov_desc->pd_kstat != NULL) { 306 bcopy(&kcf_stats_ks_data_template, 307 &prov_desc->pd_ks_data, 308 sizeof (kcf_stats_ks_data_template)); 309 prov_desc->pd_kstat->ks_data = &prov_desc->pd_ks_data; 310 KCF_PROV_REFHOLD(prov_desc); 311 prov_desc->pd_kstat->ks_private = prov_desc; 312 prov_desc->pd_kstat->ks_update = kcf_prov_kstat_update; 313 kstat_install(prov_desc->pd_kstat); 314 } 315 } 316 317 if (prov_desc->pd_prov_type == CRYPTO_HW_PROVIDER) 318 process_logical_providers(info, prov_desc); 319 320 if (need_verify == 1) { 321 /* kcf_verify_signature routine will release this hold */ 322 KCF_PROV_REFHOLD(prov_desc); 323 324 if (prov_desc->pd_prov_type == CRYPTO_HW_PROVIDER) { 325 /* 326 * It is not safe to make the door upcall to kcfd from 327 * this context since the kcfd thread could reenter 328 * devfs. So, we dispatch a taskq job to do the 329 * verification and return to the provider. 330 */ 331 (void) taskq_dispatch(system_taskq, 332 kcf_verify_signature, (void *)prov_desc, TQ_SLEEP); 333 } else if (prov_desc->pd_prov_type == CRYPTO_SW_PROVIDER) { 334 kcf_verify_signature(prov_desc); 335 if (prov_desc->pd_state == 336 KCF_PROV_VERIFICATION_FAILED) { 337 undo_register_provider_extra(prov_desc); 338 ret = CRYPTO_MODVERIFICATION_FAILED; 339 goto bail; 340 } 341 } 342 } else { 343 mutex_enter(&prov_desc->pd_lock); 344 prov_desc->pd_state = KCF_PROV_READY; 345 mutex_exit(&prov_desc->pd_lock); 346 kcf_do_notify(prov_desc, B_TRUE); 347 } 348 349 *handle = prov_desc->pd_kcf_prov_handle; 350 ret = CRYPTO_SUCCESS; 351 352 bail: 353 KCF_PROV_REFRELE(prov_desc); 354 return (ret); 355 } 356 357 /* Return the number of holds on a provider. */ 358 int 359 kcf_get_refcnt(kcf_provider_desc_t *pd, boolean_t do_lock) 360 { 361 int i; 362 int refcnt = 0; 363 364 if (do_lock) 365 for (i = 0; i < pd->pd_nbins; i++) 366 mutex_enter(&(pd->pd_percpu_bins[i].kp_lock)); 367 368 for (i = 0; i < pd->pd_nbins; i++) 369 refcnt += pd->pd_percpu_bins[i].kp_holdcnt; 370 371 if (do_lock) 372 for (i = 0; i < pd->pd_nbins; i++) 373 mutex_exit(&(pd->pd_percpu_bins[i].kp_lock)); 374 375 return (refcnt); 376 } 377 378 /* 379 * This routine is used to notify the framework when a provider is being 380 * removed. Hardware providers call this routine in their detach routines. 381 * Software providers call this routine in their _fini() routine. 382 */ 383 int 384 crypto_unregister_provider(crypto_kcf_provider_handle_t handle) 385 { 386 uint_t mech_idx; 387 kcf_provider_desc_t *desc; 388 kcf_prov_state_t saved_state; 389 390 /* lookup provider descriptor */ 391 if ((desc = kcf_prov_tab_lookup((crypto_provider_id_t)handle)) == NULL) 392 return (CRYPTO_UNKNOWN_PROVIDER); 393 394 mutex_enter(&desc->pd_lock); 395 /* 396 * Check if any other thread is disabling or removing 397 * this provider. We return if this is the case. 398 */ 399 if (desc->pd_state >= KCF_PROV_DISABLED) { 400 mutex_exit(&desc->pd_lock); 401 /* Release reference held by kcf_prov_tab_lookup(). */ 402 KCF_PROV_REFRELE(desc); 403 return (CRYPTO_BUSY); 404 } 405 406 saved_state = desc->pd_state; 407 desc->pd_state = KCF_PROV_UNREGISTERING; 408 409 if (saved_state == KCF_PROV_BUSY) { 410 /* 411 * The per-provider taskq threads may be waiting. We 412 * signal them so that they can start failing requests. 413 */ 414 cv_broadcast(&desc->pd_resume_cv); 415 } 416 417 mutex_exit(&desc->pd_lock); 418 419 if (desc->pd_prov_type != CRYPTO_SW_PROVIDER) { 420 remove_provider(desc); 421 } 422 423 if (desc->pd_prov_type != CRYPTO_LOGICAL_PROVIDER) { 424 /* remove the provider from the mechanisms tables */ 425 for (mech_idx = 0; mech_idx < desc->pd_mech_list_count; 426 mech_idx++) { 427 kcf_remove_mech_provider( 428 desc->pd_mechanisms[mech_idx].cm_mech_name, desc); 429 } 430 } 431 432 /* remove provider from providers table */ 433 if (kcf_prov_tab_rem_provider((crypto_provider_id_t)handle) != 434 CRYPTO_SUCCESS) { 435 /* Release reference held by kcf_prov_tab_lookup(). */ 436 KCF_PROV_REFRELE(desc); 437 return (CRYPTO_UNKNOWN_PROVIDER); 438 } 439 440 delete_kstat(desc); 441 442 if (desc->pd_prov_type == CRYPTO_SW_PROVIDER) { 443 /* 444 * Wait till the existing requests with the provider complete 445 * and all the holds are released. All the holds on a software 446 * provider are from kernel clients and the hold time 447 * is expected to be short. So, we won't be stuck here forever. 448 */ 449 while (kcf_get_refcnt(desc, B_TRUE) > 1) { 450 /* wait 1 second and try again. */ 451 delay(1 * drv_usectohz(1000000)); 452 } 453 } else { 454 int i; 455 kcf_prov_cpu_t *mp; 456 457 /* 458 * Wait until requests that have been sent to the provider 459 * complete. 460 */ 461 for (i = 0; i < desc->pd_nbins; i++) { 462 mp = &(desc->pd_percpu_bins[i]); 463 464 mutex_enter(&mp->kp_lock); 465 while (mp->kp_jobcnt > 0) { 466 cv_wait(&mp->kp_cv, &mp->kp_lock); 467 } 468 mutex_exit(&mp->kp_lock); 469 } 470 } 471 472 mutex_enter(&desc->pd_lock); 473 desc->pd_state = KCF_PROV_UNREGISTERED; 474 mutex_exit(&desc->pd_lock); 475 476 kcf_do_notify(desc, B_FALSE); 477 478 /* Release reference held by kcf_prov_tab_lookup(). */ 479 KCF_PROV_REFRELE(desc); 480 481 if (kcf_get_refcnt(desc, B_TRUE) == 0) { 482 kcf_free_provider_desc(desc); 483 } else { 484 ASSERT(desc->pd_prov_type != CRYPTO_SW_PROVIDER); 485 /* 486 * We could avoid this if /dev/crypto can proactively 487 * remove any holds on us from a dormant PKCS #11 app. 488 * For now, a kcfd thread does a periodic check of the 489 * provider table for KCF_PROV_UNREGISTERED entries 490 * and frees them when refcnt reaches zero. 491 */ 492 mutex_enter(&prov_tab_mutex); 493 kcf_need_provtab_walk = B_TRUE; 494 mutex_exit(&prov_tab_mutex); 495 } 496 497 return (CRYPTO_SUCCESS); 498 } 499 500 /* 501 * This routine is used to notify the framework that the state of 502 * a cryptographic provider has changed. Valid state codes are: 503 * 504 * CRYPTO_PROVIDER_READY 505 * The provider indicates that it can process more requests. A provider 506 * will notify with this event if it previously has notified us with a 507 * CRYPTO_PROVIDER_BUSY. 508 * 509 * CRYPTO_PROVIDER_BUSY 510 * The provider can not take more requests. 511 * 512 * CRYPTO_PROVIDER_FAILED 513 * The provider encountered an internal error. The framework will not 514 * be sending any more requests to the provider. The provider may notify 515 * with a CRYPTO_PROVIDER_READY, if it is able to recover from the error. 516 * 517 * This routine can be called from user or interrupt context. 518 */ 519 void 520 crypto_provider_notification(crypto_kcf_provider_handle_t handle, uint_t state) 521 { 522 kcf_provider_desc_t *pd; 523 524 /* lookup the provider from the given handle */ 525 if ((pd = kcf_prov_tab_lookup((crypto_provider_id_t)handle)) == NULL) 526 return; 527 528 mutex_enter(&pd->pd_lock); 529 530 if (pd->pd_state <= KCF_PROV_VERIFICATION_FAILED) 531 goto out; 532 533 if (pd->pd_prov_type == CRYPTO_LOGICAL_PROVIDER) { 534 cmn_err(CE_WARN, "crypto_provider_notification: " 535 "logical provider (%x) ignored\n", handle); 536 goto out; 537 } 538 switch (state) { 539 case CRYPTO_PROVIDER_READY: 540 switch (pd->pd_state) { 541 case KCF_PROV_BUSY: 542 pd->pd_state = KCF_PROV_READY; 543 /* 544 * Signal the per-provider taskq threads that they 545 * can start submitting requests. 546 */ 547 cv_broadcast(&pd->pd_resume_cv); 548 break; 549 550 case KCF_PROV_FAILED: 551 /* 552 * The provider recovered from the error. Let us 553 * use it now. 554 */ 555 pd->pd_state = KCF_PROV_READY; 556 break; 557 } 558 break; 559 560 case CRYPTO_PROVIDER_BUSY: 561 switch (pd->pd_state) { 562 case KCF_PROV_READY: 563 pd->pd_state = KCF_PROV_BUSY; 564 break; 565 } 566 break; 567 568 case CRYPTO_PROVIDER_FAILED: 569 /* 570 * We note the failure and return. The per-provider taskq 571 * threads check this flag and start failing the 572 * requests, if it is set. See process_req_hwp() for details. 573 */ 574 switch (pd->pd_state) { 575 case KCF_PROV_READY: 576 pd->pd_state = KCF_PROV_FAILED; 577 break; 578 579 case KCF_PROV_BUSY: 580 pd->pd_state = KCF_PROV_FAILED; 581 /* 582 * The per-provider taskq threads may be waiting. We 583 * signal them so that they can start failing requests. 584 */ 585 cv_broadcast(&pd->pd_resume_cv); 586 break; 587 } 588 break; 589 } 590 out: 591 mutex_exit(&pd->pd_lock); 592 KCF_PROV_REFRELE(pd); 593 } 594 595 /* 596 * This routine is used to notify the framework the result of 597 * an asynchronous request handled by a provider. Valid error 598 * codes are the same as the CRYPTO_* errors defined in common.h. 599 * 600 * This routine can be called from user or interrupt context. 601 */ 602 void 603 crypto_op_notification(crypto_req_handle_t handle, int error) 604 { 605 kcf_call_type_t ctype; 606 607 if (handle == NULL) 608 return; 609 610 if ((ctype = GET_REQ_TYPE(handle)) == CRYPTO_SYNCH) { 611 kcf_sreq_node_t *sreq = (kcf_sreq_node_t *)handle; 612 613 KCF_PROV_JOB_RELE_STAT(sreq->sn_mp, (error != CRYPTO_SUCCESS)); 614 kcf_sop_done(sreq, error); 615 } else { 616 kcf_areq_node_t *areq = (kcf_areq_node_t *)handle; 617 618 ASSERT(ctype == CRYPTO_ASYNCH); 619 KCF_PROV_JOB_RELE_STAT(areq->an_mp, (error != CRYPTO_SUCCESS)); 620 kcf_aop_done(areq, error); 621 } 622 } 623 624 /* 625 * This routine is used by software providers to determine 626 * whether to use KM_SLEEP or KM_NOSLEEP during memory allocation. 627 * Note that hardware providers can always use KM_SLEEP. So, 628 * they do not need to call this routine. 629 * 630 * This routine can be called from user or interrupt context. 631 */ 632 int 633 crypto_kmflag(crypto_req_handle_t handle) 634 { 635 return (REQHNDL2_KMFLAG(handle)); 636 } 637 638 /* 639 * Process the mechanism info structures specified by the provider 640 * during registration. A NULL crypto_provider_info_t indicates 641 * an already initialized provider descriptor. 642 * 643 * Mechanisms are not added to the kernel's mechanism table if the 644 * provider is a logical provider. 645 * 646 * Returns CRYPTO_SUCCESS on success, CRYPTO_ARGUMENTS if one 647 * of the specified mechanisms was malformed, or CRYPTO_HOST_MEMORY 648 * if the table of mechanisms is full. 649 */ 650 static int 651 init_prov_mechs(crypto_provider_info_t *info, kcf_provider_desc_t *desc) 652 { 653 uint_t mech_idx; 654 uint_t cleanup_idx; 655 int err = CRYPTO_SUCCESS; 656 kcf_prov_mech_desc_t *pmd; 657 int desc_use_count = 0; 658 int mcount = desc->pd_mech_list_count; 659 660 if (desc->pd_prov_type == CRYPTO_LOGICAL_PROVIDER) { 661 if (info != NULL) { 662 ASSERT(info->pi_mechanisms != NULL); 663 bcopy(info->pi_mechanisms, desc->pd_mechanisms, 664 sizeof (crypto_mech_info_t) * mcount); 665 } 666 return (CRYPTO_SUCCESS); 667 } 668 669 /* 670 * Copy the mechanism list from the provider info to the provider 671 * descriptor. desc->pd_mechanisms has an extra crypto_mech_info_t 672 * element if the provider has random_ops since we keep an internal 673 * mechanism, SUN_RANDOM, in this case. 674 */ 675 if (info != NULL) { 676 if (info->pi_ops_vector->co_random_ops != NULL) { 677 crypto_mech_info_t *rand_mi; 678 679 /* 680 * Need the following check as it is possible to have 681 * a provider that implements just random_ops and has 682 * pi_mechanisms == NULL. 683 */ 684 if (info->pi_mechanisms != NULL) { 685 bcopy(info->pi_mechanisms, desc->pd_mechanisms, 686 sizeof (crypto_mech_info_t) * (mcount - 1)); 687 } 688 rand_mi = &desc->pd_mechanisms[mcount - 1]; 689 690 bzero(rand_mi, sizeof (crypto_mech_info_t)); 691 (void) strncpy(rand_mi->cm_mech_name, SUN_RANDOM, 692 CRYPTO_MAX_MECH_NAME); 693 rand_mi->cm_func_group_mask = CRYPTO_FG_RANDOM; 694 } else { 695 ASSERT(info->pi_mechanisms != NULL); 696 bcopy(info->pi_mechanisms, desc->pd_mechanisms, 697 sizeof (crypto_mech_info_t) * mcount); 698 } 699 } 700 701 /* 702 * For each mechanism support by the provider, add the provider 703 * to the corresponding KCF mechanism mech_entry chain. 704 */ 705 for (mech_idx = 0; mech_idx < desc->pd_mech_list_count; mech_idx++) { 706 crypto_mech_info_t *mi = &desc->pd_mechanisms[mech_idx]; 707 708 if ((mi->cm_mech_flags & CRYPTO_KEYSIZE_UNIT_IN_BITS) && 709 (mi->cm_mech_flags & CRYPTO_KEYSIZE_UNIT_IN_BYTES)) { 710 err = CRYPTO_ARGUMENTS_BAD; 711 break; 712 } 713 714 if (desc->pd_flags & CRYPTO_HASH_NO_UPDATE && 715 mi->cm_func_group_mask & CRYPTO_FG_DIGEST) { 716 /* 717 * We ask the provider to specify the limit 718 * per hash mechanism. But, in practice, a 719 * hardware limitation means all hash mechanisms 720 * will have the same maximum size allowed for 721 * input data. So, we make it a per provider 722 * limit to keep it simple. 723 */ 724 if (mi->cm_max_input_length == 0) { 725 err = CRYPTO_ARGUMENTS_BAD; 726 break; 727 } else { 728 desc->pd_hash_limit = mi->cm_max_input_length; 729 } 730 } 731 732 if ((err = kcf_add_mech_provider(mech_idx, desc, &pmd)) != 733 KCF_SUCCESS) 734 break; 735 736 if (pmd == NULL) 737 continue; 738 739 /* The provider will be used for this mechanism */ 740 desc_use_count++; 741 } 742 743 /* 744 * Don't allow multiple software providers with disabled mechanisms 745 * to register. Subsequent enabling of mechanisms will result in 746 * an unsupported configuration, i.e. multiple software providers 747 * per mechanism. 748 */ 749 if (desc_use_count == 0 && desc->pd_prov_type == CRYPTO_SW_PROVIDER) 750 return (CRYPTO_ARGUMENTS_BAD); 751 752 if (err == KCF_SUCCESS) 753 return (CRYPTO_SUCCESS); 754 755 /* 756 * An error occurred while adding the mechanism, cleanup 757 * and bail. 758 */ 759 for (cleanup_idx = 0; cleanup_idx < mech_idx; cleanup_idx++) { 760 kcf_remove_mech_provider( 761 desc->pd_mechanisms[cleanup_idx].cm_mech_name, desc); 762 } 763 764 if (err == KCF_MECH_TAB_FULL) 765 return (CRYPTO_HOST_MEMORY); 766 767 return (CRYPTO_ARGUMENTS_BAD); 768 } 769 770 /* 771 * Update routine for kstat. Only privileged users are allowed to 772 * access this information, since this information is sensitive. 773 * There are some cryptographic attacks (e.g. traffic analysis) 774 * which can use this information. 775 */ 776 static int 777 kcf_prov_kstat_update(kstat_t *ksp, int rw) 778 { 779 kcf_prov_stats_t *ks_data; 780 kcf_provider_desc_t *pd = (kcf_provider_desc_t *)ksp->ks_private; 781 int i; 782 783 if (rw == KSTAT_WRITE) 784 return (EACCES); 785 786 ks_data = ksp->ks_data; 787 788 if (secpolicy_sys_config(CRED(), B_TRUE) != 0) { 789 ks_data->ps_ops_total.value.ui64 = 0; 790 ks_data->ps_ops_passed.value.ui64 = 0; 791 ks_data->ps_ops_failed.value.ui64 = 0; 792 ks_data->ps_ops_busy_rval.value.ui64 = 0; 793 } else { 794 uint64_t dtotal, ftotal, btotal; 795 796 dtotal = ftotal = btotal = 0; 797 /* No locking done since an exact count is not required. */ 798 for (i = 0; i < pd->pd_nbins; i++) { 799 dtotal += pd->pd_percpu_bins[i].kp_ndispatches; 800 ftotal += pd->pd_percpu_bins[i].kp_nfails; 801 btotal += pd->pd_percpu_bins[i].kp_nbusy_rval; 802 } 803 804 ks_data->ps_ops_total.value.ui64 = dtotal; 805 ks_data->ps_ops_failed.value.ui64 = ftotal; 806 ks_data->ps_ops_busy_rval.value.ui64 = btotal; 807 ks_data->ps_ops_passed.value.ui64 = dtotal - ftotal - btotal; 808 } 809 810 return (0); 811 } 812 813 814 /* 815 * Utility routine called from failure paths in crypto_register_provider() 816 * and from crypto_load_soft_disabled(). 817 */ 818 void 819 undo_register_provider(kcf_provider_desc_t *desc, boolean_t remove_prov) 820 { 821 uint_t mech_idx; 822 823 /* remove the provider from the mechanisms tables */ 824 for (mech_idx = 0; mech_idx < desc->pd_mech_list_count; 825 mech_idx++) { 826 kcf_remove_mech_provider( 827 desc->pd_mechanisms[mech_idx].cm_mech_name, desc); 828 } 829 830 /* remove provider from providers table */ 831 if (remove_prov) 832 (void) kcf_prov_tab_rem_provider(desc->pd_prov_id); 833 } 834 835 static void 836 undo_register_provider_extra(kcf_provider_desc_t *desc) 837 { 838 delete_kstat(desc); 839 undo_register_provider(desc, B_TRUE); 840 } 841 842 /* 843 * Utility routine called from crypto_load_soft_disabled(). Callers 844 * should have done a prior undo_register_provider(). 845 */ 846 void 847 redo_register_provider(kcf_provider_desc_t *pd) 848 { 849 /* process the mechanisms supported by the provider */ 850 (void) init_prov_mechs(NULL, pd); 851 852 /* 853 * Hold provider in providers table. We should not call 854 * kcf_prov_tab_add_provider() here as the provider descriptor 855 * is still valid which means it has an entry in the provider 856 * table. 857 */ 858 KCF_PROV_REFHOLD(pd); 859 } 860 861 /* 862 * Add provider (p1) to another provider's array of providers (p2). 863 * Hardware and logical providers use this array to cross-reference 864 * each other. 865 */ 866 static void 867 add_provider_to_array(kcf_provider_desc_t *p1, kcf_provider_desc_t *p2) 868 { 869 kcf_provider_list_t *new; 870 871 new = kmem_alloc(sizeof (kcf_provider_list_t), KM_SLEEP); 872 mutex_enter(&p2->pd_lock); 873 new->pl_next = p2->pd_provider_list; 874 p2->pd_provider_list = new; 875 new->pl_provider = p1; 876 mutex_exit(&p2->pd_lock); 877 } 878 879 /* 880 * Remove provider (p1) from another provider's array of providers (p2). 881 * Hardware and logical providers use this array to cross-reference 882 * each other. 883 */ 884 static void 885 remove_provider_from_array(kcf_provider_desc_t *p1, kcf_provider_desc_t *p2) 886 { 887 888 kcf_provider_list_t *pl = NULL, **prev; 889 890 mutex_enter(&p2->pd_lock); 891 for (pl = p2->pd_provider_list, prev = &p2->pd_provider_list; 892 pl != NULL; prev = &pl->pl_next, pl = pl->pl_next) { 893 if (pl->pl_provider == p1) { 894 break; 895 } 896 } 897 898 if (p1 == NULL) { 899 mutex_exit(&p2->pd_lock); 900 return; 901 } 902 903 /* detach and free kcf_provider_list structure */ 904 *prev = pl->pl_next; 905 kmem_free(pl, sizeof (*pl)); 906 mutex_exit(&p2->pd_lock); 907 } 908 909 /* 910 * Convert an array of logical provider handles (crypto_provider_id) 911 * stored in a crypto_provider_info structure into an array of provider 912 * descriptors (kcf_provider_desc_t) attached to a logical provider. 913 */ 914 static void 915 process_logical_providers(crypto_provider_info_t *info, kcf_provider_desc_t *hp) 916 { 917 kcf_provider_desc_t *lp; 918 crypto_provider_id_t handle; 919 int count = info->pi_logical_provider_count; 920 int i; 921 922 /* add hardware provider to each logical provider */ 923 for (i = 0; i < count; i++) { 924 handle = info->pi_logical_providers[i]; 925 lp = kcf_prov_tab_lookup((crypto_provider_id_t)handle); 926 if (lp == NULL) { 927 continue; 928 } 929 add_provider_to_array(hp, lp); 930 hp->pd_flags |= KCF_LPROV_MEMBER; 931 932 /* 933 * A hardware provider has to have the provider descriptor of 934 * every logical provider it belongs to, so it can be removed 935 * from the logical provider if the hardware provider 936 * unregisters from the framework. 937 */ 938 add_provider_to_array(lp, hp); 939 KCF_PROV_REFRELE(lp); 940 } 941 } 942 943 /* 944 * This routine removes a provider from all of the logical or 945 * hardware providers it belongs to, and frees the provider's 946 * array of pointers to providers. 947 */ 948 static void 949 remove_provider(kcf_provider_desc_t *pp) 950 { 951 kcf_provider_desc_t *p; 952 kcf_provider_list_t *e, *next; 953 954 mutex_enter(&pp->pd_lock); 955 for (e = pp->pd_provider_list; e != NULL; e = next) { 956 p = e->pl_provider; 957 remove_provider_from_array(pp, p); 958 if (p->pd_prov_type == CRYPTO_HW_PROVIDER && 959 p->pd_provider_list == NULL) 960 p->pd_flags &= ~KCF_LPROV_MEMBER; 961 next = e->pl_next; 962 kmem_free(e, sizeof (*e)); 963 } 964 pp->pd_provider_list = NULL; 965 mutex_exit(&pp->pd_lock); 966 } 967 968 /* 969 * Dispatch events as needed for a provider. is_added flag tells 970 * whether the provider is registering or unregistering. 971 */ 972 void 973 kcf_do_notify(kcf_provider_desc_t *prov_desc, boolean_t is_added) 974 { 975 int i; 976 crypto_notify_event_change_t ec; 977 978 ASSERT(prov_desc->pd_state > KCF_PROV_VERIFICATION_FAILED); 979 980 /* 981 * Inform interested clients of the mechanisms becoming 982 * available/unavailable. We skip this for logical providers 983 * as they do not affect mechanisms. 984 */ 985 if (prov_desc->pd_prov_type != CRYPTO_LOGICAL_PROVIDER) { 986 ec.ec_provider_type = prov_desc->pd_prov_type; 987 ec.ec_change = is_added ? CRYPTO_MECH_ADDED : 988 CRYPTO_MECH_REMOVED; 989 for (i = 0; i < prov_desc->pd_mech_list_count; i++) { 990 /* Skip any mechanisms not allowed by the policy */ 991 if (is_mech_disabled(prov_desc, 992 prov_desc->pd_mechanisms[i].cm_mech_name)) 993 continue; 994 995 (void) strncpy(ec.ec_mech_name, 996 prov_desc->pd_mechanisms[i].cm_mech_name, 997 CRYPTO_MAX_MECH_NAME); 998 kcf_walk_ntfylist(CRYPTO_EVENT_MECHS_CHANGED, &ec); 999 } 1000 1001 } 1002 1003 /* 1004 * Inform interested clients about the new or departing provider. 1005 * In case of a logical provider, we need to notify the event only 1006 * for the logical provider and not for the underlying 1007 * providers which are known by the KCF_LPROV_MEMBER bit. 1008 */ 1009 if (prov_desc->pd_prov_type == CRYPTO_LOGICAL_PROVIDER || 1010 (prov_desc->pd_flags & KCF_LPROV_MEMBER) == 0) { 1011 kcf_walk_ntfylist(is_added ? CRYPTO_EVENT_PROVIDER_REGISTERED : 1012 CRYPTO_EVENT_PROVIDER_UNREGISTERED, prov_desc); 1013 } 1014 } 1015 1016 static void 1017 delete_kstat(kcf_provider_desc_t *desc) 1018 { 1019 /* destroy the kstat created for this provider */ 1020 if (desc->pd_kstat != NULL) { 1021 kcf_provider_desc_t *kspd = desc->pd_kstat->ks_private; 1022 1023 /* release reference held by desc->pd_kstat->ks_private */ 1024 ASSERT(desc == kspd); 1025 kstat_delete(kspd->pd_kstat); 1026 desc->pd_kstat = NULL; 1027 KCF_PROV_REFRELE(kspd); 1028 } 1029 } 1030