xref: /titanic_41/usr/src/uts/common/crypto/io/swrand.c (revision 890e8ff10cfc85bc7d33064a9a30c3e8477b4813)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Software based random number provider for the Kernel Cryptographic
30  * Framework (KCF). This provider periodically collects unpredictable input
31  * from external sources and processes it into a pool of entropy (randomness)
32  * in order to satisfy requests for random bits from kCF. It implements
33  * software-based mixing, extraction, and generation algorithms.
34  *
35  * A history note: The software-based algorithms in this file used to be
36  * part of the /dev/random driver.
37  */
38 
39 #include <sys/types.h>
40 #include <sys/errno.h>
41 #include <sys/debug.h>
42 #include <vm/seg_kmem.h>
43 #include <vm/hat.h>
44 #include <sys/systm.h>
45 #include <sys/memlist.h>
46 #include <sys/cmn_err.h>
47 #include <sys/ksynch.h>
48 #include <sys/random.h>
49 #include <sys/ddi.h>
50 #include <sys/mman.h>
51 #include <sys/sysmacros.h>
52 #include <sys/mem_config.h>
53 #include <sys/time.h>
54 #include <sys/crypto/spi.h>
55 #include <sys/sha1.h>
56 #include <sys/sunddi.h>
57 #include <sys/modctl.h>
58 
59 #define	RNDPOOLSIZE		1024	/* Pool size in bytes */
60 #define	HASHBUFSIZE		64	/* Buffer size used for pool mixing */
61 #define	MAXMEMBLOCKS		16384	/* Number of memory blocks to scan */
62 #define	MEMBLOCKSIZE		4096	/* Size of memory block to read */
63 #define	MINEXTRACTBITS		160	/* Min entropy level for extraction */
64 #define	TIMEOUT_INTERVAL	5	/* Periodic mixing interval in secs */
65 
66 /* Hash-algo generic definitions. For now, they are SHA1's. */
67 #define	HASHSIZE		20
68 #define	HASH_CTX		SHA1_CTX
69 #define	HashInit(ctx)		SHA1Init((ctx))
70 #define	HashUpdate(ctx, p, s)	SHA1Update((ctx), (p), (s))
71 #define	HashFinal(d, ctx)	SHA1Final((d), (ctx))
72 
73 /* Physical memory entropy source */
74 typedef struct physmem_entsrc_s {
75 	uint8_t *parity;		/* parity bit vector */
76 	caddr_t pmbuf;			/* buffer for memory block */
77 	uint32_t nblocks;		/* number of  memory blocks */
78 	int entperblock;		/* entropy bits per block read */
79 	hrtime_t last_diff;		/* previous time to process a block */
80 	hrtime_t last_delta;		/* previous time delta */
81 	hrtime_t last_delta2;		/* previous 2nd order time delta */
82 } physmem_entsrc_t;
83 
84 static uint32_t srndpool[RNDPOOLSIZE/4];	/* Pool of random bits */
85 static uint32_t buffer[RNDPOOLSIZE/4];	/* entropy mixed in later */
86 static int buffer_bytes;		/* bytes written to buffer */
87 static uint32_t entropy_bits;		/* pool's current amount of entropy */
88 static kmutex_t srndpool_lock;		/* protects r/w accesses to the pool, */
89 					/* and the global variables */
90 static kmutex_t buffer_lock;		/* protects r/w accesses to buffer */
91 static kcondvar_t srndpool_read_cv;	/* serializes poll/read syscalls */
92 static int pindex;			/* Global index for adding/extracting */
93 					/* from the pool */
94 static int bstart, bindex;		/* Global vars for adding/extracting */
95 					/* from the buffer */
96 static uint8_t leftover[HASHSIZE];	/* leftover output */
97 static int leftover_bytes;		/* leftover length */
98 
99 static physmem_entsrc_t entsrc;		/* Physical mem as an entropy source */
100 static timeout_id_t rnd_timeout_id;
101 static int snum_waiters;
102 static crypto_kcf_provider_handle_t swrand_prov_handle = NULL;
103 swrand_stats_t swrand_stats;
104 
105 static int physmem_ent_init(physmem_entsrc_t *);
106 static void physmem_ent_fini(physmem_entsrc_t *);
107 static void physmem_ent_gen(physmem_entsrc_t *);
108 static int physmem_parity_update(uint8_t *, uint32_t, int);
109 static void physmem_count_blocks();
110 static void rnd_dr_callback_post_add(void *, pgcnt_t);
111 static int rnd_dr_callback_pre_del(void *, pgcnt_t);
112 static void rnd_dr_callback_post_del(void *, pgcnt_t, int);
113 static void rnd_handler(void *arg);
114 static void swrand_init();
115 static void swrand_schedule_timeout(void);
116 static int swrand_get_entropy(uint8_t *ptr, size_t len, boolean_t);
117 static void swrand_add_entropy(uint8_t *ptr, size_t len, uint16_t entropy_est);
118 static void swrand_add_entropy_later(uint8_t *ptr, size_t len);
119 
120 /* Dynamic Reconfiguration related declarations */
121 kphysm_setup_vector_t rnd_dr_callback_vec = {
122 	KPHYSM_SETUP_VECTOR_VERSION,
123 	rnd_dr_callback_post_add,
124 	rnd_dr_callback_pre_del,
125 	rnd_dr_callback_post_del
126 };
127 
128 extern struct mod_ops mod_cryptoops;
129 
130 /*
131  * Module linkage information for the kernel.
132  */
133 static struct modlcrypto modlcrypto = {
134 	&mod_cryptoops,
135 	"Kernel Random number Provider %I%"
136 };
137 
138 static struct modlinkage modlinkage = {
139 	MODREV_1,
140 	(void *)&modlcrypto,
141 	NULL
142 };
143 
144 /*
145  * CSPI information (entry points, provider info, etc.)
146  */
147 static void swrand_provider_status(crypto_provider_handle_t, uint_t *);
148 
149 static crypto_control_ops_t swrand_control_ops = {
150 	swrand_provider_status
151 };
152 
153 static int swrand_seed_random(crypto_provider_handle_t, crypto_session_id_t,
154     uchar_t *, size_t, uint_t, uint32_t, crypto_req_handle_t);
155 static int swrand_generate_random(crypto_provider_handle_t,
156     crypto_session_id_t, uchar_t *, size_t, crypto_req_handle_t);
157 
158 static crypto_random_number_ops_t swrand_random_number_ops = {
159 	swrand_seed_random,
160 	swrand_generate_random
161 };
162 
163 static crypto_ops_t swrand_crypto_ops = {
164 	&swrand_control_ops,
165 	NULL,
166 	NULL,
167 	NULL,
168 	NULL,
169 	NULL,
170 	NULL,
171 	NULL,
172 	&swrand_random_number_ops,
173 	NULL,
174 	NULL,
175 	NULL,
176 	NULL,
177 	NULL
178 };
179 
180 static crypto_provider_info_t swrand_prov_info = {
181 	CRYPTO_SPI_VERSION_1,
182 	"Kernel Random Number Provider",
183 	CRYPTO_SW_PROVIDER,
184 	{&modlinkage},
185 	NULL,
186 	&swrand_crypto_ops,
187 	0,
188 	NULL
189 };
190 
191 int
192 _init(void)
193 {
194 	int ret;
195 	hrtime_t ts;
196 	time_t now;
197 
198 	/*
199 	 * Register with KCF. If the registration fails, return error.
200 	 */
201 	if ((ret = crypto_register_provider(&swrand_prov_info,
202 	    &swrand_prov_handle)) != CRYPTO_SUCCESS) {
203 		cmn_err(CE_WARN, "swrand : Kernel Random Number Provider "
204 		    "disabled for /dev/random use");
205 		return (EACCES);
206 	}
207 
208 	mutex_init(&srndpool_lock, NULL, MUTEX_DEFAULT, NULL);
209 	mutex_init(&buffer_lock, NULL, MUTEX_DEFAULT, NULL);
210 	cv_init(&srndpool_read_cv, NULL, CV_DEFAULT, NULL);
211 	entropy_bits = 0;
212 	pindex = 0;
213 	bindex = 0;
214 	bstart = 0;
215 	snum_waiters = 0;
216 	leftover_bytes = 0;
217 	buffer_bytes = 0;
218 
219 	/*
220 	 * Initialize the pool using
221 	 * . 2 unpredictable times: high resolution time since the boot-time,
222 	 *   and the current time-of-the day.
223 	 * . The initial physical memory state.
224 	 */
225 	ts = gethrtime();
226 	swrand_add_entropy((uint8_t *)&ts, sizeof (ts), 0);
227 
228 	(void) drv_getparm(TIME, &now);
229 	swrand_add_entropy((uint8_t *)&now, sizeof (now), 0);
230 
231 	ret = kphysm_setup_func_register(&rnd_dr_callback_vec, NULL);
232 	ASSERT(ret == 0);
233 
234 	if (physmem_ent_init(&entsrc) != 0) {
235 		mutex_destroy(&srndpool_lock);
236 		mutex_destroy(&buffer_lock);
237 		cv_destroy(&srndpool_read_cv);
238 		(void) crypto_unregister_provider(swrand_prov_handle);
239 		return (ENOMEM);
240 	}
241 
242 	if ((ret = mod_install(&modlinkage)) != 0) {
243 		mutex_destroy(&srndpool_lock);
244 		mutex_destroy(&buffer_lock);
245 		cv_destroy(&srndpool_read_cv);
246 		physmem_ent_fini(&entsrc);
247 		(void) crypto_unregister_provider(swrand_prov_handle);
248 		return (ret);
249 	}
250 
251 	/* Schedule periodic mixing of the pool. */
252 	mutex_enter(&srndpool_lock);
253 	swrand_schedule_timeout();
254 	mutex_exit(&srndpool_lock);
255 
256 	return (0);
257 }
258 
259 int
260 _info(struct modinfo *modinfop)
261 {
262 	return (mod_info(&modlinkage, modinfop));
263 }
264 
265 /*
266  * Control entry points.
267  */
268 /* ARGSUSED */
269 static void
270 swrand_provider_status(crypto_provider_handle_t provider, uint_t *status)
271 {
272 	*status = CRYPTO_PROVIDER_READY;
273 }
274 
275 /*
276  * Random number entry points.
277  */
278 /* ARGSUSED */
279 static int
280 swrand_seed_random(crypto_provider_handle_t provider, crypto_session_id_t sid,
281     uchar_t *buf, size_t len, uint_t entropy_est, uint32_t flags,
282     crypto_req_handle_t req)
283 {
284 	/* The entropy estimate is always 0 in this path */
285 	if (flags & CRYPTO_SEED_NOW)
286 		swrand_add_entropy(buf, len, 0);
287 	else
288 		swrand_add_entropy_later(buf, len);
289 	return (CRYPTO_SUCCESS);
290 }
291 
292 /* ARGSUSED */
293 static int
294 swrand_generate_random(crypto_provider_handle_t provider,
295     crypto_session_id_t sid, uchar_t *buf, size_t len, crypto_req_handle_t req)
296 {
297 	if (crypto_kmflag(req) == KM_NOSLEEP)
298 		(void) swrand_get_entropy(buf, len, B_TRUE);
299 	else
300 		(void) swrand_get_entropy(buf, len, B_FALSE);
301 
302 	return (CRYPTO_SUCCESS);
303 }
304 
305 
306 /*
307  * Extraction of entropy from the pool.
308  *
309  * Returns "len" random bytes in *ptr.
310  * Try to gather some more entropy by calling physmem_ent_gen() when less than
311  * MINEXTRACTBITS are present in the pool.
312  * Will block if not enough entropy was available and the call is blocking.
313  */
314 static int
315 swrand_get_entropy(uint8_t *ptr, size_t len, boolean_t nonblock)
316 {
317 	int i, bytes;
318 	HASH_CTX hashctx;
319 	uint8_t digest[HASHSIZE], *pool;
320 
321 	mutex_enter(&srndpool_lock);
322 	if (leftover_bytes > 0) {
323 		bytes = min(len, leftover_bytes);
324 		bcopy(leftover, ptr, bytes);
325 		len -= bytes;
326 		ptr += bytes;
327 		leftover_bytes -= bytes;
328 		if (leftover_bytes > 0)
329 			ovbcopy(leftover+bytes, leftover, leftover_bytes);
330 	}
331 
332 	while (len > 0) {
333 
334 		/* Check if there is enough entropy */
335 		while (entropy_bits < MINEXTRACTBITS) {
336 
337 			physmem_ent_gen(&entsrc);
338 
339 			if (entropy_bits < MINEXTRACTBITS &&
340 			    nonblock == B_TRUE) {
341 				mutex_exit(&srndpool_lock);
342 				return (EAGAIN);
343 			}
344 
345 			if (entropy_bits < MINEXTRACTBITS) {
346 				ASSERT(nonblock == B_FALSE);
347 				snum_waiters++;
348 				if (cv_wait_sig(&srndpool_read_cv,
349 				    &srndpool_lock) == 0) {
350 					snum_waiters--;
351 					mutex_exit(&srndpool_lock);
352 					return (EINTR);
353 				}
354 				snum_waiters--;
355 			}
356 		}
357 
358 		/* Figure out how many bytes to extract */
359 		bytes = min(HASHSIZE, len);
360 		bytes = min(bytes, entropy_bits/8);
361 		entropy_bits -= bytes * 8;
362 		BUMP_SWRAND_STATS(ss_entOut, bytes * 8);
363 		swrand_stats.ss_entEst = entropy_bits;
364 
365 		/* Extract entropy by hashing pool content */
366 		HashInit(&hashctx);
367 		HashUpdate(&hashctx, (uint8_t *)srndpool, RNDPOOLSIZE);
368 		HashFinal(digest, &hashctx);
369 
370 		/*
371 		 * Feed the digest back into the pool so next
372 		 * extraction produces different result
373 		 */
374 		pool = (uint8_t *)srndpool;
375 		for (i = 0; i < HASHSIZE; i++) {
376 			pool[pindex++] ^= digest[i];
377 			/* pindex modulo RNDPOOLSIZE */
378 			pindex &= (RNDPOOLSIZE - 1);
379 		}
380 
381 		/*
382 		 * Hash the digest again before output to obscure
383 		 * what was fed back to the pool.
384 		 */
385 		HashInit(&hashctx);
386 		HashUpdate(&hashctx, digest, HASHSIZE);
387 		if (len >= HASHSIZE)
388 			HashFinal(ptr, &hashctx);
389 		else {
390 			HashFinal(digest, &hashctx);
391 			bcopy(digest, ptr, bytes);
392 			leftover_bytes = HASHSIZE - bytes;
393 			bcopy(digest + bytes, leftover, leftover_bytes);
394 		}
395 
396 		len -= bytes;
397 		ptr += bytes;
398 		BUMP_SWRAND_STATS(ss_bytesOut, bytes);
399 	}
400 	mutex_exit(&srndpool_lock);
401 	return (0);
402 }
403 
404 #define	SWRAND_ADD_BYTES(ptr, len, i, pool)		\
405 	ASSERT((ptr) != NULL && (len) > 0);		\
406 	BUMP_SWRAND_STATS(ss_bytesIn, (len));		\
407 	while ((len)--) {				\
408 		(pool)[(i)++] ^= *(ptr);		\
409 		(ptr)++;				\
410 		(i) &= (RNDPOOLSIZE - 1);		\
411 	}
412 
413 /* Write some more user-provided entropy to the pool */
414 static void
415 swrand_add_bytes(uint8_t *ptr, size_t len)
416 {
417 	uint8_t *pool = (uint8_t *)srndpool;
418 
419 	ASSERT(MUTEX_HELD(&srndpool_lock));
420 	SWRAND_ADD_BYTES(ptr, len, pindex, pool);
421 }
422 
423 /*
424  * Add bytes to buffer. Adding the buffer to the random pool
425  * is deferred until the random pool is mixed.
426  */
427 static void
428 swrand_add_bytes_later(uint8_t *ptr, size_t len)
429 {
430 	uint8_t *pool = (uint8_t *)buffer;
431 
432 	ASSERT(MUTEX_HELD(&buffer_lock));
433 	SWRAND_ADD_BYTES(ptr, len, bindex, pool);
434 	buffer_bytes += len;
435 }
436 
437 #undef SWRAND_ADD_BYTES
438 
439 /* Mix the pool */
440 static void
441 swrand_mix_pool(uint16_t entropy_est)
442 {
443 	int i, j, k, start;
444 	HASH_CTX hashctx;
445 	uint8_t digest[HASHSIZE];
446 	uint8_t *pool = (uint8_t *)srndpool;
447 	uint8_t *bp = (uint8_t *)buffer;
448 
449 	ASSERT(MUTEX_HELD(&srndpool_lock));
450 
451 	/* add deferred bytes */
452 	mutex_enter(&buffer_lock);
453 	if (buffer_bytes > 0) {
454 		if (buffer_bytes >= RNDPOOLSIZE) {
455 			for (i = 0; i < RNDPOOLSIZE/4; i++) {
456 				srndpool[i] ^= buffer[i];
457 				buffer[i] = 0;
458 			}
459 			bstart = bindex = 0;
460 		} else {
461 			for (i = 0; i < buffer_bytes; i++) {
462 				pool[pindex++] ^= bp[bstart];
463 				bp[bstart++] = 0;
464 				pindex &= (RNDPOOLSIZE - 1);
465 				bstart &= (RNDPOOLSIZE - 1);
466 			}
467 			ASSERT(bstart == bindex);
468 		}
469 		buffer_bytes = 0;
470 	}
471 	mutex_exit(&buffer_lock);
472 
473 	start = 0;
474 	for (i = 0; i < RNDPOOLSIZE/HASHSIZE + 1; i++) {
475 		HashInit(&hashctx);
476 
477 		/* Hash a buffer centered on a block in the pool */
478 		if (start + HASHBUFSIZE <= RNDPOOLSIZE)
479 			HashUpdate(&hashctx, &pool[start], HASHBUFSIZE);
480 		else {
481 			HashUpdate(&hashctx, &pool[start],
482 			    RNDPOOLSIZE - start);
483 			HashUpdate(&hashctx, pool,
484 			    HASHBUFSIZE - RNDPOOLSIZE + start);
485 		}
486 		HashFinal(digest, &hashctx);
487 
488 		/* XOR the hash result back into the block */
489 		k = (start + HASHSIZE) & (RNDPOOLSIZE - 1);
490 		for (j = 0; j < HASHSIZE; j++) {
491 			pool[k++] ^= digest[j];
492 			k &= (RNDPOOLSIZE - 1);
493 		}
494 
495 		/* Slide the hash buffer and repeat with next block */
496 		start = (start + HASHSIZE) & (RNDPOOLSIZE - 1);
497 	}
498 
499 	entropy_bits += entropy_est;
500 	if (entropy_bits > RNDPOOLSIZE * 8)
501 		entropy_bits = RNDPOOLSIZE * 8;
502 
503 	swrand_stats.ss_entEst = entropy_bits;
504 	BUMP_SWRAND_STATS(ss_entIn, entropy_est);
505 }
506 
507 static void
508 swrand_add_entropy_later(uint8_t *ptr, size_t len)
509 {
510 	mutex_enter(&buffer_lock);
511 	swrand_add_bytes_later(ptr, len);
512 	mutex_exit(&buffer_lock);
513 }
514 
515 static void
516 swrand_add_entropy(uint8_t *ptr, size_t len, uint16_t entropy_est)
517 {
518 	mutex_enter(&srndpool_lock);
519 	swrand_add_bytes(ptr, len);
520 	swrand_mix_pool(entropy_est);
521 	mutex_exit(&srndpool_lock);
522 }
523 
524 /*
525  * The physmem_* routines below generate entropy by reading blocks of
526  * physical memory.  Entropy is gathered in a couple of ways:
527  *
528  *  - By reading blocks of physical memory and detecting if changes
529  *    occurred in the blocks read.
530  *
531  *  - By measuring the time it takes to load and hash a block of memory
532  *    and computing the differences in the measured time.
533  *
534  * The first method was used in the CryptoRand implementation.  Physical
535  * memory is divided into blocks of fixed size.  A block of memory is
536  * chosen from the possible blocks and hashed to produce a digest.  This
537  * digest is then mixed into the pool.  A single bit from the digest is
538  * used as a parity bit or "checksum" and compared against the previous
539  * "checksum" computed for the block.  If the single-bit checksum has not
540  * changed, no entropy is credited to the pool.  If there is a change,
541  * then the assumption is that at least one bit in the block has changed.
542  * The possible locations within the memory block of where the bit change
543  * occurred is used as a measure of entropy.  For example, if a block
544  * size of 4096 bytes is used, about log_2(4096*8)=15 bits worth of
545  * entropy is available.  Because the single-bit checksum will miss half
546  * of the changes, the amount of entropy credited to the pool is doubled
547  * when a change is detected.  With a 4096 byte block size, a block
548  * change will add a total of 30 bits of entropy to the pool.
549  *
550  * The second method measures the amount of time it takes to read and
551  * hash a physical memory block (as described above).  The time measured
552  * can vary depending on system load, scheduling and other factors.
553  * Differences between consecutive measurements are computed to come up
554  * with an entropy estimate.  The first, second, and third order delta is
555  * calculated to determine the minimum delta value.  The number of bits
556  * present in this minimum delta value is the entropy estimate.  This
557  * entropy estimation technique using time deltas is similar to that used
558  * in /dev/random implementations from Linux/BSD.
559  */
560 
561 static int
562 physmem_ent_init(physmem_entsrc_t *entsrc)
563 {
564 	uint8_t *ptr;
565 	int i;
566 
567 	bzero(entsrc, sizeof (*entsrc));
568 
569 	/*
570 	 * The maximum entropy amount in bits per block of memory read is
571 	 * log_2(MEMBLOCKSIZE * 8);
572 	 */
573 	i = MEMBLOCKSIZE << 3;
574 	while (i >>= 1)
575 		entsrc->entperblock++;
576 
577 	/* Initialize entsrc->nblocks */
578 	physmem_count_blocks();
579 
580 	if (entsrc->nblocks == 0) {
581 		cmn_err(CE_WARN, "no memory blocks to scan!");
582 		return (-1);
583 	}
584 
585 	/* Allocate space for the parity vector and memory page */
586 	entsrc->parity = kmem_alloc(howmany(entsrc->nblocks, 8),
587 	    KM_SLEEP);
588 	entsrc->pmbuf = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP);
589 
590 
591 	/* Initialize parity vector with bits from the pool */
592 	i = howmany(entsrc->nblocks, 8);
593 	ptr = entsrc->parity;
594 	while (i > 0) {
595 		if (i > RNDPOOLSIZE) {
596 			bcopy(srndpool, ptr, RNDPOOLSIZE);
597 			mutex_enter(&srndpool_lock);
598 			swrand_mix_pool(0);
599 			mutex_exit(&srndpool_lock);
600 			ptr += RNDPOOLSIZE;
601 			i -= RNDPOOLSIZE;
602 		} else {
603 			bcopy(srndpool, ptr, i);
604 			break;
605 		}
606 	}
607 
608 	/* Generate some entropy to further initialize the pool */
609 	mutex_enter(&srndpool_lock);
610 	physmem_ent_gen(entsrc);
611 	entropy_bits = 0;
612 	mutex_exit(&srndpool_lock);
613 
614 	return (0);
615 }
616 
617 static void
618 physmem_ent_fini(physmem_entsrc_t *entsrc)
619 {
620 	if (entsrc->pmbuf != NULL)
621 		vmem_free(heap_arena, entsrc->pmbuf, PAGESIZE);
622 	if (entsrc->parity != NULL)
623 		kmem_free(entsrc->parity, howmany(entsrc->nblocks, 8));
624 	bzero(entsrc, sizeof (*entsrc));
625 }
626 
627 static void
628 physmem_ent_gen(physmem_entsrc_t *entsrc)
629 {
630 	struct memlist *pmem;
631 	offset_t offset, poffset;
632 	pfn_t pfn;
633 	int i, nbytes, len, ent = 0;
634 	uint32_t block, oblock;
635 	hrtime_t ts1, ts2, diff, delta, delta2, delta3;
636 	uint8_t digest[HASHSIZE];
637 	HASH_CTX ctx;
638 
639 	/*
640 	 * Use each 32-bit quantity in the pool to pick a memory
641 	 * block to read.
642 	 */
643 	for (i = 0; i < RNDPOOLSIZE/4; i++) {
644 
645 		/* If the pool is "full", stop after one block */
646 		if (entropy_bits + ent >= RNDPOOLSIZE * 8) {
647 			if (i > 0)
648 				break;
649 		}
650 
651 		/*
652 		 * This lock protects reading of phys_install.
653 		 * Any changes to this list, by DR, are done while
654 		 * holding this lock. So, holding this lock is sufficient
655 		 * to handle DR also.
656 		 */
657 		memlist_read_lock();
658 
659 		/* We're left with less than 4K of memory after DR */
660 		ASSERT(entsrc->nblocks > 0);
661 
662 		/* Pick a memory block to read */
663 		block = oblock = srndpool[i] % entsrc->nblocks;
664 
665 		for (pmem = phys_install; pmem != NULL; pmem = pmem->next) {
666 			if (block < pmem->size / MEMBLOCKSIZE)
667 				break;
668 			block -= pmem->size / MEMBLOCKSIZE;
669 		}
670 
671 		ASSERT(pmem != NULL);
672 
673 		offset = pmem->address + block * MEMBLOCKSIZE;
674 
675 		if (!address_in_memlist(phys_install, offset, MEMBLOCKSIZE)) {
676 			memlist_read_unlock();
677 			continue;
678 		}
679 
680 		/*
681 		 * Figure out which page to load to read the
682 		 * memory block.  Load the page and compute the
683 		 * hash of the memory block.
684 		 */
685 		len = MEMBLOCKSIZE;
686 		ts1 = gethrtime();
687 		HashInit(&ctx);
688 		while (len) {
689 			pfn = offset >> PAGESHIFT;
690 			poffset = offset & PAGEOFFSET;
691 			nbytes = PAGESIZE - poffset < len ?
692 			    PAGESIZE - poffset : len;
693 
694 			hat_devload(kas.a_hat, entsrc->pmbuf,
695 			    PAGESIZE, pfn, PROT_READ,
696 			    HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK);
697 
698 			HashUpdate(&ctx, (uint8_t *)entsrc->pmbuf + poffset,
699 			    nbytes);
700 
701 			hat_unload(kas.a_hat, entsrc->pmbuf, PAGESIZE,
702 			    HAT_UNLOAD_UNLOCK);
703 
704 			len -= nbytes;
705 			offset += nbytes;
706 		}
707 		/* We got our pages. Let the DR roll */
708 		memlist_read_unlock();
709 
710 		HashFinal(digest, &ctx);
711 		ts2 = gethrtime();
712 
713 		/*
714 		 * Compute the time it took to load and hash the
715 		 * block and compare it against the previous
716 		 * measurement. The delta of the time values
717 		 * provides a small amount of entropy.  The
718 		 * minimum of the first, second, and third order
719 		 * delta is used to estimate how much entropy
720 		 * is present.
721 		 */
722 		diff = ts2 - ts1;
723 		delta = diff - entsrc->last_diff;
724 		if (delta < 0)
725 			delta = -delta;
726 		delta2 = delta - entsrc->last_delta;
727 		if (delta2 < 0)
728 			delta2 = -delta2;
729 		delta3 = delta2 - entsrc->last_delta2;
730 		if (delta3 < 0)
731 			delta3 = -delta3;
732 		entsrc->last_diff = diff;
733 		entsrc->last_delta = delta;
734 		entsrc->last_delta2 = delta2;
735 
736 		if (delta > delta2)
737 			delta = delta2;
738 		if (delta > delta3)
739 			delta = delta3;
740 		delta2 = 0;
741 		while (delta >>= 1)
742 			delta2++;
743 		ent += delta2;
744 
745 		/*
746 		 * If the memory block has changed, credit the pool with
747 		 * the entropy estimate.  The entropy estimate is doubled
748 		 * because the single-bit checksum misses half the change
749 		 * on average.
750 		 */
751 		if (physmem_parity_update(entsrc->parity, oblock,
752 		    digest[0] & 1))
753 			ent += 2 * entsrc->entperblock;
754 
755 		/* Add the entropy bytes to the pool */
756 		swrand_add_bytes(digest, HASHSIZE);
757 		swrand_add_bytes((uint8_t *)&ts1, sizeof (ts1));
758 		swrand_add_bytes((uint8_t *)&ts2, sizeof (ts2));
759 	}
760 
761 	swrand_mix_pool(ent);
762 }
763 
764 static int
765 physmem_parity_update(uint8_t *parity_vec, uint32_t block, int parity)
766 {
767 	/* Test and set the parity bit, return 1 if changed */
768 	if (parity == ((parity_vec[block >> 3] >> (block & 7)) & 1))
769 		return (0);
770 	parity_vec[block >> 3] ^= 1 << (block & 7);
771 	return (1);
772 }
773 
774 /* Compute number of memory blocks available to scan */
775 static void
776 physmem_count_blocks()
777 {
778 	struct memlist *pmem;
779 
780 	memlist_read_lock();
781 	entsrc.nblocks = 0;
782 	for (pmem = phys_install; pmem != NULL; pmem = pmem->next) {
783 		entsrc.nblocks += pmem->size / MEMBLOCKSIZE;
784 		if (entsrc.nblocks > MAXMEMBLOCKS) {
785 			entsrc.nblocks = MAXMEMBLOCKS;
786 			break;
787 		}
788 	}
789 	memlist_read_unlock();
790 }
791 
792 /*
793  * Dynamic Reconfiguration call-back functions
794  */
795 
796 /* ARGSUSED */
797 static void
798 rnd_dr_callback_post_add(void *arg, pgcnt_t delta)
799 {
800 	/* More memory is available now, so update entsrc->nblocks. */
801 	physmem_count_blocks();
802 }
803 
804 /* Call-back routine invoked before the DR starts a memory removal. */
805 /* ARGSUSED */
806 static int
807 rnd_dr_callback_pre_del(void *arg, pgcnt_t delta)
808 {
809 	return (0);
810 }
811 
812 /* Call-back routine invoked after the DR starts a memory removal. */
813 /* ARGSUSED */
814 static void
815 rnd_dr_callback_post_del(void *arg, pgcnt_t delta, int cancelled)
816 {
817 	/* Memory has shrunk, so update entsrc->nblocks. */
818 	physmem_count_blocks();
819 }
820 
821 /* Timeout handling to gather entropy from physmem events */
822 static void
823 swrand_schedule_timeout(void)
824 {
825 	clock_t ut;	/* time in microseconds */
826 
827 	ASSERT(MUTEX_HELD(&srndpool_lock));
828 	/*
829 	 * The new timeout value is taken from the pool of random bits.
830 	 * We're merely reading the first 32 bits from the pool here, not
831 	 * consuming any entropy.
832 	 * This routine is usually called right after stirring the pool, so
833 	 * srndpool[0] will have a *fresh* random value each time.
834 	 * The timeout multiplier value is a random value between 0.7 sec and
835 	 * 1.748575 sec (0.7 sec + 0xFFFFF microseconds).
836 	 * The new timeout is TIMEOUT_INTERVAL times that multiplier.
837 	 */
838 	ut = 700000 + (clock_t)(srndpool[0] & 0xFFFFF);
839 	rnd_timeout_id = timeout(rnd_handler, NULL,
840 	    TIMEOUT_INTERVAL * drv_usectohz(ut));
841 }
842 
843 /*ARGSUSED*/
844 static void
845 rnd_handler(void *arg)
846 {
847 	mutex_enter(&srndpool_lock);
848 
849 	physmem_ent_gen(&entsrc);
850 	if (snum_waiters > 0)
851 		cv_broadcast(&srndpool_read_cv);
852 	swrand_schedule_timeout();
853 
854 	mutex_exit(&srndpool_lock);
855 }
856