1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * DWARF to tdata conversion 31 * 32 * For the most part, conversion is straightforward, proceeding in two passes. 33 * On the first pass, we iterate through every die, creating new type nodes as 34 * necessary. Referenced tdesc_t's are created in an uninitialized state, thus 35 * allowing type reference pointers to be filled in. If the tdesc_t 36 * corresponding to a given die can be completely filled out (sizes and offsets 37 * calculated, and so forth) without using any referenced types, the tdesc_t is 38 * marked as resolved. Consider an array type. If the type corresponding to 39 * the array contents has not yet been processed, we will create a blank tdesc 40 * for the contents type (only the type ID will be filled in, relying upon the 41 * later portion of the first pass to encounter and complete the referenced 42 * type). We will then attempt to determine the size of the array. If the 43 * array has a byte size attribute, we will have completely characterized the 44 * array type, and will be able to mark it as resolved. The lack of a byte 45 * size attribute, on the other hand, will prevent us from fully resolving the 46 * type, as the size will only be calculable with reference to the contents 47 * type, which has not, as yet, been encountered. The array type will thus be 48 * left without the resolved flag, and the first pass will continue. 49 * 50 * When we begin the second pass, we will have created tdesc_t nodes for every 51 * type in the section. We will traverse the tree, from the iidescs down, 52 * processing each unresolved node. As the referenced nodes will have been 53 * populated, the array type used in our example above will be able to use the 54 * size of the referenced types (if available) to determine its own type. The 55 * traversal will be repeated until all types have been resolved or we have 56 * failed to make progress. When all tdescs have been resolved, the conversion 57 * is complete. 58 * 59 * There are, as always, a few special cases that are handled during the first 60 * and second passes: 61 * 62 * 1. Empty enums - GCC will occasionally emit an enum without any members. 63 * Later on in the file, it will emit the same enum type, though this time 64 * with the full complement of members. All references to the memberless 65 * enum need to be redirected to the full definition. During the first 66 * pass, each enum is entered in dm_enumhash, along with a pointer to its 67 * corresponding tdesc_t. If, during the second pass, we encounter a 68 * memberless enum, we use the hash to locate the full definition. All 69 * tdescs referencing the empty enum are then redirected. 70 * 71 * 2. Forward declarations - If the compiler sees a forward declaration for 72 * a structure, followed by the definition of that structure, it will emit 73 * DWARF data for both the forward declaration and the definition. We need 74 * to resolve the forward declarations when possible, by redirecting 75 * forward-referencing tdescs to the actual struct/union definitions. This 76 * redirection is done completely within the first pass. We begin by 77 * recording all forward declarations in dw_fwdhash. When we define a 78 * structure, we check to see if there have been any corresponding forward 79 * declarations. If so, we redirect the tdescs which referenced the forward 80 * declarations to the structure or union definition. 81 * 82 * XXX see if a post traverser will allow the elimination of repeated pass 2 83 * traversals. 84 */ 85 86 #include <stdio.h> 87 #include <stdlib.h> 88 #include <strings.h> 89 #include <errno.h> 90 #include <libelf.h> 91 #include <libdwarf.h> 92 #include <libgen.h> 93 #include <dwarf.h> 94 95 #include "ctf_headers.h" 96 #include "ctftools.h" 97 #include "memory.h" 98 #include "list.h" 99 #include "traverse.h" 100 101 /* The version of DWARF which we support. */ 102 #define DWARF_VERSION 2 103 104 /* 105 * We need to define a couple of our own intrinsics, to smooth out some of the 106 * differences between the GCC and DevPro DWARF emitters. See the referenced 107 * routines and the special cases in the file comment for more details. 108 * 109 * Type IDs are 32 bits wide. We're going to use the top of that field to 110 * indicate types that we've created ourselves. 111 */ 112 #define TID_FILEMAX 0x3fffffff /* highest tid from file */ 113 #define TID_VOID 0x40000001 /* see die_void() */ 114 #define TID_LONG 0x40000002 /* see die_array() */ 115 116 #define TID_MFGTID_BASE 0x40000003 /* first mfg'd tid */ 117 118 /* 119 * To reduce the staggering amount of error-handling code that would otherwise 120 * be required, the attribute-retrieval routines handle most of their own 121 * errors. If the following flag is supplied as the value of the `req' 122 * argument, they will also handle the absence of a requested attribute by 123 * terminating the program. 124 */ 125 #define DW_ATTR_REQ 1 126 127 #define TDESC_HASH_BUCKETS 511 128 129 typedef struct dwarf { 130 Dwarf_Debug dw_dw; /* for libdwarf */ 131 Dwarf_Error dw_err; /* for libdwarf */ 132 Dwarf_Unsigned dw_maxoff; /* highest legal offset in this cu */ 133 tdata_t *dw_td; /* root of the tdesc/iidesc tree */ 134 hash_t *dw_tidhash; /* hash of tdescs by t_id */ 135 hash_t *dw_fwdhash; /* hash of fwd decls by name */ 136 hash_t *dw_enumhash; /* hash of memberless enums by name */ 137 tdesc_t *dw_void; /* manufactured void type */ 138 tdesc_t *dw_long; /* manufactured long type for arrays */ 139 size_t dw_ptrsz; /* size of a pointer in this file */ 140 tid_t dw_mfgtid_last; /* last mfg'd type ID used */ 141 uint_t dw_nunres; /* count of unresolved types */ 142 char *dw_cuname; /* name of compilation unit */ 143 } dwarf_t; 144 145 static void die_create_one(dwarf_t *, Dwarf_Die); 146 static void die_create(dwarf_t *, Dwarf_Die); 147 148 static tid_t 149 mfgtid_next(dwarf_t *dw) 150 { 151 return (++dw->dw_mfgtid_last); 152 } 153 154 static void 155 tdesc_add(dwarf_t *dw, tdesc_t *tdp) 156 { 157 hash_add(dw->dw_tidhash, tdp); 158 } 159 160 static tdesc_t * 161 tdesc_lookup(dwarf_t *dw, int tid) 162 { 163 tdesc_t tmpl, *tdp; 164 165 tmpl.t_id = tid; 166 167 if (hash_find(dw->dw_tidhash, &tmpl, (void **)&tdp)) 168 return (tdp); 169 else 170 return (NULL); 171 } 172 173 /* 174 * Resolve a tdesc down to a node which should have a size. Returns the size, 175 * zero if the size hasn't yet been determined. 176 */ 177 static size_t 178 tdesc_size(tdesc_t *tdp) 179 { 180 for (;;) { 181 switch (tdp->t_type) { 182 case INTRINSIC: 183 case POINTER: 184 case ARRAY: 185 case FUNCTION: 186 case STRUCT: 187 case UNION: 188 case ENUM: 189 return (tdp->t_size); 190 191 case FORWARD: 192 return (0); 193 194 case TYPEDEF: 195 case VOLATILE: 196 case CONST: 197 case RESTRICT: 198 tdp = tdp->t_tdesc; 199 continue; 200 201 case 0: /* not yet defined */ 202 return (0); 203 204 default: 205 terminate("tdp %u: tdesc_size on unknown type %d\n", 206 tdp->t_id, tdp->t_type); 207 } 208 } 209 } 210 211 static size_t 212 tdesc_bitsize(tdesc_t *tdp) 213 { 214 for (;;) { 215 switch (tdp->t_type) { 216 case INTRINSIC: 217 return (tdp->t_intr->intr_nbits); 218 219 case ARRAY: 220 case FUNCTION: 221 case STRUCT: 222 case UNION: 223 case ENUM: 224 case POINTER: 225 return (tdp->t_size); 226 227 case FORWARD: 228 return (0); 229 230 case TYPEDEF: 231 case VOLATILE: 232 case RESTRICT: 233 case CONST: 234 tdp = tdp->t_tdesc; 235 continue; 236 237 case 0: /* not yet defined */ 238 return (0); 239 240 default: 241 terminate("tdp %u: tdesc_bitsize on unknown type %d\n", 242 tdp->t_id, tdp->t_type); 243 } 244 } 245 } 246 247 static tdesc_t * 248 tdesc_basetype(tdesc_t *tdp) 249 { 250 for (;;) { 251 switch (tdp->t_type) { 252 case TYPEDEF: 253 case VOLATILE: 254 case RESTRICT: 255 case CONST: 256 tdp = tdp->t_tdesc; 257 break; 258 case 0: /* not yet defined */ 259 return (NULL); 260 default: 261 return (tdp); 262 } 263 } 264 } 265 266 static Dwarf_Off 267 die_off(dwarf_t *dw, Dwarf_Die die) 268 { 269 Dwarf_Off off; 270 271 if (dwarf_dieoffset(die, &off, &dw->dw_err) == DW_DLV_OK) 272 return (off); 273 274 terminate("failed to get offset for die: %s\n", 275 dwarf_errmsg(dw->dw_err)); 276 /*NOTREACHED*/ 277 return (0); 278 } 279 280 static Dwarf_Die 281 die_sibling(dwarf_t *dw, Dwarf_Die die) 282 { 283 Dwarf_Die sib; 284 int rc; 285 286 if ((rc = dwarf_siblingof(dw->dw_dw, die, &sib, &dw->dw_err)) == 287 DW_DLV_OK) 288 return (sib); 289 else if (rc == DW_DLV_NO_ENTRY) 290 return (NULL); 291 292 terminate("die %llu: failed to find type sibling: %s\n", 293 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 294 /*NOTREACHED*/ 295 return (NULL); 296 } 297 298 static Dwarf_Die 299 die_child(dwarf_t *dw, Dwarf_Die die) 300 { 301 Dwarf_Die child; 302 int rc; 303 304 if ((rc = dwarf_child(die, &child, &dw->dw_err)) == DW_DLV_OK) 305 return (child); 306 else if (rc == DW_DLV_NO_ENTRY) 307 return (NULL); 308 309 terminate("die %llu: failed to find type child: %s\n", 310 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 311 /*NOTREACHED*/ 312 return (NULL); 313 } 314 315 static Dwarf_Half 316 die_tag(dwarf_t *dw, Dwarf_Die die) 317 { 318 Dwarf_Half tag; 319 320 if (dwarf_tag(die, &tag, &dw->dw_err) == DW_DLV_OK) 321 return (tag); 322 323 terminate("die %llu: failed to get tag for type: %s\n", 324 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 325 /*NOTREACHED*/ 326 return (0); 327 } 328 329 static Dwarf_Attribute 330 die_attr(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, int req) 331 { 332 Dwarf_Attribute attr; 333 int rc; 334 335 if ((rc = dwarf_attr(die, name, &attr, &dw->dw_err)) == DW_DLV_OK) { 336 return (attr); 337 } else if (rc == DW_DLV_NO_ENTRY) { 338 if (req) { 339 terminate("die %llu: no attr 0x%x\n", die_off(dw, die), 340 name); 341 } else { 342 return (NULL); 343 } 344 } 345 346 terminate("die %llu: failed to get attribute for type: %s\n", 347 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 348 /*NOTREACHED*/ 349 return (NULL); 350 } 351 352 static Dwarf_Half 353 die_attr_form(dwarf_t *dw, Dwarf_Attribute attr) 354 { 355 Dwarf_Half form; 356 357 if (dwarf_whatform(attr, &form, &dw->dw_err) == DW_DLV_OK) 358 return (form); 359 360 terminate("failed to get attribute form for type: %s\n", 361 dwarf_errmsg(dw->dw_err)); 362 /*NOTREACHED*/ 363 return (0); 364 } 365 366 static int 367 die_signed(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Signed *valp, 368 int req) 369 { 370 Dwarf_Attribute attr; 371 Dwarf_Signed val; 372 373 if ((attr = die_attr(dw, die, name, req)) == NULL) 374 return (0); /* die_attr will terminate for us if necessary */ 375 376 if (dwarf_formsdata(attr, &val, &dw->dw_err) != DW_DLV_OK) { 377 terminate("die %llu: failed to get signed (form 0x%x)\n", 378 die_off(dw, die), die_attr_form(dw, attr)); 379 } 380 381 dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR); 382 383 *valp = val; 384 return (1); 385 } 386 387 static int 388 die_unsigned(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Unsigned *valp, 389 int req) 390 { 391 Dwarf_Attribute attr; 392 Dwarf_Unsigned val; 393 394 if ((attr = die_attr(dw, die, name, req)) == NULL) 395 return (0); /* die_attr will terminate for us if necessary */ 396 397 if (dwarf_formudata(attr, &val, &dw->dw_err) != DW_DLV_OK) { 398 terminate("die %llu: failed to get unsigned (form 0x%x)\n", 399 die_off(dw, die), die_attr_form(dw, attr)); 400 } 401 402 dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR); 403 404 *valp = val; 405 return (1); 406 } 407 408 static int 409 die_bool(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Bool *valp, int req) 410 { 411 Dwarf_Attribute attr; 412 Dwarf_Bool val; 413 414 if ((attr = die_attr(dw, die, name, req)) == NULL) 415 return (0); /* die_attr will terminate for us if necessary */ 416 417 if (dwarf_formflag(attr, &val, &dw->dw_err) != DW_DLV_OK) { 418 terminate("die %llu: failed to get bool (form 0x%x)\n", 419 die_off(dw, die), die_attr_form(dw, attr)); 420 } 421 422 dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR); 423 424 *valp = val; 425 return (1); 426 } 427 428 static int 429 die_string(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, char **strp, int req) 430 { 431 Dwarf_Attribute attr; 432 char *str; 433 434 if ((attr = die_attr(dw, die, name, req)) == NULL) 435 return (0); /* die_attr will terminate for us if necessary */ 436 437 if (dwarf_formstring(attr, &str, &dw->dw_err) != DW_DLV_OK) { 438 terminate("die %llu: failed to get string (form 0x%x)\n", 439 die_off(dw, die), die_attr_form(dw, attr)); 440 } 441 442 *strp = xstrdup(str); 443 dwarf_dealloc(dw->dw_dw, str, DW_DLA_STRING); 444 445 return (1); 446 } 447 448 static Dwarf_Off 449 die_attr_ref(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name) 450 { 451 Dwarf_Attribute attr; 452 Dwarf_Off off; 453 454 attr = die_attr(dw, die, name, DW_ATTR_REQ); 455 456 if (dwarf_formref(attr, &off, &dw->dw_err) != DW_DLV_OK) { 457 terminate("die %llu: failed to get ref (form 0x%x)\n", 458 die_off(dw, die), die_attr_form(dw, attr)); 459 } 460 461 dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR); 462 463 return (off); 464 } 465 466 static char * 467 die_name(dwarf_t *dw, Dwarf_Die die) 468 { 469 char *str = NULL; 470 471 (void) die_string(dw, die, DW_AT_name, &str, 0); 472 473 return (str); 474 } 475 476 static int 477 die_isdecl(dwarf_t *dw, Dwarf_Die die) 478 { 479 Dwarf_Bool val; 480 481 return (die_bool(dw, die, DW_AT_declaration, &val, 0) && val); 482 } 483 484 static int 485 die_isglobal(dwarf_t *dw, Dwarf_Die die) 486 { 487 Dwarf_Signed vis; 488 Dwarf_Bool ext; 489 490 /* 491 * Some compilers (gcc) use DW_AT_external to indicate function 492 * visibility. Others (Sun) use DW_AT_visibility. 493 */ 494 if (die_signed(dw, die, DW_AT_visibility, &vis, 0)) 495 return (vis == DW_VIS_exported); 496 else 497 return (die_bool(dw, die, DW_AT_external, &ext, 0) && ext); 498 } 499 500 static tdesc_t * 501 die_add(dwarf_t *dw, Dwarf_Off off) 502 { 503 tdesc_t *tdp = xcalloc(sizeof (tdesc_t)); 504 505 tdp->t_id = off; 506 507 tdesc_add(dw, tdp); 508 509 return (tdp); 510 } 511 512 static tdesc_t * 513 die_lookup_pass1(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name) 514 { 515 Dwarf_Off ref = die_attr_ref(dw, die, name); 516 tdesc_t *tdp; 517 518 if ((tdp = tdesc_lookup(dw, ref)) != NULL) 519 return (tdp); 520 521 return (die_add(dw, ref)); 522 } 523 524 static int 525 die_mem_offset(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, 526 Dwarf_Unsigned *valp, int req) 527 { 528 Dwarf_Attribute attr; 529 Dwarf_Locdesc *loc; 530 Dwarf_Signed locnum; 531 532 if ((attr = die_attr(dw, die, name, req)) == NULL) 533 return (0); /* die_attr will terminate for us if necessary */ 534 535 if (dwarf_loclist(attr, &loc, &locnum, &dw->dw_err) != DW_DLV_OK) { 536 terminate("die %llu: failed to get mem offset location list\n", 537 die_off(dw, die)); 538 } 539 540 dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR); 541 542 if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) { 543 terminate("die %llu: cannot parse member offset\n", 544 die_off(dw, die)); 545 } 546 547 *valp = loc->ld_s->lr_number; 548 549 dwarf_dealloc(dw->dw_dw, loc->ld_s, DW_DLA_LOC_BLOCK); 550 dwarf_dealloc(dw->dw_dw, loc, DW_DLA_LOCDESC); 551 552 return (1); 553 } 554 555 static tdesc_t * 556 tdesc_intr_common(dwarf_t *dw, int tid, const char *name, size_t sz) 557 { 558 tdesc_t *tdp; 559 intr_t *intr; 560 561 intr = xcalloc(sizeof (intr_t)); 562 intr->intr_type = INTR_INT; 563 intr->intr_signed = 1; 564 intr->intr_nbits = sz * NBBY; 565 566 tdp = xcalloc(sizeof (tdesc_t)); 567 tdp->t_name = xstrdup(name); 568 tdp->t_size = sz; 569 tdp->t_id = tid; 570 tdp->t_type = INTRINSIC; 571 tdp->t_intr = intr; 572 tdp->t_flags = TDESC_F_RESOLVED; 573 574 tdesc_add(dw, tdp); 575 576 return (tdp); 577 } 578 579 /* 580 * Manufacture a void type. Used for gcc-emitted stabs, where the lack of a 581 * type reference implies a reference to a void type. A void *, for example 582 * will be represented by a pointer die without a DW_AT_type. CTF requires 583 * that pointer nodes point to something, so we'll create a void for use as 584 * the target. Note that the DWARF data may already create a void type. Ours 585 * would then be a duplicate, but it'll be removed in the self-uniquification 586 * merge performed at the completion of DWARF->tdesc conversion. 587 */ 588 static tdesc_t * 589 tdesc_intr_void(dwarf_t *dw) 590 { 591 if (dw->dw_void == NULL) 592 dw->dw_void = tdesc_intr_common(dw, TID_VOID, "void", 0); 593 594 return (dw->dw_void); 595 } 596 597 static tdesc_t * 598 tdesc_intr_long(dwarf_t *dw) 599 { 600 if (dw->dw_long == NULL) { 601 dw->dw_long = tdesc_intr_common(dw, TID_LONG, "long", 602 dw->dw_ptrsz); 603 } 604 605 return (dw->dw_long); 606 } 607 608 /* 609 * Used for creating bitfield types. We create a copy of an existing intrinsic, 610 * adjusting the size of the copy to match what the caller requested. The 611 * caller can then use the copy as the type for a bitfield structure member. 612 */ 613 static tdesc_t * 614 tdesc_intr_clone(dwarf_t *dw, tdesc_t *old, size_t bitsz) 615 { 616 tdesc_t *new = xcalloc(sizeof (tdesc_t)); 617 618 if (!(old->t_flags & TDESC_F_RESOLVED)) { 619 terminate("tdp %u: attempt to make a bit field from an " 620 "unresolved type\n", old->t_id); 621 } 622 623 new->t_name = xstrdup(old->t_name); 624 new->t_size = old->t_size; 625 new->t_id = mfgtid_next(dw); 626 new->t_type = INTRINSIC; 627 new->t_flags = TDESC_F_RESOLVED; 628 629 new->t_intr = xcalloc(sizeof (intr_t)); 630 bcopy(old->t_intr, new->t_intr, sizeof (intr_t)); 631 new->t_intr->intr_nbits = bitsz; 632 633 tdesc_add(dw, new); 634 635 return (new); 636 } 637 638 static void 639 tdesc_array_create(dwarf_t *dw, Dwarf_Die dim, tdesc_t *arrtdp, 640 tdesc_t *dimtdp) 641 { 642 Dwarf_Unsigned uval; 643 Dwarf_Signed sval; 644 tdesc_t *ctdp; 645 Dwarf_Die dim2; 646 ardef_t *ar; 647 648 if ((dim2 = die_sibling(dw, dim)) == NULL) { 649 ctdp = arrtdp; 650 } else if (die_tag(dw, dim2) == DW_TAG_subrange_type) { 651 ctdp = xcalloc(sizeof (tdesc_t)); 652 ctdp->t_id = mfgtid_next(dw); 653 debug(3, "die %llu: creating new type %u for sub-dimension\n", 654 die_off(dw, dim2), ctdp->t_id); 655 tdesc_array_create(dw, dim2, arrtdp, ctdp); 656 } else { 657 terminate("die %llu: unexpected non-subrange node in array\n", 658 die_off(dw, dim2)); 659 } 660 661 dimtdp->t_type = ARRAY; 662 dimtdp->t_ardef = ar = xcalloc(sizeof (ardef_t)); 663 664 /* 665 * Array bounds can be signed or unsigned, but there are several kinds 666 * of signless forms (data1, data2, etc) that take their sign from the 667 * routine that is trying to interpret them. That is, data1 can be 668 * either signed or unsigned, depending on whether you use the signed or 669 * unsigned accessor function. GCC will use the signless forms to store 670 * unsigned values which have their high bit set, so we need to try to 671 * read them first as unsigned to get positive values. We could also 672 * try signed first, falling back to unsigned if we got a negative 673 * value. 674 */ 675 if (die_unsigned(dw, dim, DW_AT_upper_bound, &uval, 0)) 676 ar->ad_nelems = uval + 1; 677 else if (die_signed(dw, dim, DW_AT_upper_bound, &sval, 0)) 678 ar->ad_nelems = sval + 1; 679 else 680 ar->ad_nelems = 0; 681 682 /* 683 * Different compilers use different index types. Force the type to be 684 * a common, known value (long). 685 */ 686 ar->ad_idxtype = tdesc_intr_long(dw); 687 ar->ad_contents = ctdp; 688 689 if (ar->ad_contents->t_size != 0) { 690 dimtdp->t_size = ar->ad_contents->t_size * ar->ad_nelems; 691 dimtdp->t_flags |= TDESC_F_RESOLVED; 692 } 693 } 694 695 /* 696 * Create a tdesc from an array node. Some arrays will come with byte size 697 * attributes, and thus can be resolved immediately. Others don't, and will 698 * need to wait until the second pass for resolution. 699 */ 700 static void 701 die_array_create(dwarf_t *dw, Dwarf_Die arr, Dwarf_Off off, tdesc_t *tdp) 702 { 703 tdesc_t *arrtdp = die_lookup_pass1(dw, arr, DW_AT_type); 704 Dwarf_Unsigned uval; 705 Dwarf_Die dim; 706 707 debug(3, "die %llu: creating array\n", off); 708 709 if ((dim = die_child(dw, arr)) == NULL || 710 die_tag(dw, dim) != DW_TAG_subrange_type) 711 terminate("die %llu: failed to retrieve array bounds\n", off); 712 713 tdesc_array_create(dw, dim, arrtdp, tdp); 714 715 if (die_unsigned(dw, arr, DW_AT_byte_size, &uval, 0)) { 716 tdesc_t *dimtdp; 717 int flags; 718 719 tdp->t_size = uval; 720 721 /* 722 * Ensure that sub-dimensions have sizes too before marking 723 * as resolved. 724 */ 725 flags = TDESC_F_RESOLVED; 726 for (dimtdp = tdp->t_ardef->ad_contents; 727 dimtdp->t_type == ARRAY; 728 dimtdp = dimtdp->t_ardef->ad_contents) { 729 if (!(dimtdp->t_flags & TDESC_F_RESOLVED)) { 730 flags = 0; 731 break; 732 } 733 } 734 735 tdp->t_flags |= flags; 736 } 737 738 debug(3, "die %llu: array nelems %u size %u\n", off, 739 tdp->t_ardef->ad_nelems, tdp->t_size); 740 } 741 742 /*ARGSUSED1*/ 743 static int 744 die_array_resolve(tdesc_t *tdp, tdesc_t **tdpp, void *private) 745 { 746 dwarf_t *dw = private; 747 size_t sz; 748 749 if (tdp->t_flags & TDESC_F_RESOLVED) 750 return (1); 751 752 debug(3, "trying to resolve array %d (cont %d)\n", tdp->t_id, 753 tdp->t_ardef->ad_contents->t_id); 754 755 if ((sz = tdesc_size(tdp->t_ardef->ad_contents)) == 0) { 756 debug(3, "unable to resolve array %s (%d) contents %d\n", 757 (tdp->t_name == NULL ? "(anon)" : tdp->t_name), tdp->t_id, 758 tdp->t_ardef->ad_contents->t_id); 759 760 dw->dw_nunres++; 761 return (1); 762 } 763 764 tdp->t_size = sz * tdp->t_ardef->ad_nelems; 765 tdp->t_flags |= TDESC_F_RESOLVED; 766 767 debug(3, "resolved array %d: %u bytes\n", tdp->t_id, tdp->t_size); 768 769 return (1); 770 } 771 772 /*ARGSUSED1*/ 773 static int 774 die_array_failed(tdesc_t *tdp, tdesc_t **tdpp, void *private) 775 { 776 tdesc_t *cont = tdp->t_ardef->ad_contents; 777 778 if (tdp->t_flags & TDESC_F_RESOLVED) 779 return (1); 780 781 fprintf(stderr, "Array %d: failed to size contents type %s (%d)\n", 782 tdp->t_id, (cont->t_name == NULL ? "(anon)" : cont->t_name), 783 cont->t_id); 784 785 return (1); 786 } 787 788 /* 789 * Most enums (those with members) will be resolved during this first pass. 790 * Others - those without members (see the file comment) - won't be, and will 791 * need to wait until the second pass when they can be matched with their full 792 * definitions. 793 */ 794 static void 795 die_enum_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 796 { 797 Dwarf_Die mem; 798 Dwarf_Unsigned uval; 799 Dwarf_Signed sval; 800 801 debug(3, "die %llu: creating enum\n", off); 802 803 tdp->t_type = ENUM; 804 805 (void) die_unsigned(dw, die, DW_AT_byte_size, &uval, DW_ATTR_REQ); 806 tdp->t_size = uval; 807 808 if ((mem = die_child(dw, die)) != NULL) { 809 elist_t **elastp = &tdp->t_emem; 810 811 do { 812 elist_t *el; 813 814 if (die_tag(dw, mem) != DW_TAG_enumerator) { 815 /* Nested type declaration */ 816 die_create_one(dw, mem); 817 continue; 818 } 819 820 el = xcalloc(sizeof (elist_t)); 821 el->el_name = die_name(dw, mem); 822 823 if (die_signed(dw, mem, DW_AT_const_value, &sval, 0)) { 824 el->el_number = sval; 825 } else if (die_unsigned(dw, mem, DW_AT_const_value, 826 &uval, 0)) { 827 el->el_number = uval; 828 } else { 829 terminate("die %llu: enum %llu: member without " 830 "value\n", off, die_off(dw, mem)); 831 } 832 833 debug(3, "die %llu: enum %llu: created %s = %d\n", off, 834 die_off(dw, mem), el->el_name, el->el_number); 835 836 *elastp = el; 837 elastp = &el->el_next; 838 839 } while ((mem = die_sibling(dw, mem)) != NULL); 840 841 hash_add(dw->dw_enumhash, tdp); 842 843 tdp->t_flags |= TDESC_F_RESOLVED; 844 845 if (tdp->t_name != NULL) { 846 iidesc_t *ii = xcalloc(sizeof (iidesc_t)); 847 ii->ii_type = II_SOU; 848 ii->ii_name = xstrdup(tdp->t_name); 849 ii->ii_dtype = tdp; 850 851 iidesc_add(dw->dw_td->td_iihash, ii); 852 } 853 } 854 } 855 856 static int 857 die_enum_match(void *arg1, void *arg2) 858 { 859 tdesc_t *tdp = arg1, **fullp = arg2; 860 861 if (tdp->t_emem != NULL) { 862 *fullp = tdp; 863 return (-1); /* stop the iteration */ 864 } 865 866 return (0); 867 } 868 869 /*ARGSUSED1*/ 870 static int 871 die_enum_resolve(tdesc_t *tdp, tdesc_t **tdpp, void *private) 872 { 873 dwarf_t *dw = private; 874 tdesc_t *full = NULL; 875 876 if (tdp->t_flags & TDESC_F_RESOLVED) 877 return (1); 878 879 (void) hash_find_iter(dw->dw_enumhash, tdp, die_enum_match, &full); 880 881 /* 882 * The answer to this one won't change from iteration to iteration, 883 * so don't even try. 884 */ 885 if (full == NULL) { 886 terminate("tdp %u: enum %s has no members\n", 887 tdp->t_id, (tdp->t_name == NULL ? "(anon)" : tdp->t_name)); 888 } 889 890 debug(3, "tdp %u: enum %s redirected to %u\n", tdp->t_id, 891 (tdp->t_name == NULL ? "(anon)" : tdp->t_name), full->t_id); 892 893 tdp->t_flags |= TDESC_F_RESOLVED; 894 895 return (1); 896 } 897 898 static int 899 die_fwd_map(void *arg1, void *arg2) 900 { 901 tdesc_t *fwd = arg1, *sou = arg2; 902 903 debug(3, "tdp %u: mapped forward %s to sou %u\n", fwd->t_id, 904 fwd->t_name, sou->t_id); 905 fwd->t_tdesc = sou; 906 907 return (0); 908 } 909 910 /* 911 * Structures and unions will never be resolved during the first pass, as we 912 * won't be able to fully determine the member sizes. The second pass, which 913 * have access to sizing information, will be able to complete the resolution. 914 */ 915 static void 916 die_sou_create(dwarf_t *dw, Dwarf_Die str, Dwarf_Off off, tdesc_t *tdp, 917 int type, const char *typename) 918 { 919 Dwarf_Unsigned sz, bitsz, bitoff; 920 Dwarf_Die mem; 921 mlist_t *ml, **mlastp; 922 iidesc_t *ii; 923 924 tdp->t_type = (die_isdecl(dw, str) ? FORWARD : type); 925 926 debug(3, "die %llu: creating %s %s\n", off, 927 (tdp->t_type == FORWARD ? "forward decl" : typename), 928 (tdp->t_name == NULL ? "(anon)" : tdp->t_name)); 929 930 if (tdp->t_type == FORWARD) { 931 hash_add(dw->dw_fwdhash, tdp); 932 return; 933 } 934 935 (void) hash_find_iter(dw->dw_fwdhash, tdp, die_fwd_map, tdp); 936 937 (void) die_unsigned(dw, str, DW_AT_byte_size, &sz, DW_ATTR_REQ); 938 tdp->t_size = sz; 939 940 if ((mem = die_child(dw, str)) == NULL) 941 terminate("die %llu: %s has no members", off, typename); 942 943 mlastp = &tdp->t_members; 944 945 do { 946 Dwarf_Off memoff = die_off(dw, mem); 947 Dwarf_Half tag = die_tag(dw, mem); 948 Dwarf_Unsigned mloff; 949 950 if (tag != DW_TAG_member) { 951 /* Nested type declaration */ 952 die_create_one(dw, mem); 953 continue; 954 } 955 956 debug(3, "die %llu: mem %llu: creating member\n", off, memoff); 957 958 ml = xcalloc(sizeof (mlist_t)); 959 960 if ((ml->ml_name = die_name(dw, mem)) == NULL) { 961 terminate("die %llu: mem %llu: member has no name\n", 962 off, memoff); 963 } 964 965 ml->ml_type = die_lookup_pass1(dw, mem, DW_AT_type); 966 967 if (die_mem_offset(dw, mem, DW_AT_data_member_location, 968 &mloff, 0)) { 969 debug(3, "die %llu: got mloff %llx\n", off, 970 (u_longlong_t)mloff); 971 ml->ml_offset = mloff * 8; 972 } 973 974 if (die_unsigned(dw, mem, DW_AT_bit_size, &bitsz, 0)) 975 ml->ml_size = bitsz; 976 else 977 ml->ml_size = tdesc_bitsize(ml->ml_type); 978 979 if (die_unsigned(dw, mem, DW_AT_bit_offset, &bitoff, 0)) { 980 #ifdef _BIG_ENDIAN 981 ml->ml_offset += bitoff; 982 #else 983 ml->ml_offset += (dw->dw_ptrsz * NBBY - bitoff - 984 ml->ml_size); 985 #endif 986 } 987 988 debug(3, "die %llu: mem %llu: created %s (off %u sz %u)\n", 989 off, memoff, ml->ml_name, ml->ml_offset, ml->ml_size); 990 991 *mlastp = ml; 992 mlastp = &ml->ml_next; 993 } while ((mem = die_sibling(dw, mem)) != NULL); 994 995 /* 996 * GCC will attempt to eliminate unused types, thus decreasing the 997 * size of the emitted dwarf. That is, if you declare a foo_t in your 998 * header, include said header in your source file, and neglect to 999 * actually use (directly or indirectly) the foo_t in the source file, 1000 * the foo_t won't make it into the emitted DWARF. So, at least, goes 1001 * the theory. 1002 * 1003 * Occasionally, it'll emit the DW_TAG_structure_type for the foo_t, 1004 * and then neglect to emit the members. Strangely, the loner struct 1005 * tag will always be followed by a proper nested declaration of 1006 * something else. This is clearly a bug, but we're not going to have 1007 * time to get it fixed before this goo goes back, so we'll have to work 1008 * around it. If we see a no-membered struct with a nested declaration 1009 * (i.e. die_child of the struct tag won't be null), we'll ignore it. 1010 * Being paranoid, we won't simply remove it from the hash. Instead, 1011 * we'll decline to create an iidesc for it, thus ensuring that this 1012 * type won't make it into the output file. To be safe, we'll also 1013 * change the name. 1014 */ 1015 if (tdp->t_members == NULL) { 1016 char *old = (tdp->t_name == NULL ? "" : tdp->t_name); 1017 size_t newsz = 7 + strlen(old) + 1; 1018 char *new = xmalloc(newsz); 1019 (void) snprintf(new, newsz, "orphan %s", old); 1020 1021 debug(3, "die %llu: worked around %s %s\n", off, typename, 1022 (tdp->t_name == NULL ? "<anon>" : tdp->t_name)); 1023 1024 if (tdp->t_name != NULL) 1025 free(tdp->t_name); 1026 tdp->t_name = new; 1027 1028 } 1029 1030 if (tdp->t_name != NULL && tdp->t_members != NULL) { 1031 ii = xcalloc(sizeof (iidesc_t)); 1032 ii->ii_type = II_SOU; 1033 ii->ii_name = xstrdup(tdp->t_name); 1034 ii->ii_dtype = tdp; 1035 1036 iidesc_add(dw->dw_td->td_iihash, ii); 1037 } 1038 } 1039 1040 static void 1041 die_struct_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1042 { 1043 die_sou_create(dw, die, off, tdp, STRUCT, "struct"); 1044 } 1045 1046 static void 1047 die_union_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1048 { 1049 die_sou_create(dw, die, off, tdp, UNION, "union"); 1050 } 1051 1052 /*ARGSUSED1*/ 1053 static int 1054 die_sou_resolve(tdesc_t *tdp, tdesc_t **tdpp, void *private) 1055 { 1056 dwarf_t *dw = private; 1057 mlist_t *ml; 1058 tdesc_t *mt; 1059 1060 if (tdp->t_flags & TDESC_F_RESOLVED) 1061 return (1); 1062 1063 debug(3, "resolving sou %s\n", tdp->t_name); 1064 1065 for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) { 1066 if (ml->ml_size == 0) { 1067 if ((ml->ml_size = tdesc_bitsize(ml->ml_type)) == 0) { 1068 dw->dw_nunres++; 1069 return (1); 1070 } 1071 } 1072 1073 if ((mt = tdesc_basetype(ml->ml_type)) == NULL) { 1074 dw->dw_nunres++; 1075 return (1); 1076 } 1077 1078 if (ml->ml_size != 0 && mt->t_type == INTRINSIC && 1079 mt->t_intr->intr_nbits != ml->ml_size) { 1080 /* 1081 * This member is a bitfield, and needs to reference 1082 * an intrinsic type with the same width. If the 1083 * currently-referenced type isn't of the same width, 1084 * we'll copy it, adjusting the width of the copy to 1085 * the size we'd like. 1086 */ 1087 debug(3, "tdp %u: creating bitfield for %d bits\n", 1088 tdp->t_id, ml->ml_size); 1089 1090 ml->ml_type = tdesc_intr_clone(dw, mt, ml->ml_size); 1091 } 1092 } 1093 1094 tdp->t_flags |= TDESC_F_RESOLVED; 1095 1096 return (1); 1097 } 1098 1099 /*ARGSUSED1*/ 1100 static int 1101 die_sou_failed(tdesc_t *tdp, tdesc_t **tdpp, void *private) 1102 { 1103 const char *typename = (tdp->t_type == STRUCT ? "struct" : "union"); 1104 mlist_t *ml; 1105 1106 if (tdp->t_flags & TDESC_F_RESOLVED) 1107 return (1); 1108 1109 for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) { 1110 if (ml->ml_size == 0) { 1111 fprintf(stderr, "%s %d: failed to size member %s of " 1112 "type %s (%d)\n", typename, tdp->t_id, ml->ml_name, 1113 (ml->ml_type->t_name == NULL ? "(anon)" : 1114 ml->ml_type->t_name), ml->ml_type->t_id); 1115 } 1116 } 1117 1118 return (1); 1119 } 1120 1121 static void 1122 die_funcptr_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1123 { 1124 Dwarf_Attribute attr; 1125 Dwarf_Half tag; 1126 Dwarf_Die arg; 1127 fndef_t *fn; 1128 int i; 1129 1130 debug(3, "die %llu: creating function pointer\n", off); 1131 1132 /* 1133 * We'll begin by processing any type definition nodes that may be 1134 * lurking underneath this one. 1135 */ 1136 for (arg = die_child(dw, die); arg != NULL; 1137 arg = die_sibling(dw, arg)) { 1138 if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter && 1139 tag != DW_TAG_unspecified_parameters) { 1140 /* Nested type declaration */ 1141 die_create_one(dw, arg); 1142 } 1143 } 1144 1145 if (die_isdecl(dw, die)) { 1146 /* 1147 * This is a prototype. We don't add prototypes to the 1148 * tree, so we're going to drop the tdesc. Unfortunately, 1149 * it has already been added to the tree. Nobody will reference 1150 * it, though, and it will be leaked. 1151 */ 1152 return; 1153 } 1154 1155 fn = xcalloc(sizeof (fndef_t)); 1156 1157 tdp->t_type = FUNCTION; 1158 1159 if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) { 1160 dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR); 1161 fn->fn_ret = die_lookup_pass1(dw, die, DW_AT_type); 1162 } else { 1163 fn->fn_ret = tdesc_intr_void(dw); 1164 } 1165 1166 /* 1167 * Count the arguments to the function, then read them in. 1168 */ 1169 for (fn->fn_nargs = 0, arg = die_child(dw, die); arg != NULL; 1170 arg = die_sibling(dw, arg)) { 1171 if ((tag = die_tag(dw, arg)) == DW_TAG_formal_parameter) 1172 fn->fn_nargs++; 1173 else if (tag == DW_TAG_unspecified_parameters && 1174 fn->fn_nargs > 0) 1175 fn->fn_vargs = 1; 1176 } 1177 1178 if (fn->fn_nargs != 0) { 1179 debug(3, "die %llu: adding %d argument%s\n", off, fn->fn_nargs, 1180 (fn->fn_nargs > 1 ? "s" : "")); 1181 1182 fn->fn_args = xcalloc(sizeof (tdesc_t *) * fn->fn_nargs); 1183 for (i = 0, arg = die_child(dw, die); 1184 arg != NULL && i < fn->fn_nargs; 1185 arg = die_sibling(dw, arg)) { 1186 if (die_tag(dw, arg) != DW_TAG_formal_parameter) 1187 continue; 1188 1189 fn->fn_args[i++] = die_lookup_pass1(dw, arg, 1190 DW_AT_type); 1191 } 1192 } 1193 1194 tdp->t_fndef = fn; 1195 tdp->t_flags |= TDESC_F_RESOLVED; 1196 } 1197 1198 /* 1199 * GCC and DevPro use different names for the base types. While the terms are 1200 * the same, they are arranged in a different order. Some terms, such as int, 1201 * are implied in one, and explicitly named in the other. Given a base type 1202 * as input, this routine will return a common name, along with an intr_t 1203 * that reflects said name. 1204 */ 1205 static intr_t * 1206 die_base_name_parse(const char *name, char **newp) 1207 { 1208 char buf[100]; 1209 char *base, *c; 1210 int nlong = 0, nshort = 0, nchar = 0, nint = 0; 1211 int sign = 1; 1212 char fmt = '\0'; 1213 intr_t *intr; 1214 1215 if (strlen(name) > sizeof (buf) - 1) 1216 terminate("base type name \"%s\" is too long\n", name); 1217 1218 strncpy(buf, name, sizeof (buf)); 1219 1220 for (c = strtok(buf, " "); c != NULL; c = strtok(NULL, " ")) { 1221 if (strcmp(c, "signed") == 0) 1222 sign = 1; 1223 else if (strcmp(c, "unsigned") == 0) 1224 sign = 0; 1225 else if (strcmp(c, "long") == 0) 1226 nlong++; 1227 else if (strcmp(c, "char") == 0) { 1228 nchar++; 1229 fmt = 'c'; 1230 } else if (strcmp(c, "short") == 0) 1231 nshort++; 1232 else if (strcmp(c, "int") == 0) 1233 nint++; 1234 else { 1235 /* 1236 * If we don't recognize any of the tokens, we'll tell 1237 * the caller to fall back to the dwarf-provided 1238 * encoding information. 1239 */ 1240 return (NULL); 1241 } 1242 } 1243 1244 if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2) 1245 return (NULL); 1246 1247 if (nchar > 0) { 1248 if (nlong > 0 || nshort > 0 || nint > 0) 1249 return (NULL); 1250 1251 base = "char"; 1252 1253 } else if (nshort > 0) { 1254 if (nlong > 0) 1255 return (NULL); 1256 1257 base = "short"; 1258 1259 } else if (nlong > 0) { 1260 base = "long"; 1261 1262 } else { 1263 base = "int"; 1264 } 1265 1266 intr = xcalloc(sizeof (intr_t)); 1267 intr->intr_type = INTR_INT; 1268 intr->intr_signed = sign; 1269 intr->intr_iformat = fmt; 1270 1271 snprintf(buf, sizeof (buf), "%s%s%s", 1272 (sign ? "" : "unsigned "), 1273 (nlong > 1 ? "long " : ""), 1274 base); 1275 1276 *newp = xstrdup(buf); 1277 return (intr); 1278 } 1279 1280 typedef struct fp_size_map { 1281 size_t fsm_typesz[2]; /* size of {32,64} type */ 1282 uint_t fsm_enc[3]; /* CTF_FP_* for {bare,cplx,imagry} type */ 1283 } fp_size_map_t; 1284 1285 static const fp_size_map_t fp_encodings[] = { 1286 { { 4, 4 }, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } }, 1287 { { 8, 8 }, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } }, 1288 #ifdef __sparc 1289 { { 16, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, 1290 #else 1291 { { 12, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, 1292 #endif 1293 { { 0, 0 } } 1294 }; 1295 1296 static uint_t 1297 die_base_type2enc(dwarf_t *dw, Dwarf_Off off, Dwarf_Signed enc, size_t sz) 1298 { 1299 const fp_size_map_t *map = fp_encodings; 1300 uint_t szidx = dw->dw_ptrsz == sizeof (uint64_t); 1301 uint_t mult = 1, col = 0; 1302 1303 if (enc == DW_ATE_complex_float) { 1304 mult = 2; 1305 col = 1; 1306 } else if (enc == DW_ATE_imaginary_float || 1307 enc == DW_ATE_SUN_imaginary_float) 1308 col = 2; 1309 1310 while (map->fsm_typesz[szidx] != 0) { 1311 if (map->fsm_typesz[szidx] * mult == sz) 1312 return (map->fsm_enc[col]); 1313 map++; 1314 } 1315 1316 terminate("die %llu: unrecognized real type size %u\n", off, sz); 1317 /*NOTREACHED*/ 1318 return (0); 1319 } 1320 1321 static intr_t * 1322 die_base_from_dwarf(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, size_t sz) 1323 { 1324 intr_t *intr = xcalloc(sizeof (intr_t)); 1325 Dwarf_Signed enc; 1326 1327 (void) die_signed(dw, base, DW_AT_encoding, &enc, DW_ATTR_REQ); 1328 1329 switch (enc) { 1330 case DW_ATE_unsigned: 1331 case DW_ATE_address: 1332 intr->intr_type = INTR_INT; 1333 break; 1334 case DW_ATE_unsigned_char: 1335 intr->intr_type = INTR_INT; 1336 intr->intr_iformat = 'c'; 1337 break; 1338 case DW_ATE_signed: 1339 intr->intr_type = INTR_INT; 1340 intr->intr_signed = 1; 1341 break; 1342 case DW_ATE_signed_char: 1343 intr->intr_type = INTR_INT; 1344 intr->intr_signed = 1; 1345 intr->intr_iformat = 'c'; 1346 break; 1347 case DW_ATE_boolean: 1348 intr->intr_type = INTR_INT; 1349 intr->intr_signed = 1; 1350 intr->intr_iformat = 'b'; 1351 break; 1352 case DW_ATE_float: 1353 case DW_ATE_complex_float: 1354 case DW_ATE_imaginary_float: 1355 case DW_ATE_SUN_imaginary_float: 1356 case DW_ATE_SUN_interval_float: 1357 intr->intr_type = INTR_REAL; 1358 intr->intr_signed = 1; 1359 intr->intr_fformat = die_base_type2enc(dw, off, enc, sz); 1360 break; 1361 default: 1362 terminate("die %llu: unknown base type encoding 0x%llx\n", 1363 off, enc); 1364 } 1365 1366 return (intr); 1367 } 1368 1369 static void 1370 die_base_create(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, tdesc_t *tdp) 1371 { 1372 Dwarf_Unsigned sz; 1373 intr_t *intr; 1374 char *new; 1375 1376 debug(3, "die %llu: creating base type\n", off); 1377 1378 /* 1379 * The compilers have their own clever (internally inconsistent) ideas 1380 * as to what base types should look like. Some times gcc will, for 1381 * example, use DW_ATE_signed_char for char. Other times, however, it 1382 * will use DW_ATE_signed. Needless to say, this causes some problems 1383 * down the road, particularly with merging. We do, however, use the 1384 * DWARF idea of type sizes, as this allows us to avoid caring about 1385 * the data model. 1386 */ 1387 (void) die_unsigned(dw, base, DW_AT_byte_size, &sz, DW_ATTR_REQ); 1388 1389 if (tdp->t_name == NULL) 1390 terminate("die %llu: base type without name\n", off); 1391 1392 /* XXX make a name parser for float too */ 1393 if ((intr = die_base_name_parse(tdp->t_name, &new)) != NULL) { 1394 /* Found it. We'll use the parsed version */ 1395 debug(3, "die %llu: name \"%s\" remapped to \"%s\"\n", off, 1396 tdp->t_name, new); 1397 1398 free(tdp->t_name); 1399 tdp->t_name = new; 1400 } else { 1401 /* 1402 * We didn't recognize the type, so we'll create an intr_t 1403 * based on the DWARF data. 1404 */ 1405 debug(3, "die %llu: using dwarf data for base \"%s\"\n", off, 1406 tdp->t_name); 1407 1408 intr = die_base_from_dwarf(dw, base, off, sz); 1409 } 1410 1411 intr->intr_nbits = sz * 8; 1412 1413 tdp->t_type = INTRINSIC; 1414 tdp->t_intr = intr; 1415 tdp->t_size = sz; 1416 1417 tdp->t_flags |= TDESC_F_RESOLVED; 1418 } 1419 1420 static void 1421 die_through_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp, 1422 int type, const char *typename) 1423 { 1424 Dwarf_Attribute attr; 1425 1426 debug(3, "die %llu: creating %s\n", off, typename); 1427 1428 tdp->t_type = type; 1429 1430 if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) { 1431 dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR); 1432 tdp->t_tdesc = die_lookup_pass1(dw, die, DW_AT_type); 1433 } else { 1434 tdp->t_tdesc = tdesc_intr_void(dw); 1435 } 1436 1437 if (type == POINTER) 1438 tdp->t_size = dw->dw_ptrsz; 1439 1440 tdp->t_flags |= TDESC_F_RESOLVED; 1441 1442 if (type == TYPEDEF) { 1443 iidesc_t *ii = xcalloc(sizeof (iidesc_t)); 1444 ii->ii_type = II_TYPE; 1445 ii->ii_name = xstrdup(tdp->t_name); 1446 ii->ii_dtype = tdp; 1447 1448 iidesc_add(dw->dw_td->td_iihash, ii); 1449 } 1450 } 1451 1452 static void 1453 die_typedef_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1454 { 1455 die_through_create(dw, die, off, tdp, TYPEDEF, "typedef"); 1456 } 1457 1458 static void 1459 die_const_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1460 { 1461 die_through_create(dw, die, off, tdp, CONST, "const"); 1462 } 1463 1464 static void 1465 die_pointer_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1466 { 1467 die_through_create(dw, die, off, tdp, POINTER, "pointer"); 1468 } 1469 1470 static void 1471 die_restrict_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1472 { 1473 die_through_create(dw, die, off, tdp, RESTRICT, "restrict"); 1474 } 1475 1476 static void 1477 die_volatile_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1478 { 1479 die_through_create(dw, die, off, tdp, VOLATILE, "volatile"); 1480 } 1481 1482 /*ARGSUSED3*/ 1483 static void 1484 die_function_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1485 { 1486 Dwarf_Die arg; 1487 Dwarf_Half tag; 1488 iidesc_t *ii; 1489 char *name; 1490 1491 debug(3, "die %llu: creating function definition\n", off); 1492 1493 /* 1494 * We'll begin by processing any type definition nodes that may be 1495 * lurking underneath this one. 1496 */ 1497 for (arg = die_child(dw, die); arg != NULL; 1498 arg = die_sibling(dw, arg)) { 1499 if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter && 1500 tag != DW_TAG_variable) { 1501 /* Nested type declaration */ 1502 die_create_one(dw, arg); 1503 } 1504 } 1505 1506 if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL) { 1507 /* 1508 * We process neither prototypes nor subprograms without 1509 * names. 1510 */ 1511 return; 1512 } 1513 1514 ii = xcalloc(sizeof (iidesc_t)); 1515 ii->ii_type = die_isglobal(dw, die) ? II_GFUN : II_SFUN; 1516 ii->ii_name = name; 1517 if (ii->ii_type == II_SFUN) 1518 ii->ii_owner = xstrdup(dw->dw_cuname); 1519 1520 debug(3, "die %llu: function %s is %s\n", off, ii->ii_name, 1521 (ii->ii_type == II_GFUN ? "global" : "static")); 1522 1523 if (die_attr(dw, die, DW_AT_type, 0) != NULL) 1524 ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type); 1525 else 1526 ii->ii_dtype = tdesc_intr_void(dw); 1527 1528 for (arg = die_child(dw, die); arg != NULL; 1529 arg = die_sibling(dw, arg)) { 1530 char *name; 1531 1532 debug(3, "die %llu: looking at sub member at %llu\n", 1533 off, die_off(dw, die)); 1534 1535 if (die_tag(dw, arg) != DW_TAG_formal_parameter) 1536 continue; 1537 1538 if ((name = die_name(dw, arg)) == NULL) { 1539 terminate("die %llu: func arg %d has no name\n", 1540 off, ii->ii_nargs + 1); 1541 } 1542 1543 if (strcmp(name, "...") == 0) { 1544 free(name); 1545 ii->ii_vargs = 1; 1546 continue; 1547 } 1548 1549 ii->ii_nargs++; 1550 } 1551 1552 if (ii->ii_nargs > 0) { 1553 int i; 1554 1555 debug(3, "die %llu: function has %d argument%s\n", off, 1556 ii->ii_nargs, (ii->ii_nargs == 1 ? "" : "s")); 1557 1558 ii->ii_args = xcalloc(sizeof (tdesc_t) * ii->ii_nargs); 1559 1560 for (arg = die_child(dw, die), i = 0; 1561 arg != NULL && i < ii->ii_nargs; 1562 arg = die_sibling(dw, arg)) { 1563 if (die_tag(dw, arg) != DW_TAG_formal_parameter) 1564 continue; 1565 1566 ii->ii_args[i++] = die_lookup_pass1(dw, arg, 1567 DW_AT_type); 1568 } 1569 } 1570 1571 iidesc_add(dw->dw_td->td_iihash, ii); 1572 } 1573 1574 /*ARGSUSED3*/ 1575 static void 1576 die_variable_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1577 { 1578 iidesc_t *ii; 1579 char *name; 1580 1581 debug(3, "die %llu: creating object definition\n", off); 1582 1583 if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL) 1584 return; /* skip prototypes and nameless objects */ 1585 1586 ii = xcalloc(sizeof (iidesc_t)); 1587 ii->ii_type = die_isglobal(dw, die) ? II_GVAR : II_SVAR; 1588 ii->ii_name = name; 1589 ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type); 1590 if (ii->ii_type == II_SVAR) 1591 ii->ii_owner = xstrdup(dw->dw_cuname); 1592 1593 iidesc_add(dw->dw_td->td_iihash, ii); 1594 } 1595 1596 /*ARGSUSED2*/ 1597 static int 1598 die_fwd_resolve(tdesc_t *fwd, tdesc_t **fwdp, void *private) 1599 { 1600 if (fwd->t_flags & TDESC_F_RESOLVED) 1601 return (1); 1602 1603 if (fwd->t_tdesc != NULL) { 1604 debug(3, "tdp %u: unforwarded %s\n", fwd->t_id, fwd->t_name); 1605 *fwdp = fwd->t_tdesc; 1606 } 1607 1608 fwd->t_flags |= TDESC_F_RESOLVED; 1609 1610 return (1); 1611 } 1612 1613 /*ARGSUSED*/ 1614 static void 1615 die_lexblk_descend(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1616 { 1617 Dwarf_Die child = die_child(dw, die); 1618 1619 if (child != NULL) 1620 die_create(dw, child); 1621 } 1622 1623 /* 1624 * Used to map the die to a routine which can parse it, using the tag to do the 1625 * mapping. While the processing of most tags entails the creation of a tdesc, 1626 * there are a few which don't - primarily those which result in the creation of 1627 * iidescs which refer to existing tdescs. 1628 */ 1629 1630 #define DW_F_NOTDP 0x1 /* Don't create a tdesc for the creator */ 1631 1632 typedef struct die_creator { 1633 Dwarf_Half dc_tag; 1634 uint16_t dc_flags; 1635 void (*dc_create)(dwarf_t *, Dwarf_Die, Dwarf_Off, tdesc_t *); 1636 } die_creator_t; 1637 1638 static const die_creator_t die_creators[] = { 1639 { DW_TAG_array_type, 0, die_array_create }, 1640 { DW_TAG_enumeration_type, 0, die_enum_create }, 1641 { DW_TAG_lexical_block, DW_F_NOTDP, die_lexblk_descend }, 1642 { DW_TAG_pointer_type, 0, die_pointer_create }, 1643 { DW_TAG_structure_type, 0, die_struct_create }, 1644 { DW_TAG_subroutine_type, 0, die_funcptr_create }, 1645 { DW_TAG_typedef, 0, die_typedef_create }, 1646 { DW_TAG_union_type, 0, die_union_create }, 1647 { DW_TAG_base_type, 0, die_base_create }, 1648 { DW_TAG_const_type, 0, die_const_create }, 1649 { DW_TAG_subprogram, DW_F_NOTDP, die_function_create }, 1650 { DW_TAG_variable, DW_F_NOTDP, die_variable_create }, 1651 { DW_TAG_volatile_type, 0, die_volatile_create }, 1652 { DW_TAG_restrict_type, 0, die_restrict_create }, 1653 { 0, NULL } 1654 }; 1655 1656 static const die_creator_t * 1657 die_tag2ctor(Dwarf_Half tag) 1658 { 1659 const die_creator_t *dc; 1660 1661 for (dc = die_creators; dc->dc_create != NULL; dc++) { 1662 if (dc->dc_tag == tag) 1663 return (dc); 1664 } 1665 1666 return (NULL); 1667 } 1668 1669 static void 1670 die_create_one(dwarf_t *dw, Dwarf_Die die) 1671 { 1672 Dwarf_Off off = die_off(dw, die); 1673 const die_creator_t *dc; 1674 Dwarf_Half tag; 1675 tdesc_t *tdp; 1676 1677 debug(3, "die %llu: create_one\n", off); 1678 1679 if (off > dw->dw_maxoff) { 1680 terminate("illegal die offset %llu (max %llu)\n", off, 1681 dw->dw_maxoff); 1682 } 1683 1684 tag = die_tag(dw, die); 1685 1686 if ((dc = die_tag2ctor(tag)) == NULL) { 1687 debug(2, "die %llu: ignoring tag type %x\n", off, tag); 1688 return; 1689 } 1690 1691 if ((tdp = tdesc_lookup(dw, off)) == NULL && 1692 !(dc->dc_flags & DW_F_NOTDP)) { 1693 tdp = xcalloc(sizeof (tdesc_t)); 1694 tdp->t_id = off; 1695 tdesc_add(dw, tdp); 1696 } 1697 1698 if (tdp != NULL) 1699 tdp->t_name = die_name(dw, die); 1700 1701 dc->dc_create(dw, die, off, tdp); 1702 } 1703 1704 static void 1705 die_create(dwarf_t *dw, Dwarf_Die die) 1706 { 1707 do { 1708 die_create_one(dw, die); 1709 } while ((die = die_sibling(dw, die)) != NULL); 1710 } 1711 1712 static tdtrav_cb_f die_resolvers[] = { 1713 NULL, 1714 NULL, /* intrinsic */ 1715 NULL, /* pointer */ 1716 die_array_resolve, /* array */ 1717 NULL, /* function */ 1718 die_sou_resolve, /* struct */ 1719 die_sou_resolve, /* union */ 1720 die_enum_resolve, /* enum */ 1721 die_fwd_resolve, /* forward */ 1722 NULL, /* typedef */ 1723 NULL, /* typedef unres */ 1724 NULL, /* volatile */ 1725 NULL, /* const */ 1726 NULL, /* restrict */ 1727 }; 1728 1729 static tdtrav_cb_f die_fail_reporters[] = { 1730 NULL, 1731 NULL, /* intrinsic */ 1732 NULL, /* pointer */ 1733 die_array_failed, /* array */ 1734 NULL, /* function */ 1735 die_sou_failed, /* struct */ 1736 die_sou_failed, /* union */ 1737 NULL, /* enum */ 1738 NULL, /* forward */ 1739 NULL, /* typedef */ 1740 NULL, /* typedef unres */ 1741 NULL, /* volatile */ 1742 NULL, /* const */ 1743 NULL, /* restrict */ 1744 }; 1745 1746 static void 1747 die_resolve(dwarf_t *dw) 1748 { 1749 int last = -1; 1750 int pass = 0; 1751 1752 do { 1753 pass++; 1754 dw->dw_nunres = 0; 1755 1756 (void) iitraverse_hash(dw->dw_td->td_iihash, 1757 &dw->dw_td->td_curvgen, NULL, NULL, die_resolvers, dw); 1758 1759 debug(3, "resolve: pass %d, %u left\n", pass, dw->dw_nunres); 1760 1761 if (dw->dw_nunres == last) { 1762 fprintf(stderr, "%s: failed to resolve the following " 1763 "types:\n", progname); 1764 1765 (void) iitraverse_hash(dw->dw_td->td_iihash, 1766 &dw->dw_td->td_curvgen, NULL, NULL, 1767 die_fail_reporters, dw); 1768 1769 terminate("failed to resolve types\n"); 1770 } 1771 1772 last = dw->dw_nunres; 1773 1774 } while (dw->dw_nunres != 0); 1775 } 1776 1777 static size_t 1778 elf_ptrsz(Elf *elf) 1779 { 1780 GElf_Ehdr ehdr; 1781 1782 if (gelf_getehdr(elf, &ehdr) == NULL) { 1783 terminate("failed to read ELF header: %s\n", 1784 elf_errmsg(elf_errno())); 1785 } 1786 1787 if (ehdr.e_ident[EI_CLASS] == ELFCLASS32) 1788 return (4); 1789 else if (ehdr.e_ident[EI_CLASS] == ELFCLASS64) 1790 return (8); 1791 else 1792 terminate("unknown ELF class %d\n", ehdr.e_ident[EI_CLASS]); 1793 1794 /*NOTREACHED*/ 1795 return (0); 1796 } 1797 1798 /*ARGSUSED*/ 1799 int 1800 dw_read(tdata_t *td, Elf *elf, const char *filename) 1801 { 1802 Dwarf_Unsigned abboff, hdrlen, nxthdr; 1803 Dwarf_Half vers, addrsz; 1804 Dwarf_Die cu, child; 1805 dwarf_t dw; 1806 char *prod = NULL; 1807 int rc; 1808 1809 bzero(&dw, sizeof (dwarf_t)); 1810 dw.dw_td = td; 1811 dw.dw_ptrsz = elf_ptrsz(elf); 1812 dw.dw_mfgtid_last = TID_MFGTID_BASE; 1813 dw.dw_tidhash = hash_new(TDESC_HASH_BUCKETS, tdesc_idhash, tdesc_idcmp); 1814 dw.dw_fwdhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash, 1815 tdesc_namecmp); 1816 dw.dw_enumhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash, 1817 tdesc_namecmp); 1818 1819 if ((rc = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, &dw.dw_dw, 1820 &dw.dw_err)) == DW_DLV_NO_ENTRY) { 1821 errno = ENOENT; 1822 return (-1); 1823 } else if (rc != DW_DLV_OK) { 1824 if (dwarf_errno(dw.dw_err) == DW_DLE_DEBUG_INFO_NULL) { 1825 /* 1826 * There's no type data in the DWARF section, but 1827 * libdwarf is too clever to handle that properly. 1828 */ 1829 return (0); 1830 } 1831 1832 terminate("failed to initialize DWARF: %s\n", 1833 dwarf_errmsg(dw.dw_err)); 1834 } 1835 1836 if ((rc = dwarf_next_cu_header(dw.dw_dw, &hdrlen, &vers, &abboff, 1837 &addrsz, &nxthdr, &dw.dw_err)) != DW_DLV_OK || 1838 (cu = die_sibling(&dw, NULL)) == NULL || 1839 (child = die_child(&dw, cu)) == NULL) 1840 terminate("file does not contain dwarf type data " 1841 "(try compiling with -g)\n"); 1842 1843 dw.dw_maxoff = nxthdr - 1; 1844 1845 if (dw.dw_maxoff > TID_FILEMAX) 1846 terminate("file contains too many types\n"); 1847 1848 debug(1, "DWARF version: %d\n", vers); 1849 if (vers != DWARF_VERSION) { 1850 terminate("file contains incompatible version %d DWARF code " 1851 "(version 2 required)\n", vers); 1852 } 1853 1854 if (die_string(&dw, cu, DW_AT_producer, &prod, 0)) { 1855 debug(1, "DWARF emitter: %s\n", prod); 1856 free(prod); 1857 } 1858 1859 if ((dw.dw_cuname = die_name(&dw, cu)) != NULL) { 1860 char *base = xstrdup(basename(dw.dw_cuname)); 1861 free(dw.dw_cuname); 1862 dw.dw_cuname = base; 1863 1864 debug(1, "CU name: %s\n", dw.dw_cuname); 1865 } 1866 1867 die_create(&dw, child); 1868 1869 if ((rc = dwarf_next_cu_header(dw.dw_dw, &hdrlen, &vers, &abboff, 1870 &addrsz, &nxthdr, &dw.dw_err)) != DW_DLV_NO_ENTRY) 1871 terminate("multiple compilation units not supported\n"); 1872 1873 (void) dwarf_finish(dw.dw_dw, &dw.dw_err); 1874 1875 die_resolve(&dw); 1876 1877 /* leak the dwarf_t */ 1878 1879 return (0); 1880 } 1881