1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * DWARF to tdata conversion 30 * 31 * For the most part, conversion is straightforward, proceeding in two passes. 32 * On the first pass, we iterate through every die, creating new type nodes as 33 * necessary. Referenced tdesc_t's are created in an uninitialized state, thus 34 * allowing type reference pointers to be filled in. If the tdesc_t 35 * corresponding to a given die can be completely filled out (sizes and offsets 36 * calculated, and so forth) without using any referenced types, the tdesc_t is 37 * marked as resolved. Consider an array type. If the type corresponding to 38 * the array contents has not yet been processed, we will create a blank tdesc 39 * for the contents type (only the type ID will be filled in, relying upon the 40 * later portion of the first pass to encounter and complete the referenced 41 * type). We will then attempt to determine the size of the array. If the 42 * array has a byte size attribute, we will have completely characterized the 43 * array type, and will be able to mark it as resolved. The lack of a byte 44 * size attribute, on the other hand, will prevent us from fully resolving the 45 * type, as the size will only be calculable with reference to the contents 46 * type, which has not, as yet, been encountered. The array type will thus be 47 * left without the resolved flag, and the first pass will continue. 48 * 49 * When we begin the second pass, we will have created tdesc_t nodes for every 50 * type in the section. We will traverse the tree, from the iidescs down, 51 * processing each unresolved node. As the referenced nodes will have been 52 * populated, the array type used in our example above will be able to use the 53 * size of the referenced types (if available) to determine its own type. The 54 * traversal will be repeated until all types have been resolved or we have 55 * failed to make progress. When all tdescs have been resolved, the conversion 56 * is complete. 57 * 58 * There are, as always, a few special cases that are handled during the first 59 * and second passes: 60 * 61 * 1. Empty enums - GCC will occasionally emit an enum without any members. 62 * Later on in the file, it will emit the same enum type, though this time 63 * with the full complement of members. All references to the memberless 64 * enum need to be redirected to the full definition. During the first 65 * pass, each enum is entered in dm_enumhash, along with a pointer to its 66 * corresponding tdesc_t. If, during the second pass, we encounter a 67 * memberless enum, we use the hash to locate the full definition. All 68 * tdescs referencing the empty enum are then redirected. 69 * 70 * 2. Forward declarations - If the compiler sees a forward declaration for 71 * a structure, followed by the definition of that structure, it will emit 72 * DWARF data for both the forward declaration and the definition. We need 73 * to resolve the forward declarations when possible, by redirecting 74 * forward-referencing tdescs to the actual struct/union definitions. This 75 * redirection is done completely within the first pass. We begin by 76 * recording all forward declarations in dw_fwdhash. When we define a 77 * structure, we check to see if there have been any corresponding forward 78 * declarations. If so, we redirect the tdescs which referenced the forward 79 * declarations to the structure or union definition. 80 * 81 * XXX see if a post traverser will allow the elimination of repeated pass 2 82 * traversals. 83 */ 84 85 #include <stdio.h> 86 #include <stdlib.h> 87 #include <strings.h> 88 #include <errno.h> 89 #include <libelf.h> 90 #include <libdwarf.h> 91 #include <libgen.h> 92 #include <dwarf.h> 93 94 #include "ctf_headers.h" 95 #include "ctftools.h" 96 #include "memory.h" 97 #include "list.h" 98 #include "traverse.h" 99 100 /* The version of DWARF which we support. */ 101 #define DWARF_VERSION 2 102 103 /* 104 * We need to define a couple of our own intrinsics, to smooth out some of the 105 * differences between the GCC and DevPro DWARF emitters. See the referenced 106 * routines and the special cases in the file comment for more details. 107 * 108 * Type IDs are 32 bits wide. We're going to use the top of that field to 109 * indicate types that we've created ourselves. 110 */ 111 #define TID_FILEMAX 0x3fffffff /* highest tid from file */ 112 #define TID_VOID 0x40000001 /* see die_void() */ 113 #define TID_LONG 0x40000002 /* see die_array() */ 114 115 #define TID_MFGTID_BASE 0x40000003 /* first mfg'd tid */ 116 117 /* 118 * To reduce the staggering amount of error-handling code that would otherwise 119 * be required, the attribute-retrieval routines handle most of their own 120 * errors. If the following flag is supplied as the value of the `req' 121 * argument, they will also handle the absence of a requested attribute by 122 * terminating the program. 123 */ 124 #define DW_ATTR_REQ 1 125 126 #define TDESC_HASH_BUCKETS 511 127 128 typedef struct dwarf { 129 Dwarf_Debug dw_dw; /* for libdwarf */ 130 Dwarf_Error dw_err; /* for libdwarf */ 131 Dwarf_Unsigned dw_maxoff; /* highest legal offset in this cu */ 132 tdata_t *dw_td; /* root of the tdesc/iidesc tree */ 133 hash_t *dw_tidhash; /* hash of tdescs by t_id */ 134 hash_t *dw_fwdhash; /* hash of fwd decls by name */ 135 hash_t *dw_enumhash; /* hash of memberless enums by name */ 136 tdesc_t *dw_void; /* manufactured void type */ 137 tdesc_t *dw_long; /* manufactured long type for arrays */ 138 size_t dw_ptrsz; /* size of a pointer in this file */ 139 tid_t dw_mfgtid_last; /* last mfg'd type ID used */ 140 uint_t dw_nunres; /* count of unresolved types */ 141 char *dw_cuname; /* name of compilation unit */ 142 } dwarf_t; 143 144 static void die_create_one(dwarf_t *, Dwarf_Die); 145 static void die_create(dwarf_t *, Dwarf_Die); 146 147 static tid_t 148 mfgtid_next(dwarf_t *dw) 149 { 150 return (++dw->dw_mfgtid_last); 151 } 152 153 static void 154 tdesc_add(dwarf_t *dw, tdesc_t *tdp) 155 { 156 hash_add(dw->dw_tidhash, tdp); 157 } 158 159 static tdesc_t * 160 tdesc_lookup(dwarf_t *dw, int tid) 161 { 162 tdesc_t tmpl, *tdp; 163 164 tmpl.t_id = tid; 165 166 if (hash_find(dw->dw_tidhash, &tmpl, (void **)&tdp)) 167 return (tdp); 168 else 169 return (NULL); 170 } 171 172 /* 173 * Resolve a tdesc down to a node which should have a size. Returns the size, 174 * zero if the size hasn't yet been determined. 175 */ 176 static size_t 177 tdesc_size(tdesc_t *tdp) 178 { 179 for (;;) { 180 switch (tdp->t_type) { 181 case INTRINSIC: 182 case POINTER: 183 case ARRAY: 184 case FUNCTION: 185 case STRUCT: 186 case UNION: 187 case ENUM: 188 return (tdp->t_size); 189 190 case FORWARD: 191 return (0); 192 193 case TYPEDEF: 194 case VOLATILE: 195 case CONST: 196 case RESTRICT: 197 tdp = tdp->t_tdesc; 198 continue; 199 200 case 0: /* not yet defined */ 201 return (0); 202 203 default: 204 terminate("tdp %u: tdesc_size on unknown type %d\n", 205 tdp->t_id, tdp->t_type); 206 } 207 } 208 } 209 210 static size_t 211 tdesc_bitsize(tdesc_t *tdp) 212 { 213 for (;;) { 214 switch (tdp->t_type) { 215 case INTRINSIC: 216 return (tdp->t_intr->intr_nbits); 217 218 case ARRAY: 219 case FUNCTION: 220 case STRUCT: 221 case UNION: 222 case ENUM: 223 case POINTER: 224 return (tdp->t_size * NBBY); 225 226 case FORWARD: 227 return (0); 228 229 case TYPEDEF: 230 case VOLATILE: 231 case RESTRICT: 232 case CONST: 233 tdp = tdp->t_tdesc; 234 continue; 235 236 case 0: /* not yet defined */ 237 return (0); 238 239 default: 240 terminate("tdp %u: tdesc_bitsize on unknown type %d\n", 241 tdp->t_id, tdp->t_type); 242 } 243 } 244 } 245 246 static tdesc_t * 247 tdesc_basetype(tdesc_t *tdp) 248 { 249 for (;;) { 250 switch (tdp->t_type) { 251 case TYPEDEF: 252 case VOLATILE: 253 case RESTRICT: 254 case CONST: 255 tdp = tdp->t_tdesc; 256 break; 257 case 0: /* not yet defined */ 258 return (NULL); 259 default: 260 return (tdp); 261 } 262 } 263 } 264 265 static Dwarf_Off 266 die_off(dwarf_t *dw, Dwarf_Die die) 267 { 268 Dwarf_Off off; 269 270 if (dwarf_dieoffset(die, &off, &dw->dw_err) == DW_DLV_OK) 271 return (off); 272 273 terminate("failed to get offset for die: %s\n", 274 dwarf_errmsg(dw->dw_err)); 275 /*NOTREACHED*/ 276 return (0); 277 } 278 279 static Dwarf_Die 280 die_sibling(dwarf_t *dw, Dwarf_Die die) 281 { 282 Dwarf_Die sib; 283 int rc; 284 285 if ((rc = dwarf_siblingof(dw->dw_dw, die, &sib, &dw->dw_err)) == 286 DW_DLV_OK) 287 return (sib); 288 else if (rc == DW_DLV_NO_ENTRY) 289 return (NULL); 290 291 terminate("die %llu: failed to find type sibling: %s\n", 292 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 293 /*NOTREACHED*/ 294 return (NULL); 295 } 296 297 static Dwarf_Die 298 die_child(dwarf_t *dw, Dwarf_Die die) 299 { 300 Dwarf_Die child; 301 int rc; 302 303 if ((rc = dwarf_child(die, &child, &dw->dw_err)) == DW_DLV_OK) 304 return (child); 305 else if (rc == DW_DLV_NO_ENTRY) 306 return (NULL); 307 308 terminate("die %llu: failed to find type child: %s\n", 309 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 310 /*NOTREACHED*/ 311 return (NULL); 312 } 313 314 static Dwarf_Half 315 die_tag(dwarf_t *dw, Dwarf_Die die) 316 { 317 Dwarf_Half tag; 318 319 if (dwarf_tag(die, &tag, &dw->dw_err) == DW_DLV_OK) 320 return (tag); 321 322 terminate("die %llu: failed to get tag for type: %s\n", 323 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 324 /*NOTREACHED*/ 325 return (0); 326 } 327 328 static Dwarf_Attribute 329 die_attr(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, int req) 330 { 331 Dwarf_Attribute attr; 332 int rc; 333 334 if ((rc = dwarf_attr(die, name, &attr, &dw->dw_err)) == DW_DLV_OK) { 335 return (attr); 336 } else if (rc == DW_DLV_NO_ENTRY) { 337 if (req) { 338 terminate("die %llu: no attr 0x%x\n", die_off(dw, die), 339 name); 340 } else { 341 return (NULL); 342 } 343 } 344 345 terminate("die %llu: failed to get attribute for type: %s\n", 346 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 347 /*NOTREACHED*/ 348 return (NULL); 349 } 350 351 static Dwarf_Half 352 die_attr_form(dwarf_t *dw, Dwarf_Attribute attr) 353 { 354 Dwarf_Half form; 355 356 if (dwarf_whatform(attr, &form, &dw->dw_err) == DW_DLV_OK) 357 return (form); 358 359 terminate("failed to get attribute form for type: %s\n", 360 dwarf_errmsg(dw->dw_err)); 361 /*NOTREACHED*/ 362 return (0); 363 } 364 365 static int 366 die_signed(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Signed *valp, 367 int req) 368 { 369 Dwarf_Attribute attr; 370 Dwarf_Signed val; 371 372 if ((attr = die_attr(dw, die, name, req)) == NULL) 373 return (0); /* die_attr will terminate for us if necessary */ 374 375 if (dwarf_formsdata(attr, &val, &dw->dw_err) != DW_DLV_OK) { 376 terminate("die %llu: failed to get signed (form 0x%x)\n", 377 die_off(dw, die), die_attr_form(dw, attr)); 378 } 379 380 dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR); 381 382 *valp = val; 383 return (1); 384 } 385 386 static int 387 die_unsigned(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Unsigned *valp, 388 int req) 389 { 390 Dwarf_Attribute attr; 391 Dwarf_Unsigned val; 392 393 if ((attr = die_attr(dw, die, name, req)) == NULL) 394 return (0); /* die_attr will terminate for us if necessary */ 395 396 if (dwarf_formudata(attr, &val, &dw->dw_err) != DW_DLV_OK) { 397 terminate("die %llu: failed to get unsigned (form 0x%x)\n", 398 die_off(dw, die), die_attr_form(dw, attr)); 399 } 400 401 dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR); 402 403 *valp = val; 404 return (1); 405 } 406 407 static int 408 die_bool(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Bool *valp, int req) 409 { 410 Dwarf_Attribute attr; 411 Dwarf_Bool val; 412 413 if ((attr = die_attr(dw, die, name, req)) == NULL) 414 return (0); /* die_attr will terminate for us if necessary */ 415 416 if (dwarf_formflag(attr, &val, &dw->dw_err) != DW_DLV_OK) { 417 terminate("die %llu: failed to get bool (form 0x%x)\n", 418 die_off(dw, die), die_attr_form(dw, attr)); 419 } 420 421 dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR); 422 423 *valp = val; 424 return (1); 425 } 426 427 static int 428 die_string(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, char **strp, int req) 429 { 430 Dwarf_Attribute attr; 431 char *str; 432 433 if ((attr = die_attr(dw, die, name, req)) == NULL) 434 return (0); /* die_attr will terminate for us if necessary */ 435 436 if (dwarf_formstring(attr, &str, &dw->dw_err) != DW_DLV_OK) { 437 terminate("die %llu: failed to get string (form 0x%x)\n", 438 die_off(dw, die), die_attr_form(dw, attr)); 439 } 440 441 *strp = xstrdup(str); 442 dwarf_dealloc(dw->dw_dw, str, DW_DLA_STRING); 443 444 return (1); 445 } 446 447 static Dwarf_Off 448 die_attr_ref(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name) 449 { 450 Dwarf_Attribute attr; 451 Dwarf_Off off; 452 453 attr = die_attr(dw, die, name, DW_ATTR_REQ); 454 455 if (dwarf_formref(attr, &off, &dw->dw_err) != DW_DLV_OK) { 456 terminate("die %llu: failed to get ref (form 0x%x)\n", 457 die_off(dw, die), die_attr_form(dw, attr)); 458 } 459 460 dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR); 461 462 return (off); 463 } 464 465 static char * 466 die_name(dwarf_t *dw, Dwarf_Die die) 467 { 468 char *str = NULL; 469 470 (void) die_string(dw, die, DW_AT_name, &str, 0); 471 472 return (str); 473 } 474 475 static int 476 die_isdecl(dwarf_t *dw, Dwarf_Die die) 477 { 478 Dwarf_Bool val; 479 480 return (die_bool(dw, die, DW_AT_declaration, &val, 0) && val); 481 } 482 483 static int 484 die_isglobal(dwarf_t *dw, Dwarf_Die die) 485 { 486 Dwarf_Signed vis; 487 Dwarf_Bool ext; 488 489 /* 490 * Some compilers (gcc) use DW_AT_external to indicate function 491 * visibility. Others (Sun) use DW_AT_visibility. 492 */ 493 if (die_signed(dw, die, DW_AT_visibility, &vis, 0)) 494 return (vis == DW_VIS_exported); 495 else 496 return (die_bool(dw, die, DW_AT_external, &ext, 0) && ext); 497 } 498 499 static tdesc_t * 500 die_add(dwarf_t *dw, Dwarf_Off off) 501 { 502 tdesc_t *tdp = xcalloc(sizeof (tdesc_t)); 503 504 tdp->t_id = off; 505 506 tdesc_add(dw, tdp); 507 508 return (tdp); 509 } 510 511 static tdesc_t * 512 die_lookup_pass1(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name) 513 { 514 Dwarf_Off ref = die_attr_ref(dw, die, name); 515 tdesc_t *tdp; 516 517 if ((tdp = tdesc_lookup(dw, ref)) != NULL) 518 return (tdp); 519 520 return (die_add(dw, ref)); 521 } 522 523 static int 524 die_mem_offset(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, 525 Dwarf_Unsigned *valp, int req) 526 { 527 Dwarf_Attribute attr; 528 Dwarf_Locdesc *loc; 529 Dwarf_Signed locnum; 530 531 if ((attr = die_attr(dw, die, name, req)) == NULL) 532 return (0); /* die_attr will terminate for us if necessary */ 533 534 if (dwarf_loclist(attr, &loc, &locnum, &dw->dw_err) != DW_DLV_OK) { 535 terminate("die %llu: failed to get mem offset location list\n", 536 die_off(dw, die)); 537 } 538 539 dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR); 540 541 if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) { 542 terminate("die %llu: cannot parse member offset\n", 543 die_off(dw, die)); 544 } 545 546 *valp = loc->ld_s->lr_number; 547 548 dwarf_dealloc(dw->dw_dw, loc->ld_s, DW_DLA_LOC_BLOCK); 549 dwarf_dealloc(dw->dw_dw, loc, DW_DLA_LOCDESC); 550 551 return (1); 552 } 553 554 static tdesc_t * 555 tdesc_intr_common(dwarf_t *dw, int tid, const char *name, size_t sz) 556 { 557 tdesc_t *tdp; 558 intr_t *intr; 559 560 intr = xcalloc(sizeof (intr_t)); 561 intr->intr_type = INTR_INT; 562 intr->intr_signed = 1; 563 intr->intr_nbits = sz * NBBY; 564 565 tdp = xcalloc(sizeof (tdesc_t)); 566 tdp->t_name = xstrdup(name); 567 tdp->t_size = sz; 568 tdp->t_id = tid; 569 tdp->t_type = INTRINSIC; 570 tdp->t_intr = intr; 571 tdp->t_flags = TDESC_F_RESOLVED; 572 573 tdesc_add(dw, tdp); 574 575 return (tdp); 576 } 577 578 /* 579 * Manufacture a void type. Used for gcc-emitted stabs, where the lack of a 580 * type reference implies a reference to a void type. A void *, for example 581 * will be represented by a pointer die without a DW_AT_type. CTF requires 582 * that pointer nodes point to something, so we'll create a void for use as 583 * the target. Note that the DWARF data may already create a void type. Ours 584 * would then be a duplicate, but it'll be removed in the self-uniquification 585 * merge performed at the completion of DWARF->tdesc conversion. 586 */ 587 static tdesc_t * 588 tdesc_intr_void(dwarf_t *dw) 589 { 590 if (dw->dw_void == NULL) 591 dw->dw_void = tdesc_intr_common(dw, TID_VOID, "void", 0); 592 593 return (dw->dw_void); 594 } 595 596 static tdesc_t * 597 tdesc_intr_long(dwarf_t *dw) 598 { 599 if (dw->dw_long == NULL) { 600 dw->dw_long = tdesc_intr_common(dw, TID_LONG, "long", 601 dw->dw_ptrsz); 602 } 603 604 return (dw->dw_long); 605 } 606 607 /* 608 * Used for creating bitfield types. We create a copy of an existing intrinsic, 609 * adjusting the size of the copy to match what the caller requested. The 610 * caller can then use the copy as the type for a bitfield structure member. 611 */ 612 static tdesc_t * 613 tdesc_intr_clone(dwarf_t *dw, tdesc_t *old, size_t bitsz) 614 { 615 tdesc_t *new = xcalloc(sizeof (tdesc_t)); 616 617 if (!(old->t_flags & TDESC_F_RESOLVED)) { 618 terminate("tdp %u: attempt to make a bit field from an " 619 "unresolved type\n", old->t_id); 620 } 621 622 new->t_name = xstrdup(old->t_name); 623 new->t_size = old->t_size; 624 new->t_id = mfgtid_next(dw); 625 new->t_type = INTRINSIC; 626 new->t_flags = TDESC_F_RESOLVED; 627 628 new->t_intr = xcalloc(sizeof (intr_t)); 629 bcopy(old->t_intr, new->t_intr, sizeof (intr_t)); 630 new->t_intr->intr_nbits = bitsz; 631 632 tdesc_add(dw, new); 633 634 return (new); 635 } 636 637 static void 638 tdesc_array_create(dwarf_t *dw, Dwarf_Die dim, tdesc_t *arrtdp, 639 tdesc_t *dimtdp) 640 { 641 Dwarf_Unsigned uval; 642 Dwarf_Signed sval; 643 tdesc_t *ctdp; 644 Dwarf_Die dim2; 645 ardef_t *ar; 646 647 if ((dim2 = die_sibling(dw, dim)) == NULL) { 648 ctdp = arrtdp; 649 } else if (die_tag(dw, dim2) == DW_TAG_subrange_type) { 650 ctdp = xcalloc(sizeof (tdesc_t)); 651 ctdp->t_id = mfgtid_next(dw); 652 debug(3, "die %llu: creating new type %u for sub-dimension\n", 653 die_off(dw, dim2), ctdp->t_id); 654 tdesc_array_create(dw, dim2, arrtdp, ctdp); 655 } else { 656 terminate("die %llu: unexpected non-subrange node in array\n", 657 die_off(dw, dim2)); 658 } 659 660 dimtdp->t_type = ARRAY; 661 dimtdp->t_ardef = ar = xcalloc(sizeof (ardef_t)); 662 663 /* 664 * Array bounds can be signed or unsigned, but there are several kinds 665 * of signless forms (data1, data2, etc) that take their sign from the 666 * routine that is trying to interpret them. That is, data1 can be 667 * either signed or unsigned, depending on whether you use the signed or 668 * unsigned accessor function. GCC will use the signless forms to store 669 * unsigned values which have their high bit set, so we need to try to 670 * read them first as unsigned to get positive values. We could also 671 * try signed first, falling back to unsigned if we got a negative 672 * value. 673 */ 674 if (die_unsigned(dw, dim, DW_AT_upper_bound, &uval, 0)) 675 ar->ad_nelems = uval + 1; 676 else if (die_signed(dw, dim, DW_AT_upper_bound, &sval, 0)) 677 ar->ad_nelems = sval + 1; 678 else 679 ar->ad_nelems = 0; 680 681 /* 682 * Different compilers use different index types. Force the type to be 683 * a common, known value (long). 684 */ 685 ar->ad_idxtype = tdesc_intr_long(dw); 686 ar->ad_contents = ctdp; 687 688 if (ar->ad_contents->t_size != 0) { 689 dimtdp->t_size = ar->ad_contents->t_size * ar->ad_nelems; 690 dimtdp->t_flags |= TDESC_F_RESOLVED; 691 } 692 } 693 694 /* 695 * Create a tdesc from an array node. Some arrays will come with byte size 696 * attributes, and thus can be resolved immediately. Others don't, and will 697 * need to wait until the second pass for resolution. 698 */ 699 static void 700 die_array_create(dwarf_t *dw, Dwarf_Die arr, Dwarf_Off off, tdesc_t *tdp) 701 { 702 tdesc_t *arrtdp = die_lookup_pass1(dw, arr, DW_AT_type); 703 Dwarf_Unsigned uval; 704 Dwarf_Die dim; 705 706 debug(3, "die %llu: creating array\n", off); 707 708 if ((dim = die_child(dw, arr)) == NULL || 709 die_tag(dw, dim) != DW_TAG_subrange_type) 710 terminate("die %llu: failed to retrieve array bounds\n", off); 711 712 tdesc_array_create(dw, dim, arrtdp, tdp); 713 714 if (die_unsigned(dw, arr, DW_AT_byte_size, &uval, 0)) { 715 tdesc_t *dimtdp; 716 int flags; 717 718 tdp->t_size = uval; 719 720 /* 721 * Ensure that sub-dimensions have sizes too before marking 722 * as resolved. 723 */ 724 flags = TDESC_F_RESOLVED; 725 for (dimtdp = tdp->t_ardef->ad_contents; 726 dimtdp->t_type == ARRAY; 727 dimtdp = dimtdp->t_ardef->ad_contents) { 728 if (!(dimtdp->t_flags & TDESC_F_RESOLVED)) { 729 flags = 0; 730 break; 731 } 732 } 733 734 tdp->t_flags |= flags; 735 } 736 737 debug(3, "die %llu: array nelems %u size %u\n", off, 738 tdp->t_ardef->ad_nelems, tdp->t_size); 739 } 740 741 /*ARGSUSED1*/ 742 static int 743 die_array_resolve(tdesc_t *tdp, tdesc_t **tdpp, void *private) 744 { 745 dwarf_t *dw = private; 746 size_t sz; 747 748 if (tdp->t_flags & TDESC_F_RESOLVED) 749 return (1); 750 751 debug(3, "trying to resolve array %d (cont %d)\n", tdp->t_id, 752 tdp->t_ardef->ad_contents->t_id); 753 754 if ((sz = tdesc_size(tdp->t_ardef->ad_contents)) == 0) { 755 debug(3, "unable to resolve array %s (%d) contents %d\n", 756 tdesc_name(tdp), tdp->t_id, 757 tdp->t_ardef->ad_contents->t_id); 758 759 dw->dw_nunres++; 760 return (1); 761 } 762 763 tdp->t_size = sz * tdp->t_ardef->ad_nelems; 764 tdp->t_flags |= TDESC_F_RESOLVED; 765 766 debug(3, "resolved array %d: %u bytes\n", tdp->t_id, tdp->t_size); 767 768 return (1); 769 } 770 771 /*ARGSUSED1*/ 772 static int 773 die_array_failed(tdesc_t *tdp, tdesc_t **tdpp, void *private) 774 { 775 tdesc_t *cont = tdp->t_ardef->ad_contents; 776 777 if (tdp->t_flags & TDESC_F_RESOLVED) 778 return (1); 779 780 fprintf(stderr, "Array %d: failed to size contents type %s (%d)\n", 781 tdp->t_id, tdesc_name(cont), cont->t_id); 782 783 return (1); 784 } 785 786 /* 787 * Most enums (those with members) will be resolved during this first pass. 788 * Others - those without members (see the file comment) - won't be, and will 789 * need to wait until the second pass when they can be matched with their full 790 * definitions. 791 */ 792 static void 793 die_enum_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 794 { 795 Dwarf_Die mem; 796 Dwarf_Unsigned uval; 797 Dwarf_Signed sval; 798 799 debug(3, "die %llu: creating enum\n", off); 800 801 tdp->t_type = ENUM; 802 803 (void) die_unsigned(dw, die, DW_AT_byte_size, &uval, DW_ATTR_REQ); 804 tdp->t_size = uval; 805 806 if ((mem = die_child(dw, die)) != NULL) { 807 elist_t **elastp = &tdp->t_emem; 808 809 do { 810 elist_t *el; 811 812 if (die_tag(dw, mem) != DW_TAG_enumerator) { 813 /* Nested type declaration */ 814 die_create_one(dw, mem); 815 continue; 816 } 817 818 el = xcalloc(sizeof (elist_t)); 819 el->el_name = die_name(dw, mem); 820 821 if (die_signed(dw, mem, DW_AT_const_value, &sval, 0)) { 822 el->el_number = sval; 823 } else if (die_unsigned(dw, mem, DW_AT_const_value, 824 &uval, 0)) { 825 el->el_number = uval; 826 } else { 827 terminate("die %llu: enum %llu: member without " 828 "value\n", off, die_off(dw, mem)); 829 } 830 831 debug(3, "die %llu: enum %llu: created %s = %d\n", off, 832 die_off(dw, mem), el->el_name, el->el_number); 833 834 *elastp = el; 835 elastp = &el->el_next; 836 837 } while ((mem = die_sibling(dw, mem)) != NULL); 838 839 hash_add(dw->dw_enumhash, tdp); 840 841 tdp->t_flags |= TDESC_F_RESOLVED; 842 843 if (tdp->t_name != NULL) { 844 iidesc_t *ii = xcalloc(sizeof (iidesc_t)); 845 ii->ii_type = II_SOU; 846 ii->ii_name = xstrdup(tdp->t_name); 847 ii->ii_dtype = tdp; 848 849 iidesc_add(dw->dw_td->td_iihash, ii); 850 } 851 } 852 } 853 854 static int 855 die_enum_match(void *arg1, void *arg2) 856 { 857 tdesc_t *tdp = arg1, **fullp = arg2; 858 859 if (tdp->t_emem != NULL) { 860 *fullp = tdp; 861 return (-1); /* stop the iteration */ 862 } 863 864 return (0); 865 } 866 867 /*ARGSUSED1*/ 868 static int 869 die_enum_resolve(tdesc_t *tdp, tdesc_t **tdpp, void *private) 870 { 871 dwarf_t *dw = private; 872 tdesc_t *full = NULL; 873 874 if (tdp->t_flags & TDESC_F_RESOLVED) 875 return (1); 876 877 (void) hash_find_iter(dw->dw_enumhash, tdp, die_enum_match, &full); 878 879 /* 880 * The answer to this one won't change from iteration to iteration, 881 * so don't even try. 882 */ 883 if (full == NULL) { 884 terminate("tdp %u: enum %s has no members\n", tdp->t_id, 885 tdesc_name(tdp)); 886 } 887 888 debug(3, "tdp %u: enum %s redirected to %u\n", tdp->t_id, 889 tdesc_name(tdp), full->t_id); 890 891 tdp->t_flags |= TDESC_F_RESOLVED; 892 893 return (1); 894 } 895 896 static int 897 die_fwd_map(void *arg1, void *arg2) 898 { 899 tdesc_t *fwd = arg1, *sou = arg2; 900 901 debug(3, "tdp %u: mapped forward %s to sou %u\n", fwd->t_id, 902 tdesc_name(fwd), sou->t_id); 903 fwd->t_tdesc = sou; 904 905 return (0); 906 } 907 908 /* 909 * Structures and unions will never be resolved during the first pass, as we 910 * won't be able to fully determine the member sizes. The second pass, which 911 * have access to sizing information, will be able to complete the resolution. 912 */ 913 static void 914 die_sou_create(dwarf_t *dw, Dwarf_Die str, Dwarf_Off off, tdesc_t *tdp, 915 int type, const char *typename) 916 { 917 Dwarf_Unsigned sz, bitsz, bitoff; 918 Dwarf_Die mem; 919 mlist_t *ml, **mlastp; 920 iidesc_t *ii; 921 922 tdp->t_type = (die_isdecl(dw, str) ? FORWARD : type); 923 924 debug(3, "die %llu: creating %s %s\n", off, 925 (tdp->t_type == FORWARD ? "forward decl" : typename), 926 tdesc_name(tdp)); 927 928 if (tdp->t_type == FORWARD) { 929 hash_add(dw->dw_fwdhash, tdp); 930 return; 931 } 932 933 (void) hash_find_iter(dw->dw_fwdhash, tdp, die_fwd_map, tdp); 934 935 (void) die_unsigned(dw, str, DW_AT_byte_size, &sz, DW_ATTR_REQ); 936 tdp->t_size = sz; 937 938 /* 939 * GCC allows empty SOUs as an extension. 940 */ 941 if ((mem = die_child(dw, str)) == NULL) 942 goto out; 943 944 mlastp = &tdp->t_members; 945 946 do { 947 Dwarf_Off memoff = die_off(dw, mem); 948 Dwarf_Half tag = die_tag(dw, mem); 949 Dwarf_Unsigned mloff; 950 951 if (tag != DW_TAG_member) { 952 /* Nested type declaration */ 953 die_create_one(dw, mem); 954 continue; 955 } 956 957 debug(3, "die %llu: mem %llu: creating member\n", off, memoff); 958 959 ml = xcalloc(sizeof (mlist_t)); 960 961 /* 962 * This could be a GCC anon struct/union member, so we'll allow 963 * an empty name, even though nothing can really handle them 964 * properly. Note that some versions of GCC miss out debug 965 * info for anon structs, though recent versions are fixed (gcc 966 * bug 11816). 967 */ 968 if ((ml->ml_name = die_name(dw, mem)) == NULL) 969 ml->ml_name = ""; 970 971 ml->ml_type = die_lookup_pass1(dw, mem, DW_AT_type); 972 973 if (die_mem_offset(dw, mem, DW_AT_data_member_location, 974 &mloff, 0)) { 975 debug(3, "die %llu: got mloff %llx\n", off, 976 (u_longlong_t)mloff); 977 ml->ml_offset = mloff * 8; 978 } 979 980 if (die_unsigned(dw, mem, DW_AT_bit_size, &bitsz, 0)) 981 ml->ml_size = bitsz; 982 else 983 ml->ml_size = tdesc_bitsize(ml->ml_type); 984 985 if (die_unsigned(dw, mem, DW_AT_bit_offset, &bitoff, 0)) { 986 #ifdef _BIG_ENDIAN 987 ml->ml_offset += bitoff; 988 #else 989 ml->ml_offset += tdesc_bitsize(ml->ml_type) - bitoff - 990 ml->ml_size; 991 #endif 992 } 993 994 debug(3, "die %llu: mem %llu: created \"%s\" (off %u sz %u)\n", 995 off, memoff, ml->ml_name, ml->ml_offset, ml->ml_size); 996 997 *mlastp = ml; 998 mlastp = &ml->ml_next; 999 } while ((mem = die_sibling(dw, mem)) != NULL); 1000 1001 /* 1002 * GCC will attempt to eliminate unused types, thus decreasing the 1003 * size of the emitted dwarf. That is, if you declare a foo_t in your 1004 * header, include said header in your source file, and neglect to 1005 * actually use (directly or indirectly) the foo_t in the source file, 1006 * the foo_t won't make it into the emitted DWARF. So, at least, goes 1007 * the theory. 1008 * 1009 * Occasionally, it'll emit the DW_TAG_structure_type for the foo_t, 1010 * and then neglect to emit the members. Strangely, the loner struct 1011 * tag will always be followed by a proper nested declaration of 1012 * something else. This is clearly a bug, but we're not going to have 1013 * time to get it fixed before this goo goes back, so we'll have to work 1014 * around it. If we see a no-membered struct with a nested declaration 1015 * (i.e. die_child of the struct tag won't be null), we'll ignore it. 1016 * Being paranoid, we won't simply remove it from the hash. Instead, 1017 * we'll decline to create an iidesc for it, thus ensuring that this 1018 * type won't make it into the output file. To be safe, we'll also 1019 * change the name. 1020 */ 1021 if (tdp->t_members == NULL) { 1022 const char *old = tdesc_name(tdp); 1023 size_t newsz = 7 + strlen(old) + 1; 1024 char *new = xmalloc(newsz); 1025 (void) snprintf(new, newsz, "orphan %s", old); 1026 1027 debug(3, "die %llu: worked around %s %s\n", off, typename, old); 1028 1029 if (tdp->t_name != NULL) 1030 free(tdp->t_name); 1031 tdp->t_name = new; 1032 return; 1033 } 1034 1035 out: 1036 if (tdp->t_name != NULL) { 1037 ii = xcalloc(sizeof (iidesc_t)); 1038 ii->ii_type = II_SOU; 1039 ii->ii_name = xstrdup(tdp->t_name); 1040 ii->ii_dtype = tdp; 1041 1042 iidesc_add(dw->dw_td->td_iihash, ii); 1043 } 1044 } 1045 1046 static void 1047 die_struct_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1048 { 1049 die_sou_create(dw, die, off, tdp, STRUCT, "struct"); 1050 } 1051 1052 static void 1053 die_union_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1054 { 1055 die_sou_create(dw, die, off, tdp, UNION, "union"); 1056 } 1057 1058 /*ARGSUSED1*/ 1059 static int 1060 die_sou_resolve(tdesc_t *tdp, tdesc_t **tdpp, void *private) 1061 { 1062 dwarf_t *dw = private; 1063 mlist_t *ml; 1064 tdesc_t *mt; 1065 1066 if (tdp->t_flags & TDESC_F_RESOLVED) 1067 return (1); 1068 1069 debug(3, "resolving sou %s\n", tdesc_name(tdp)); 1070 1071 for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) { 1072 if (ml->ml_size == 0) { 1073 mt = tdesc_basetype(ml->ml_type); 1074 1075 if ((ml->ml_size = tdesc_bitsize(mt)) != 0) 1076 continue; 1077 1078 /* 1079 * For empty members, or GCC/C99 flexible array 1080 * members, a size of 0 is correct. 1081 */ 1082 if (mt->t_members == NULL) 1083 continue; 1084 if (mt->t_type == ARRAY && mt->t_ardef->ad_nelems == 0) 1085 continue; 1086 1087 dw->dw_nunres++; 1088 return (1); 1089 } 1090 1091 if ((mt = tdesc_basetype(ml->ml_type)) == NULL) { 1092 dw->dw_nunres++; 1093 return (1); 1094 } 1095 1096 if (ml->ml_size != 0 && mt->t_type == INTRINSIC && 1097 mt->t_intr->intr_nbits != ml->ml_size) { 1098 /* 1099 * This member is a bitfield, and needs to reference 1100 * an intrinsic type with the same width. If the 1101 * currently-referenced type isn't of the same width, 1102 * we'll copy it, adjusting the width of the copy to 1103 * the size we'd like. 1104 */ 1105 debug(3, "tdp %u: creating bitfield for %d bits\n", 1106 tdp->t_id, ml->ml_size); 1107 1108 ml->ml_type = tdesc_intr_clone(dw, mt, ml->ml_size); 1109 } 1110 } 1111 1112 tdp->t_flags |= TDESC_F_RESOLVED; 1113 1114 return (1); 1115 } 1116 1117 /*ARGSUSED1*/ 1118 static int 1119 die_sou_failed(tdesc_t *tdp, tdesc_t **tdpp, void *private) 1120 { 1121 const char *typename = (tdp->t_type == STRUCT ? "struct" : "union"); 1122 mlist_t *ml; 1123 1124 if (tdp->t_flags & TDESC_F_RESOLVED) 1125 return (1); 1126 1127 for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) { 1128 if (ml->ml_size == 0) { 1129 fprintf(stderr, "%s %d: failed to size member \"%s\" " 1130 "of type %s (%d)\n", typename, tdp->t_id, 1131 ml->ml_name, tdesc_name(ml->ml_type), 1132 ml->ml_type->t_id); 1133 } 1134 } 1135 1136 return (1); 1137 } 1138 1139 static void 1140 die_funcptr_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1141 { 1142 Dwarf_Attribute attr; 1143 Dwarf_Half tag; 1144 Dwarf_Die arg; 1145 fndef_t *fn; 1146 int i; 1147 1148 debug(3, "die %llu: creating function pointer\n", off); 1149 1150 /* 1151 * We'll begin by processing any type definition nodes that may be 1152 * lurking underneath this one. 1153 */ 1154 for (arg = die_child(dw, die); arg != NULL; 1155 arg = die_sibling(dw, arg)) { 1156 if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter && 1157 tag != DW_TAG_unspecified_parameters) { 1158 /* Nested type declaration */ 1159 die_create_one(dw, arg); 1160 } 1161 } 1162 1163 if (die_isdecl(dw, die)) { 1164 /* 1165 * This is a prototype. We don't add prototypes to the 1166 * tree, so we're going to drop the tdesc. Unfortunately, 1167 * it has already been added to the tree. Nobody will reference 1168 * it, though, and it will be leaked. 1169 */ 1170 return; 1171 } 1172 1173 fn = xcalloc(sizeof (fndef_t)); 1174 1175 tdp->t_type = FUNCTION; 1176 1177 if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) { 1178 dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR); 1179 fn->fn_ret = die_lookup_pass1(dw, die, DW_AT_type); 1180 } else { 1181 fn->fn_ret = tdesc_intr_void(dw); 1182 } 1183 1184 /* 1185 * Count the arguments to the function, then read them in. 1186 */ 1187 for (fn->fn_nargs = 0, arg = die_child(dw, die); arg != NULL; 1188 arg = die_sibling(dw, arg)) { 1189 if ((tag = die_tag(dw, arg)) == DW_TAG_formal_parameter) 1190 fn->fn_nargs++; 1191 else if (tag == DW_TAG_unspecified_parameters && 1192 fn->fn_nargs > 0) 1193 fn->fn_vargs = 1; 1194 } 1195 1196 if (fn->fn_nargs != 0) { 1197 debug(3, "die %llu: adding %d argument%s\n", off, fn->fn_nargs, 1198 (fn->fn_nargs > 1 ? "s" : "")); 1199 1200 fn->fn_args = xcalloc(sizeof (tdesc_t *) * fn->fn_nargs); 1201 for (i = 0, arg = die_child(dw, die); 1202 arg != NULL && i < fn->fn_nargs; 1203 arg = die_sibling(dw, arg)) { 1204 if (die_tag(dw, arg) != DW_TAG_formal_parameter) 1205 continue; 1206 1207 fn->fn_args[i++] = die_lookup_pass1(dw, arg, 1208 DW_AT_type); 1209 } 1210 } 1211 1212 tdp->t_fndef = fn; 1213 tdp->t_flags |= TDESC_F_RESOLVED; 1214 } 1215 1216 /* 1217 * GCC and DevPro use different names for the base types. While the terms are 1218 * the same, they are arranged in a different order. Some terms, such as int, 1219 * are implied in one, and explicitly named in the other. Given a base type 1220 * as input, this routine will return a common name, along with an intr_t 1221 * that reflects said name. 1222 */ 1223 static intr_t * 1224 die_base_name_parse(const char *name, char **newp) 1225 { 1226 char buf[100]; 1227 char *base, *c; 1228 int nlong = 0, nshort = 0, nchar = 0, nint = 0; 1229 int sign = 1; 1230 char fmt = '\0'; 1231 intr_t *intr; 1232 1233 if (strlen(name) > sizeof (buf) - 1) 1234 terminate("base type name \"%s\" is too long\n", name); 1235 1236 strncpy(buf, name, sizeof (buf)); 1237 1238 for (c = strtok(buf, " "); c != NULL; c = strtok(NULL, " ")) { 1239 if (strcmp(c, "signed") == 0) 1240 sign = 1; 1241 else if (strcmp(c, "unsigned") == 0) 1242 sign = 0; 1243 else if (strcmp(c, "long") == 0) 1244 nlong++; 1245 else if (strcmp(c, "char") == 0) { 1246 nchar++; 1247 fmt = 'c'; 1248 } else if (strcmp(c, "short") == 0) 1249 nshort++; 1250 else if (strcmp(c, "int") == 0) 1251 nint++; 1252 else { 1253 /* 1254 * If we don't recognize any of the tokens, we'll tell 1255 * the caller to fall back to the dwarf-provided 1256 * encoding information. 1257 */ 1258 return (NULL); 1259 } 1260 } 1261 1262 if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2) 1263 return (NULL); 1264 1265 if (nchar > 0) { 1266 if (nlong > 0 || nshort > 0 || nint > 0) 1267 return (NULL); 1268 1269 base = "char"; 1270 1271 } else if (nshort > 0) { 1272 if (nlong > 0) 1273 return (NULL); 1274 1275 base = "short"; 1276 1277 } else if (nlong > 0) { 1278 base = "long"; 1279 1280 } else { 1281 base = "int"; 1282 } 1283 1284 intr = xcalloc(sizeof (intr_t)); 1285 intr->intr_type = INTR_INT; 1286 intr->intr_signed = sign; 1287 intr->intr_iformat = fmt; 1288 1289 snprintf(buf, sizeof (buf), "%s%s%s", 1290 (sign ? "" : "unsigned "), 1291 (nlong > 1 ? "long " : ""), 1292 base); 1293 1294 *newp = xstrdup(buf); 1295 return (intr); 1296 } 1297 1298 typedef struct fp_size_map { 1299 size_t fsm_typesz[2]; /* size of {32,64} type */ 1300 uint_t fsm_enc[3]; /* CTF_FP_* for {bare,cplx,imagry} type */ 1301 } fp_size_map_t; 1302 1303 static const fp_size_map_t fp_encodings[] = { 1304 { { 4, 4 }, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } }, 1305 { { 8, 8 }, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } }, 1306 #ifdef __sparc 1307 { { 16, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, 1308 #else 1309 { { 12, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, 1310 #endif 1311 { { 0, 0 } } 1312 }; 1313 1314 static uint_t 1315 die_base_type2enc(dwarf_t *dw, Dwarf_Off off, Dwarf_Signed enc, size_t sz) 1316 { 1317 const fp_size_map_t *map = fp_encodings; 1318 uint_t szidx = dw->dw_ptrsz == sizeof (uint64_t); 1319 uint_t mult = 1, col = 0; 1320 1321 if (enc == DW_ATE_complex_float) { 1322 mult = 2; 1323 col = 1; 1324 } else if (enc == DW_ATE_imaginary_float || 1325 enc == DW_ATE_SUN_imaginary_float) 1326 col = 2; 1327 1328 while (map->fsm_typesz[szidx] != 0) { 1329 if (map->fsm_typesz[szidx] * mult == sz) 1330 return (map->fsm_enc[col]); 1331 map++; 1332 } 1333 1334 terminate("die %llu: unrecognized real type size %u\n", off, sz); 1335 /*NOTREACHED*/ 1336 return (0); 1337 } 1338 1339 static intr_t * 1340 die_base_from_dwarf(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, size_t sz) 1341 { 1342 intr_t *intr = xcalloc(sizeof (intr_t)); 1343 Dwarf_Signed enc; 1344 1345 (void) die_signed(dw, base, DW_AT_encoding, &enc, DW_ATTR_REQ); 1346 1347 switch (enc) { 1348 case DW_ATE_unsigned: 1349 case DW_ATE_address: 1350 intr->intr_type = INTR_INT; 1351 break; 1352 case DW_ATE_unsigned_char: 1353 intr->intr_type = INTR_INT; 1354 intr->intr_iformat = 'c'; 1355 break; 1356 case DW_ATE_signed: 1357 intr->intr_type = INTR_INT; 1358 intr->intr_signed = 1; 1359 break; 1360 case DW_ATE_signed_char: 1361 intr->intr_type = INTR_INT; 1362 intr->intr_signed = 1; 1363 intr->intr_iformat = 'c'; 1364 break; 1365 case DW_ATE_boolean: 1366 intr->intr_type = INTR_INT; 1367 intr->intr_signed = 1; 1368 intr->intr_iformat = 'b'; 1369 break; 1370 case DW_ATE_float: 1371 case DW_ATE_complex_float: 1372 case DW_ATE_imaginary_float: 1373 case DW_ATE_SUN_imaginary_float: 1374 case DW_ATE_SUN_interval_float: 1375 intr->intr_type = INTR_REAL; 1376 intr->intr_signed = 1; 1377 intr->intr_fformat = die_base_type2enc(dw, off, enc, sz); 1378 break; 1379 default: 1380 terminate("die %llu: unknown base type encoding 0x%llx\n", 1381 off, enc); 1382 } 1383 1384 return (intr); 1385 } 1386 1387 static void 1388 die_base_create(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, tdesc_t *tdp) 1389 { 1390 Dwarf_Unsigned sz; 1391 intr_t *intr; 1392 char *new; 1393 1394 debug(3, "die %llu: creating base type\n", off); 1395 1396 /* 1397 * The compilers have their own clever (internally inconsistent) ideas 1398 * as to what base types should look like. Some times gcc will, for 1399 * example, use DW_ATE_signed_char for char. Other times, however, it 1400 * will use DW_ATE_signed. Needless to say, this causes some problems 1401 * down the road, particularly with merging. We do, however, use the 1402 * DWARF idea of type sizes, as this allows us to avoid caring about 1403 * the data model. 1404 */ 1405 (void) die_unsigned(dw, base, DW_AT_byte_size, &sz, DW_ATTR_REQ); 1406 1407 if (tdp->t_name == NULL) 1408 terminate("die %llu: base type without name\n", off); 1409 1410 /* XXX make a name parser for float too */ 1411 if ((intr = die_base_name_parse(tdp->t_name, &new)) != NULL) { 1412 /* Found it. We'll use the parsed version */ 1413 debug(3, "die %llu: name \"%s\" remapped to \"%s\"\n", off, 1414 tdesc_name(tdp), new); 1415 1416 free(tdp->t_name); 1417 tdp->t_name = new; 1418 } else { 1419 /* 1420 * We didn't recognize the type, so we'll create an intr_t 1421 * based on the DWARF data. 1422 */ 1423 debug(3, "die %llu: using dwarf data for base \"%s\"\n", off, 1424 tdesc_name(tdp)); 1425 1426 intr = die_base_from_dwarf(dw, base, off, sz); 1427 } 1428 1429 intr->intr_nbits = sz * 8; 1430 1431 tdp->t_type = INTRINSIC; 1432 tdp->t_intr = intr; 1433 tdp->t_size = sz; 1434 1435 tdp->t_flags |= TDESC_F_RESOLVED; 1436 } 1437 1438 static void 1439 die_through_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp, 1440 int type, const char *typename) 1441 { 1442 Dwarf_Attribute attr; 1443 1444 debug(3, "die %llu: creating %s\n", off, typename); 1445 1446 tdp->t_type = type; 1447 1448 if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) { 1449 dwarf_dealloc(dw->dw_dw, attr, DW_DLA_ATTR); 1450 tdp->t_tdesc = die_lookup_pass1(dw, die, DW_AT_type); 1451 } else { 1452 tdp->t_tdesc = tdesc_intr_void(dw); 1453 } 1454 1455 if (type == POINTER) 1456 tdp->t_size = dw->dw_ptrsz; 1457 1458 tdp->t_flags |= TDESC_F_RESOLVED; 1459 1460 if (type == TYPEDEF) { 1461 iidesc_t *ii = xcalloc(sizeof (iidesc_t)); 1462 ii->ii_type = II_TYPE; 1463 ii->ii_name = xstrdup(tdp->t_name); 1464 ii->ii_dtype = tdp; 1465 1466 iidesc_add(dw->dw_td->td_iihash, ii); 1467 } 1468 } 1469 1470 static void 1471 die_typedef_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1472 { 1473 die_through_create(dw, die, off, tdp, TYPEDEF, "typedef"); 1474 } 1475 1476 static void 1477 die_const_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1478 { 1479 die_through_create(dw, die, off, tdp, CONST, "const"); 1480 } 1481 1482 static void 1483 die_pointer_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1484 { 1485 die_through_create(dw, die, off, tdp, POINTER, "pointer"); 1486 } 1487 1488 static void 1489 die_restrict_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1490 { 1491 die_through_create(dw, die, off, tdp, RESTRICT, "restrict"); 1492 } 1493 1494 static void 1495 die_volatile_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1496 { 1497 die_through_create(dw, die, off, tdp, VOLATILE, "volatile"); 1498 } 1499 1500 /*ARGSUSED3*/ 1501 static void 1502 die_function_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1503 { 1504 Dwarf_Die arg; 1505 Dwarf_Half tag; 1506 iidesc_t *ii; 1507 char *name; 1508 1509 debug(3, "die %llu: creating function definition\n", off); 1510 1511 /* 1512 * We'll begin by processing any type definition nodes that may be 1513 * lurking underneath this one. 1514 */ 1515 for (arg = die_child(dw, die); arg != NULL; 1516 arg = die_sibling(dw, arg)) { 1517 if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter && 1518 tag != DW_TAG_variable) { 1519 /* Nested type declaration */ 1520 die_create_one(dw, arg); 1521 } 1522 } 1523 1524 if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL) { 1525 /* 1526 * We process neither prototypes nor subprograms without 1527 * names. 1528 */ 1529 return; 1530 } 1531 1532 ii = xcalloc(sizeof (iidesc_t)); 1533 ii->ii_type = die_isglobal(dw, die) ? II_GFUN : II_SFUN; 1534 ii->ii_name = name; 1535 if (ii->ii_type == II_SFUN) 1536 ii->ii_owner = xstrdup(dw->dw_cuname); 1537 1538 debug(3, "die %llu: function %s is %s\n", off, ii->ii_name, 1539 (ii->ii_type == II_GFUN ? "global" : "static")); 1540 1541 if (die_attr(dw, die, DW_AT_type, 0) != NULL) 1542 ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type); 1543 else 1544 ii->ii_dtype = tdesc_intr_void(dw); 1545 1546 for (arg = die_child(dw, die); arg != NULL; 1547 arg = die_sibling(dw, arg)) { 1548 char *name; 1549 1550 debug(3, "die %llu: looking at sub member at %llu\n", 1551 off, die_off(dw, die)); 1552 1553 if (die_tag(dw, arg) != DW_TAG_formal_parameter) 1554 continue; 1555 1556 if ((name = die_name(dw, arg)) == NULL) { 1557 terminate("die %llu: func arg %d has no name\n", 1558 off, ii->ii_nargs + 1); 1559 } 1560 1561 if (strcmp(name, "...") == 0) { 1562 free(name); 1563 ii->ii_vargs = 1; 1564 continue; 1565 } 1566 1567 ii->ii_nargs++; 1568 } 1569 1570 if (ii->ii_nargs > 0) { 1571 int i; 1572 1573 debug(3, "die %llu: function has %d argument%s\n", off, 1574 ii->ii_nargs, (ii->ii_nargs == 1 ? "" : "s")); 1575 1576 ii->ii_args = xcalloc(sizeof (tdesc_t) * ii->ii_nargs); 1577 1578 for (arg = die_child(dw, die), i = 0; 1579 arg != NULL && i < ii->ii_nargs; 1580 arg = die_sibling(dw, arg)) { 1581 if (die_tag(dw, arg) != DW_TAG_formal_parameter) 1582 continue; 1583 1584 ii->ii_args[i++] = die_lookup_pass1(dw, arg, 1585 DW_AT_type); 1586 } 1587 } 1588 1589 iidesc_add(dw->dw_td->td_iihash, ii); 1590 } 1591 1592 /*ARGSUSED3*/ 1593 static void 1594 die_variable_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1595 { 1596 iidesc_t *ii; 1597 char *name; 1598 1599 debug(3, "die %llu: creating object definition\n", off); 1600 1601 if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL) 1602 return; /* skip prototypes and nameless objects */ 1603 1604 ii = xcalloc(sizeof (iidesc_t)); 1605 ii->ii_type = die_isglobal(dw, die) ? II_GVAR : II_SVAR; 1606 ii->ii_name = name; 1607 ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type); 1608 if (ii->ii_type == II_SVAR) 1609 ii->ii_owner = xstrdup(dw->dw_cuname); 1610 1611 iidesc_add(dw->dw_td->td_iihash, ii); 1612 } 1613 1614 /*ARGSUSED2*/ 1615 static int 1616 die_fwd_resolve(tdesc_t *fwd, tdesc_t **fwdp, void *private) 1617 { 1618 if (fwd->t_flags & TDESC_F_RESOLVED) 1619 return (1); 1620 1621 if (fwd->t_tdesc != NULL) { 1622 debug(3, "tdp %u: unforwarded %s\n", fwd->t_id, 1623 tdesc_name(fwd)); 1624 *fwdp = fwd->t_tdesc; 1625 } 1626 1627 fwd->t_flags |= TDESC_F_RESOLVED; 1628 1629 return (1); 1630 } 1631 1632 /*ARGSUSED*/ 1633 static void 1634 die_lexblk_descend(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1635 { 1636 Dwarf_Die child = die_child(dw, die); 1637 1638 if (child != NULL) 1639 die_create(dw, child); 1640 } 1641 1642 /* 1643 * Used to map the die to a routine which can parse it, using the tag to do the 1644 * mapping. While the processing of most tags entails the creation of a tdesc, 1645 * there are a few which don't - primarily those which result in the creation of 1646 * iidescs which refer to existing tdescs. 1647 */ 1648 1649 #define DW_F_NOTDP 0x1 /* Don't create a tdesc for the creator */ 1650 1651 typedef struct die_creator { 1652 Dwarf_Half dc_tag; 1653 uint16_t dc_flags; 1654 void (*dc_create)(dwarf_t *, Dwarf_Die, Dwarf_Off, tdesc_t *); 1655 } die_creator_t; 1656 1657 static const die_creator_t die_creators[] = { 1658 { DW_TAG_array_type, 0, die_array_create }, 1659 { DW_TAG_enumeration_type, 0, die_enum_create }, 1660 { DW_TAG_lexical_block, DW_F_NOTDP, die_lexblk_descend }, 1661 { DW_TAG_pointer_type, 0, die_pointer_create }, 1662 { DW_TAG_structure_type, 0, die_struct_create }, 1663 { DW_TAG_subroutine_type, 0, die_funcptr_create }, 1664 { DW_TAG_typedef, 0, die_typedef_create }, 1665 { DW_TAG_union_type, 0, die_union_create }, 1666 { DW_TAG_base_type, 0, die_base_create }, 1667 { DW_TAG_const_type, 0, die_const_create }, 1668 { DW_TAG_subprogram, DW_F_NOTDP, die_function_create }, 1669 { DW_TAG_variable, DW_F_NOTDP, die_variable_create }, 1670 { DW_TAG_volatile_type, 0, die_volatile_create }, 1671 { DW_TAG_restrict_type, 0, die_restrict_create }, 1672 { 0, NULL } 1673 }; 1674 1675 static const die_creator_t * 1676 die_tag2ctor(Dwarf_Half tag) 1677 { 1678 const die_creator_t *dc; 1679 1680 for (dc = die_creators; dc->dc_create != NULL; dc++) { 1681 if (dc->dc_tag == tag) 1682 return (dc); 1683 } 1684 1685 return (NULL); 1686 } 1687 1688 static void 1689 die_create_one(dwarf_t *dw, Dwarf_Die die) 1690 { 1691 Dwarf_Off off = die_off(dw, die); 1692 const die_creator_t *dc; 1693 Dwarf_Half tag; 1694 tdesc_t *tdp; 1695 1696 debug(3, "die %llu: create_one\n", off); 1697 1698 if (off > dw->dw_maxoff) { 1699 terminate("illegal die offset %llu (max %llu)\n", off, 1700 dw->dw_maxoff); 1701 } 1702 1703 tag = die_tag(dw, die); 1704 1705 if ((dc = die_tag2ctor(tag)) == NULL) { 1706 debug(2, "die %llu: ignoring tag type %x\n", off, tag); 1707 return; 1708 } 1709 1710 if ((tdp = tdesc_lookup(dw, off)) == NULL && 1711 !(dc->dc_flags & DW_F_NOTDP)) { 1712 tdp = xcalloc(sizeof (tdesc_t)); 1713 tdp->t_id = off; 1714 tdesc_add(dw, tdp); 1715 } 1716 1717 if (tdp != NULL) 1718 tdp->t_name = die_name(dw, die); 1719 1720 dc->dc_create(dw, die, off, tdp); 1721 } 1722 1723 static void 1724 die_create(dwarf_t *dw, Dwarf_Die die) 1725 { 1726 do { 1727 die_create_one(dw, die); 1728 } while ((die = die_sibling(dw, die)) != NULL); 1729 } 1730 1731 static tdtrav_cb_f die_resolvers[] = { 1732 NULL, 1733 NULL, /* intrinsic */ 1734 NULL, /* pointer */ 1735 die_array_resolve, /* array */ 1736 NULL, /* function */ 1737 die_sou_resolve, /* struct */ 1738 die_sou_resolve, /* union */ 1739 die_enum_resolve, /* enum */ 1740 die_fwd_resolve, /* forward */ 1741 NULL, /* typedef */ 1742 NULL, /* typedef unres */ 1743 NULL, /* volatile */ 1744 NULL, /* const */ 1745 NULL, /* restrict */ 1746 }; 1747 1748 static tdtrav_cb_f die_fail_reporters[] = { 1749 NULL, 1750 NULL, /* intrinsic */ 1751 NULL, /* pointer */ 1752 die_array_failed, /* array */ 1753 NULL, /* function */ 1754 die_sou_failed, /* struct */ 1755 die_sou_failed, /* union */ 1756 NULL, /* enum */ 1757 NULL, /* forward */ 1758 NULL, /* typedef */ 1759 NULL, /* typedef unres */ 1760 NULL, /* volatile */ 1761 NULL, /* const */ 1762 NULL, /* restrict */ 1763 }; 1764 1765 static void 1766 die_resolve(dwarf_t *dw) 1767 { 1768 int last = -1; 1769 int pass = 0; 1770 1771 do { 1772 pass++; 1773 dw->dw_nunres = 0; 1774 1775 (void) iitraverse_hash(dw->dw_td->td_iihash, 1776 &dw->dw_td->td_curvgen, NULL, NULL, die_resolvers, dw); 1777 1778 debug(3, "resolve: pass %d, %u left\n", pass, dw->dw_nunres); 1779 1780 if (dw->dw_nunres == last) { 1781 fprintf(stderr, "%s: failed to resolve the following " 1782 "types:\n", progname); 1783 1784 (void) iitraverse_hash(dw->dw_td->td_iihash, 1785 &dw->dw_td->td_curvgen, NULL, NULL, 1786 die_fail_reporters, dw); 1787 1788 terminate("failed to resolve types\n"); 1789 } 1790 1791 last = dw->dw_nunres; 1792 1793 } while (dw->dw_nunres != 0); 1794 } 1795 1796 /*ARGSUSED*/ 1797 int 1798 dw_read(tdata_t *td, Elf *elf, const char *filename) 1799 { 1800 Dwarf_Unsigned abboff, hdrlen, nxthdr; 1801 Dwarf_Half vers, addrsz; 1802 Dwarf_Die cu, child; 1803 dwarf_t dw; 1804 char *prod = NULL; 1805 int rc; 1806 1807 bzero(&dw, sizeof (dwarf_t)); 1808 dw.dw_td = td; 1809 dw.dw_ptrsz = elf_ptrsz(elf); 1810 dw.dw_mfgtid_last = TID_MFGTID_BASE; 1811 dw.dw_tidhash = hash_new(TDESC_HASH_BUCKETS, tdesc_idhash, tdesc_idcmp); 1812 dw.dw_fwdhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash, 1813 tdesc_namecmp); 1814 dw.dw_enumhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash, 1815 tdesc_namecmp); 1816 1817 if ((rc = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, &dw.dw_dw, 1818 &dw.dw_err)) == DW_DLV_NO_ENTRY) { 1819 errno = ENOENT; 1820 return (-1); 1821 } else if (rc != DW_DLV_OK) { 1822 if (dwarf_errno(dw.dw_err) == DW_DLE_DEBUG_INFO_NULL) { 1823 /* 1824 * There's no type data in the DWARF section, but 1825 * libdwarf is too clever to handle that properly. 1826 */ 1827 return (0); 1828 } 1829 1830 terminate("failed to initialize DWARF: %s\n", 1831 dwarf_errmsg(dw.dw_err)); 1832 } 1833 1834 if ((rc = dwarf_next_cu_header(dw.dw_dw, &hdrlen, &vers, &abboff, 1835 &addrsz, &nxthdr, &dw.dw_err)) != DW_DLV_OK || 1836 (cu = die_sibling(&dw, NULL)) == NULL || 1837 (child = die_child(&dw, cu)) == NULL) 1838 terminate("file does not contain dwarf type data " 1839 "(try compiling with -g)\n"); 1840 1841 dw.dw_maxoff = nxthdr - 1; 1842 1843 if (dw.dw_maxoff > TID_FILEMAX) 1844 terminate("file contains too many types\n"); 1845 1846 debug(1, "DWARF version: %d\n", vers); 1847 if (vers != DWARF_VERSION) { 1848 terminate("file contains incompatible version %d DWARF code " 1849 "(version 2 required)\n", vers); 1850 } 1851 1852 if (die_string(&dw, cu, DW_AT_producer, &prod, 0)) { 1853 debug(1, "DWARF emitter: %s\n", prod); 1854 free(prod); 1855 } 1856 1857 if ((dw.dw_cuname = die_name(&dw, cu)) != NULL) { 1858 char *base = xstrdup(basename(dw.dw_cuname)); 1859 free(dw.dw_cuname); 1860 dw.dw_cuname = base; 1861 1862 debug(1, "CU name: %s\n", dw.dw_cuname); 1863 } 1864 1865 die_create(&dw, child); 1866 1867 if ((rc = dwarf_next_cu_header(dw.dw_dw, &hdrlen, &vers, &abboff, 1868 &addrsz, &nxthdr, &dw.dw_err)) != DW_DLV_NO_ENTRY) 1869 terminate("multiple compilation units not supported\n"); 1870 1871 (void) dwarf_finish(dw.dw_dw, &dw.dw_err); 1872 1873 die_resolve(&dw); 1874 1875 cvt_fixups(td, dw.dw_ptrsz); 1876 1877 /* leak the dwarf_t */ 1878 1879 return (0); 1880 } 1881