1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Given several files containing CTF data, merge and uniquify that data into 30 * a single CTF section in an output file. 31 * 32 * Merges can proceed independently. As such, we perform the merges in parallel 33 * using a worker thread model. A given glob of CTF data (either all of the CTF 34 * data from a single input file, or the result of one or more merges) can only 35 * be involved in a single merge at any given time, so the process decreases in 36 * parallelism, especially towards the end, as more and more files are 37 * consolidated, finally resulting in a single merge of two large CTF graphs. 38 * Unfortunately, the last merge is also the slowest, as the two graphs being 39 * merged are each the product of merges of half of the input files. 40 * 41 * The algorithm consists of two phases, described in detail below. The first 42 * phase entails the merging of CTF data in groups of eight. The second phase 43 * takes the results of Phase I, and merges them two at a time. This disparity 44 * is due to an observation that the merge time increases at least quadratically 45 * with the size of the CTF data being merged. As such, merges of CTF graphs 46 * newly read from input files are much faster than merges of CTF graphs that 47 * are themselves the results of prior merges. 48 * 49 * A further complication is the need to ensure the repeatability of CTF merges. 50 * That is, a merge should produce the same output every time, given the same 51 * input. In both phases, this consistency requirement is met by imposing an 52 * ordering on the merge process, thus ensuring that a given set of input files 53 * are merged in the same order every time. 54 * 55 * Phase I 56 * 57 * The main thread reads the input files one by one, transforming the CTF 58 * data they contain into tdata structures. When a given file has been read 59 * and parsed, it is placed on the work queue for retrieval by worker threads. 60 * 61 * Central to Phase I is the Work In Progress (wip) array, which is used to 62 * merge batches of files in a predictable order. Files are read by the main 63 * thread, and are merged into wip array elements in round-robin order. When 64 * the number of files merged into a given array slot equals the batch size, 65 * the merged CTF graph in that array is added to the done slot in order by 66 * array slot. 67 * 68 * For example, consider a case where we have five input files, a batch size 69 * of two, a wip array size of two, and two worker threads (T1 and T2). 70 * 71 * 1. The wip array elements are assigned initial batch numbers 0 and 1. 72 * 2. T1 reads an input file from the input queue (wq_queue). This is the 73 * first input file, so it is placed into wip[0]. The second file is 74 * similarly read and placed into wip[1]. The wip array slots now contain 75 * one file each (wip_nmerged == 1). 76 * 3. T1 reads the third input file, which it merges into wip[0]. The 77 * number of files in wip[0] is equal to the batch size. 78 * 4. T2 reads the fourth input file, which it merges into wip[1]. wip[1] 79 * is now full too. 80 * 5. T2 attempts to place the contents of wip[1] on the done queue 81 * (wq_done_queue), but it can't, since the batch ID for wip[1] is 1. 82 * Batch 0 needs to be on the done queue before batch 1 can be added, so 83 * T2 blocks on wip[1]'s cv. 84 * 6. T1 attempts to place the contents of wip[0] on the done queue, and 85 * succeeds, updating wq_lastdonebatch to 0. It clears wip[0], and sets 86 * its batch ID to 2. T1 then signals wip[1]'s cv to awaken T2. 87 * 7. T2 wakes up, notices that wq_lastdonebatch is 0, which means that 88 * batch 1 can now be added. It adds wip[1] to the done queue, clears 89 * wip[1], and sets its batch ID to 3. It signals wip[0]'s cv, and 90 * restarts. 91 * 92 * The above process continues until all input files have been consumed. At 93 * this point, a pair of barriers are used to allow a single thread to move 94 * any partial batches from the wip array to the done array in batch ID order. 95 * When this is complete, wq_done_queue is moved to wq_queue, and Phase II 96 * begins. 97 * 98 * Locking Semantics (Phase I) 99 * 100 * The input queue (wq_queue) and the done queue (wq_done_queue) are 101 * protected by separate mutexes - wq_queue_lock and wq_done_queue. wip 102 * array slots are protected by their own mutexes, which must be grabbed 103 * before releasing the input queue lock. The wip array lock is dropped 104 * when the thread restarts the loop. If the array slot was full, the 105 * array lock will be held while the slot contents are added to the done 106 * queue. The done queue lock is used to protect the wip slot cv's. 107 * 108 * The pow number is protected by the queue lock. The master batch ID 109 * and last completed batch (wq_lastdonebatch) counters are protected *in 110 * Phase I* by the done queue lock. 111 * 112 * Phase II 113 * 114 * When Phase II begins, the queue consists of the merged batches from the 115 * first phase. Assume we have five batches: 116 * 117 * Q: a b c d e 118 * 119 * Using the same batch ID mechanism we used in Phase I, but without the wip 120 * array, worker threads remove two entries at a time from the beginning of 121 * the queue. These two entries are merged, and are added back to the tail 122 * of the queue, as follows: 123 * 124 * Q: a b c d e # start 125 * Q: c d e ab # a, b removed, merged, added to end 126 * Q: e ab cd # c, d removed, merged, added to end 127 * Q: cd eab # e, ab removed, merged, added to end 128 * Q: cdeab # cd, eab removed, merged, added to end 129 * 130 * When one entry remains on the queue, with no merges outstanding, Phase II 131 * finishes. We pre-determine the stopping point by pre-calculating the 132 * number of nodes that will appear on the list. In the example above, the 133 * number (wq_ninqueue) is 9. When ninqueue is 1, we conclude Phase II by 134 * signaling the main thread via wq_done_cv. 135 * 136 * Locking Semantics (Phase II) 137 * 138 * The queue (wq_queue), ninqueue, and the master batch ID and last 139 * completed batch counters are protected by wq_queue_lock. The done 140 * queue and corresponding lock are unused in Phase II as is the wip array. 141 * 142 * Uniquification 143 * 144 * We want the CTF data that goes into a given module to be as small as 145 * possible. For example, we don't want it to contain any type data that may 146 * be present in another common module. As such, after creating the master 147 * tdata_t for a given module, we can, if requested by the user, uniquify it 148 * against the tdata_t from another module (genunix in the case of the SunOS 149 * kernel). We perform a merge between the tdata_t for this module and the 150 * tdata_t from genunix. Nodes found in this module that are not present in 151 * genunix are added to a third tdata_t - the uniquified tdata_t. 152 * 153 * Additive Merges 154 * 155 * In some cases, for example if we are issuing a new version of a common 156 * module in a patch, we need to make sure that the CTF data already present 157 * in that module does not change. Changes to this data would void the CTF 158 * data in any module that uniquified against the common module. To preserve 159 * the existing data, we can perform what is known as an additive merge. In 160 * this case, a final uniquification is performed against the CTF data in the 161 * previous version of the module. The result will be the placement of new 162 * and changed data after the existing data, thus preserving the existing type 163 * ID space. 164 * 165 * Saving the result 166 * 167 * When the merges are complete, the resulting tdata_t is placed into the 168 * output file, replacing the .SUNW_ctf section (if any) already in that file. 169 * 170 * The person who changes the merging thread code in this file without updating 171 * this comment will not live to see the stock hit five. 172 */ 173 174 #include <stdio.h> 175 #include <stdlib.h> 176 #include <unistd.h> 177 #include <pthread.h> 178 #include <assert.h> 179 #include <synch.h> 180 #include <signal.h> 181 #include <libgen.h> 182 #include <string.h> 183 #include <errno.h> 184 #include <alloca.h> 185 #include <sys/param.h> 186 #include <sys/types.h> 187 #include <sys/mman.h> 188 #include <sys/sysconf.h> 189 190 #include "ctf_headers.h" 191 #include "ctftools.h" 192 #include "ctfmerge.h" 193 #include "traverse.h" 194 #include "memory.h" 195 #include "fifo.h" 196 #include "barrier.h" 197 198 #pragma init(bigheap) 199 200 #define MERGE_PHASE1_BATCH_SIZE 8 201 #define MERGE_PHASE1_MAX_SLOTS 5 202 #define MERGE_INPUT_THROTTLE_LEN 10 203 204 const char *progname; 205 static char *outfile = NULL; 206 static char *tmpname = NULL; 207 static int dynsym; 208 int debug_level = DEBUG_LEVEL; 209 210 void 211 usage(void) 212 { 213 (void) fprintf(stderr, 214 "Usage: %s [-fgstv] -l label | -L labelenv -o outfile file ...\n" 215 " %s [-fgstv] -l label | -L labelenv -o outfile -d uniqfile\n" 216 " %*s [-g] [-D uniqlabel] file ...\n" 217 " %s [-fgstv] -l label | -L labelenv -o outfile -w withfile " 218 "file ...\n" 219 " %s [-g] -c srcfile destfile\n" 220 "\n" 221 " Note: if -L labelenv is specified and labelenv is not set in\n" 222 " the environment, a default value is used.\n", 223 progname, progname, strlen(progname), " ", 224 progname, progname); 225 } 226 227 static void 228 bigheap(void) 229 { 230 size_t big, *size; 231 int sizes, i; 232 struct memcntl_mha mha; 233 234 /* 235 * First, get the available pagesizes. 236 */ 237 if ((sizes = getpagesizes(NULL, 0)) == -1) 238 return; 239 240 if ((size = alloca(sizeof (size_t) * sizes)) == NULL) 241 return; 242 243 if (getpagesizes(size, sizes) == -1 || sizes == 1) 244 return; 245 246 big = size[sizes - 1]; 247 if (big & (big - 1)) { 248 /* 249 * The largest page size is not a power of two for some 250 * inexplicable reason; return. 251 */ 252 return; 253 } 254 255 /* 256 * Now, align our break to the largest page size. 257 */ 258 if (brk((void *)((((uintptr_t)sbrk(0) - 1) & ~(big - 1)) + big)) != 0) 259 return; 260 261 /* 262 * Finally, set our heap to use the largest page size for which the 263 * MC_HAT_ADVISE doesn't return EAGAIN. 264 */ 265 mha.mha_cmd = MHA_MAPSIZE_BSSBRK; 266 mha.mha_flags = 0; 267 268 for (i = sizes - 1; i >= 0; i--) { 269 mha.mha_pagesize = size[i]; 270 271 if (memcntl(NULL, 0, MC_HAT_ADVISE, (caddr_t)&mha, 0, 0) != -1) 272 break; 273 274 if (errno != EAGAIN) 275 break; 276 } 277 } 278 279 static void 280 finalize_phase_one(workqueue_t *wq) 281 { 282 int startslot, i; 283 284 /* 285 * wip slots are cleared out only when maxbatchsz td's have been merged 286 * into them. We're not guaranteed that the number of files we're 287 * merging is a multiple of maxbatchsz, so there will be some partial 288 * groups in the wip array. Move them to the done queue in batch ID 289 * order, starting with the slot containing the next batch that would 290 * have been placed on the done queue, followed by the others. 291 * One thread will be doing this while the others wait at the barrier 292 * back in worker_thread(), so we don't need to worry about pesky things 293 * like locks. 294 */ 295 296 for (startslot = -1, i = 0; i < wq->wq_nwipslots; i++) { 297 if (wq->wq_wip[i].wip_batchid == wq->wq_lastdonebatch + 1) { 298 startslot = i; 299 break; 300 } 301 } 302 303 assert(startslot != -1); 304 305 for (i = startslot; i < startslot + wq->wq_nwipslots; i++) { 306 int slotnum = i % wq->wq_nwipslots; 307 wip_t *wipslot = &wq->wq_wip[slotnum]; 308 309 if (wipslot->wip_td != NULL) { 310 debug(2, "clearing slot %d (%d) (saving %d)\n", 311 slotnum, i, wipslot->wip_nmerged); 312 } else 313 debug(2, "clearing slot %d (%d)\n", slotnum, i); 314 315 if (wipslot->wip_td != NULL) { 316 fifo_add(wq->wq_donequeue, wipslot->wip_td); 317 wq->wq_wip[slotnum].wip_td = NULL; 318 } 319 } 320 321 wq->wq_lastdonebatch = wq->wq_next_batchid++; 322 323 debug(2, "phase one done: donequeue has %d items\n", 324 fifo_len(wq->wq_donequeue)); 325 } 326 327 static void 328 init_phase_two(workqueue_t *wq) 329 { 330 int num; 331 332 /* 333 * We're going to continually merge the first two entries on the queue, 334 * placing the result on the end, until there's nothing left to merge. 335 * At that point, everything will have been merged into one. The 336 * initial value of ninqueue needs to be equal to the total number of 337 * entries that will show up on the queue, both at the start of the 338 * phase and as generated by merges during the phase. 339 */ 340 wq->wq_ninqueue = num = fifo_len(wq->wq_donequeue); 341 while (num != 1) { 342 wq->wq_ninqueue += num / 2; 343 num = num / 2 + num % 2; 344 } 345 346 /* 347 * Move the done queue to the work queue. We won't be using the done 348 * queue in phase 2. 349 */ 350 assert(fifo_len(wq->wq_queue) == 0); 351 fifo_free(wq->wq_queue, NULL); 352 wq->wq_queue = wq->wq_donequeue; 353 } 354 355 static void 356 wip_save_work(workqueue_t *wq, wip_t *slot, int slotnum) 357 { 358 pthread_mutex_lock(&wq->wq_donequeue_lock); 359 360 while (wq->wq_lastdonebatch + 1 < slot->wip_batchid) 361 pthread_cond_wait(&slot->wip_cv, &wq->wq_donequeue_lock); 362 assert(wq->wq_lastdonebatch + 1 == slot->wip_batchid); 363 364 fifo_add(wq->wq_donequeue, slot->wip_td); 365 wq->wq_lastdonebatch++; 366 pthread_cond_signal(&wq->wq_wip[(slotnum + 1) % 367 wq->wq_nwipslots].wip_cv); 368 369 /* reset the slot for next use */ 370 slot->wip_td = NULL; 371 slot->wip_batchid = wq->wq_next_batchid++; 372 373 pthread_mutex_unlock(&wq->wq_donequeue_lock); 374 } 375 376 static void 377 wip_add_work(wip_t *slot, tdata_t *pow) 378 { 379 if (slot->wip_td == NULL) { 380 slot->wip_td = pow; 381 slot->wip_nmerged = 1; 382 } else { 383 debug(2, "%d: merging %p into %p\n", pthread_self(), 384 (void *)pow, (void *)slot->wip_td); 385 386 merge_into_master(pow, slot->wip_td, NULL, 0); 387 tdata_free(pow); 388 389 slot->wip_nmerged++; 390 } 391 } 392 393 static void 394 worker_runphase1(workqueue_t *wq) 395 { 396 wip_t *wipslot; 397 tdata_t *pow; 398 int wipslotnum, pownum; 399 400 for (;;) { 401 pthread_mutex_lock(&wq->wq_queue_lock); 402 403 while (fifo_empty(wq->wq_queue)) { 404 if (wq->wq_nomorefiles == 1) { 405 pthread_cond_broadcast(&wq->wq_work_avail); 406 pthread_mutex_unlock(&wq->wq_queue_lock); 407 408 /* on to phase 2 ... */ 409 return; 410 } 411 412 pthread_cond_wait(&wq->wq_work_avail, 413 &wq->wq_queue_lock); 414 } 415 416 /* there's work to be done! */ 417 pow = fifo_remove(wq->wq_queue); 418 pownum = wq->wq_nextpownum++; 419 pthread_cond_broadcast(&wq->wq_work_removed); 420 421 assert(pow != NULL); 422 423 /* merge it into the right slot */ 424 wipslotnum = pownum % wq->wq_nwipslots; 425 wipslot = &wq->wq_wip[wipslotnum]; 426 427 pthread_mutex_lock(&wipslot->wip_lock); 428 429 pthread_mutex_unlock(&wq->wq_queue_lock); 430 431 wip_add_work(wipslot, pow); 432 433 if (wipslot->wip_nmerged == wq->wq_maxbatchsz) 434 wip_save_work(wq, wipslot, wipslotnum); 435 436 pthread_mutex_unlock(&wipslot->wip_lock); 437 } 438 } 439 440 static void 441 worker_runphase2(workqueue_t *wq) 442 { 443 tdata_t *pow1, *pow2; 444 int batchid; 445 446 for (;;) { 447 pthread_mutex_lock(&wq->wq_queue_lock); 448 449 if (wq->wq_ninqueue == 1) { 450 pthread_cond_broadcast(&wq->wq_work_avail); 451 pthread_mutex_unlock(&wq->wq_queue_lock); 452 453 debug(2, "%d: entering p2 completion barrier\n", 454 pthread_self()); 455 if (barrier_wait(&wq->wq_bar1)) { 456 pthread_mutex_lock(&wq->wq_queue_lock); 457 wq->wq_alldone = 1; 458 pthread_cond_signal(&wq->wq_alldone_cv); 459 pthread_mutex_unlock(&wq->wq_queue_lock); 460 } 461 462 return; 463 } 464 465 if (fifo_len(wq->wq_queue) < 2) { 466 pthread_cond_wait(&wq->wq_work_avail, 467 &wq->wq_queue_lock); 468 pthread_mutex_unlock(&wq->wq_queue_lock); 469 continue; 470 } 471 472 /* there's work to be done! */ 473 pow1 = fifo_remove(wq->wq_queue); 474 pow2 = fifo_remove(wq->wq_queue); 475 wq->wq_ninqueue -= 2; 476 477 batchid = wq->wq_next_batchid++; 478 479 pthread_mutex_unlock(&wq->wq_queue_lock); 480 481 debug(2, "%d: merging %p into %p\n", pthread_self(), 482 (void *)pow1, (void *)pow2); 483 merge_into_master(pow1, pow2, NULL, 0); 484 tdata_free(pow1); 485 486 /* 487 * merging is complete. place at the tail of the queue in 488 * proper order. 489 */ 490 pthread_mutex_lock(&wq->wq_queue_lock); 491 while (wq->wq_lastdonebatch + 1 != batchid) { 492 pthread_cond_wait(&wq->wq_done_cv, 493 &wq->wq_queue_lock); 494 } 495 496 wq->wq_lastdonebatch = batchid; 497 498 fifo_add(wq->wq_queue, pow2); 499 debug(2, "%d: added %p to queue, len now %d, ninqueue %d\n", 500 pthread_self(), (void *)pow2, fifo_len(wq->wq_queue), 501 wq->wq_ninqueue); 502 pthread_cond_broadcast(&wq->wq_done_cv); 503 pthread_cond_signal(&wq->wq_work_avail); 504 pthread_mutex_unlock(&wq->wq_queue_lock); 505 } 506 } 507 508 /* 509 * Main loop for worker threads. 510 */ 511 static void 512 worker_thread(workqueue_t *wq) 513 { 514 worker_runphase1(wq); 515 516 debug(2, "%d: entering first barrier\n", pthread_self()); 517 518 if (barrier_wait(&wq->wq_bar1)) { 519 520 debug(2, "%d: doing work in first barrier\n", pthread_self()); 521 522 finalize_phase_one(wq); 523 524 init_phase_two(wq); 525 526 debug(2, "%d: ninqueue is %d, %d on queue\n", pthread_self(), 527 wq->wq_ninqueue, fifo_len(wq->wq_queue)); 528 } 529 530 debug(2, "%d: entering second barrier\n", pthread_self()); 531 532 (void) barrier_wait(&wq->wq_bar2); 533 534 debug(2, "%d: phase 1 complete\n", pthread_self()); 535 536 worker_runphase2(wq); 537 } 538 539 /* 540 * Pass a tdata_t tree, built from an input file, off to the work queue for 541 * consumption by worker threads. 542 */ 543 static int 544 merge_ctf_cb(tdata_t *td, char *name, void *arg) 545 { 546 workqueue_t *wq = arg; 547 548 debug(3, "Adding tdata %p for processing\n", (void *)td); 549 550 pthread_mutex_lock(&wq->wq_queue_lock); 551 while (fifo_len(wq->wq_queue) > wq->wq_ithrottle) { 552 debug(2, "Throttling input (len = %d, throttle = %d)\n", 553 fifo_len(wq->wq_queue), wq->wq_ithrottle); 554 pthread_cond_wait(&wq->wq_work_removed, &wq->wq_queue_lock); 555 } 556 557 fifo_add(wq->wq_queue, td); 558 debug(1, "Thread %d announcing %s\n", pthread_self(), name); 559 pthread_cond_broadcast(&wq->wq_work_avail); 560 pthread_mutex_unlock(&wq->wq_queue_lock); 561 562 return (1); 563 } 564 565 /* 566 * This program is intended to be invoked from a Makefile, as part of the build. 567 * As such, in the event of a failure or user-initiated interrupt (^C), we need 568 * to ensure that a subsequent re-make will cause ctfmerge to be executed again. 569 * Unfortunately, ctfmerge will usually be invoked directly after (and as part 570 * of the same Makefile rule as) a link, and will operate on the linked file 571 * in place. If we merely exit upon receipt of a SIGINT, a subsequent make 572 * will notice that the *linked* file is newer than the object files, and thus 573 * will not reinvoke ctfmerge. The only way to ensure that a subsequent make 574 * reinvokes ctfmerge, is to remove the file to which we are adding CTF 575 * data (confusingly named the output file). This means that the link will need 576 * to happen again, but links are generally fast, and we can't allow the merge 577 * to be skipped. 578 * 579 * Another possibility would be to block SIGINT entirely - to always run to 580 * completion. The run time of ctfmerge can, however, be measured in minutes 581 * in some cases, so this is not a valid option. 582 */ 583 static void 584 handle_sig(int sig) 585 { 586 terminate("Caught signal %d - exiting\n", sig); 587 } 588 589 static void 590 terminate_cleanup(void) 591 { 592 int dounlink = getenv("CTFMERGE_TERMINATE_NO_UNLINK") ? 0 : 1; 593 594 if (tmpname != NULL && dounlink) 595 unlink(tmpname); 596 597 if (outfile == NULL) 598 return; 599 600 if (dounlink) { 601 fprintf(stderr, "Removing %s\n", outfile); 602 unlink(outfile); 603 } 604 } 605 606 static void 607 copy_ctf_data(char *srcfile, char *destfile, int keep_stabs) 608 { 609 tdata_t *srctd; 610 611 if (read_ctf(&srcfile, 1, NULL, read_ctf_save_cb, &srctd, 1) == 0) 612 terminate("No CTF data found in source file %s\n", srcfile); 613 614 tmpname = mktmpname(destfile, ".ctf"); 615 write_ctf(srctd, destfile, tmpname, CTF_COMPRESS | keep_stabs); 616 if (rename(tmpname, destfile) != 0) { 617 terminate("Couldn't rename temp file %s to %s", tmpname, 618 destfile); 619 } 620 free(tmpname); 621 tdata_free(srctd); 622 } 623 624 static void 625 wq_init(workqueue_t *wq, int nfiles) 626 { 627 int throttle, nslots, i; 628 629 if (getenv("CTFMERGE_MAX_SLOTS")) 630 nslots = atoi(getenv("CTFMERGE_MAX_SLOTS")); 631 else 632 nslots = MERGE_PHASE1_MAX_SLOTS; 633 634 if (getenv("CTFMERGE_PHASE1_BATCH_SIZE")) 635 wq->wq_maxbatchsz = atoi(getenv("CTFMERGE_PHASE1_BATCH_SIZE")); 636 else 637 wq->wq_maxbatchsz = MERGE_PHASE1_BATCH_SIZE; 638 639 nslots = MIN(nslots, (nfiles + wq->wq_maxbatchsz - 1) / 640 wq->wq_maxbatchsz); 641 642 wq->wq_wip = xcalloc(sizeof (wip_t) * nslots); 643 wq->wq_nwipslots = nslots; 644 wq->wq_nthreads = MIN(sysconf(_SC_NPROCESSORS_ONLN) * 3 / 2, nslots); 645 646 if (getenv("CTFMERGE_INPUT_THROTTLE")) 647 throttle = atoi(getenv("CTFMERGE_INPUT_THROTTLE")); 648 else 649 throttle = MERGE_INPUT_THROTTLE_LEN; 650 wq->wq_ithrottle = throttle * wq->wq_nthreads; 651 652 debug(1, "Using %d slots, %d threads\n", wq->wq_nwipslots, 653 wq->wq_nthreads); 654 655 wq->wq_next_batchid = 0; 656 657 for (i = 0; i < nslots; i++) { 658 pthread_mutex_init(&wq->wq_wip[i].wip_lock, NULL); 659 wq->wq_wip[i].wip_batchid = wq->wq_next_batchid++; 660 } 661 662 pthread_mutex_init(&wq->wq_queue_lock, NULL); 663 wq->wq_queue = fifo_new(); 664 pthread_cond_init(&wq->wq_work_avail, NULL); 665 pthread_cond_init(&wq->wq_work_removed, NULL); 666 wq->wq_ninqueue = nfiles; 667 wq->wq_nextpownum = 0; 668 669 pthread_mutex_init(&wq->wq_donequeue_lock, NULL); 670 wq->wq_donequeue = fifo_new(); 671 wq->wq_lastdonebatch = -1; 672 673 pthread_cond_init(&wq->wq_done_cv, NULL); 674 675 pthread_cond_init(&wq->wq_alldone_cv, NULL); 676 wq->wq_alldone = 0; 677 678 barrier_init(&wq->wq_bar1, wq->wq_nthreads); 679 barrier_init(&wq->wq_bar2, wq->wq_nthreads); 680 681 wq->wq_nomorefiles = 0; 682 } 683 684 static void 685 start_threads(workqueue_t *wq) 686 { 687 pthread_t thrid; 688 sigset_t sets; 689 int i; 690 691 sigemptyset(&sets); 692 sigaddset(&sets, SIGINT); 693 sigaddset(&sets, SIGQUIT); 694 sigaddset(&sets, SIGTERM); 695 pthread_sigmask(SIG_BLOCK, &sets, NULL); 696 697 for (i = 0; i < wq->wq_nthreads; i++) { 698 pthread_create(&thrid, NULL, (void *(*)(void *))worker_thread, 699 wq); 700 } 701 702 sigset(SIGINT, handle_sig); 703 sigset(SIGQUIT, handle_sig); 704 sigset(SIGTERM, handle_sig); 705 pthread_sigmask(SIG_UNBLOCK, &sets, NULL); 706 } 707 708 static int 709 strcompare(const void *p1, const void *p2) 710 { 711 char *s1 = *((char **)p1); 712 char *s2 = *((char **)p2); 713 714 return (strcmp(s1, s2)); 715 } 716 717 int 718 main(int argc, char **argv) 719 { 720 workqueue_t wq; 721 tdata_t *mstrtd, *savetd; 722 char *uniqfile = NULL, *uniqlabel = NULL; 723 char *withfile = NULL; 724 char *label = NULL; 725 char **ifiles, **tifiles; 726 int verbose = 0, docopy = 0; 727 int write_fuzzy_match = 0; 728 int keep_stabs = 0; 729 int require_ctf = 0; 730 int nifiles, nielems; 731 int c, i, idx, tidx, err; 732 733 progname = basename(argv[0]); 734 735 if (getenv("CTFMERGE_DEBUG_LEVEL")) 736 debug_level = atoi(getenv("CTFMERGE_DEBUG_LEVEL")); 737 738 err = 0; 739 while ((c = getopt(argc, argv, ":cd:D:fgl:L:o:tvw:s")) != EOF) { 740 switch (c) { 741 case 'c': 742 docopy = 1; 743 break; 744 case 'd': 745 /* Uniquify against `uniqfile' */ 746 uniqfile = optarg; 747 break; 748 case 'D': 749 /* Uniquify against label `uniqlabel' in `uniqfile' */ 750 uniqlabel = optarg; 751 break; 752 case 'f': 753 write_fuzzy_match = CTF_FUZZY_MATCH; 754 break; 755 case 'g': 756 keep_stabs = CTF_KEEP_STABS; 757 break; 758 case 'l': 759 /* Label merged types with `label' */ 760 label = optarg; 761 break; 762 case 'L': 763 /* Label merged types with getenv(`label`) */ 764 if ((label = getenv(optarg)) == NULL) 765 label = CTF_DEFAULT_LABEL; 766 break; 767 case 'o': 768 /* Place merged types in CTF section in `outfile' */ 769 outfile = optarg; 770 break; 771 case 't': 772 /* Insist *all* object files built from C have CTF */ 773 require_ctf = 1; 774 break; 775 case 'v': 776 /* More debugging information */ 777 verbose = 1; 778 break; 779 case 'w': 780 /* Additive merge with data from `withfile' */ 781 withfile = optarg; 782 break; 783 case 's': 784 /* use the dynsym rather than the symtab */ 785 dynsym = CTF_USE_DYNSYM; 786 break; 787 default: 788 usage(); 789 exit(2); 790 } 791 } 792 793 /* Validate arguments */ 794 if (docopy) { 795 if (uniqfile != NULL || uniqlabel != NULL || label != NULL || 796 outfile != NULL || withfile != NULL || dynsym != 0) 797 err++; 798 799 if (argc - optind != 2) 800 err++; 801 } else { 802 if (uniqfile != NULL && withfile != NULL) 803 err++; 804 805 if (uniqlabel != NULL && uniqfile == NULL) 806 err++; 807 808 if (outfile == NULL || label == NULL) 809 err++; 810 811 if (argc - optind == 0) 812 err++; 813 } 814 815 if (err) { 816 usage(); 817 exit(2); 818 } 819 820 if (getenv("STRIPSTABS_KEEP_STABS") != NULL) 821 keep_stabs = CTF_KEEP_STABS; 822 823 if (uniqfile && access(uniqfile, R_OK) != 0) { 824 warning("Uniquification file %s couldn't be opened and " 825 "will be ignored.\n", uniqfile); 826 uniqfile = NULL; 827 } 828 if (withfile && access(withfile, R_OK) != 0) { 829 warning("With file %s couldn't be opened and will be " 830 "ignored.\n", withfile); 831 withfile = NULL; 832 } 833 if (outfile && access(outfile, R_OK|W_OK) != 0) 834 terminate("Cannot open output file %s for r/w", outfile); 835 836 /* 837 * This is ugly, but we don't want to have to have a separate tool 838 * (yet) just for copying an ELF section with our specific requirements, 839 * so we shoe-horn a copier into ctfmerge. 840 */ 841 if (docopy) { 842 copy_ctf_data(argv[optind], argv[optind + 1], keep_stabs); 843 844 exit(0); 845 } 846 847 set_terminate_cleanup(terminate_cleanup); 848 849 /* Sort the input files and strip out duplicates */ 850 nifiles = argc - optind; 851 ifiles = xmalloc(sizeof (char *) * nifiles); 852 tifiles = xmalloc(sizeof (char *) * nifiles); 853 854 for (i = 0; i < nifiles; i++) 855 tifiles[i] = argv[optind + i]; 856 qsort(tifiles, nifiles, sizeof (char *), (int (*)())strcompare); 857 858 ifiles[0] = tifiles[0]; 859 for (idx = 0, tidx = 1; tidx < nifiles; tidx++) { 860 if (strcmp(ifiles[idx], tifiles[tidx]) != 0) 861 ifiles[++idx] = tifiles[tidx]; 862 } 863 nifiles = idx + 1; 864 865 /* Make sure they all exist */ 866 if ((nielems = count_files(ifiles, nifiles)) < 0) 867 terminate("Some input files were inaccessible\n"); 868 869 /* Prepare for the merge */ 870 wq_init(&wq, nielems); 871 872 start_threads(&wq); 873 874 /* 875 * Start the merge 876 * 877 * We're reading everything from each of the object files, so we 878 * don't need to specify labels. 879 */ 880 if (read_ctf(ifiles, nifiles, NULL, merge_ctf_cb, 881 &wq, require_ctf) == 0) { 882 /* 883 * If we're verifying that C files have CTF, it's safe to 884 * assume that in this case, we're building only from assembly 885 * inputs. 886 */ 887 if (require_ctf) 888 exit(0); 889 terminate("No ctf sections found to merge\n"); 890 } 891 892 pthread_mutex_lock(&wq.wq_queue_lock); 893 wq.wq_nomorefiles = 1; 894 pthread_cond_broadcast(&wq.wq_work_avail); 895 pthread_mutex_unlock(&wq.wq_queue_lock); 896 897 pthread_mutex_lock(&wq.wq_queue_lock); 898 while (wq.wq_alldone == 0) 899 pthread_cond_wait(&wq.wq_alldone_cv, &wq.wq_queue_lock); 900 pthread_mutex_unlock(&wq.wq_queue_lock); 901 902 /* 903 * All requested files have been merged, with the resulting tree in 904 * mstrtd. savetd is the tree that will be placed into the output file. 905 * 906 * Regardless of whether we're doing a normal uniquification or an 907 * additive merge, we need a type tree that has been uniquified 908 * against uniqfile or withfile, as appropriate. 909 * 910 * If we're doing a uniquification, we stuff the resulting tree into 911 * outfile. Otherwise, we add the tree to the tree already in withfile. 912 */ 913 assert(fifo_len(wq.wq_queue) == 1); 914 mstrtd = fifo_remove(wq.wq_queue); 915 916 if (verbose || debug_level) { 917 debug(2, "Statistics for td %p\n", (void *)mstrtd); 918 919 iidesc_stats(mstrtd->td_iihash); 920 } 921 922 if (uniqfile != NULL || withfile != NULL) { 923 char *reffile, *reflabel = NULL; 924 tdata_t *reftd; 925 926 if (uniqfile != NULL) { 927 reffile = uniqfile; 928 reflabel = uniqlabel; 929 } else 930 reffile = withfile; 931 932 if (read_ctf(&reffile, 1, reflabel, read_ctf_save_cb, 933 &reftd, require_ctf) == 0) { 934 terminate("No CTF data found in reference file %s\n", 935 reffile); 936 } 937 938 savetd = tdata_new(); 939 940 if (CTF_TYPE_ISCHILD(reftd->td_nextid)) 941 terminate("No room for additional types in master\n"); 942 943 savetd->td_nextid = withfile ? reftd->td_nextid : 944 CTF_INDEX_TO_TYPE(1, TRUE); 945 merge_into_master(mstrtd, reftd, savetd, 0); 946 947 tdata_label_add(savetd, label, CTF_LABEL_LASTIDX); 948 949 if (withfile) { 950 /* 951 * savetd holds the new data to be added to the withfile 952 */ 953 tdata_t *withtd = reftd; 954 955 tdata_merge(withtd, savetd); 956 957 savetd = withtd; 958 } else { 959 char uniqname[MAXPATHLEN]; 960 labelent_t *parle; 961 962 parle = tdata_label_top(reftd); 963 964 savetd->td_parlabel = xstrdup(parle->le_name); 965 966 strncpy(uniqname, reffile, sizeof (uniqname)); 967 uniqname[MAXPATHLEN - 1] = '\0'; 968 savetd->td_parname = xstrdup(basename(uniqname)); 969 } 970 971 } else { 972 /* 973 * No post processing. Write the merged tree as-is into the 974 * output file. 975 */ 976 tdata_label_free(mstrtd); 977 tdata_label_add(mstrtd, label, CTF_LABEL_LASTIDX); 978 979 savetd = mstrtd; 980 } 981 982 tmpname = mktmpname(outfile, ".ctf"); 983 write_ctf(savetd, outfile, tmpname, 984 CTF_COMPRESS | write_fuzzy_match | dynsym | keep_stabs); 985 if (rename(tmpname, outfile) != 0) 986 terminate("Couldn't rename output temp file %s", tmpname); 987 free(tmpname); 988 989 return (0); 990 } 991