1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2004 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * Given several files containing CTF data, merge and uniquify that data into 31 * a single CTF section in an output file. 32 * 33 * Merges can proceed independently. As such, we perform the merges in parallel 34 * using a worker thread model. A given glob of CTF data (either all of the CTF 35 * data from a single input file, or the result of one or more merges) can only 36 * be involved in a single merge at any given time, so the process decreases in 37 * parallelism, especially towards the end, as more and more files are 38 * consolidated, finally resulting in a single merge of two large CTF graphs. 39 * Unfortunately, the last merge is also the slowest, as the two graphs being 40 * merged are each the product of merges of half of the input files. 41 * 42 * The algorithm consists of two phases, described in detail below. The first 43 * phase entails the merging of CTF data in groups of eight. The second phase 44 * takes the results of Phase I, and merges them two at a time. This disparity 45 * is due to an observation that the merge time increases at least quadratically 46 * with the size of the CTF data being merged. As such, merges of CTF graphs 47 * newly read from input files are much faster than merges of CTF graphs that 48 * are themselves the results of prior merges. 49 * 50 * A further complication is the need to ensure the repeatability of CTF merges. 51 * That is, a merge should produce the same output every time, given the same 52 * input. In both phases, this consistency requirement is met by imposing an 53 * ordering on the merge process, thus ensuring that a given set of input files 54 * are merged in the same order every time. 55 * 56 * Phase I 57 * 58 * The main thread reads the input files one by one, transforming the CTF 59 * data they contain into tdata structures. When a given file has been read 60 * and parsed, it is placed on the work queue for retrieval by worker threads. 61 * 62 * Central to Phase I is the Work In Progress (wip) array, which is used to 63 * merge batches of files in a predictable order. Files are read by the main 64 * thread, and are merged into wip array elements in round-robin order. When 65 * the number of files merged into a given array slot equals the batch size, 66 * the merged CTF graph in that array is added to the done slot in order by 67 * array slot. 68 * 69 * For example, consider a case where we have five input files, a batch size 70 * of two, a wip array size of two, and two worker threads (T1 and T2). 71 * 72 * 1. The wip array elements are assigned initial batch numbers 0 and 1. 73 * 2. T1 reads an input file from the input queue (wq_queue). This is the 74 * first input file, so it is placed into wip[0]. The second file is 75 * similarly read and placed into wip[1]. The wip array slots now contain 76 * one file each (wip_nmerged == 1). 77 * 3. T1 reads the third input file, which it merges into wip[0]. The 78 * number of files in wip[0] is equal to the batch size. 79 * 4. T2 reads the fourth input file, which it merges into wip[1]. wip[1] 80 * is now full too. 81 * 5. T2 attempts to place the contents of wip[1] on the done queue 82 * (wq_done_queue), but it can't, since the batch ID for wip[1] is 1. 83 * Batch 0 needs to be on the done queue before batch 1 can be added, so 84 * T2 blocks on wip[1]'s cv. 85 * 6. T1 attempts to place the contents of wip[0] on the done queue, and 86 * succeeds, updating wq_lastdonebatch to 0. It clears wip[0], and sets 87 * its batch ID to 2. T1 then signals wip[1]'s cv to awaken T2. 88 * 7. T2 wakes up, notices that wq_lastdonebatch is 0, which means that 89 * batch 1 can now be added. It adds wip[1] to the done queue, clears 90 * wip[1], and sets its batch ID to 3. It signals wip[0]'s cv, and 91 * restarts. 92 * 93 * The above process continues until all input files have been consumed. At 94 * this point, a pair of barriers are used to allow a single thread to move 95 * any partial batches from the wip array to the done array in batch ID order. 96 * When this is complete, wq_done_queue is moved to wq_queue, and Phase II 97 * begins. 98 * 99 * Locking Semantics (Phase I) 100 * 101 * The input queue (wq_queue) and the done queue (wq_done_queue) are 102 * protected by separate mutexes - wq_queue_lock and wq_done_queue. wip 103 * array slots are protected by their own mutexes, which must be grabbed 104 * before releasing the input queue lock. The wip array lock is dropped 105 * when the thread restarts the loop. If the array slot was full, the 106 * array lock will be held while the slot contents are added to the done 107 * queue. The done queue lock is used to protect the wip slot cv's. 108 * 109 * The pow number is protected by the queue lock. The master batch ID 110 * and last completed batch (wq_lastdonebatch) counters are protected *in 111 * Phase I* by the done queue lock. 112 * 113 * Phase II 114 * 115 * When Phase II begins, the queue consists of the merged batches from the 116 * first phase. Assume we have five batches: 117 * 118 * Q: a b c d e 119 * 120 * Using the same batch ID mechanism we used in Phase I, but without the wip 121 * array, worker threads remove two entries at a time from the beginning of 122 * the queue. These two entries are merged, and are added back to the tail 123 * of the queue, as follows: 124 * 125 * Q: a b c d e # start 126 * Q: c d e ab # a, b removed, merged, added to end 127 * Q: e ab cd # c, d removed, merged, added to end 128 * Q: cd eab # e, ab removed, merged, added to end 129 * Q: cdeab # cd, eab removed, merged, added to end 130 * 131 * When one entry remains on the queue, with no merges outstanding, Phase II 132 * finishes. We pre-determine the stopping point by pre-calculating the 133 * number of nodes that will appear on the list. In the example above, the 134 * number (wq_ninqueue) is 9. When ninqueue is 1, we conclude Phase II by 135 * signaling the main thread via wq_done_cv. 136 * 137 * Locking Semantics (Phase II) 138 * 139 * The queue (wq_queue), ninqueue, and the master batch ID and last 140 * completed batch counters are protected by wq_queue_lock. The done 141 * queue and corresponding lock are unused in Phase II as is the wip array. 142 * 143 * Uniquification 144 * 145 * We want the CTF data that goes into a given module to be as small as 146 * possible. For example, we don't want it to contain any type data that may 147 * be present in another common module. As such, after creating the master 148 * tdata_t for a given module, we can, if requested by the user, uniquify it 149 * against the tdata_t from another module (genunix in the case of the SunOS 150 * kernel). We perform a merge between the tdata_t for this module and the 151 * tdata_t from genunix. Nodes found in this module that are not present in 152 * genunix are added to a third tdata_t - the uniquified tdata_t. 153 * 154 * Additive Merges 155 * 156 * In some cases, for example if we are issuing a new version of a common 157 * module in a patch, we need to make sure that the CTF data already present 158 * in that module does not change. Changes to this data would void the CTF 159 * data in any module that uniquified against the common module. To preserve 160 * the existing data, we can perform what is known as an additive merge. In 161 * this case, a final uniquification is performed against the CTF data in the 162 * previous version of the module. The result will be the placement of new 163 * and changed data after the existing data, thus preserving the existing type 164 * ID space. 165 * 166 * Saving the result 167 * 168 * When the merges are complete, the resulting tdata_t is placed into the 169 * output file, replacing the .SUNW_ctf section (if any) already in that file. 170 * 171 * The person who changes the merging thread code in this file without updating 172 * this comment will not live to see the stock hit five. 173 */ 174 175 #include <stdio.h> 176 #include <stdlib.h> 177 #include <unistd.h> 178 #include <pthread.h> 179 #include <assert.h> 180 #include <synch.h> 181 #include <signal.h> 182 #include <libgen.h> 183 #include <string.h> 184 #include <errno.h> 185 #include <alloca.h> 186 #include <sys/param.h> 187 #include <sys/types.h> 188 #include <sys/mman.h> 189 #include <sys/sysconf.h> 190 191 #include "ctf_headers.h" 192 #include "ctftools.h" 193 #include "ctfmerge.h" 194 #include "traverse.h" 195 #include "memory.h" 196 #include "fifo.h" 197 #include "barrier.h" 198 199 #pragma init(bigheap) 200 201 #define MERGE_PHASE1_BATCH_SIZE 8 202 #define MERGE_PHASE1_MAX_SLOTS 5 203 #define MERGE_INPUT_THROTTLE_LEN 10 204 205 const char *progname; 206 static char *outfile = NULL; 207 static char *tmpname = NULL; 208 static int dynsym; 209 int debug_level = DEBUG_LEVEL; 210 211 void 212 usage(void) 213 { 214 (void) fprintf(stderr, 215 "Usage: %s [-fgstv] -l label | -L labelenv -o outfile file ...\n" 216 " %s [-fgstv] -l label | -L labelenv -o outfile -d uniqfile\n" 217 " %*s [-g] [-D uniqlabel] file ...\n" 218 " %s [-fgstv] -l label | -L labelenv -o outfile -w withfile " 219 "file ...\n" 220 " %s [-g] -c srcfile destfile\n" 221 "\n" 222 " Note: if -L labelenv is specified and labelenv is not set in\n" 223 " the environment, a default value is used.\n", 224 progname, progname, strlen(progname), " ", 225 progname, progname); 226 } 227 228 static void 229 bigheap(void) 230 { 231 size_t big, *size; 232 int sizes, i; 233 struct memcntl_mha mha; 234 235 /* 236 * First, get the available pagesizes. 237 */ 238 if ((sizes = getpagesizes(NULL, 0)) == -1) 239 return; 240 241 if ((size = alloca(sizeof (size_t) * sizes)) == NULL) 242 return; 243 244 if (getpagesizes(size, sizes) == -1 || sizes == 1) 245 return; 246 247 big = size[sizes - 1]; 248 if (big & (big - 1)) { 249 /* 250 * The largest page size is not a power of two for some 251 * inexplicable reason; return. 252 */ 253 return; 254 } 255 256 /* 257 * Now, align our break to the largest page size. 258 */ 259 if (brk((void *)((((uintptr_t)sbrk(0) - 1) & ~(big - 1)) + big)) != 0) 260 return; 261 262 /* 263 * Finally, set our heap to use the largest page size for which the 264 * MC_HAT_ADVISE doesn't return EAGAIN. 265 */ 266 mha.mha_cmd = MHA_MAPSIZE_BSSBRK; 267 mha.mha_flags = 0; 268 269 for (i = sizes - 1; i >= 0; i--) { 270 mha.mha_pagesize = size[i]; 271 272 if (memcntl(NULL, 0, MC_HAT_ADVISE, (caddr_t)&mha, 0, 0) != -1) 273 break; 274 275 if (errno != EAGAIN) 276 break; 277 } 278 } 279 280 static void 281 finalize_phase_one(workqueue_t *wq) 282 { 283 int startslot, i; 284 285 /* 286 * wip slots are cleared out only when maxbatchsz td's have been merged 287 * into them. We're not guaranteed that the number of files we're 288 * merging is a multiple of maxbatchsz, so there will be some partial 289 * groups in the wip array. Move them to the done queue in batch ID 290 * order, starting with the slot containing the next batch that would 291 * have been placed on the done queue, followed by the others. 292 * One thread will be doing this while the others wait at the barrier 293 * back in worker_thread(), so we don't need to worry about pesky things 294 * like locks. 295 */ 296 297 for (startslot = -1, i = 0; i < wq->wq_nwipslots; i++) { 298 if (wq->wq_wip[i].wip_batchid == wq->wq_lastdonebatch + 1) { 299 startslot = i; 300 break; 301 } 302 } 303 304 assert(startslot != -1); 305 306 for (i = startslot; i < startslot + wq->wq_nwipslots; i++) { 307 int slotnum = i % wq->wq_nwipslots; 308 wip_t *wipslot = &wq->wq_wip[slotnum]; 309 310 if (wipslot->wip_td != NULL) { 311 debug(2, "clearing slot %d (%d) (saving %d)\n", 312 slotnum, i, wipslot->wip_nmerged); 313 } else 314 debug(2, "clearing slot %d (%d)\n", slotnum, i); 315 316 if (wipslot->wip_td != NULL) { 317 fifo_add(wq->wq_donequeue, wipslot->wip_td); 318 wq->wq_wip[slotnum].wip_td = NULL; 319 } 320 } 321 322 wq->wq_lastdonebatch = wq->wq_next_batchid++; 323 324 debug(2, "phase one done: donequeue has %d items\n", 325 fifo_len(wq->wq_donequeue)); 326 } 327 328 static void 329 init_phase_two(workqueue_t *wq) 330 { 331 int num; 332 333 /* 334 * We're going to continually merge the first two entries on the queue, 335 * placing the result on the end, until there's nothing left to merge. 336 * At that point, everything will have been merged into one. The 337 * initial value of ninqueue needs to be equal to the total number of 338 * entries that will show up on the queue, both at the start of the 339 * phase and as generated by merges during the phase. 340 */ 341 wq->wq_ninqueue = num = fifo_len(wq->wq_donequeue); 342 while (num != 1) { 343 wq->wq_ninqueue += num / 2; 344 num = num / 2 + num % 2; 345 } 346 347 /* 348 * Move the done queue to the work queue. We won't be using the done 349 * queue in phase 2. 350 */ 351 assert(fifo_len(wq->wq_queue) == 0); 352 fifo_free(wq->wq_queue, NULL); 353 wq->wq_queue = wq->wq_donequeue; 354 } 355 356 static void 357 wip_save_work(workqueue_t *wq, wip_t *slot, int slotnum) 358 { 359 pthread_mutex_lock(&wq->wq_donequeue_lock); 360 361 while (wq->wq_lastdonebatch + 1 < slot->wip_batchid) 362 pthread_cond_wait(&slot->wip_cv, &wq->wq_donequeue_lock); 363 assert(wq->wq_lastdonebatch + 1 == slot->wip_batchid); 364 365 fifo_add(wq->wq_donequeue, slot->wip_td); 366 wq->wq_lastdonebatch++; 367 pthread_cond_signal(&wq->wq_wip[(slotnum + 1) % 368 wq->wq_nwipslots].wip_cv); 369 370 /* reset the slot for next use */ 371 slot->wip_td = NULL; 372 slot->wip_batchid = wq->wq_next_batchid++; 373 374 pthread_mutex_unlock(&wq->wq_donequeue_lock); 375 } 376 377 static void 378 wip_add_work(wip_t *slot, tdata_t *pow) 379 { 380 if (slot->wip_td == NULL) { 381 slot->wip_td = pow; 382 slot->wip_nmerged = 1; 383 } else { 384 debug(2, "%d: merging %p into %p\n", pthread_self(), 385 (void *)pow, (void *)slot->wip_td); 386 387 merge_into_master(pow, slot->wip_td, NULL, 0); 388 tdata_free(pow); 389 390 slot->wip_nmerged++; 391 } 392 } 393 394 static void 395 worker_runphase1(workqueue_t *wq) 396 { 397 wip_t *wipslot; 398 tdata_t *pow; 399 int wipslotnum, pownum; 400 401 for (;;) { 402 pthread_mutex_lock(&wq->wq_queue_lock); 403 404 while (fifo_empty(wq->wq_queue)) { 405 if (wq->wq_nomorefiles == 1) { 406 pthread_cond_broadcast(&wq->wq_work_avail); 407 pthread_mutex_unlock(&wq->wq_queue_lock); 408 409 /* on to phase 2 ... */ 410 return; 411 } 412 413 pthread_cond_wait(&wq->wq_work_avail, 414 &wq->wq_queue_lock); 415 } 416 417 /* there's work to be done! */ 418 pow = fifo_remove(wq->wq_queue); 419 pownum = wq->wq_nextpownum++; 420 pthread_cond_broadcast(&wq->wq_work_removed); 421 422 assert(pow != NULL); 423 424 /* merge it into the right slot */ 425 wipslotnum = pownum % wq->wq_nwipslots; 426 wipslot = &wq->wq_wip[wipslotnum]; 427 428 pthread_mutex_lock(&wipslot->wip_lock); 429 430 pthread_mutex_unlock(&wq->wq_queue_lock); 431 432 wip_add_work(wipslot, pow); 433 434 if (wipslot->wip_nmerged == wq->wq_maxbatchsz) 435 wip_save_work(wq, wipslot, wipslotnum); 436 437 pthread_mutex_unlock(&wipslot->wip_lock); 438 } 439 } 440 441 static void 442 worker_runphase2(workqueue_t *wq) 443 { 444 tdata_t *pow1, *pow2; 445 int batchid; 446 447 for (;;) { 448 pthread_mutex_lock(&wq->wq_queue_lock); 449 450 if (wq->wq_ninqueue == 1) { 451 pthread_cond_broadcast(&wq->wq_work_avail); 452 pthread_mutex_unlock(&wq->wq_queue_lock); 453 454 debug(2, "%d: entering p2 completion barrier\n", 455 pthread_self()); 456 if (barrier_wait(&wq->wq_bar1)) { 457 pthread_mutex_lock(&wq->wq_queue_lock); 458 wq->wq_alldone = 1; 459 pthread_cond_signal(&wq->wq_alldone_cv); 460 pthread_mutex_unlock(&wq->wq_queue_lock); 461 } 462 463 return; 464 } 465 466 if (fifo_len(wq->wq_queue) < 2) { 467 pthread_cond_wait(&wq->wq_work_avail, 468 &wq->wq_queue_lock); 469 pthread_mutex_unlock(&wq->wq_queue_lock); 470 continue; 471 } 472 473 /* there's work to be done! */ 474 pow1 = fifo_remove(wq->wq_queue); 475 pow2 = fifo_remove(wq->wq_queue); 476 wq->wq_ninqueue -= 2; 477 478 batchid = wq->wq_next_batchid++; 479 480 pthread_mutex_unlock(&wq->wq_queue_lock); 481 482 debug(2, "%d: merging %p into %p\n", pthread_self(), 483 (void *)pow1, (void *)pow2); 484 merge_into_master(pow1, pow2, NULL, 0); 485 tdata_free(pow1); 486 487 /* 488 * merging is complete. place at the tail of the queue in 489 * proper order. 490 */ 491 pthread_mutex_lock(&wq->wq_queue_lock); 492 while (wq->wq_lastdonebatch + 1 != batchid) { 493 pthread_cond_wait(&wq->wq_done_cv, 494 &wq->wq_queue_lock); 495 } 496 497 wq->wq_lastdonebatch = batchid; 498 499 fifo_add(wq->wq_queue, pow2); 500 debug(2, "%d: added %p to queue, len now %d, ninqueue %d\n", 501 pthread_self(), (void *)pow2, fifo_len(wq->wq_queue), 502 wq->wq_ninqueue); 503 pthread_cond_broadcast(&wq->wq_done_cv); 504 pthread_cond_signal(&wq->wq_work_avail); 505 pthread_mutex_unlock(&wq->wq_queue_lock); 506 } 507 } 508 509 /* 510 * Main loop for worker threads. 511 */ 512 static void 513 worker_thread(workqueue_t *wq) 514 { 515 worker_runphase1(wq); 516 517 debug(2, "%d: entering first barrier\n", pthread_self()); 518 519 if (barrier_wait(&wq->wq_bar1)) { 520 521 debug(2, "%d: doing work in first barrier\n", pthread_self()); 522 523 finalize_phase_one(wq); 524 525 init_phase_two(wq); 526 527 debug(2, "%d: ninqueue is %d, %d on queue\n", pthread_self(), 528 wq->wq_ninqueue, fifo_len(wq->wq_queue)); 529 } 530 531 debug(2, "%d: entering second barrier\n", pthread_self()); 532 533 (void) barrier_wait(&wq->wq_bar2); 534 535 debug(2, "%d: phase 1 complete\n", pthread_self()); 536 537 worker_runphase2(wq); 538 } 539 540 /* 541 * Pass a tdata_t tree, built from an input file, off to the work queue for 542 * consumption by worker threads. 543 */ 544 static int 545 merge_ctf_cb(tdata_t *td, char *name, void *arg) 546 { 547 workqueue_t *wq = arg; 548 549 debug(3, "Adding tdata %p for processing\n", (void *)td); 550 551 pthread_mutex_lock(&wq->wq_queue_lock); 552 while (fifo_len(wq->wq_queue) > wq->wq_ithrottle) { 553 debug(2, "Throttling input (len = %d, throttle = %d)\n", 554 fifo_len(wq->wq_queue), wq->wq_ithrottle); 555 pthread_cond_wait(&wq->wq_work_removed, &wq->wq_queue_lock); 556 } 557 558 fifo_add(wq->wq_queue, td); 559 debug(1, "Thread %d announcing %s\n", pthread_self(), name); 560 pthread_cond_broadcast(&wq->wq_work_avail); 561 pthread_mutex_unlock(&wq->wq_queue_lock); 562 563 return (1); 564 } 565 566 /* 567 * This program is intended to be invoked from a Makefile, as part of the build. 568 * As such, in the event of a failure or user-initiated interrupt (^C), we need 569 * to ensure that a subsequent re-make will cause ctfmerge to be executed again. 570 * Unfortunately, ctfmerge will usually be invoked directly after (and as part 571 * of the same Makefile rule as) a link, and will operate on the linked file 572 * in place. If we merely exit upon receipt of a SIGINT, a subsequent make 573 * will notice that the *linked* file is newer than the object files, and thus 574 * will not reinvoke ctfmerge. The only way to ensure that a subsequent make 575 * reinvokes ctfmerge, is to remove the file to which we are adding CTF 576 * data (confusingly named the output file). This means that the link will need 577 * to happen again, but links are generally fast, and we can't allow the merge 578 * to be skipped. 579 * 580 * Another possibility would be to block SIGINT entirely - to always run to 581 * completion. The run time of ctfmerge can, however, be measured in minutes 582 * in some cases, so this is not a valid option. 583 */ 584 static void 585 handle_sig(int sig) 586 { 587 terminate("Caught signal %d - exiting\n", sig); 588 } 589 590 static void 591 terminate_cleanup(void) 592 { 593 int dounlink = getenv("CTFMERGE_TERMINATE_NO_UNLINK") ? 0 : 1; 594 595 if (tmpname != NULL && dounlink) 596 unlink(tmpname); 597 598 if (outfile == NULL) 599 return; 600 601 if (dounlink) { 602 fprintf(stderr, "Removing %s\n", outfile); 603 unlink(outfile); 604 } 605 } 606 607 static void 608 copy_ctf_data(char *srcfile, char *destfile, int keep_stabs) 609 { 610 tdata_t *srctd; 611 612 if (read_ctf(&srcfile, 1, NULL, read_ctf_save_cb, &srctd, 1) == 0) 613 terminate("No CTF data found in source file %s\n", srcfile); 614 615 tmpname = mktmpname(destfile, ".ctf"); 616 write_ctf(srctd, destfile, tmpname, CTF_COMPRESS | keep_stabs); 617 if (rename(tmpname, destfile) != 0) { 618 terminate("Couldn't rename temp file %s to %s", tmpname, 619 destfile); 620 } 621 free(tmpname); 622 tdata_free(srctd); 623 } 624 625 static void 626 wq_init(workqueue_t *wq, int nfiles) 627 { 628 int throttle, nslots, i; 629 630 if (getenv("CTFMERGE_MAX_SLOTS")) 631 nslots = atoi(getenv("CTFMERGE_MAX_SLOTS")); 632 else 633 nslots = MERGE_PHASE1_MAX_SLOTS; 634 635 if (getenv("CTFMERGE_PHASE1_BATCH_SIZE")) 636 wq->wq_maxbatchsz = atoi(getenv("CTFMERGE_PHASE1_BATCH_SIZE")); 637 else 638 wq->wq_maxbatchsz = MERGE_PHASE1_BATCH_SIZE; 639 640 nslots = MIN(nslots, (nfiles + wq->wq_maxbatchsz - 1) / 641 wq->wq_maxbatchsz); 642 643 wq->wq_wip = xcalloc(sizeof (wip_t) * nslots); 644 wq->wq_nwipslots = nslots; 645 wq->wq_nthreads = MIN(sysconf(_SC_NPROCESSORS_ONLN) * 3 / 2, nslots); 646 647 if (getenv("CTFMERGE_INPUT_THROTTLE")) 648 throttle = atoi(getenv("CTFMERGE_INPUT_THROTTLE")); 649 else 650 throttle = MERGE_INPUT_THROTTLE_LEN; 651 wq->wq_ithrottle = throttle * wq->wq_nthreads; 652 653 debug(1, "Using %d slots, %d threads\n", wq->wq_nwipslots, 654 wq->wq_nthreads); 655 656 wq->wq_next_batchid = 0; 657 658 for (i = 0; i < nslots; i++) { 659 pthread_mutex_init(&wq->wq_wip[i].wip_lock, NULL); 660 wq->wq_wip[i].wip_batchid = wq->wq_next_batchid++; 661 } 662 663 pthread_mutex_init(&wq->wq_queue_lock, NULL); 664 wq->wq_queue = fifo_new(); 665 pthread_cond_init(&wq->wq_work_avail, NULL); 666 pthread_cond_init(&wq->wq_work_removed, NULL); 667 wq->wq_ninqueue = nfiles; 668 wq->wq_nextpownum = 0; 669 670 pthread_mutex_init(&wq->wq_donequeue_lock, NULL); 671 wq->wq_donequeue = fifo_new(); 672 wq->wq_lastdonebatch = -1; 673 674 pthread_cond_init(&wq->wq_done_cv, NULL); 675 676 pthread_cond_init(&wq->wq_alldone_cv, NULL); 677 wq->wq_alldone = 0; 678 679 barrier_init(&wq->wq_bar1, wq->wq_nthreads); 680 barrier_init(&wq->wq_bar2, wq->wq_nthreads); 681 682 wq->wq_nomorefiles = 0; 683 } 684 685 static void 686 start_threads(workqueue_t *wq) 687 { 688 pthread_t thrid; 689 sigset_t sets; 690 int i; 691 692 sigemptyset(&sets); 693 sigaddset(&sets, SIGINT); 694 sigaddset(&sets, SIGQUIT); 695 sigaddset(&sets, SIGTERM); 696 pthread_sigmask(SIG_BLOCK, &sets, NULL); 697 698 for (i = 0; i < wq->wq_nthreads; i++) { 699 pthread_create(&thrid, NULL, (void *(*)(void *))worker_thread, 700 wq); 701 } 702 703 sigset(SIGINT, handle_sig); 704 sigset(SIGQUIT, handle_sig); 705 sigset(SIGTERM, handle_sig); 706 pthread_sigmask(SIG_UNBLOCK, &sets, NULL); 707 } 708 709 static int 710 strcompare(const void *p1, const void *p2) 711 { 712 char *s1 = *((char **)p1); 713 char *s2 = *((char **)p2); 714 715 return (strcmp(s1, s2)); 716 } 717 718 int 719 main(int argc, char **argv) 720 { 721 workqueue_t wq; 722 tdata_t *mstrtd, *savetd; 723 char *uniqfile = NULL, *uniqlabel = NULL; 724 char *withfile = NULL; 725 char *label = NULL; 726 char **ifiles, **tifiles; 727 int verbose = 0, docopy = 0; 728 int write_fuzzy_match = 0; 729 int keep_stabs = 0; 730 int require_ctf = 0; 731 int nifiles, nielems; 732 int c, i, idx, tidx, err; 733 734 progname = basename(argv[0]); 735 736 if (getenv("CTFMERGE_DEBUG_LEVEL")) 737 debug_level = atoi(getenv("CTFMERGE_DEBUG_LEVEL")); 738 739 err = 0; 740 while ((c = getopt(argc, argv, ":cd:D:fgl:L:o:tvw:s")) != EOF) { 741 switch (c) { 742 case 'c': 743 docopy = 1; 744 break; 745 case 'd': 746 /* Uniquify against `uniqfile' */ 747 uniqfile = optarg; 748 break; 749 case 'D': 750 /* Uniquify against label `uniqlabel' in `uniqfile' */ 751 uniqlabel = optarg; 752 break; 753 case 'f': 754 write_fuzzy_match = CTF_FUZZY_MATCH; 755 break; 756 case 'g': 757 keep_stabs = CTF_KEEP_STABS; 758 break; 759 case 'l': 760 /* Label merged types with `label' */ 761 label = optarg; 762 break; 763 case 'L': 764 /* Label merged types with getenv(`label`) */ 765 if ((label = getenv(optarg)) == NULL) 766 label = CTF_DEFAULT_LABEL; 767 break; 768 case 'o': 769 /* Place merged types in CTF section in `outfile' */ 770 outfile = optarg; 771 break; 772 case 't': 773 /* Insist *all* object files built from C have CTF */ 774 require_ctf = 1; 775 break; 776 case 'v': 777 /* More debugging information */ 778 verbose = 1; 779 break; 780 case 'w': 781 /* Additive merge with data from `withfile' */ 782 withfile = optarg; 783 break; 784 case 's': 785 /* use the dynsym rather than the symtab */ 786 dynsym = CTF_USE_DYNSYM; 787 break; 788 default: 789 usage(); 790 exit(2); 791 } 792 } 793 794 /* Validate arguments */ 795 if (docopy) { 796 if (uniqfile != NULL || uniqlabel != NULL || label != NULL || 797 outfile != NULL || withfile != NULL || dynsym != 0) 798 err++; 799 800 if (argc - optind != 2) 801 err++; 802 } else { 803 if (uniqfile != NULL && withfile != NULL) 804 err++; 805 806 if (uniqlabel != NULL && uniqfile == NULL) 807 err++; 808 809 if (outfile == NULL || label == NULL) 810 err++; 811 812 if (argc - optind == 0) 813 err++; 814 } 815 816 if (err) { 817 usage(); 818 exit(2); 819 } 820 821 if (getenv("STRIPSTABS_KEEP_STABS") != NULL) 822 keep_stabs = CTF_KEEP_STABS; 823 824 if (uniqfile && access(uniqfile, R_OK) != 0) { 825 warning("Uniquification file %s couldn't be opened and " 826 "will be ignored.\n", uniqfile); 827 uniqfile = NULL; 828 } 829 if (withfile && access(withfile, R_OK) != 0) { 830 warning("With file %s couldn't be opened and will be " 831 "ignored.\n", withfile); 832 withfile = NULL; 833 } 834 if (outfile && access(outfile, R_OK|W_OK) != 0) 835 terminate("Cannot open output file %s for r/w", outfile); 836 837 /* 838 * This is ugly, but we don't want to have to have a separate tool 839 * (yet) just for copying an ELF section with our specific requirements, 840 * so we shoe-horn a copier into ctfmerge. 841 */ 842 if (docopy) { 843 copy_ctf_data(argv[optind], argv[optind + 1], keep_stabs); 844 845 exit(0); 846 } 847 848 set_terminate_cleanup(terminate_cleanup); 849 850 /* Sort the input files and strip out duplicates */ 851 nifiles = argc - optind; 852 ifiles = xmalloc(sizeof (char *) * nifiles); 853 tifiles = xmalloc(sizeof (char *) * nifiles); 854 855 for (i = 0; i < nifiles; i++) 856 tifiles[i] = argv[optind + i]; 857 qsort(tifiles, nifiles, sizeof (char *), (int (*)())strcompare); 858 859 ifiles[0] = tifiles[0]; 860 for (idx = 0, tidx = 1; tidx < nifiles; tidx++) { 861 if (strcmp(ifiles[idx], tifiles[tidx]) != 0) 862 ifiles[++idx] = tifiles[tidx]; 863 } 864 nifiles = idx + 1; 865 866 /* Make sure they all exist */ 867 if ((nielems = count_files(ifiles, nifiles)) < 0) 868 terminate("Some input files were inaccessible\n"); 869 870 /* Prepare for the merge */ 871 wq_init(&wq, nielems); 872 873 start_threads(&wq); 874 875 /* 876 * Start the merge 877 * 878 * We're reading everything from each of the object files, so we 879 * don't need to specify labels. 880 */ 881 if (read_ctf(ifiles, nifiles, NULL, merge_ctf_cb, 882 &wq, require_ctf) == 0) 883 terminate("No ctf sections found to merge\n"); 884 885 pthread_mutex_lock(&wq.wq_queue_lock); 886 wq.wq_nomorefiles = 1; 887 pthread_cond_broadcast(&wq.wq_work_avail); 888 pthread_mutex_unlock(&wq.wq_queue_lock); 889 890 pthread_mutex_lock(&wq.wq_queue_lock); 891 while (wq.wq_alldone == 0) 892 pthread_cond_wait(&wq.wq_alldone_cv, &wq.wq_queue_lock); 893 pthread_mutex_unlock(&wq.wq_queue_lock); 894 895 /* 896 * All requested files have been merged, with the resulting tree in 897 * mstrtd. savetd is the tree that will be placed into the output file. 898 * 899 * Regardless of whether we're doing a normal uniquification or an 900 * additive merge, we need a type tree that has been uniquified 901 * against uniqfile or withfile, as appropriate. 902 * 903 * If we're doing a uniquification, we stuff the resulting tree into 904 * outfile. Otherwise, we add the tree to the tree already in withfile. 905 */ 906 assert(fifo_len(wq.wq_queue) == 1); 907 mstrtd = fifo_remove(wq.wq_queue); 908 909 if (verbose || debug_level) { 910 debug(2, "Statistics for td %p\n", (void *)mstrtd); 911 912 iidesc_stats(mstrtd->td_iihash); 913 } 914 915 if (uniqfile != NULL || withfile != NULL) { 916 char *reffile, *reflabel = NULL; 917 tdata_t *reftd; 918 919 if (uniqfile != NULL) { 920 reffile = uniqfile; 921 reflabel = uniqlabel; 922 } else 923 reffile = withfile; 924 925 if (read_ctf(&reffile, 1, reflabel, read_ctf_save_cb, 926 &reftd, require_ctf) == 0) { 927 terminate("No CTF data found in reference file %s\n", 928 reffile); 929 } 930 931 savetd = tdata_new(); 932 933 if (CTF_TYPE_ISCHILD(reftd->td_nextid)) 934 terminate("No room for additional types in master\n"); 935 936 savetd->td_nextid = withfile ? reftd->td_nextid : 937 CTF_INDEX_TO_TYPE(1, TRUE); 938 merge_into_master(mstrtd, reftd, savetd, 0); 939 940 tdata_label_add(savetd, label, CTF_LABEL_LASTIDX); 941 942 if (withfile) { 943 /* 944 * savetd holds the new data to be added to the withfile 945 */ 946 tdata_t *withtd = reftd; 947 948 tdata_merge(withtd, savetd); 949 950 savetd = withtd; 951 } else { 952 char uniqname[MAXPATHLEN]; 953 labelent_t *parle; 954 955 parle = tdata_label_top(reftd); 956 957 savetd->td_parlabel = xstrdup(parle->le_name); 958 959 strncpy(uniqname, reffile, sizeof (uniqname)); 960 uniqname[MAXPATHLEN - 1] = '\0'; 961 savetd->td_parname = xstrdup(basename(uniqname)); 962 } 963 964 } else { 965 /* 966 * No post processing. Write the merged tree as-is into the 967 * output file. 968 */ 969 tdata_label_free(mstrtd); 970 tdata_label_add(mstrtd, label, CTF_LABEL_LASTIDX); 971 972 savetd = mstrtd; 973 } 974 975 tmpname = mktmpname(outfile, ".ctf"); 976 write_ctf(savetd, outfile, tmpname, 977 CTF_COMPRESS | write_fuzzy_match | dynsym | keep_stabs); 978 if (rename(tmpname, outfile) != 0) 979 terminate("Couldn't rename output temp file %s", tmpname); 980 free(tmpname); 981 982 return (0); 983 } 984