xref: /titanic_41/usr/src/lib/pkcs11/pkcs11_kernel/common/kernelUtil.c (revision bbfe764ef179c2f606b093b6ec6bb149cde0e31b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <stdlib.h>
29 #include <string.h>
30 #include <strings.h>
31 #include <cryptoutil.h>
32 #include <errno.h>
33 #include <security/cryptoki.h>
34 #include <sys/crypto/common.h>
35 #include <sys/crypto/ioctl.h>
36 #include "kernelGlobal.h"
37 #include "kernelObject.h"
38 #include "kernelSlot.h"
39 
40 #define	ENCODE_ATTR(type, value, len) {		\
41 	cur_attr->oa_type = type;		\
42 	(void) memcpy(ptr, value, len);		\
43 	cur_attr->oa_value = ptr;		\
44 	cur_attr->oa_value_len = len;		\
45 	cur_attr++;				\
46 }
47 
48 #define	CRYPTO_LAST_ERROR	(CRYPTO_WEAK_KEY + 1)
49 
50 /*
51  * In order to fit everything on one line, the 'CRYPTO_' prefix
52  * has been dropped from the KCF #defines, e.g.
53  * CRYPTO_SUCCESS becomes SUCCESS.
54  */
55 
56 static CK_RV error_number_table[CRYPTO_LAST_ERROR] = {
57 CKR_OK,					/* SUCCESS */
58 CKR_CANCEL,				/* CANCEL */
59 CKR_HOST_MEMORY,			/* HOST_MEMORY */
60 CKR_GENERAL_ERROR,			/* GENERAL_ERROR */
61 CKR_FUNCTION_FAILED,			/* FAILED */
62 CKR_ARGUMENTS_BAD,			/* ARGUMENTS_BAD */
63 CKR_ATTRIBUTE_READ_ONLY,		/* ATTRIBUTE_READ_ONLY */
64 CKR_ATTRIBUTE_SENSITIVE,		/* ATTRIBUTE_SENSITIVE */
65 CKR_ATTRIBUTE_TYPE_INVALID,		/* ATTRIBUTE_TYPE_INVALID */
66 CKR_ATTRIBUTE_VALUE_INVALID,		/* ATTRIBUTE_VALUE_INVALID */
67 CKR_FUNCTION_FAILED,			/* CANCELED */
68 CKR_DATA_INVALID,			/* DATA_INVALID */
69 CKR_DATA_LEN_RANGE,			/* DATA_LEN_RANGE */
70 CKR_DEVICE_ERROR,			/* DEVICE_ERROR */
71 CKR_DEVICE_MEMORY,			/* DEVICE_MEMORY */
72 CKR_DEVICE_REMOVED,			/* DEVICE_REMOVED */
73 CKR_ENCRYPTED_DATA_INVALID,		/* ENCRYPTED_DATA_INVALID */
74 CKR_ENCRYPTED_DATA_LEN_RANGE,		/* ENCRYPTED_DATA_LEN_RANGE */
75 CKR_KEY_HANDLE_INVALID,			/* KEY_HANDLE_INVALID */
76 CKR_KEY_SIZE_RANGE,			/* KEY_SIZE_RANGE */
77 CKR_KEY_TYPE_INCONSISTENT,		/* KEY_TYPE_INCONSISTENT */
78 CKR_KEY_NOT_NEEDED,			/* KEY_NOT_NEEDED */
79 CKR_KEY_CHANGED,			/* KEY_CHANGED */
80 CKR_KEY_NEEDED,				/* KEY_NEEDED */
81 CKR_KEY_INDIGESTIBLE,			/* KEY_INDIGESTIBLE */
82 CKR_KEY_FUNCTION_NOT_PERMITTED,		/* KEY_FUNCTION_NOT_PERMITTED */
83 CKR_KEY_NOT_WRAPPABLE,			/* KEY_NOT_WRAPPABLE */
84 CKR_KEY_UNEXTRACTABLE,			/* KEY_UNEXTRACTABLE */
85 CKR_MECHANISM_INVALID,			/* MECHANISM_INVALID */
86 CKR_MECHANISM_PARAM_INVALID,		/* MECHANISM_PARAM_INVALID */
87 CKR_OBJECT_HANDLE_INVALID,		/* OBJECT_HANDLE_INVALID */
88 CKR_OPERATION_ACTIVE,			/* OPERATION_ACTIVE */
89 CKR_OPERATION_NOT_INITIALIZED,		/* OPERATION_NOT_INITIALIZED */
90 CKR_PIN_INCORRECT,			/* PIN_INCORRECT */
91 CKR_PIN_INVALID,			/* PIN_INVALID */
92 CKR_PIN_LEN_RANGE,			/* PIN_LEN_RANGE */
93 CKR_PIN_EXPIRED,			/* PIN_EXPIRED */
94 CKR_PIN_LOCKED,				/* PIN_LOCKED */
95 CKR_SESSION_CLOSED,			/* SESSION_CLOSED */
96 CKR_SESSION_COUNT,			/* SESSION_COUNT */
97 CKR_SESSION_HANDLE_INVALID,		/* SESSION_HANDLE_INVALID */
98 CKR_SESSION_READ_ONLY,			/* SESSION_READ_ONLY */
99 CKR_SESSION_EXISTS,			/* SESSION_EXISTS */
100 CKR_SESSION_READ_ONLY_EXISTS,		/* SESSION_READ_ONLY_EXISTS */
101 CKR_SESSION_READ_WRITE_SO_EXISTS,	/* SESSION_READ_WRITE_SO_EXISTS */
102 CKR_SIGNATURE_INVALID,			/* SIGNATURE_INVALID */
103 CKR_SIGNATURE_LEN_RANGE,		/* SIGNATURE_LEN_RANGE */
104 CKR_TEMPLATE_INCOMPLETE,		/* TEMPLATE_INCOMPLETE */
105 CKR_TEMPLATE_INCONSISTENT,		/* TEMPLATE_INCONSISTENT */
106 CKR_UNWRAPPING_KEY_HANDLE_INVALID,	/* UNWRAPPING_KEY_HANDLE_INVALID */
107 CKR_UNWRAPPING_KEY_SIZE_RANGE,		/* UNWRAPPING_KEY_SIZE_RANGE */
108 CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT,	/* UNWRAPPING_KEY_TYPE_INCONSISTENT */
109 CKR_USER_ALREADY_LOGGED_IN,		/* USER_ALREADY_LOGGED_IN */
110 CKR_USER_NOT_LOGGED_IN,			/* USER_NOT_LOGGED_IN */
111 CKR_USER_PIN_NOT_INITIALIZED,		/* USER_PIN_NOT_INITIALIZED */
112 CKR_USER_TYPE_INVALID,			/* USER_TYPE_INVALID */
113 CKR_USER_ANOTHER_ALREADY_LOGGED_IN,	/* USER_ANOTHER_ALREADY_LOGGED_IN */
114 CKR_USER_TOO_MANY_TYPES,		/* USER_TOO_MANY_TYPES */
115 CKR_WRAPPED_KEY_INVALID,		/* WRAPPED_KEY_INVALID */
116 CKR_WRAPPED_KEY_LEN_RANGE,		/* WRAPPED_KEY_LEN_RANGE */
117 CKR_WRAPPING_KEY_HANDLE_INVALID,	/* WRAPPING_KEY_HANDLE_INVALID */
118 CKR_WRAPPING_KEY_SIZE_RANGE,		/* WRAPPING_KEY_SIZE_RANGE */
119 CKR_WRAPPING_KEY_TYPE_INCONSISTENT,	/* WRAPPING_KEY_TYPE_INCONSISTENT */
120 CKR_RANDOM_SEED_NOT_SUPPORTED,		/* RANDOM_SEED_NOT_SUPPORTED */
121 CKR_RANDOM_NO_RNG,			/* RANDOM_NO_RNG */
122 CKR_DOMAIN_PARAMS_INVALID,		/* DOMAIN_PARAMS_INVALID */
123 CKR_BUFFER_TOO_SMALL,			/* BUFFER_TOO_SMALL */
124 CKR_INFORMATION_SENSITIVE,		/* INFORMATION_SENSITIVE */
125 CKR_FUNCTION_NOT_SUPPORTED,		/* NOT_SUPPORTED */
126 CKR_GENERAL_ERROR,			/* QUEUED */
127 CKR_GENERAL_ERROR,			/* BUFFER_TOO_BIG */
128 CKR_OPERATION_NOT_INITIALIZED,		/* INVALID_CONTEXT */
129 CKR_GENERAL_ERROR,			/* INVALID_MAC */
130 CKR_GENERAL_ERROR,			/* MECH_NOT_SUPPORTED */
131 CKR_GENERAL_ERROR,			/* INCONSISTENT_ATTRIBUTE */
132 CKR_GENERAL_ERROR,			/* NO_PERMISSION */
133 CKR_SLOT_ID_INVALID,			/* INVALID_PROVIDER_ID */
134 CKR_GENERAL_ERROR,			/* VERSION_MISMATCH */
135 CKR_GENERAL_ERROR,			/* BUSY */
136 CKR_GENERAL_ERROR,			/* UNKNOWN_PROVIDER */
137 CKR_GENERAL_ERROR,			/* MODVERIFICATION_FAILED */
138 CKR_GENERAL_ERROR,			/* OLD_CTX_TEMPLATE */
139 CKR_GENERAL_ERROR,			/* WEAK_KEY */
140 };
141 
142 /*
143  * Map KCF error codes into PKCS11 error codes.
144  */
145 CK_RV
146 crypto2pkcs11_error_number(uint_t n)
147 {
148 	if (n > CRYPTO_LAST_ERROR)
149 		return (CKR_GENERAL_ERROR);
150 
151 	return (error_number_table[n]);
152 }
153 
154 #define	MECH_HASH(type)	(((uintptr_t)type) % KMECH_HASHTABLE_SIZE)
155 /*
156  * Serialize writes to the hash table. We don't need a per bucket lock as
157  * there are only a few writes and we don't need the lock for reads.
158  */
159 static pthread_mutex_t mechhash_mutex = PTHREAD_MUTEX_INITIALIZER;
160 
161 static CK_RV
162 kmech_hash_insert(CK_MECHANISM_TYPE type, crypto_mech_type_t kmech)
163 {
164 	uint_t h;
165 	kmh_elem_t *elem, *cur;
166 
167 	elem = malloc(sizeof (kmh_elem_t));
168 	if (elem == NULL)
169 		return (CKR_HOST_MEMORY);
170 
171 	h = MECH_HASH(type);
172 	elem->type = type;
173 	elem->kmech = kmech;
174 
175 	(void) pthread_mutex_lock(&mechhash_mutex);
176 	for (cur = kernel_mechhash[h]; cur != NULL; cur = cur->knext) {
177 		if (type == cur->type) {
178 			/* Some other thread beat us to it. */
179 			(void) pthread_mutex_unlock(&mechhash_mutex);
180 			free(elem);
181 			return (CKR_OK);
182 		}
183 	}
184 	elem->knext = kernel_mechhash[h];
185 	kernel_mechhash[h] = elem;
186 	(void) pthread_mutex_unlock(&mechhash_mutex);
187 
188 	return (CKR_OK);
189 }
190 
191 CK_RV
192 kernel_mech(CK_MECHANISM_TYPE type, crypto_mech_type_t *k_number)
193 {
194 	crypto_get_mechanism_number_t get_number;
195 	char *string;
196 	CK_RV rv;
197 	int r;
198 	kmh_elem_t *elem;
199 	uint_t h;
200 
201 	/*
202 	 * Search for an existing entry. No need to lock since we are
203 	 * just a reader and we never free the entries in the hash table.
204 	 */
205 	h = MECH_HASH(type);
206 	for (elem = kernel_mechhash[h]; elem != NULL; elem = elem->knext) {
207 		if (type == elem->type) {
208 			*k_number = elem->kmech;
209 			return (CKR_OK);
210 		}
211 	}
212 
213 	string = pkcs11_mech2str(type);
214 	if (string == NULL)
215 		return (CKR_MECHANISM_INVALID);
216 
217 	get_number.pn_mechanism_string = string;
218 	get_number.pn_mechanism_len = strlen(string) + 1;
219 
220 	while ((r = ioctl(kernel_fd, CRYPTO_GET_MECHANISM_NUMBER,
221 	    &get_number)) < 0) {
222 		if (errno != EINTR)
223 			break;
224 	}
225 	if (r < 0) {
226 		rv = CKR_MECHANISM_INVALID;
227 	} else {
228 		if (get_number.pn_return_value != CRYPTO_SUCCESS) {
229 			rv = crypto2pkcs11_error_number(
230 			    get_number.pn_return_value);
231 		} else {
232 			rv = CKR_OK;
233 		}
234 	}
235 
236 	if (rv == CKR_OK) {
237 		*k_number = get_number.pn_internal_number;
238 		/* Add this to the hash table */
239 		(void) kmech_hash_insert(type, *k_number);
240 	}
241 
242 	free(string);
243 	return (rv);
244 }
245 
246 
247 /*
248  * Return the value of a secret key object.
249  * This routine allocates memory for the value.
250  * A null pointer is returned on error.
251  */
252 unsigned char *
253 get_symmetric_key_value(kernel_object_t *key_p)
254 {
255 	uint8_t *cipherKey;
256 
257 	switch (key_p->class) {
258 
259 	case CKO_SECRET_KEY:
260 
261 		cipherKey = malloc(OBJ_SEC(key_p)->sk_value_len);
262 		if (cipherKey == NULL)
263 			return (NULL);
264 
265 		(void) memcpy(cipherKey, OBJ_SEC(key_p)->sk_value,
266 		    OBJ_SEC(key_p)->sk_value_len);
267 
268 		return (cipherKey);
269 
270 	default:
271 		return (NULL);
272 	}
273 }
274 
275 /*
276  * Convert a RSA private key object into a crypto_key structure.
277  * Memory is allocated for each attribute stored in the crypto_key
278  * structure.  Memory for the crypto_key structure is not
279  * allocated.  Attributes can be freed by free_key_attributes().
280  */
281 CK_RV
282 get_rsa_private_key(kernel_object_t *object_p, crypto_key_t *key)
283 {
284 	biginteger_t *big;
285 	crypto_object_attribute_t *attrs, *cur_attr;
286 	char *ptr;
287 	CK_RV rv;
288 
289 	(void) pthread_mutex_lock(&object_p->object_mutex);
290 	if (object_p->key_type != CKK_RSA ||
291 	    object_p->class != CKO_PRIVATE_KEY) {
292 		(void) pthread_mutex_unlock(&object_p->object_mutex);
293 		return (CKR_ATTRIBUTE_TYPE_INVALID);
294 	}
295 
296 	attrs = calloc(1,
297 	    RSA_PRI_ATTR_COUNT * sizeof (crypto_object_attribute_t));
298 	if (attrs == NULL) {
299 		(void) pthread_mutex_unlock(&object_p->object_mutex);
300 		return (CKR_HOST_MEMORY);
301 	}
302 
303 	key->ck_format = CRYPTO_KEY_ATTR_LIST;
304 	key->ck_attrs = attrs;
305 	cur_attr = attrs;
306 
307 	/*
308 	 * Allocate memory for each key attribute and set up the value
309 	 * value length.
310 	 */
311 	key->ck_count = 0;
312 
313 	/* CKA_MODULUS is required. */
314 	big = OBJ_PRI_RSA_MOD(object_p);
315 	if (big->big_value == NULL) {
316 		rv = CKR_ATTRIBUTE_TYPE_INVALID;
317 		goto fail_cleanup;
318 	} else {
319 		if ((ptr = malloc(big->big_value_len)) == NULL) {
320 			rv = CKR_HOST_MEMORY;
321 			goto fail_cleanup;
322 		}
323 		ENCODE_ATTR(CKA_MODULUS, big->big_value, big->big_value_len);
324 		key->ck_count++;
325 	}
326 
327 	/* CKA_PRIVATE_EXPONENT is required. */
328 	big = OBJ_PRI_RSA_PRIEXPO(object_p);
329 	if (big->big_value == NULL) {
330 		rv = CKR_ATTRIBUTE_TYPE_INVALID;
331 		goto fail_cleanup;
332 	} else {
333 		if ((ptr = malloc(big->big_value_len)) == NULL) {
334 			rv = CKR_HOST_MEMORY;
335 			goto fail_cleanup;
336 		}
337 		ENCODE_ATTR(CKA_PRIVATE_EXPONENT, big->big_value,
338 		    big->big_value_len);
339 		key->ck_count++;
340 	}
341 
342 	/* CKA_PRIME_1 is optional. */
343 	big = OBJ_PRI_RSA_PRIME1(object_p);
344 	if (big->big_value != NULL) {
345 		if ((ptr = malloc(big->big_value_len)) == NULL) {
346 			rv = CKR_HOST_MEMORY;
347 			goto fail_cleanup;
348 		}
349 		ENCODE_ATTR(CKA_PRIME_1, big->big_value, big->big_value_len);
350 		key->ck_count++;
351 	}
352 
353 	/* CKA_PRIME_2 is optional. */
354 	big = OBJ_PRI_RSA_PRIME2(object_p);
355 	if (big->big_value != NULL) {
356 		if ((ptr = malloc(big->big_value_len)) == NULL) {
357 			rv = CKR_HOST_MEMORY;
358 			goto fail_cleanup;
359 		}
360 		ENCODE_ATTR(CKA_PRIME_2, big->big_value, big->big_value_len);
361 		key->ck_count++;
362 	}
363 
364 	/* CKA_EXPONENT_1 is optional. */
365 	big = OBJ_PRI_RSA_EXPO1(object_p);
366 	if (big->big_value != NULL) {
367 		if ((ptr = malloc(big->big_value_len)) == NULL) {
368 			rv = CKR_HOST_MEMORY;
369 			goto fail_cleanup;
370 		}
371 		ENCODE_ATTR(CKA_EXPONENT_1, big->big_value,
372 		    big->big_value_len);
373 		key->ck_count++;
374 	}
375 
376 	/* CKA_EXPONENT_2 is optional. */
377 	big = OBJ_PRI_RSA_EXPO2(object_p);
378 	if (big->big_value != NULL) {
379 		if ((ptr = malloc(big->big_value_len)) == NULL) {
380 			rv = CKR_HOST_MEMORY;
381 			goto fail_cleanup;
382 		}
383 		ENCODE_ATTR(CKA_EXPONENT_2, big->big_value,
384 		    big->big_value_len);
385 		key->ck_count++;
386 	}
387 
388 	/* CKA_COEFFICIENT is optional. */
389 	big = OBJ_PRI_RSA_COEF(object_p);
390 	if (big->big_value != NULL) {
391 		if ((ptr = malloc(big->big_value_len)) == NULL) {
392 			rv = CKR_HOST_MEMORY;
393 			goto fail_cleanup;
394 		}
395 		ENCODE_ATTR(CKA_COEFFICIENT, big->big_value,
396 		    big->big_value_len);
397 		key->ck_count++;
398 	}
399 
400 	(void) pthread_mutex_unlock(&object_p->object_mutex);
401 	return (CKR_OK);
402 
403 fail_cleanup:
404 	(void) pthread_mutex_unlock(&object_p->object_mutex);
405 	free_key_attributes(key);
406 	return (rv);
407 }
408 
409 /*
410  * Convert a RSA public key object into a crypto_key structure.
411  * Memory is allocated for each attribute stored in the crypto_key
412  * structure.  Memory for the crypto_key structure is not
413  * allocated.  Attributes can be freed by free_key_attributes().
414  */
415 CK_RV
416 get_rsa_public_key(kernel_object_t *object_p, crypto_key_t *key)
417 {
418 	biginteger_t *big;
419 	crypto_object_attribute_t *attrs, *cur_attr;
420 	char *ptr;
421 
422 	(void) pthread_mutex_lock(&object_p->object_mutex);
423 	if (object_p->key_type != CKK_RSA ||
424 	    object_p->class != CKO_PUBLIC_KEY) {
425 		(void) pthread_mutex_unlock(&object_p->object_mutex);
426 		return (CKR_ATTRIBUTE_TYPE_INVALID);
427 	}
428 
429 	attrs = calloc(1,
430 	    RSA_PUB_ATTR_COUNT * sizeof (crypto_object_attribute_t));
431 	if (attrs == NULL) {
432 		(void) pthread_mutex_unlock(&object_p->object_mutex);
433 		return (CKR_HOST_MEMORY);
434 	}
435 
436 	key->ck_format = CRYPTO_KEY_ATTR_LIST;
437 	key->ck_count = RSA_PUB_ATTR_COUNT;
438 	key->ck_attrs = attrs;
439 
440 	cur_attr = attrs;
441 	big = OBJ_PUB_RSA_PUBEXPO(object_p);
442 	if ((ptr = malloc(big->big_value_len)) == NULL)
443 		goto mem_failure;
444 	ENCODE_ATTR(CKA_PUBLIC_EXPONENT, big->big_value, big->big_value_len);
445 
446 	big = OBJ_PUB_RSA_MOD(object_p);
447 	if ((ptr = malloc(big->big_value_len)) == NULL)
448 		goto mem_failure;
449 	ENCODE_ATTR(CKA_MODULUS, big->big_value, big->big_value_len);
450 
451 	if ((ptr = malloc(sizeof (CK_ULONG))) == NULL)
452 		goto mem_failure;
453 	ENCODE_ATTR(CKA_MODULUS_BITS, &OBJ_PUB_RSA_MOD_BITS(object_p),
454 	    sizeof (CK_ULONG));
455 
456 	(void) pthread_mutex_unlock(&object_p->object_mutex);
457 	return (CKR_OK);
458 
459 mem_failure:
460 	(void) pthread_mutex_unlock(&object_p->object_mutex);
461 	free_key_attributes(key);
462 	return (CKR_HOST_MEMORY);
463 }
464 
465 /*
466  * Free attribute storage in a crypto_key structure.
467  */
468 void
469 free_key_attributes(crypto_key_t *key)
470 {
471 	int i;
472 
473 	if (key->ck_format == CRYPTO_KEY_ATTR_LIST &&
474 	    (key->ck_count > 0) && key->ck_attrs != NULL) {
475 		for (i = 0; i < key->ck_count; i++) {
476 			if (key->ck_attrs[i].oa_value != NULL) {
477 				bzero(key->ck_attrs[i].oa_value,
478 				    key->ck_attrs[i].oa_value_len);
479 				free(key->ck_attrs[i].oa_value);
480 			}
481 		}
482 		free(key->ck_attrs);
483 	}
484 }
485 
486 
487 /*
488  * Convert a DSA private key object into a crypto_key structure.
489  * Memory is allocated for each attribute stored in the crypto_key
490  * structure.  Memory for the crypto_key structure is not
491  * allocated.  Attributes can be freed by free_dsa_key_attributes().
492  */
493 CK_RV
494 get_dsa_private_key(kernel_object_t *object_p, crypto_key_t *key)
495 {
496 	biginteger_t *big;
497 	crypto_object_attribute_t *attrs, *cur_attr;
498 	char *ptr;
499 
500 	(void) pthread_mutex_lock(&object_p->object_mutex);
501 	if (object_p->key_type != CKK_DSA ||
502 	    object_p->class != CKO_PRIVATE_KEY) {
503 		(void) pthread_mutex_unlock(&object_p->object_mutex);
504 		return (CKR_ATTRIBUTE_TYPE_INVALID);
505 	}
506 
507 	attrs = calloc(1,
508 	    DSA_ATTR_COUNT * sizeof (crypto_object_attribute_t));
509 	if (attrs == NULL) {
510 		(void) pthread_mutex_unlock(&object_p->object_mutex);
511 		return (CKR_HOST_MEMORY);
512 	}
513 
514 	key->ck_format = CRYPTO_KEY_ATTR_LIST;
515 	key->ck_count = DSA_ATTR_COUNT;
516 	key->ck_attrs = attrs;
517 
518 	cur_attr = attrs;
519 	big = OBJ_PRI_DSA_PRIME(object_p);
520 	if ((ptr = malloc(big->big_value_len)) == NULL)
521 		goto mem_failure;
522 	ENCODE_ATTR(CKA_PRIME, big->big_value, big->big_value_len);
523 
524 	big = OBJ_PRI_DSA_SUBPRIME(object_p);
525 	if ((ptr = malloc(big->big_value_len)) == NULL)
526 		goto mem_failure;
527 	ENCODE_ATTR(CKA_SUBPRIME, big->big_value, big->big_value_len);
528 
529 	big = OBJ_PRI_DSA_BASE(object_p);
530 	if ((ptr = malloc(big->big_value_len)) == NULL)
531 		goto mem_failure;
532 	ENCODE_ATTR(CKA_BASE, big->big_value, big->big_value_len);
533 
534 	big = OBJ_PRI_DSA_VALUE(object_p);
535 	if ((ptr = malloc(big->big_value_len)) == NULL)
536 		goto mem_failure;
537 	ENCODE_ATTR(CKA_VALUE, big->big_value, big->big_value_len);
538 
539 	(void) pthread_mutex_unlock(&object_p->object_mutex);
540 	return (CKR_OK);
541 
542 mem_failure:
543 	(void) pthread_mutex_unlock(&object_p->object_mutex);
544 	free_key_attributes(key);
545 	return (CKR_HOST_MEMORY);
546 }
547 
548 
549 /*
550  * Convert a DSA public key object into a crypto_key structure.
551  * Memory is allocated for each attribute stored in the crypto_key
552  * structure.  Memory for the crypto_key structure is not
553  * allocated.  Attributes can be freed by free_dsa_key_attributes().
554  */
555 CK_RV
556 get_dsa_public_key(kernel_object_t *object_p, crypto_key_t *key)
557 {
558 	biginteger_t *big;
559 	crypto_object_attribute_t *attrs, *cur_attr;
560 	char *ptr;
561 
562 	(void) pthread_mutex_lock(&object_p->object_mutex);
563 	if (object_p->key_type != CKK_DSA ||
564 	    object_p->class != CKO_PUBLIC_KEY) {
565 		(void) pthread_mutex_unlock(&object_p->object_mutex);
566 		return (CKR_ATTRIBUTE_TYPE_INVALID);
567 	}
568 
569 	attrs = calloc(1,
570 	    DSA_ATTR_COUNT * sizeof (crypto_object_attribute_t));
571 	if (attrs == NULL) {
572 		(void) pthread_mutex_unlock(&object_p->object_mutex);
573 		return (CKR_HOST_MEMORY);
574 	}
575 
576 	key->ck_format = CRYPTO_KEY_ATTR_LIST;
577 	key->ck_count = DSA_ATTR_COUNT;
578 	key->ck_attrs = attrs;
579 
580 	cur_attr = attrs;
581 	big = OBJ_PUB_DSA_PRIME(object_p);
582 	if ((ptr = malloc(big->big_value_len)) == NULL)
583 		goto mem_failure;
584 	ENCODE_ATTR(CKA_PRIME, big->big_value, big->big_value_len);
585 
586 	big = OBJ_PUB_DSA_SUBPRIME(object_p);
587 	if ((ptr = malloc(big->big_value_len)) == NULL)
588 		goto mem_failure;
589 	ENCODE_ATTR(CKA_SUBPRIME, big->big_value, big->big_value_len);
590 
591 	big = OBJ_PUB_DSA_BASE(object_p);
592 	if ((ptr = malloc(big->big_value_len)) == NULL)
593 		goto mem_failure;
594 	ENCODE_ATTR(CKA_BASE, big->big_value, big->big_value_len);
595 
596 	big = OBJ_PUB_DSA_VALUE(object_p);
597 	if ((ptr = malloc(big->big_value_len)) == NULL)
598 		goto mem_failure;
599 	ENCODE_ATTR(CKA_VALUE, big->big_value, big->big_value_len);
600 
601 	(void) pthread_mutex_unlock(&object_p->object_mutex);
602 	return (CKR_OK);
603 
604 mem_failure:
605 	(void) pthread_mutex_unlock(&object_p->object_mutex);
606 	free_key_attributes(key);
607 	return (CKR_HOST_MEMORY);
608 }
609 
610 
611 /*
612  * Convert a EC private key object into a crypto_key structure.
613  * Memory is allocated for each attribute stored in the crypto_key
614  * structure.  Memory for the crypto_key structure is not
615  * allocated.  Attributes can be freed by free_ec_key_attributes().
616  */
617 CK_RV
618 get_ec_private_key(kernel_object_t *object_p, crypto_key_t *key)
619 {
620 	biginteger_t *big;
621 	crypto_object_attribute_t *attrs, *cur_attr;
622 	CK_ATTRIBUTE tmp;
623 	char *ptr;
624 	int rv;
625 
626 	(void) pthread_mutex_lock(&object_p->object_mutex);
627 	if (object_p->key_type != CKK_EC ||
628 	    object_p->class != CKO_PRIVATE_KEY) {
629 		(void) pthread_mutex_unlock(&object_p->object_mutex);
630 		return (CKR_ATTRIBUTE_TYPE_INVALID);
631 	}
632 
633 	attrs = calloc(1,
634 	    (EC_ATTR_COUNT + 1) * sizeof (crypto_object_attribute_t));
635 	if (attrs == NULL) {
636 		(void) pthread_mutex_unlock(&object_p->object_mutex);
637 		return (CKR_HOST_MEMORY);
638 	}
639 
640 	key->ck_format = CRYPTO_KEY_ATTR_LIST;
641 	key->ck_count = EC_ATTR_COUNT + 1;
642 	key->ck_attrs = attrs;
643 
644 	cur_attr = attrs;
645 	big = OBJ_PRI_EC_VALUE(object_p);
646 	if ((ptr = malloc(big->big_value_len)) == NULL) {
647 		rv = CKR_HOST_MEMORY;
648 		goto fail;
649 	}
650 	ENCODE_ATTR(CKA_VALUE, big->big_value, big->big_value_len);
651 
652 	tmp.type = CKA_EC_PARAMS;
653 	tmp.pValue = NULL;
654 	rv = kernel_get_attribute(object_p, &tmp);
655 	if (rv != CKR_OK) {
656 		goto fail;
657 	}
658 
659 	tmp.pValue = malloc(tmp.ulValueLen);
660 	if (tmp.pValue == NULL) {
661 		rv = CKR_HOST_MEMORY;
662 		goto fail;
663 	}
664 
665 	rv = kernel_get_attribute(object_p, &tmp);
666 	if (rv != CKR_OK) {
667 		free(tmp.pValue);
668 		goto fail;
669 	}
670 
671 	cur_attr->oa_type = tmp.type;
672 	cur_attr->oa_value = tmp.pValue;
673 	cur_attr->oa_value_len = tmp.ulValueLen;
674 
675 	(void) pthread_mutex_unlock(&object_p->object_mutex);
676 	return (CKR_OK);
677 
678 fail:
679 	(void) pthread_mutex_unlock(&object_p->object_mutex);
680 	free_key_attributes(key);
681 	return (rv);
682 }
683 
684 /*
685  * Convert an EC public key object into a crypto_key structure.
686  * Memory is allocated for each attribute stored in the crypto_key
687  * structure.  Memory for the crypto_key structure is not
688  * allocated.  Attributes can be freed by free_ec_key_attributes().
689  */
690 CK_RV
691 get_ec_public_key(kernel_object_t *object_p, crypto_key_t *key)
692 {
693 	biginteger_t *big;
694 	crypto_object_attribute_t *attrs, *cur_attr;
695 	char *ptr;
696 
697 	(void) pthread_mutex_lock(&object_p->object_mutex);
698 	if (object_p->key_type != CKK_EC ||
699 	    object_p->class != CKO_PUBLIC_KEY) {
700 		(void) pthread_mutex_unlock(&object_p->object_mutex);
701 		return (CKR_ATTRIBUTE_TYPE_INVALID);
702 	}
703 
704 	attrs = calloc(1, EC_ATTR_COUNT * sizeof (crypto_object_attribute_t));
705 	if (attrs == NULL) {
706 		(void) pthread_mutex_unlock(&object_p->object_mutex);
707 		return (CKR_HOST_MEMORY);
708 	}
709 
710 	key->ck_format = CRYPTO_KEY_ATTR_LIST;
711 	key->ck_count = EC_ATTR_COUNT;
712 	key->ck_attrs = attrs;
713 
714 	cur_attr = attrs;
715 	big = OBJ_PUB_EC_POINT(object_p);
716 	if ((ptr = malloc(big->big_value_len)) == NULL) {
717 		(void) pthread_mutex_unlock(&object_p->object_mutex);
718 		free_key_attributes(key);
719 		return (CKR_HOST_MEMORY);
720 	}
721 	ENCODE_ATTR(CKA_EC_POINT, big->big_value, big->big_value_len);
722 
723 	(void) pthread_mutex_unlock(&object_p->object_mutex);
724 	return (CKR_OK);
725 }
726 
727 /*
728  * Convert an attribute template into an obj_attrs array.
729  * Memory is allocated for each attribute stored in the obj_attrs.
730  * The memory can be freed by free_object_attributes().
731  *
732  * If the boolean pointer is_token_obj is not NULL, the caller wants to
733  * retrieve the value of the CKA_TOKEN attribute if it is specified in the
734  * template.
735  * - When this routine is called thru C_CreateObject(), C_CopyObject(), or
736  *   any key management function, is_token_obj should NOT be NULL.
737  * - When this routine is called thru C_GetAttributeValue() or
738  *   C_SetAttributeValue(), "is_token_obj" should be NULL.
739  */
740 CK_RV
741 process_object_attributes(CK_ATTRIBUTE_PTR pTemplate, CK_ULONG ulCount,
742     caddr_t *obj_attrs, CK_BBOOL *is_token_obj)
743 {
744 	crypto_object_attribute_t *attrs, *cur_attr;
745 	int i, cur_i;
746 	char *ptr;
747 	CK_RV rv;
748 	ssize_t value_len;
749 
750 	if (ulCount == 0) {
751 		obj_attrs = NULL;
752 		return (CKR_OK);
753 	}
754 
755 	attrs = calloc(1, ulCount * sizeof (crypto_object_attribute_t));
756 	if (attrs == NULL) {
757 		return (CKR_HOST_MEMORY);
758 	}
759 
760 	cur_attr = attrs;
761 	for (i = 0; i < ulCount; i++) {
762 		/*
763 		 * The length of long attributes must be set correctly
764 		 * so providers can determine whether they came from 32
765 		 * or 64-bit applications.
766 		 */
767 		switch (pTemplate[i].type) {
768 		case CKA_CLASS:
769 		case CKA_CERTIFICATE_TYPE:
770 		case CKA_KEY_TYPE:
771 		case CKA_MODULUS_BITS:
772 		case CKA_HW_FEATURE_TYPE:
773 			value_len = sizeof (ulong_t);
774 			if (pTemplate[i].pValue != NULL &&
775 			    (pTemplate[i].ulValueLen < value_len)) {
776 				rv = CKR_BUFFER_TOO_SMALL;
777 				cur_i = i;
778 				goto fail_cleanup;
779 			}
780 			break;
781 		default:
782 			value_len = pTemplate[i].ulValueLen;
783 		}
784 
785 		cur_attr->oa_type = pTemplate[i].type;
786 		cur_attr->oa_value_len = value_len;
787 		cur_attr->oa_value = NULL;
788 
789 		if ((pTemplate[i].pValue != NULL) &&
790 		    (pTemplate[i].ulValueLen > 0)) {
791 			ptr = malloc(pTemplate[i].ulValueLen);
792 			if (ptr == NULL) {
793 				rv = CKR_HOST_MEMORY;
794 				cur_i = i;
795 				goto fail_cleanup;
796 			} else {
797 				(void) memcpy(ptr, pTemplate[i].pValue,
798 				    pTemplate[i].ulValueLen);
799 				cur_attr->oa_value = ptr;
800 			}
801 		}
802 
803 		if ((is_token_obj != NULL) &&
804 		    (pTemplate[i].type == CKA_TOKEN)) {
805 			/* Get the CKA_TOKEN attribute value. */
806 			if (pTemplate[i].pValue == NULL) {
807 				rv = CKR_ATTRIBUTE_VALUE_INVALID;
808 				cur_i = i;
809 				goto fail_cleanup;
810 			} else {
811 				*is_token_obj =
812 				    *(CK_BBOOL *)pTemplate[i].pValue;
813 			}
814 		}
815 
816 		cur_attr++;
817 	}
818 
819 	*obj_attrs = (char *)attrs;
820 	return (CKR_OK);
821 
822 fail_cleanup:
823 	cur_attr = attrs;
824 	for (i = 0; i < cur_i; i++) {
825 		if (cur_attr->oa_value != NULL) {
826 			(void) free(cur_attr->oa_value);
827 		}
828 		cur_attr++;
829 	}
830 
831 	(void) free(attrs);
832 	return (rv);
833 }
834 
835 
836 /*
837  * Copy the attribute values from obj_attrs to pTemplate.
838  * The obj_attrs is an image of the Template and is expected to have the
839  * same attributes in the same order and each one of the attribute pValue
840  * in obj_attr has enough space allocated for the corresponding valueLen
841  * in pTemplate.
842  */
843 CK_RV
844 get_object_attributes(CK_ATTRIBUTE_PTR pTemplate,  CK_ULONG ulCount,
845     caddr_t obj_attrs)
846 {
847 	crypto_object_attribute_t *cur_attr;
848 	CK_RV rv = CKR_OK;
849 	int i;
850 
851 	/* LINTED */
852 	cur_attr = (crypto_object_attribute_t *)obj_attrs;
853 	for (i = 0; i < ulCount; i++) {
854 		if (pTemplate[i].type != cur_attr->oa_type) {
855 			/* The attribute type doesn't match, this is bad. */
856 			rv = CKR_FUNCTION_FAILED;
857 			return (rv);
858 		}
859 
860 		pTemplate[i].ulValueLen = cur_attr->oa_value_len;
861 
862 		if ((pTemplate[i].pValue != NULL) &&
863 		    ((CK_LONG)pTemplate[i].ulValueLen != -1)) {
864 			(void) memcpy(pTemplate[i].pValue, cur_attr->oa_value,
865 			    pTemplate[i].ulValueLen);
866 		}
867 		cur_attr++;
868 	}
869 
870 	return (rv);
871 }
872 
873 /*
874  * Free the attribute storage in a crypto_object_attribute_t structure.
875  */
876 void
877 free_object_attributes(caddr_t obj_attrs, CK_ULONG ulCount)
878 {
879 	crypto_object_attribute_t *cur_attr;
880 	int i;
881 
882 	if ((ulCount == 0) || (obj_attrs == NULL)) {
883 		return;
884 	}
885 
886 	/* LINTED */
887 	cur_attr = (crypto_object_attribute_t *)obj_attrs;
888 	for (i = 0; i < ulCount; i++) {
889 		/* XXX check that oa_value > 0 */
890 		if (cur_attr->oa_value != NULL) {
891 			free(cur_attr->oa_value);
892 		}
893 		cur_attr++;
894 	}
895 
896 	free(obj_attrs);
897 }
898 
899 /*
900  * This function is called by process_found_objects().  It will check the
901  * CKA_PRIVATE and CKA_TOKEN attributes for the kernel object "oid", then
902  * initialize all the necessary fields in the object wrapper "objp".
903  */
904 static CK_RV
905 create_new_tobj_in_lib(kernel_slot_t *pslot, kernel_session_t *sp,
906     kernel_object_t *objp,  crypto_object_id_t oid)
907 {
908 	CK_RV  rv = CKR_OK;
909 	crypto_object_get_attribute_value_t obj_ga;
910 	boolean_t is_pri_obj;
911 	boolean_t is_token_obj;
912 	CK_BBOOL pri_value, token_value;
913 	CK_ATTRIBUTE  pTemplate[2];
914 	int r;
915 
916 	/*
917 	 * Make a CRYPTO_OBJECT_GET_ATTRIBUTE_VALUE ioctl call to get this
918 	 * kernel object's attribute values for CKA_PRIVATE and CKA_TOKEN.
919 	 */
920 	obj_ga.og_session = sp->k_session;
921 	obj_ga.og_handle = oid;
922 	obj_ga.og_count = 2;
923 
924 	pTemplate[0].type = CKA_PRIVATE;
925 	pTemplate[0].pValue = &pri_value;
926 	pTemplate[0].ulValueLen = sizeof (pri_value);
927 	pTemplate[1].type = CKA_TOKEN;
928 	pTemplate[1].pValue = &token_value;
929 	pTemplate[1].ulValueLen = sizeof (token_value);
930 	rv = process_object_attributes(pTemplate, 2, &obj_ga.og_attributes,
931 	    NULL);
932 	if (rv != CKR_OK) {
933 		return (rv);
934 	}
935 
936 	while ((r = ioctl(kernel_fd, CRYPTO_OBJECT_GET_ATTRIBUTE_VALUE,
937 	    &obj_ga)) < 0) {
938 		if (errno != EINTR)
939 			break;
940 	}
941 	if (r < 0) {
942 		rv = CKR_FUNCTION_FAILED;
943 	} else {
944 		rv = crypto2pkcs11_error_number(obj_ga.og_return_value);
945 	}
946 
947 	if (rv == CKR_OK) {
948 		rv = get_object_attributes(pTemplate, 2, obj_ga.og_attributes);
949 		if (rv == CKR_OK) {
950 			is_pri_obj = *(CK_BBOOL *)pTemplate[0].pValue;
951 			is_token_obj = *(CK_BBOOL *)pTemplate[1].pValue;
952 		}
953 	}
954 
955 	free_object_attributes(obj_ga.og_attributes, 2);
956 	if (rv != CKR_OK) {
957 		return (rv);
958 	}
959 
960 	/* Make sure it is a token object. */
961 	if (!is_token_obj) {
962 		rv = CKR_ATTRIBUTE_VALUE_INVALID;
963 		return (rv);
964 	}
965 
966 	/* If it is a private object, make sure the user has logged in. */
967 	if (is_pri_obj && (pslot->sl_state != CKU_USER)) {
968 		rv = CKR_ATTRIBUTE_VALUE_INVALID;
969 		return (rv);
970 	}
971 
972 	objp->is_lib_obj = B_FALSE;
973 	objp->k_handle = oid;
974 	objp->bool_attr_mask |= TOKEN_BOOL_ON;
975 	if (is_pri_obj) {
976 		objp->bool_attr_mask |= PRIVATE_BOOL_ON;
977 	} else {
978 		objp->bool_attr_mask &= ~PRIVATE_BOOL_ON;
979 	}
980 
981 	(void) pthread_mutex_init(&objp->object_mutex, NULL);
982 	objp->magic_marker = KERNELTOKEN_OBJECT_MAGIC;
983 	objp->session_handle = (CK_SESSION_HANDLE) sp;
984 
985 	return (CKR_OK);
986 }
987 
988 /*
989  * This function processes the kernel object handles returned from the
990  * CRYPTO_OBJECT_FIND_UPDATE ioctl and returns an object handle list
991  * and the number of object handles to the caller - C_FindObjects().
992  * The caller acquires the slot lock and the session lock.
993  */
994 CK_RV
995 process_found_objects(kernel_session_t *cur_sp, CK_OBJECT_HANDLE *obj_found,
996     CK_ULONG *found_obj_count, crypto_object_find_update_t obj_fu)
997 {
998 	CK_RV rv = CKR_OK;
999 	crypto_object_id_t  *oid_p;
1000 	kernel_slot_t *pslot;
1001 	kernel_object_t *objp;
1002 	kernel_object_t *objp1;
1003 	kernel_object_t *new_tobj_list = NULL;
1004 	kernel_session_t  *sp;
1005 	CK_ULONG num_obj_found = 0;
1006 	boolean_t is_in_lib;
1007 	int i;
1008 
1009 	if (obj_fu.fu_count == 0) {
1010 		*found_obj_count = 0;
1011 		return (CKR_OK);
1012 	}
1013 
1014 	pslot = slot_table[cur_sp->ses_slotid];
1015 
1016 	/* LINTED */
1017 	oid_p = (crypto_object_id_t *)obj_fu.fu_handles;
1018 	for (i = 0; i < obj_fu.fu_count; i++) {
1019 		is_in_lib = B_FALSE;
1020 		/*
1021 		 * Check if this oid has an object wrapper in the library
1022 		 * already.  First, search the slot's token object list.
1023 		 */
1024 		objp = pslot->sl_tobj_list;
1025 		while (!is_in_lib && objp) {
1026 			if (objp->k_handle == *oid_p) {
1027 				is_in_lib = B_TRUE;
1028 			} else {
1029 				objp = objp->next;
1030 			}
1031 		}
1032 
1033 		/*
1034 		 * If it is not in the slot's token object list,
1035 		 * search it in all the sessions.
1036 		 */
1037 		if (!is_in_lib) {
1038 			sp = pslot->sl_sess_list;
1039 			while (!is_in_lib && sp) {
1040 				objp = sp->object_list;
1041 				while (!is_in_lib && objp) {
1042 					if (objp->k_handle == *oid_p) {
1043 						is_in_lib = B_TRUE;
1044 					} else {
1045 						objp = objp->next;
1046 					}
1047 				}
1048 				sp = sp->next;
1049 			}
1050 		}
1051 
1052 		/*
1053 		 * If this object is in the library already, add its object
1054 		 * wrapper to the returned find object list.
1055 		 */
1056 		if (is_in_lib) {
1057 			obj_found[num_obj_found++] = (CK_OBJECT_HANDLE)objp;
1058 		}
1059 
1060 		/*
1061 		 * If we still do not find it in the library.  This object
1062 		 * must be a token object pre-existed in the HW provider.
1063 		 * We need to create an object wrapper for it in the library.
1064 		 */
1065 		if (!is_in_lib) {
1066 			objp1 = calloc(1, sizeof (kernel_object_t));
1067 			if (objp1 == NULL) {
1068 				rv = CKR_HOST_MEMORY;
1069 				goto failed_exit;
1070 			}
1071 			rv = create_new_tobj_in_lib(pslot, cur_sp, objp1,
1072 			    *oid_p);
1073 
1074 			if (rv == CKR_OK) {
1075 				/* Save the new object to the new_tobj_list. */
1076 				if (new_tobj_list == NULL) {
1077 					new_tobj_list = objp1;
1078 					objp1->next = NULL;
1079 					objp1->prev = NULL;
1080 				} else {
1081 					new_tobj_list->prev = objp1;
1082 					objp1->next = new_tobj_list;
1083 					objp1->prev = NULL;
1084 					new_tobj_list = objp1;
1085 				}
1086 			} else {
1087 				/*
1088 				 * If create_new_tobj_in_lib() doesn't fail
1089 				 * with CKR_HOST_MEMORY, the failure should be
1090 				 * caused by the attributes' checking. We will
1091 				 * just ignore this object and continue on.
1092 				 */
1093 				free(objp1);
1094 				if (rv == CKR_HOST_MEMORY) {
1095 					goto failed_exit;
1096 				}
1097 			}
1098 		}
1099 
1100 		/* Process next one */
1101 		oid_p++;
1102 	}
1103 
1104 	/*
1105 	 * Add the newly created token object wrappers to the found object
1106 	 * list and to the slot's token object list.
1107 	 */
1108 	if (new_tobj_list != NULL) {
1109 		/* Add to the obj_found array. */
1110 		objp = new_tobj_list;
1111 		while (objp) {
1112 			obj_found[num_obj_found++] = (CK_OBJECT_HANDLE)objp;
1113 			if (objp->next == NULL) {
1114 				break;
1115 			}
1116 			objp = objp->next;
1117 		}
1118 
1119 		/* Add to the beginning of the slot's token object list. */
1120 		if (pslot->sl_tobj_list != NULL) {
1121 			objp->next = pslot->sl_tobj_list;
1122 			pslot->sl_tobj_list->prev = objp;
1123 		}
1124 		pslot->sl_tobj_list = new_tobj_list;
1125 	}
1126 
1127 	*found_obj_count = num_obj_found;
1128 	return (CKR_OK);
1129 
1130 failed_exit:
1131 
1132 	/* Free the newly created token object wrappers. */
1133 	objp = new_tobj_list;
1134 	while (objp) {
1135 		objp1 = objp->next;
1136 		(void) pthread_mutex_destroy(&objp->object_mutex);
1137 		free(objp);
1138 		objp = objp1;
1139 	}
1140 
1141 	return (rv);
1142 }
1143 
1144 
1145 /*
1146  * Get the value of the CKA_PRIVATE attribute for the object just returned
1147  * from the HW provider.  This function will be called by any function
1148  * that creates a new object, because the CKA_PRIVATE value of an object is
1149  * token sepecific.  The CKA_PRIVATE attribute value of the new object will be
1150  * stored in the object structure in the library, which will be used later at
1151  * C_Logout to clean up all private objects.
1152  */
1153 CK_RV
1154 get_cka_private_value(kernel_session_t *sp, crypto_object_id_t oid,
1155     CK_BBOOL *is_pri_obj)
1156 {
1157 	CK_RV  rv = CKR_OK;
1158 	crypto_object_get_attribute_value_t obj_ga;
1159 	crypto_object_attribute_t obj_attr;
1160 	CK_BBOOL pri_value;
1161 	int r;
1162 
1163 	obj_ga.og_session = sp->k_session;
1164 	obj_ga.og_handle = oid;
1165 	obj_ga.og_count = 1;
1166 
1167 	obj_attr.oa_type = CKA_PRIVATE;
1168 	obj_attr.oa_value = (char *)&pri_value;
1169 	obj_attr.oa_value_len = sizeof (CK_BBOOL);
1170 	obj_ga.og_attributes = (char *)&obj_attr;
1171 
1172 	while ((r = ioctl(kernel_fd, CRYPTO_OBJECT_GET_ATTRIBUTE_VALUE,
1173 	    &obj_ga)) < 0) {
1174 		if (errno != EINTR)
1175 			break;
1176 	}
1177 	if (r < 0) {
1178 		rv = CKR_FUNCTION_FAILED;
1179 	} else {
1180 		rv = crypto2pkcs11_error_number(obj_ga.og_return_value);
1181 	}
1182 
1183 	if (rv == CKR_OK) {
1184 		*is_pri_obj = *(CK_BBOOL *)obj_attr.oa_value;
1185 	}
1186 
1187 	return (rv);
1188 }
1189 
1190 
1191 CK_RV
1192 get_mechanism_info(kernel_slot_t *pslot, CK_MECHANISM_TYPE type,
1193     CK_MECHANISM_INFO_PTR pInfo, uint32_t *k_mi_flags)
1194 {
1195 	crypto_get_provider_mechanism_info_t mechanism_info;
1196 	char *string;
1197 	CK_FLAGS flags, mi_flags;
1198 	CK_RV rv;
1199 	int r;
1200 
1201 	string = pkcs11_mech2str(type);
1202 	if (string == NULL)
1203 		return (CKR_MECHANISM_INVALID);
1204 
1205 	(void) strcpy(mechanism_info.mi_mechanism_name, string);
1206 	mechanism_info.mi_provider_id = pslot->sl_provider_id;
1207 
1208 	while ((r = ioctl(kernel_fd, CRYPTO_GET_PROVIDER_MECHANISM_INFO,
1209 	    &mechanism_info)) < 0) {
1210 		if (errno != EINTR)
1211 			break;
1212 	}
1213 	if (r < 0) {
1214 		rv = CKR_FUNCTION_FAILED;
1215 	} else {
1216 		rv = crypto2pkcs11_error_number(
1217 		    mechanism_info.mi_return_value);
1218 	}
1219 
1220 	if (rv != CKR_OK) {
1221 		goto out;
1222 	}
1223 
1224 	/*
1225 	 * Atomic flags are not part of PKCS#11 so we filter
1226 	 * them out here.
1227 	 */
1228 	mi_flags = mechanism_info.mi_flags;
1229 	mi_flags &= ~(CRYPTO_FG_DIGEST_ATOMIC | CRYPTO_FG_ENCRYPT_ATOMIC |
1230 	    CRYPTO_FG_DECRYPT_ATOMIC | CRYPTO_FG_MAC_ATOMIC |
1231 	    CRYPTO_FG_SIGN_ATOMIC | CRYPTO_FG_VERIFY_ATOMIC |
1232 	    CRYPTO_FG_SIGN_RECOVER_ATOMIC |
1233 	    CRYPTO_FG_VERIFY_RECOVER_ATOMIC |
1234 	    CRYPTO_FG_ENCRYPT_MAC_ATOMIC |
1235 	    CRYPTO_FG_MAC_DECRYPT_ATOMIC);
1236 
1237 	if (mi_flags == 0) {
1238 		rv = CKR_MECHANISM_INVALID;
1239 		goto out;
1240 	}
1241 
1242 	if (rv == CKR_OK) {
1243 		/* set the value of k_mi_flags first */
1244 		*k_mi_flags = mi_flags;
1245 
1246 		/* convert KEF flags into pkcs11 flags */
1247 		flags = CKF_HW;
1248 		if (mi_flags & CRYPTO_FG_ENCRYPT)
1249 			flags |= CKF_ENCRYPT;
1250 		if (mi_flags & CRYPTO_FG_DECRYPT) {
1251 			flags |= CKF_DECRYPT;
1252 			/*
1253 			 * Since we'll be emulating C_UnwrapKey() for some
1254 			 * cases, we can go ahead and claim CKF_UNWRAP
1255 			 */
1256 			flags |= CKF_UNWRAP;
1257 		}
1258 		if (mi_flags & CRYPTO_FG_DIGEST)
1259 			flags |= CKF_DIGEST;
1260 		if (mi_flags & CRYPTO_FG_SIGN)
1261 			flags |= CKF_SIGN;
1262 		if (mi_flags & CRYPTO_FG_SIGN_RECOVER)
1263 			flags |= CKF_SIGN_RECOVER;
1264 		if (mi_flags & CRYPTO_FG_VERIFY)
1265 			flags |= CKF_VERIFY;
1266 		if (mi_flags & CRYPTO_FG_VERIFY_RECOVER)
1267 			flags |= CKF_VERIFY_RECOVER;
1268 		if (mi_flags & CRYPTO_FG_GENERATE)
1269 			flags |= CKF_GENERATE;
1270 		if (mi_flags & CRYPTO_FG_GENERATE_KEY_PAIR)
1271 			flags |= CKF_GENERATE_KEY_PAIR;
1272 		if (mi_flags & CRYPTO_FG_WRAP)
1273 			flags |= CKF_WRAP;
1274 		if (mi_flags & CRYPTO_FG_UNWRAP)
1275 			flags |= CKF_UNWRAP;
1276 		if (mi_flags & CRYPTO_FG_DERIVE)
1277 			flags |= CKF_DERIVE;
1278 
1279 		pInfo->ulMinKeySize = mechanism_info.mi_min_key_size;
1280 		pInfo->ulMaxKeySize = mechanism_info.mi_max_key_size;
1281 		pInfo->flags = flags;
1282 
1283 	}
1284 
1285 out:
1286 	free(string);
1287 	return (rv);
1288 }
1289