xref: /titanic_41/usr/src/lib/libzpool/common/taskq.c (revision b959b0b3b1c09d9e744c4cbdac35429511cbcf86)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
27  * Copyright 2012 Garrett D'Amore <garrett@damore.org>.  All rights reserved.
28  * Copyright (c) 2014 by Delphix. All rights reserved.
29  */
30 
31 #include <sys/zfs_context.h>
32 
33 int taskq_now;
34 taskq_t *system_taskq;
35 
36 #define	TASKQ_ACTIVE	0x00010000
37 #define	TASKQ_NAMELEN	31
38 
39 struct taskq {
40 	char		tq_name[TASKQ_NAMELEN + 1];
41 	kmutex_t	tq_lock;
42 	krwlock_t	tq_threadlock;
43 	kcondvar_t	tq_dispatch_cv;
44 	kcondvar_t	tq_wait_cv;
45 	thread_t	*tq_threadlist;
46 	int		tq_flags;
47 	int		tq_active;
48 	int		tq_nthreads;
49 	int		tq_nalloc;
50 	int		tq_minalloc;
51 	int		tq_maxalloc;
52 	kcondvar_t	tq_maxalloc_cv;
53 	int		tq_maxalloc_wait;
54 	taskq_ent_t	*tq_freelist;
55 	taskq_ent_t	tq_task;
56 };
57 
58 static taskq_ent_t *
59 task_alloc(taskq_t *tq, int tqflags)
60 {
61 	taskq_ent_t *t;
62 	int rv;
63 
64 again:	if ((t = tq->tq_freelist) != NULL && tq->tq_nalloc >= tq->tq_minalloc) {
65 		tq->tq_freelist = t->tqent_next;
66 	} else {
67 		if (tq->tq_nalloc >= tq->tq_maxalloc) {
68 			if (!(tqflags & KM_SLEEP))
69 				return (NULL);
70 
71 			/*
72 			 * We don't want to exceed tq_maxalloc, but we can't
73 			 * wait for other tasks to complete (and thus free up
74 			 * task structures) without risking deadlock with
75 			 * the caller.  So, we just delay for one second
76 			 * to throttle the allocation rate. If we have tasks
77 			 * complete before one second timeout expires then
78 			 * taskq_ent_free will signal us and we will
79 			 * immediately retry the allocation.
80 			 */
81 			tq->tq_maxalloc_wait++;
82 			rv = cv_timedwait(&tq->tq_maxalloc_cv,
83 			    &tq->tq_lock, ddi_get_lbolt() + hz);
84 			tq->tq_maxalloc_wait--;
85 			if (rv > 0)
86 				goto again;		/* signaled */
87 		}
88 		mutex_exit(&tq->tq_lock);
89 
90 		t = kmem_alloc(sizeof (taskq_ent_t), tqflags);
91 
92 		mutex_enter(&tq->tq_lock);
93 		if (t != NULL)
94 			tq->tq_nalloc++;
95 	}
96 	return (t);
97 }
98 
99 static void
100 task_free(taskq_t *tq, taskq_ent_t *t)
101 {
102 	if (tq->tq_nalloc <= tq->tq_minalloc) {
103 		t->tqent_next = tq->tq_freelist;
104 		tq->tq_freelist = t;
105 	} else {
106 		tq->tq_nalloc--;
107 		mutex_exit(&tq->tq_lock);
108 		kmem_free(t, sizeof (taskq_ent_t));
109 		mutex_enter(&tq->tq_lock);
110 	}
111 
112 	if (tq->tq_maxalloc_wait)
113 		cv_signal(&tq->tq_maxalloc_cv);
114 }
115 
116 taskqid_t
117 taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t tqflags)
118 {
119 	taskq_ent_t *t;
120 
121 	if (taskq_now) {
122 		func(arg);
123 		return (1);
124 	}
125 
126 	mutex_enter(&tq->tq_lock);
127 	ASSERT(tq->tq_flags & TASKQ_ACTIVE);
128 	if ((t = task_alloc(tq, tqflags)) == NULL) {
129 		mutex_exit(&tq->tq_lock);
130 		return (0);
131 	}
132 	if (tqflags & TQ_FRONT) {
133 		t->tqent_next = tq->tq_task.tqent_next;
134 		t->tqent_prev = &tq->tq_task;
135 	} else {
136 		t->tqent_next = &tq->tq_task;
137 		t->tqent_prev = tq->tq_task.tqent_prev;
138 	}
139 	t->tqent_next->tqent_prev = t;
140 	t->tqent_prev->tqent_next = t;
141 	t->tqent_func = func;
142 	t->tqent_arg = arg;
143 	t->tqent_flags = 0;
144 	cv_signal(&tq->tq_dispatch_cv);
145 	mutex_exit(&tq->tq_lock);
146 	return (1);
147 }
148 
149 void
150 taskq_dispatch_ent(taskq_t *tq, task_func_t func, void *arg, uint_t flags,
151     taskq_ent_t *t)
152 {
153 	ASSERT(func != NULL);
154 	ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC));
155 
156 	/*
157 	 * Mark it as a prealloc'd task.  This is important
158 	 * to ensure that we don't free it later.
159 	 */
160 	t->tqent_flags |= TQENT_FLAG_PREALLOC;
161 	/*
162 	 * Enqueue the task to the underlying queue.
163 	 */
164 	mutex_enter(&tq->tq_lock);
165 
166 	if (flags & TQ_FRONT) {
167 		t->tqent_next = tq->tq_task.tqent_next;
168 		t->tqent_prev = &tq->tq_task;
169 	} else {
170 		t->tqent_next = &tq->tq_task;
171 		t->tqent_prev = tq->tq_task.tqent_prev;
172 	}
173 	t->tqent_next->tqent_prev = t;
174 	t->tqent_prev->tqent_next = t;
175 	t->tqent_func = func;
176 	t->tqent_arg = arg;
177 	cv_signal(&tq->tq_dispatch_cv);
178 	mutex_exit(&tq->tq_lock);
179 }
180 
181 void
182 taskq_wait(taskq_t *tq)
183 {
184 	mutex_enter(&tq->tq_lock);
185 	while (tq->tq_task.tqent_next != &tq->tq_task || tq->tq_active != 0)
186 		cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
187 	mutex_exit(&tq->tq_lock);
188 }
189 
190 static void *
191 taskq_thread(void *arg)
192 {
193 	taskq_t *tq = arg;
194 	taskq_ent_t *t;
195 	boolean_t prealloc;
196 
197 	mutex_enter(&tq->tq_lock);
198 	while (tq->tq_flags & TASKQ_ACTIVE) {
199 		if ((t = tq->tq_task.tqent_next) == &tq->tq_task) {
200 			if (--tq->tq_active == 0)
201 				cv_broadcast(&tq->tq_wait_cv);
202 			cv_wait(&tq->tq_dispatch_cv, &tq->tq_lock);
203 			tq->tq_active++;
204 			continue;
205 		}
206 		t->tqent_prev->tqent_next = t->tqent_next;
207 		t->tqent_next->tqent_prev = t->tqent_prev;
208 		t->tqent_next = NULL;
209 		t->tqent_prev = NULL;
210 		prealloc = t->tqent_flags & TQENT_FLAG_PREALLOC;
211 		mutex_exit(&tq->tq_lock);
212 
213 		rw_enter(&tq->tq_threadlock, RW_READER);
214 		t->tqent_func(t->tqent_arg);
215 		rw_exit(&tq->tq_threadlock);
216 
217 		mutex_enter(&tq->tq_lock);
218 		if (!prealloc)
219 			task_free(tq, t);
220 	}
221 	tq->tq_nthreads--;
222 	cv_broadcast(&tq->tq_wait_cv);
223 	mutex_exit(&tq->tq_lock);
224 	return (NULL);
225 }
226 
227 /*ARGSUSED*/
228 taskq_t *
229 taskq_create(const char *name, int nthreads, pri_t pri,
230 	int minalloc, int maxalloc, uint_t flags)
231 {
232 	taskq_t *tq = kmem_zalloc(sizeof (taskq_t), KM_SLEEP);
233 	int t;
234 
235 	if (flags & TASKQ_THREADS_CPU_PCT) {
236 		int pct;
237 		ASSERT3S(nthreads, >=, 0);
238 		ASSERT3S(nthreads, <=, 100);
239 		pct = MIN(nthreads, 100);
240 		pct = MAX(pct, 0);
241 
242 		nthreads = (sysconf(_SC_NPROCESSORS_ONLN) * pct) / 100;
243 		nthreads = MAX(nthreads, 1);	/* need at least 1 thread */
244 	} else {
245 		ASSERT3S(nthreads, >=, 1);
246 	}
247 
248 	rw_init(&tq->tq_threadlock, NULL, RW_DEFAULT, NULL);
249 	mutex_init(&tq->tq_lock, NULL, MUTEX_DEFAULT, NULL);
250 	cv_init(&tq->tq_dispatch_cv, NULL, CV_DEFAULT, NULL);
251 	cv_init(&tq->tq_wait_cv, NULL, CV_DEFAULT, NULL);
252 	cv_init(&tq->tq_maxalloc_cv, NULL, CV_DEFAULT, NULL);
253 	(void) strncpy(tq->tq_name, name, TASKQ_NAMELEN + 1);
254 	tq->tq_flags = flags | TASKQ_ACTIVE;
255 	tq->tq_active = nthreads;
256 	tq->tq_nthreads = nthreads;
257 	tq->tq_minalloc = minalloc;
258 	tq->tq_maxalloc = maxalloc;
259 	tq->tq_task.tqent_next = &tq->tq_task;
260 	tq->tq_task.tqent_prev = &tq->tq_task;
261 	tq->tq_threadlist = kmem_alloc(nthreads * sizeof (thread_t), KM_SLEEP);
262 
263 	if (flags & TASKQ_PREPOPULATE) {
264 		mutex_enter(&tq->tq_lock);
265 		while (minalloc-- > 0)
266 			task_free(tq, task_alloc(tq, KM_SLEEP));
267 		mutex_exit(&tq->tq_lock);
268 	}
269 
270 	for (t = 0; t < nthreads; t++)
271 		(void) thr_create(0, 0, taskq_thread,
272 		    tq, THR_BOUND, &tq->tq_threadlist[t]);
273 
274 	return (tq);
275 }
276 
277 void
278 taskq_destroy(taskq_t *tq)
279 {
280 	int t;
281 	int nthreads = tq->tq_nthreads;
282 
283 	taskq_wait(tq);
284 
285 	mutex_enter(&tq->tq_lock);
286 
287 	tq->tq_flags &= ~TASKQ_ACTIVE;
288 	cv_broadcast(&tq->tq_dispatch_cv);
289 
290 	while (tq->tq_nthreads != 0)
291 		cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
292 
293 	tq->tq_minalloc = 0;
294 	while (tq->tq_nalloc != 0) {
295 		ASSERT(tq->tq_freelist != NULL);
296 		task_free(tq, task_alloc(tq, KM_SLEEP));
297 	}
298 
299 	mutex_exit(&tq->tq_lock);
300 
301 	for (t = 0; t < nthreads; t++)
302 		(void) thr_join(tq->tq_threadlist[t], NULL, NULL);
303 
304 	kmem_free(tq->tq_threadlist, nthreads * sizeof (thread_t));
305 
306 	rw_destroy(&tq->tq_threadlock);
307 	mutex_destroy(&tq->tq_lock);
308 	cv_destroy(&tq->tq_dispatch_cv);
309 	cv_destroy(&tq->tq_wait_cv);
310 	cv_destroy(&tq->tq_maxalloc_cv);
311 
312 	kmem_free(tq, sizeof (taskq_t));
313 }
314 
315 int
316 taskq_member(taskq_t *tq, void *t)
317 {
318 	int i;
319 
320 	if (taskq_now)
321 		return (1);
322 
323 	for (i = 0; i < tq->tq_nthreads; i++)
324 		if (tq->tq_threadlist[i] == (thread_t)(uintptr_t)t)
325 			return (1);
326 
327 	return (0);
328 }
329 
330 void
331 system_taskq_init(void)
332 {
333 	system_taskq = taskq_create("system_taskq", 64, minclsyspri, 4, 512,
334 	    TASKQ_DYNAMIC | TASKQ_PREPOPULATE);
335 }
336 
337 void
338 system_taskq_fini(void)
339 {
340 	taskq_destroy(system_taskq);
341 	system_taskq = NULL; /* defensive */
342 }
343