xref: /titanic_41/usr/src/lib/libzpool/common/taskq.c (revision b54157c1b1bf9673e4da8b526477d59202cd08a6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/zfs_context.h>
29 
30 int taskq_now;
31 
32 typedef struct task {
33 	struct task	*task_next;
34 	struct task	*task_prev;
35 	task_func_t	*task_func;
36 	void		*task_arg;
37 } task_t;
38 
39 #define	TASKQ_ACTIVE	0x00010000
40 
41 struct taskq {
42 	kmutex_t	tq_lock;
43 	krwlock_t	tq_threadlock;
44 	kcondvar_t	tq_dispatch_cv;
45 	kcondvar_t	tq_wait_cv;
46 	thread_t	*tq_threadlist;
47 	int		tq_flags;
48 	int		tq_active;
49 	int		tq_nthreads;
50 	int		tq_nalloc;
51 	int		tq_minalloc;
52 	int		tq_maxalloc;
53 	task_t		*tq_freelist;
54 	task_t		tq_task;
55 };
56 
57 static task_t *
58 task_alloc(taskq_t *tq, int tqflags)
59 {
60 	task_t *t;
61 
62 	if ((t = tq->tq_freelist) != NULL && tq->tq_nalloc >= tq->tq_minalloc) {
63 		tq->tq_freelist = t->task_next;
64 	} else {
65 		mutex_exit(&tq->tq_lock);
66 		if (tq->tq_nalloc >= tq->tq_maxalloc) {
67 			if (!(tqflags & KM_SLEEP)) {
68 				mutex_enter(&tq->tq_lock);
69 				return (NULL);
70 			}
71 			/*
72 			 * We don't want to exceed tq_maxalloc, but we can't
73 			 * wait for other tasks to complete (and thus free up
74 			 * task structures) without risking deadlock with
75 			 * the caller.  So, we just delay for one second
76 			 * to throttle the allocation rate.
77 			 */
78 			delay(hz);
79 		}
80 		t = kmem_alloc(sizeof (task_t), tqflags);
81 		mutex_enter(&tq->tq_lock);
82 		if (t != NULL)
83 			tq->tq_nalloc++;
84 	}
85 	return (t);
86 }
87 
88 static void
89 task_free(taskq_t *tq, task_t *t)
90 {
91 	if (tq->tq_nalloc <= tq->tq_minalloc) {
92 		t->task_next = tq->tq_freelist;
93 		tq->tq_freelist = t;
94 	} else {
95 		tq->tq_nalloc--;
96 		mutex_exit(&tq->tq_lock);
97 		kmem_free(t, sizeof (task_t));
98 		mutex_enter(&tq->tq_lock);
99 	}
100 }
101 
102 taskqid_t
103 taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t tqflags)
104 {
105 	task_t *t;
106 
107 	if (taskq_now) {
108 		func(arg);
109 		return (1);
110 	}
111 
112 	mutex_enter(&tq->tq_lock);
113 	ASSERT(tq->tq_flags & TASKQ_ACTIVE);
114 	if ((t = task_alloc(tq, tqflags)) == NULL) {
115 		mutex_exit(&tq->tq_lock);
116 		return (0);
117 	}
118 	t->task_next = &tq->tq_task;
119 	t->task_prev = tq->tq_task.task_prev;
120 	t->task_next->task_prev = t;
121 	t->task_prev->task_next = t;
122 	t->task_func = func;
123 	t->task_arg = arg;
124 	cv_signal(&tq->tq_dispatch_cv);
125 	mutex_exit(&tq->tq_lock);
126 	return (1);
127 }
128 
129 void
130 taskq_wait(taskq_t *tq)
131 {
132 	mutex_enter(&tq->tq_lock);
133 	while (tq->tq_task.task_next != &tq->tq_task || tq->tq_active != 0)
134 		cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
135 	mutex_exit(&tq->tq_lock);
136 }
137 
138 static void *
139 taskq_thread(void *arg)
140 {
141 	taskq_t *tq = arg;
142 	task_t *t;
143 
144 	mutex_enter(&tq->tq_lock);
145 	while (tq->tq_flags & TASKQ_ACTIVE) {
146 		if ((t = tq->tq_task.task_next) == &tq->tq_task) {
147 			if (--tq->tq_active == 0)
148 				cv_broadcast(&tq->tq_wait_cv);
149 			cv_wait(&tq->tq_dispatch_cv, &tq->tq_lock);
150 			tq->tq_active++;
151 			continue;
152 		}
153 		t->task_prev->task_next = t->task_next;
154 		t->task_next->task_prev = t->task_prev;
155 		mutex_exit(&tq->tq_lock);
156 
157 		rw_enter(&tq->tq_threadlock, RW_READER);
158 		t->task_func(t->task_arg);
159 		rw_exit(&tq->tq_threadlock);
160 
161 		mutex_enter(&tq->tq_lock);
162 		task_free(tq, t);
163 	}
164 	tq->tq_nthreads--;
165 	cv_broadcast(&tq->tq_wait_cv);
166 	mutex_exit(&tq->tq_lock);
167 	return (NULL);
168 }
169 
170 /*ARGSUSED*/
171 taskq_t *
172 taskq_create(const char *name, int nthreads, pri_t pri,
173 	int minalloc, int maxalloc, uint_t flags)
174 {
175 	taskq_t *tq = kmem_zalloc(sizeof (taskq_t), KM_SLEEP);
176 	int t;
177 
178 	rw_init(&tq->tq_threadlock, NULL, RW_DEFAULT, NULL);
179 	mutex_init(&tq->tq_lock, NULL, MUTEX_DEFAULT, NULL);
180 	cv_init(&tq->tq_dispatch_cv, NULL, CV_DEFAULT, NULL);
181 	cv_init(&tq->tq_wait_cv, NULL, CV_DEFAULT, NULL);
182 	tq->tq_flags = flags | TASKQ_ACTIVE;
183 	tq->tq_active = nthreads;
184 	tq->tq_nthreads = nthreads;
185 	tq->tq_minalloc = minalloc;
186 	tq->tq_maxalloc = maxalloc;
187 	tq->tq_task.task_next = &tq->tq_task;
188 	tq->tq_task.task_prev = &tq->tq_task;
189 	tq->tq_threadlist = kmem_alloc(nthreads * sizeof (thread_t), KM_SLEEP);
190 
191 	if (flags & TASKQ_PREPOPULATE) {
192 		mutex_enter(&tq->tq_lock);
193 		while (minalloc-- > 0)
194 			task_free(tq, task_alloc(tq, KM_SLEEP));
195 		mutex_exit(&tq->tq_lock);
196 	}
197 
198 	for (t = 0; t < nthreads; t++)
199 		(void) thr_create(0, 0, taskq_thread,
200 		    tq, THR_BOUND, &tq->tq_threadlist[t]);
201 
202 	return (tq);
203 }
204 
205 void
206 taskq_destroy(taskq_t *tq)
207 {
208 	int t;
209 	int nthreads = tq->tq_nthreads;
210 
211 	taskq_wait(tq);
212 
213 	mutex_enter(&tq->tq_lock);
214 
215 	tq->tq_flags &= ~TASKQ_ACTIVE;
216 	cv_broadcast(&tq->tq_dispatch_cv);
217 
218 	while (tq->tq_nthreads != 0)
219 		cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
220 
221 	tq->tq_minalloc = 0;
222 	while (tq->tq_nalloc != 0) {
223 		ASSERT(tq->tq_freelist != NULL);
224 		task_free(tq, task_alloc(tq, KM_SLEEP));
225 	}
226 
227 	mutex_exit(&tq->tq_lock);
228 
229 	for (t = 0; t < nthreads; t++)
230 		(void) thr_join(tq->tq_threadlist[t], NULL, NULL);
231 
232 	kmem_free(tq->tq_threadlist, nthreads * sizeof (thread_t));
233 
234 	rw_destroy(&tq->tq_threadlock);
235 	mutex_destroy(&tq->tq_lock);
236 	cv_destroy(&tq->tq_dispatch_cv);
237 	cv_destroy(&tq->tq_wait_cv);
238 
239 	kmem_free(tq, sizeof (taskq_t));
240 }
241 
242 int
243 taskq_member(taskq_t *tq, void *t)
244 {
245 	int i;
246 
247 	if (taskq_now)
248 		return (1);
249 
250 	for (i = 0; i < tq->tq_nthreads; i++)
251 		if (tq->tq_threadlist[i] == (thread_t)(uintptr_t)t)
252 			return (1);
253 
254 	return (0);
255 }
256