1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 24 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 25 */ 26 27 #include <assert.h> 28 #include <fcntl.h> 29 #include <poll.h> 30 #include <stdio.h> 31 #include <stdlib.h> 32 #include <string.h> 33 #include <zlib.h> 34 #include <libgen.h> 35 #include <sys/spa.h> 36 #include <sys/stat.h> 37 #include <sys/processor.h> 38 #include <sys/zfs_context.h> 39 #include <sys/rrwlock.h> 40 #include <sys/zmod.h> 41 #include <sys/utsname.h> 42 #include <sys/systeminfo.h> 43 44 /* 45 * Emulation of kernel services in userland. 46 */ 47 48 int aok; 49 uint64_t physmem; 50 vnode_t *rootdir = (vnode_t *)0xabcd1234; 51 char hw_serial[HW_HOSTID_LEN]; 52 kmutex_t cpu_lock; 53 vmem_t *zio_arena = NULL; 54 55 /* If set, all blocks read will be copied to the specified directory. */ 56 char *vn_dumpdir = NULL; 57 58 struct utsname utsname = { 59 "userland", "libzpool", "1", "1", "na" 60 }; 61 62 /* this only exists to have its address taken */ 63 struct proc p0; 64 65 /* 66 * ========================================================================= 67 * threads 68 * ========================================================================= 69 */ 70 /*ARGSUSED*/ 71 kthread_t * 72 zk_thread_create(void (*func)(), void *arg) 73 { 74 thread_t tid; 75 76 VERIFY(thr_create(0, 0, (void *(*)(void *))func, arg, THR_DETACHED, 77 &tid) == 0); 78 79 return ((void *)(uintptr_t)tid); 80 } 81 82 /* 83 * ========================================================================= 84 * kstats 85 * ========================================================================= 86 */ 87 /*ARGSUSED*/ 88 kstat_t * 89 kstat_create(const char *module, int instance, const char *name, 90 const char *class, uchar_t type, ulong_t ndata, uchar_t ks_flag) 91 { 92 return (NULL); 93 } 94 95 /*ARGSUSED*/ 96 void 97 kstat_install(kstat_t *ksp) 98 {} 99 100 /*ARGSUSED*/ 101 void 102 kstat_delete(kstat_t *ksp) 103 {} 104 105 /*ARGSUSED*/ 106 void 107 kstat_waitq_enter(kstat_io_t *kiop) 108 {} 109 110 /*ARGSUSED*/ 111 void 112 kstat_waitq_exit(kstat_io_t *kiop) 113 {} 114 115 /*ARGSUSED*/ 116 void 117 kstat_runq_enter(kstat_io_t *kiop) 118 {} 119 120 /*ARGSUSED*/ 121 void 122 kstat_runq_exit(kstat_io_t *kiop) 123 {} 124 125 /*ARGSUSED*/ 126 void 127 kstat_waitq_to_runq(kstat_io_t *kiop) 128 {} 129 130 /*ARGSUSED*/ 131 void 132 kstat_runq_back_to_waitq(kstat_io_t *kiop) 133 {} 134 135 /* 136 * ========================================================================= 137 * mutexes 138 * ========================================================================= 139 */ 140 void 141 zmutex_init(kmutex_t *mp) 142 { 143 mp->m_owner = NULL; 144 mp->initialized = B_TRUE; 145 (void) _mutex_init(&mp->m_lock, USYNC_THREAD, NULL); 146 } 147 148 void 149 zmutex_destroy(kmutex_t *mp) 150 { 151 ASSERT(mp->initialized == B_TRUE); 152 ASSERT(mp->m_owner == NULL); 153 (void) _mutex_destroy(&(mp)->m_lock); 154 mp->m_owner = (void *)-1UL; 155 mp->initialized = B_FALSE; 156 } 157 158 void 159 mutex_enter(kmutex_t *mp) 160 { 161 ASSERT(mp->initialized == B_TRUE); 162 ASSERT(mp->m_owner != (void *)-1UL); 163 ASSERT(mp->m_owner != curthread); 164 VERIFY(mutex_lock(&mp->m_lock) == 0); 165 ASSERT(mp->m_owner == NULL); 166 mp->m_owner = curthread; 167 } 168 169 int 170 mutex_tryenter(kmutex_t *mp) 171 { 172 ASSERT(mp->initialized == B_TRUE); 173 ASSERT(mp->m_owner != (void *)-1UL); 174 if (0 == mutex_trylock(&mp->m_lock)) { 175 ASSERT(mp->m_owner == NULL); 176 mp->m_owner = curthread; 177 return (1); 178 } else { 179 return (0); 180 } 181 } 182 183 void 184 mutex_exit(kmutex_t *mp) 185 { 186 ASSERT(mp->initialized == B_TRUE); 187 ASSERT(mutex_owner(mp) == curthread); 188 mp->m_owner = NULL; 189 VERIFY(mutex_unlock(&mp->m_lock) == 0); 190 } 191 192 void * 193 mutex_owner(kmutex_t *mp) 194 { 195 ASSERT(mp->initialized == B_TRUE); 196 return (mp->m_owner); 197 } 198 199 /* 200 * ========================================================================= 201 * rwlocks 202 * ========================================================================= 203 */ 204 /*ARGSUSED*/ 205 void 206 rw_init(krwlock_t *rwlp, char *name, int type, void *arg) 207 { 208 rwlock_init(&rwlp->rw_lock, USYNC_THREAD, NULL); 209 rwlp->rw_owner = NULL; 210 rwlp->initialized = B_TRUE; 211 } 212 213 void 214 rw_destroy(krwlock_t *rwlp) 215 { 216 rwlock_destroy(&rwlp->rw_lock); 217 rwlp->rw_owner = (void *)-1UL; 218 rwlp->initialized = B_FALSE; 219 } 220 221 void 222 rw_enter(krwlock_t *rwlp, krw_t rw) 223 { 224 ASSERT(!RW_LOCK_HELD(rwlp)); 225 ASSERT(rwlp->initialized == B_TRUE); 226 ASSERT(rwlp->rw_owner != (void *)-1UL); 227 ASSERT(rwlp->rw_owner != curthread); 228 229 if (rw == RW_WRITER) 230 VERIFY(rw_wrlock(&rwlp->rw_lock) == 0); 231 else 232 VERIFY(rw_rdlock(&rwlp->rw_lock) == 0); 233 234 rwlp->rw_owner = curthread; 235 } 236 237 void 238 rw_exit(krwlock_t *rwlp) 239 { 240 ASSERT(rwlp->initialized == B_TRUE); 241 ASSERT(rwlp->rw_owner != (void *)-1UL); 242 243 rwlp->rw_owner = NULL; 244 VERIFY(rw_unlock(&rwlp->rw_lock) == 0); 245 } 246 247 int 248 rw_tryenter(krwlock_t *rwlp, krw_t rw) 249 { 250 int rv; 251 252 ASSERT(rwlp->initialized == B_TRUE); 253 ASSERT(rwlp->rw_owner != (void *)-1UL); 254 255 if (rw == RW_WRITER) 256 rv = rw_trywrlock(&rwlp->rw_lock); 257 else 258 rv = rw_tryrdlock(&rwlp->rw_lock); 259 260 if (rv == 0) { 261 rwlp->rw_owner = curthread; 262 return (1); 263 } 264 265 return (0); 266 } 267 268 /*ARGSUSED*/ 269 int 270 rw_tryupgrade(krwlock_t *rwlp) 271 { 272 ASSERT(rwlp->initialized == B_TRUE); 273 ASSERT(rwlp->rw_owner != (void *)-1UL); 274 275 return (0); 276 } 277 278 /* 279 * ========================================================================= 280 * condition variables 281 * ========================================================================= 282 */ 283 /*ARGSUSED*/ 284 void 285 cv_init(kcondvar_t *cv, char *name, int type, void *arg) 286 { 287 VERIFY(cond_init(cv, type, NULL) == 0); 288 } 289 290 void 291 cv_destroy(kcondvar_t *cv) 292 { 293 VERIFY(cond_destroy(cv) == 0); 294 } 295 296 void 297 cv_wait(kcondvar_t *cv, kmutex_t *mp) 298 { 299 ASSERT(mutex_owner(mp) == curthread); 300 mp->m_owner = NULL; 301 int ret = cond_wait(cv, &mp->m_lock); 302 VERIFY(ret == 0 || ret == EINTR); 303 mp->m_owner = curthread; 304 } 305 306 clock_t 307 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime) 308 { 309 int error; 310 timestruc_t ts; 311 clock_t delta; 312 313 top: 314 delta = abstime - ddi_get_lbolt(); 315 if (delta <= 0) 316 return (-1); 317 318 ts.tv_sec = delta / hz; 319 ts.tv_nsec = (delta % hz) * (NANOSEC / hz); 320 321 ASSERT(mutex_owner(mp) == curthread); 322 mp->m_owner = NULL; 323 error = cond_reltimedwait(cv, &mp->m_lock, &ts); 324 mp->m_owner = curthread; 325 326 if (error == ETIME) 327 return (-1); 328 329 if (error == EINTR) 330 goto top; 331 332 ASSERT(error == 0); 333 334 return (1); 335 } 336 337 /*ARGSUSED*/ 338 clock_t 339 cv_timedwait_hires(kcondvar_t *cv, kmutex_t *mp, hrtime_t tim, hrtime_t res, 340 int flag) 341 { 342 int error; 343 timestruc_t ts; 344 hrtime_t delta; 345 346 ASSERT(flag == 0); 347 348 top: 349 delta = tim - gethrtime(); 350 if (delta <= 0) 351 return (-1); 352 353 ts.tv_sec = delta / NANOSEC; 354 ts.tv_nsec = delta % NANOSEC; 355 356 ASSERT(mutex_owner(mp) == curthread); 357 mp->m_owner = NULL; 358 error = cond_reltimedwait(cv, &mp->m_lock, &ts); 359 mp->m_owner = curthread; 360 361 if (error == ETIME) 362 return (-1); 363 364 if (error == EINTR) 365 goto top; 366 367 ASSERT(error == 0); 368 369 return (1); 370 } 371 372 void 373 cv_signal(kcondvar_t *cv) 374 { 375 VERIFY(cond_signal(cv) == 0); 376 } 377 378 void 379 cv_broadcast(kcondvar_t *cv) 380 { 381 VERIFY(cond_broadcast(cv) == 0); 382 } 383 384 /* 385 * ========================================================================= 386 * vnode operations 387 * ========================================================================= 388 */ 389 /* 390 * Note: for the xxxat() versions of these functions, we assume that the 391 * starting vp is always rootdir (which is true for spa_directory.c, the only 392 * ZFS consumer of these interfaces). We assert this is true, and then emulate 393 * them by adding '/' in front of the path. 394 */ 395 396 /*ARGSUSED*/ 397 int 398 vn_open(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3) 399 { 400 int fd; 401 int dump_fd; 402 vnode_t *vp; 403 int old_umask; 404 char realpath[MAXPATHLEN]; 405 struct stat64 st; 406 407 /* 408 * If we're accessing a real disk from userland, we need to use 409 * the character interface to avoid caching. This is particularly 410 * important if we're trying to look at a real in-kernel storage 411 * pool from userland, e.g. via zdb, because otherwise we won't 412 * see the changes occurring under the segmap cache. 413 * On the other hand, the stupid character device returns zero 414 * for its size. So -- gag -- we open the block device to get 415 * its size, and remember it for subsequent VOP_GETATTR(). 416 */ 417 if (strncmp(path, "/dev/", 5) == 0) { 418 char *dsk; 419 fd = open64(path, O_RDONLY); 420 if (fd == -1) 421 return (errno); 422 if (fstat64(fd, &st) == -1) { 423 close(fd); 424 return (errno); 425 } 426 close(fd); 427 (void) sprintf(realpath, "%s", path); 428 dsk = strstr(path, "/dsk/"); 429 if (dsk != NULL) 430 (void) sprintf(realpath + (dsk - path) + 1, "r%s", 431 dsk + 1); 432 } else { 433 (void) sprintf(realpath, "%s", path); 434 if (!(flags & FCREAT) && stat64(realpath, &st) == -1) 435 return (errno); 436 } 437 438 if (flags & FCREAT) 439 old_umask = umask(0); 440 441 /* 442 * The construct 'flags - FREAD' conveniently maps combinations of 443 * FREAD and FWRITE to the corresponding O_RDONLY, O_WRONLY, and O_RDWR. 444 */ 445 fd = open64(realpath, flags - FREAD, mode); 446 447 if (flags & FCREAT) 448 (void) umask(old_umask); 449 450 if (vn_dumpdir != NULL) { 451 char dumppath[MAXPATHLEN]; 452 (void) snprintf(dumppath, sizeof (dumppath), 453 "%s/%s", vn_dumpdir, basename(realpath)); 454 dump_fd = open64(dumppath, O_CREAT | O_WRONLY, 0666); 455 if (dump_fd == -1) 456 return (errno); 457 } else { 458 dump_fd = -1; 459 } 460 461 if (fd == -1) 462 return (errno); 463 464 if (fstat64(fd, &st) == -1) { 465 close(fd); 466 return (errno); 467 } 468 469 (void) fcntl(fd, F_SETFD, FD_CLOEXEC); 470 471 *vpp = vp = umem_zalloc(sizeof (vnode_t), UMEM_NOFAIL); 472 473 vp->v_fd = fd; 474 vp->v_size = st.st_size; 475 vp->v_path = spa_strdup(path); 476 vp->v_dump_fd = dump_fd; 477 478 return (0); 479 } 480 481 /*ARGSUSED*/ 482 int 483 vn_openat(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, 484 int x3, vnode_t *startvp, int fd) 485 { 486 char *realpath = umem_alloc(strlen(path) + 2, UMEM_NOFAIL); 487 int ret; 488 489 ASSERT(startvp == rootdir); 490 (void) sprintf(realpath, "/%s", path); 491 492 /* fd ignored for now, need if want to simulate nbmand support */ 493 ret = vn_open(realpath, x1, flags, mode, vpp, x2, x3); 494 495 umem_free(realpath, strlen(path) + 2); 496 497 return (ret); 498 } 499 500 /*ARGSUSED*/ 501 int 502 vn_rdwr(int uio, vnode_t *vp, void *addr, ssize_t len, offset_t offset, 503 int x1, int x2, rlim64_t x3, void *x4, ssize_t *residp) 504 { 505 ssize_t iolen, split; 506 507 if (uio == UIO_READ) { 508 iolen = pread64(vp->v_fd, addr, len, offset); 509 if (vp->v_dump_fd != -1) { 510 int status = 511 pwrite64(vp->v_dump_fd, addr, iolen, offset); 512 ASSERT(status != -1); 513 } 514 } else { 515 /* 516 * To simulate partial disk writes, we split writes into two 517 * system calls so that the process can be killed in between. 518 */ 519 int sectors = len >> SPA_MINBLOCKSHIFT; 520 split = (sectors > 0 ? rand() % sectors : 0) << 521 SPA_MINBLOCKSHIFT; 522 iolen = pwrite64(vp->v_fd, addr, split, offset); 523 iolen += pwrite64(vp->v_fd, (char *)addr + split, 524 len - split, offset + split); 525 } 526 527 if (iolen == -1) 528 return (errno); 529 if (residp) 530 *residp = len - iolen; 531 else if (iolen != len) 532 return (EIO); 533 return (0); 534 } 535 536 void 537 vn_close(vnode_t *vp) 538 { 539 close(vp->v_fd); 540 if (vp->v_dump_fd != -1) 541 close(vp->v_dump_fd); 542 spa_strfree(vp->v_path); 543 umem_free(vp, sizeof (vnode_t)); 544 } 545 546 /* 547 * At a minimum we need to update the size since vdev_reopen() 548 * will no longer call vn_openat(). 549 */ 550 int 551 fop_getattr(vnode_t *vp, vattr_t *vap) 552 { 553 struct stat64 st; 554 555 if (fstat64(vp->v_fd, &st) == -1) { 556 close(vp->v_fd); 557 return (errno); 558 } 559 560 vap->va_size = st.st_size; 561 return (0); 562 } 563 564 #ifdef ZFS_DEBUG 565 566 /* 567 * ========================================================================= 568 * Figure out which debugging statements to print 569 * ========================================================================= 570 */ 571 572 static char *dprintf_string; 573 static int dprintf_print_all; 574 575 int 576 dprintf_find_string(const char *string) 577 { 578 char *tmp_str = dprintf_string; 579 int len = strlen(string); 580 581 /* 582 * Find out if this is a string we want to print. 583 * String format: file1.c,function_name1,file2.c,file3.c 584 */ 585 586 while (tmp_str != NULL) { 587 if (strncmp(tmp_str, string, len) == 0 && 588 (tmp_str[len] == ',' || tmp_str[len] == '\0')) 589 return (1); 590 tmp_str = strchr(tmp_str, ','); 591 if (tmp_str != NULL) 592 tmp_str++; /* Get rid of , */ 593 } 594 return (0); 595 } 596 597 void 598 dprintf_setup(int *argc, char **argv) 599 { 600 int i, j; 601 602 /* 603 * Debugging can be specified two ways: by setting the 604 * environment variable ZFS_DEBUG, or by including a 605 * "debug=..." argument on the command line. The command 606 * line setting overrides the environment variable. 607 */ 608 609 for (i = 1; i < *argc; i++) { 610 int len = strlen("debug="); 611 /* First look for a command line argument */ 612 if (strncmp("debug=", argv[i], len) == 0) { 613 dprintf_string = argv[i] + len; 614 /* Remove from args */ 615 for (j = i; j < *argc; j++) 616 argv[j] = argv[j+1]; 617 argv[j] = NULL; 618 (*argc)--; 619 } 620 } 621 622 if (dprintf_string == NULL) { 623 /* Look for ZFS_DEBUG environment variable */ 624 dprintf_string = getenv("ZFS_DEBUG"); 625 } 626 627 /* 628 * Are we just turning on all debugging? 629 */ 630 if (dprintf_find_string("on")) 631 dprintf_print_all = 1; 632 633 if (dprintf_string != NULL) 634 zfs_flags |= ZFS_DEBUG_DPRINTF; 635 } 636 637 /* 638 * ========================================================================= 639 * debug printfs 640 * ========================================================================= 641 */ 642 void 643 __dprintf(const char *file, const char *func, int line, const char *fmt, ...) 644 { 645 const char *newfile; 646 va_list adx; 647 648 /* 649 * Get rid of annoying "../common/" prefix to filename. 650 */ 651 newfile = strrchr(file, '/'); 652 if (newfile != NULL) { 653 newfile = newfile + 1; /* Get rid of leading / */ 654 } else { 655 newfile = file; 656 } 657 658 if (dprintf_print_all || 659 dprintf_find_string(newfile) || 660 dprintf_find_string(func)) { 661 /* Print out just the function name if requested */ 662 flockfile(stdout); 663 if (dprintf_find_string("pid")) 664 (void) printf("%d ", getpid()); 665 if (dprintf_find_string("tid")) 666 (void) printf("%u ", thr_self()); 667 if (dprintf_find_string("cpu")) 668 (void) printf("%u ", getcpuid()); 669 if (dprintf_find_string("time")) 670 (void) printf("%llu ", gethrtime()); 671 if (dprintf_find_string("long")) 672 (void) printf("%s, line %d: ", newfile, line); 673 (void) printf("%s: ", func); 674 va_start(adx, fmt); 675 (void) vprintf(fmt, adx); 676 va_end(adx); 677 funlockfile(stdout); 678 } 679 } 680 681 #endif /* ZFS_DEBUG */ 682 683 /* 684 * ========================================================================= 685 * cmn_err() and panic() 686 * ========================================================================= 687 */ 688 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" }; 689 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" }; 690 691 void 692 vpanic(const char *fmt, va_list adx) 693 { 694 (void) fprintf(stderr, "error: "); 695 (void) vfprintf(stderr, fmt, adx); 696 (void) fprintf(stderr, "\n"); 697 698 abort(); /* think of it as a "user-level crash dump" */ 699 } 700 701 void 702 panic(const char *fmt, ...) 703 { 704 va_list adx; 705 706 va_start(adx, fmt); 707 vpanic(fmt, adx); 708 va_end(adx); 709 } 710 711 void 712 vcmn_err(int ce, const char *fmt, va_list adx) 713 { 714 if (ce == CE_PANIC) 715 vpanic(fmt, adx); 716 if (ce != CE_NOTE) { /* suppress noise in userland stress testing */ 717 (void) fprintf(stderr, "%s", ce_prefix[ce]); 718 (void) vfprintf(stderr, fmt, adx); 719 (void) fprintf(stderr, "%s", ce_suffix[ce]); 720 } 721 } 722 723 /*PRINTFLIKE2*/ 724 void 725 cmn_err(int ce, const char *fmt, ...) 726 { 727 va_list adx; 728 729 va_start(adx, fmt); 730 vcmn_err(ce, fmt, adx); 731 va_end(adx); 732 } 733 734 /* 735 * ========================================================================= 736 * kobj interfaces 737 * ========================================================================= 738 */ 739 struct _buf * 740 kobj_open_file(char *name) 741 { 742 struct _buf *file; 743 vnode_t *vp; 744 745 /* set vp as the _fd field of the file */ 746 if (vn_openat(name, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0, rootdir, 747 -1) != 0) 748 return ((void *)-1UL); 749 750 file = umem_zalloc(sizeof (struct _buf), UMEM_NOFAIL); 751 file->_fd = (intptr_t)vp; 752 return (file); 753 } 754 755 int 756 kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off) 757 { 758 ssize_t resid; 759 760 vn_rdwr(UIO_READ, (vnode_t *)file->_fd, buf, size, (offset_t)off, 761 UIO_SYSSPACE, 0, 0, 0, &resid); 762 763 return (size - resid); 764 } 765 766 void 767 kobj_close_file(struct _buf *file) 768 { 769 vn_close((vnode_t *)file->_fd); 770 umem_free(file, sizeof (struct _buf)); 771 } 772 773 int 774 kobj_get_filesize(struct _buf *file, uint64_t *size) 775 { 776 struct stat64 st; 777 vnode_t *vp = (vnode_t *)file->_fd; 778 779 if (fstat64(vp->v_fd, &st) == -1) { 780 vn_close(vp); 781 return (errno); 782 } 783 *size = st.st_size; 784 return (0); 785 } 786 787 /* 788 * ========================================================================= 789 * misc routines 790 * ========================================================================= 791 */ 792 793 void 794 delay(clock_t ticks) 795 { 796 poll(0, 0, ticks * (1000 / hz)); 797 } 798 799 /* 800 * Find highest one bit set. 801 * Returns bit number + 1 of highest bit that is set, otherwise returns 0. 802 */ 803 int 804 highbit64(uint64_t i) 805 { 806 int h = 1; 807 808 if (i == 0) 809 return (0); 810 if (i & 0xffffffff00000000ULL) { 811 h += 32; i >>= 32; 812 } 813 if (i & 0xffff0000) { 814 h += 16; i >>= 16; 815 } 816 if (i & 0xff00) { 817 h += 8; i >>= 8; 818 } 819 if (i & 0xf0) { 820 h += 4; i >>= 4; 821 } 822 if (i & 0xc) { 823 h += 2; i >>= 2; 824 } 825 if (i & 0x2) { 826 h += 1; 827 } 828 return (h); 829 } 830 831 static int random_fd = -1, urandom_fd = -1; 832 833 static int 834 random_get_bytes_common(uint8_t *ptr, size_t len, int fd) 835 { 836 size_t resid = len; 837 ssize_t bytes; 838 839 ASSERT(fd != -1); 840 841 while (resid != 0) { 842 bytes = read(fd, ptr, resid); 843 ASSERT3S(bytes, >=, 0); 844 ptr += bytes; 845 resid -= bytes; 846 } 847 848 return (0); 849 } 850 851 int 852 random_get_bytes(uint8_t *ptr, size_t len) 853 { 854 return (random_get_bytes_common(ptr, len, random_fd)); 855 } 856 857 int 858 random_get_pseudo_bytes(uint8_t *ptr, size_t len) 859 { 860 return (random_get_bytes_common(ptr, len, urandom_fd)); 861 } 862 863 int 864 ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result) 865 { 866 char *end; 867 868 *result = strtoul(hw_serial, &end, base); 869 if (*result == 0) 870 return (errno); 871 return (0); 872 } 873 874 int 875 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result) 876 { 877 char *end; 878 879 *result = strtoull(str, &end, base); 880 if (*result == 0) 881 return (errno); 882 return (0); 883 } 884 885 /* ARGSUSED */ 886 cyclic_id_t 887 cyclic_add(cyc_handler_t *hdlr, cyc_time_t *when) 888 { 889 return (1); 890 } 891 892 /* ARGSUSED */ 893 void 894 cyclic_remove(cyclic_id_t id) 895 { 896 } 897 898 /* ARGSUSED */ 899 int 900 cyclic_reprogram(cyclic_id_t id, hrtime_t expiration) 901 { 902 return (1); 903 } 904 905 /* 906 * ========================================================================= 907 * kernel emulation setup & teardown 908 * ========================================================================= 909 */ 910 static int 911 umem_out_of_memory(void) 912 { 913 char errmsg[] = "out of memory -- generating core dump\n"; 914 915 write(fileno(stderr), errmsg, sizeof (errmsg)); 916 abort(); 917 return (0); 918 } 919 920 void 921 kernel_init(int mode) 922 { 923 extern uint_t rrw_tsd_key; 924 925 umem_nofail_callback(umem_out_of_memory); 926 927 physmem = sysconf(_SC_PHYS_PAGES); 928 929 dprintf("physmem = %llu pages (%.2f GB)\n", physmem, 930 (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30)); 931 932 (void) snprintf(hw_serial, sizeof (hw_serial), "%ld", 933 (mode & FWRITE) ? gethostid() : 0); 934 935 VERIFY((random_fd = open("/dev/random", O_RDONLY)) != -1); 936 VERIFY((urandom_fd = open("/dev/urandom", O_RDONLY)) != -1); 937 938 system_taskq_init(); 939 940 mutex_init(&cpu_lock, NULL, MUTEX_DEFAULT, NULL); 941 942 spa_init(mode); 943 944 tsd_create(&rrw_tsd_key, rrw_tsd_destroy); 945 } 946 947 void 948 kernel_fini(void) 949 { 950 spa_fini(); 951 952 system_taskq_fini(); 953 954 close(random_fd); 955 close(urandom_fd); 956 957 random_fd = -1; 958 urandom_fd = -1; 959 } 960 961 int 962 z_uncompress(void *dst, size_t *dstlen, const void *src, size_t srclen) 963 { 964 int ret; 965 uLongf len = *dstlen; 966 967 if ((ret = uncompress(dst, &len, src, srclen)) == Z_OK) 968 *dstlen = (size_t)len; 969 970 return (ret); 971 } 972 973 int 974 z_compress_level(void *dst, size_t *dstlen, const void *src, size_t srclen, 975 int level) 976 { 977 int ret; 978 uLongf len = *dstlen; 979 980 if ((ret = compress2(dst, &len, src, srclen, level)) == Z_OK) 981 *dstlen = (size_t)len; 982 983 return (ret); 984 } 985 986 uid_t 987 crgetuid(cred_t *cr) 988 { 989 return (0); 990 } 991 992 uid_t 993 crgetruid(cred_t *cr) 994 { 995 return (0); 996 } 997 998 gid_t 999 crgetgid(cred_t *cr) 1000 { 1001 return (0); 1002 } 1003 1004 int 1005 crgetngroups(cred_t *cr) 1006 { 1007 return (0); 1008 } 1009 1010 gid_t * 1011 crgetgroups(cred_t *cr) 1012 { 1013 return (NULL); 1014 } 1015 1016 int 1017 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr) 1018 { 1019 return (0); 1020 } 1021 1022 int 1023 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr) 1024 { 1025 return (0); 1026 } 1027 1028 int 1029 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr) 1030 { 1031 return (0); 1032 } 1033 1034 ksiddomain_t * 1035 ksid_lookupdomain(const char *dom) 1036 { 1037 ksiddomain_t *kd; 1038 1039 kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL); 1040 kd->kd_name = spa_strdup(dom); 1041 return (kd); 1042 } 1043 1044 void 1045 ksiddomain_rele(ksiddomain_t *ksid) 1046 { 1047 spa_strfree(ksid->kd_name); 1048 umem_free(ksid, sizeof (ksiddomain_t)); 1049 } 1050 1051 /* 1052 * Do not change the length of the returned string; it must be freed 1053 * with strfree(). 1054 */ 1055 char * 1056 kmem_asprintf(const char *fmt, ...) 1057 { 1058 int size; 1059 va_list adx; 1060 char *buf; 1061 1062 va_start(adx, fmt); 1063 size = vsnprintf(NULL, 0, fmt, adx) + 1; 1064 va_end(adx); 1065 1066 buf = kmem_alloc(size, KM_SLEEP); 1067 1068 va_start(adx, fmt); 1069 size = vsnprintf(buf, size, fmt, adx); 1070 va_end(adx); 1071 1072 return (buf); 1073 } 1074 1075 /* ARGSUSED */ 1076 int 1077 zfs_onexit_fd_hold(int fd, minor_t *minorp) 1078 { 1079 *minorp = 0; 1080 return (0); 1081 } 1082 1083 /* ARGSUSED */ 1084 void 1085 zfs_onexit_fd_rele(int fd) 1086 { 1087 } 1088 1089 /* ARGSUSED */ 1090 int 1091 zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data, 1092 uint64_t *action_handle) 1093 { 1094 return (0); 1095 } 1096 1097 /* ARGSUSED */ 1098 int 1099 zfs_onexit_del_cb(minor_t minor, uint64_t action_handle, boolean_t fire) 1100 { 1101 return (0); 1102 } 1103 1104 /* ARGSUSED */ 1105 int 1106 zfs_onexit_cb_data(minor_t minor, uint64_t action_handle, void **data) 1107 { 1108 return (0); 1109 } 1110 1111 void 1112 bioinit(buf_t *bp) 1113 { 1114 bzero(bp, sizeof (buf_t)); 1115 } 1116 1117 void 1118 biodone(buf_t *bp) 1119 { 1120 if (bp->b_iodone != NULL) { 1121 (*(bp->b_iodone))(bp); 1122 return; 1123 } 1124 ASSERT((bp->b_flags & B_DONE) == 0); 1125 bp->b_flags |= B_DONE; 1126 } 1127 1128 void 1129 bioerror(buf_t *bp, int error) 1130 { 1131 ASSERT(bp != NULL); 1132 ASSERT(error >= 0); 1133 1134 if (error != 0) { 1135 bp->b_flags |= B_ERROR; 1136 } else { 1137 bp->b_flags &= ~B_ERROR; 1138 } 1139 bp->b_error = error; 1140 } 1141 1142 1143 int 1144 geterror(struct buf *bp) 1145 { 1146 int error = 0; 1147 1148 if (bp->b_flags & B_ERROR) { 1149 error = bp->b_error; 1150 if (!error) 1151 error = EIO; 1152 } 1153 return (error); 1154 } 1155