1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <assert.h> 27 #include <fcntl.h> 28 #include <poll.h> 29 #include <stdio.h> 30 #include <stdlib.h> 31 #include <string.h> 32 #include <zlib.h> 33 #include <sys/spa.h> 34 #include <sys/stat.h> 35 #include <sys/processor.h> 36 #include <sys/zfs_context.h> 37 #include <sys/zmod.h> 38 #include <sys/utsname.h> 39 #include <sys/systeminfo.h> 40 41 /* 42 * Emulation of kernel services in userland. 43 */ 44 45 int aok; 46 uint64_t physmem; 47 vnode_t *rootdir = (vnode_t *)0xabcd1234; 48 char hw_serial[HW_HOSTID_LEN]; 49 50 struct utsname utsname = { 51 "userland", "libzpool", "1", "1", "na" 52 }; 53 54 /* this only exists to have its address taken */ 55 struct proc p0; 56 57 /* 58 * ========================================================================= 59 * threads 60 * ========================================================================= 61 */ 62 /*ARGSUSED*/ 63 kthread_t * 64 zk_thread_create(void (*func)(), void *arg) 65 { 66 thread_t tid; 67 68 VERIFY(thr_create(0, 0, (void *(*)(void *))func, arg, THR_DETACHED, 69 &tid) == 0); 70 71 return ((void *)(uintptr_t)tid); 72 } 73 74 /* 75 * ========================================================================= 76 * kstats 77 * ========================================================================= 78 */ 79 /*ARGSUSED*/ 80 kstat_t * 81 kstat_create(char *module, int instance, char *name, char *class, 82 uchar_t type, ulong_t ndata, uchar_t ks_flag) 83 { 84 return (NULL); 85 } 86 87 /*ARGSUSED*/ 88 void 89 kstat_install(kstat_t *ksp) 90 {} 91 92 /*ARGSUSED*/ 93 void 94 kstat_delete(kstat_t *ksp) 95 {} 96 97 /* 98 * ========================================================================= 99 * mutexes 100 * ========================================================================= 101 */ 102 void 103 zmutex_init(kmutex_t *mp) 104 { 105 mp->m_owner = NULL; 106 mp->initialized = B_TRUE; 107 (void) _mutex_init(&mp->m_lock, USYNC_THREAD, NULL); 108 } 109 110 void 111 zmutex_destroy(kmutex_t *mp) 112 { 113 ASSERT(mp->initialized == B_TRUE); 114 ASSERT(mp->m_owner == NULL); 115 (void) _mutex_destroy(&(mp)->m_lock); 116 mp->m_owner = (void *)-1UL; 117 mp->initialized = B_FALSE; 118 } 119 120 void 121 mutex_enter(kmutex_t *mp) 122 { 123 ASSERT(mp->initialized == B_TRUE); 124 ASSERT(mp->m_owner != (void *)-1UL); 125 ASSERT(mp->m_owner != curthread); 126 VERIFY(mutex_lock(&mp->m_lock) == 0); 127 ASSERT(mp->m_owner == NULL); 128 mp->m_owner = curthread; 129 } 130 131 int 132 mutex_tryenter(kmutex_t *mp) 133 { 134 ASSERT(mp->initialized == B_TRUE); 135 ASSERT(mp->m_owner != (void *)-1UL); 136 if (0 == mutex_trylock(&mp->m_lock)) { 137 ASSERT(mp->m_owner == NULL); 138 mp->m_owner = curthread; 139 return (1); 140 } else { 141 return (0); 142 } 143 } 144 145 void 146 mutex_exit(kmutex_t *mp) 147 { 148 ASSERT(mp->initialized == B_TRUE); 149 ASSERT(mutex_owner(mp) == curthread); 150 mp->m_owner = NULL; 151 VERIFY(mutex_unlock(&mp->m_lock) == 0); 152 } 153 154 void * 155 mutex_owner(kmutex_t *mp) 156 { 157 ASSERT(mp->initialized == B_TRUE); 158 return (mp->m_owner); 159 } 160 161 /* 162 * ========================================================================= 163 * rwlocks 164 * ========================================================================= 165 */ 166 /*ARGSUSED*/ 167 void 168 rw_init(krwlock_t *rwlp, char *name, int type, void *arg) 169 { 170 rwlock_init(&rwlp->rw_lock, USYNC_THREAD, NULL); 171 rwlp->rw_owner = NULL; 172 rwlp->initialized = B_TRUE; 173 } 174 175 void 176 rw_destroy(krwlock_t *rwlp) 177 { 178 rwlock_destroy(&rwlp->rw_lock); 179 rwlp->rw_owner = (void *)-1UL; 180 rwlp->initialized = B_FALSE; 181 } 182 183 void 184 rw_enter(krwlock_t *rwlp, krw_t rw) 185 { 186 ASSERT(!RW_LOCK_HELD(rwlp)); 187 ASSERT(rwlp->initialized == B_TRUE); 188 ASSERT(rwlp->rw_owner != (void *)-1UL); 189 ASSERT(rwlp->rw_owner != curthread); 190 191 if (rw == RW_READER) 192 VERIFY(rw_rdlock(&rwlp->rw_lock) == 0); 193 else 194 VERIFY(rw_wrlock(&rwlp->rw_lock) == 0); 195 196 rwlp->rw_owner = curthread; 197 } 198 199 void 200 rw_exit(krwlock_t *rwlp) 201 { 202 ASSERT(rwlp->initialized == B_TRUE); 203 ASSERT(rwlp->rw_owner != (void *)-1UL); 204 205 rwlp->rw_owner = NULL; 206 VERIFY(rw_unlock(&rwlp->rw_lock) == 0); 207 } 208 209 int 210 rw_tryenter(krwlock_t *rwlp, krw_t rw) 211 { 212 int rv; 213 214 ASSERT(rwlp->initialized == B_TRUE); 215 ASSERT(rwlp->rw_owner != (void *)-1UL); 216 217 if (rw == RW_READER) 218 rv = rw_tryrdlock(&rwlp->rw_lock); 219 else 220 rv = rw_trywrlock(&rwlp->rw_lock); 221 222 if (rv == 0) { 223 rwlp->rw_owner = curthread; 224 return (1); 225 } 226 227 return (0); 228 } 229 230 /*ARGSUSED*/ 231 int 232 rw_tryupgrade(krwlock_t *rwlp) 233 { 234 ASSERT(rwlp->initialized == B_TRUE); 235 ASSERT(rwlp->rw_owner != (void *)-1UL); 236 237 return (0); 238 } 239 240 /* 241 * ========================================================================= 242 * condition variables 243 * ========================================================================= 244 */ 245 /*ARGSUSED*/ 246 void 247 cv_init(kcondvar_t *cv, char *name, int type, void *arg) 248 { 249 VERIFY(cond_init(cv, type, NULL) == 0); 250 } 251 252 void 253 cv_destroy(kcondvar_t *cv) 254 { 255 VERIFY(cond_destroy(cv) == 0); 256 } 257 258 void 259 cv_wait(kcondvar_t *cv, kmutex_t *mp) 260 { 261 ASSERT(mutex_owner(mp) == curthread); 262 mp->m_owner = NULL; 263 int ret = cond_wait(cv, &mp->m_lock); 264 VERIFY(ret == 0 || ret == EINTR); 265 mp->m_owner = curthread; 266 } 267 268 clock_t 269 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime) 270 { 271 int error; 272 timestruc_t ts; 273 clock_t delta; 274 275 top: 276 delta = abstime - ddi_get_lbolt(); 277 if (delta <= 0) 278 return (-1); 279 280 ts.tv_sec = delta / hz; 281 ts.tv_nsec = (delta % hz) * (NANOSEC / hz); 282 283 ASSERT(mutex_owner(mp) == curthread); 284 mp->m_owner = NULL; 285 error = cond_reltimedwait(cv, &mp->m_lock, &ts); 286 mp->m_owner = curthread; 287 288 if (error == ETIME) 289 return (-1); 290 291 if (error == EINTR) 292 goto top; 293 294 ASSERT(error == 0); 295 296 return (1); 297 } 298 299 void 300 cv_signal(kcondvar_t *cv) 301 { 302 VERIFY(cond_signal(cv) == 0); 303 } 304 305 void 306 cv_broadcast(kcondvar_t *cv) 307 { 308 VERIFY(cond_broadcast(cv) == 0); 309 } 310 311 /* 312 * ========================================================================= 313 * vnode operations 314 * ========================================================================= 315 */ 316 /* 317 * Note: for the xxxat() versions of these functions, we assume that the 318 * starting vp is always rootdir (which is true for spa_directory.c, the only 319 * ZFS consumer of these interfaces). We assert this is true, and then emulate 320 * them by adding '/' in front of the path. 321 */ 322 323 /*ARGSUSED*/ 324 int 325 vn_open(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3) 326 { 327 int fd; 328 vnode_t *vp; 329 int old_umask; 330 char realpath[MAXPATHLEN]; 331 struct stat64 st; 332 333 /* 334 * If we're accessing a real disk from userland, we need to use 335 * the character interface to avoid caching. This is particularly 336 * important if we're trying to look at a real in-kernel storage 337 * pool from userland, e.g. via zdb, because otherwise we won't 338 * see the changes occurring under the segmap cache. 339 * On the other hand, the stupid character device returns zero 340 * for its size. So -- gag -- we open the block device to get 341 * its size, and remember it for subsequent VOP_GETATTR(). 342 */ 343 if (strncmp(path, "/dev/", 5) == 0) { 344 char *dsk; 345 fd = open64(path, O_RDONLY); 346 if (fd == -1) 347 return (errno); 348 if (fstat64(fd, &st) == -1) { 349 close(fd); 350 return (errno); 351 } 352 close(fd); 353 (void) sprintf(realpath, "%s", path); 354 dsk = strstr(path, "/dsk/"); 355 if (dsk != NULL) 356 (void) sprintf(realpath + (dsk - path) + 1, "r%s", 357 dsk + 1); 358 } else { 359 (void) sprintf(realpath, "%s", path); 360 if (!(flags & FCREAT) && stat64(realpath, &st) == -1) 361 return (errno); 362 } 363 364 if (flags & FCREAT) 365 old_umask = umask(0); 366 367 /* 368 * The construct 'flags - FREAD' conveniently maps combinations of 369 * FREAD and FWRITE to the corresponding O_RDONLY, O_WRONLY, and O_RDWR. 370 */ 371 fd = open64(realpath, flags - FREAD, mode); 372 373 if (flags & FCREAT) 374 (void) umask(old_umask); 375 376 if (fd == -1) 377 return (errno); 378 379 if (fstat64(fd, &st) == -1) { 380 close(fd); 381 return (errno); 382 } 383 384 (void) fcntl(fd, F_SETFD, FD_CLOEXEC); 385 386 *vpp = vp = umem_zalloc(sizeof (vnode_t), UMEM_NOFAIL); 387 388 vp->v_fd = fd; 389 vp->v_size = st.st_size; 390 vp->v_path = spa_strdup(path); 391 392 return (0); 393 } 394 395 /*ARGSUSED*/ 396 int 397 vn_openat(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, 398 int x3, vnode_t *startvp, int fd) 399 { 400 char *realpath = umem_alloc(strlen(path) + 2, UMEM_NOFAIL); 401 int ret; 402 403 ASSERT(startvp == rootdir); 404 (void) sprintf(realpath, "/%s", path); 405 406 /* fd ignored for now, need if want to simulate nbmand support */ 407 ret = vn_open(realpath, x1, flags, mode, vpp, x2, x3); 408 409 umem_free(realpath, strlen(path) + 2); 410 411 return (ret); 412 } 413 414 /*ARGSUSED*/ 415 int 416 vn_rdwr(int uio, vnode_t *vp, void *addr, ssize_t len, offset_t offset, 417 int x1, int x2, rlim64_t x3, void *x4, ssize_t *residp) 418 { 419 ssize_t iolen, split; 420 421 if (uio == UIO_READ) { 422 iolen = pread64(vp->v_fd, addr, len, offset); 423 } else { 424 /* 425 * To simulate partial disk writes, we split writes into two 426 * system calls so that the process can be killed in between. 427 */ 428 split = (len > 0 ? rand() % len : 0); 429 iolen = pwrite64(vp->v_fd, addr, split, offset); 430 iolen += pwrite64(vp->v_fd, (char *)addr + split, 431 len - split, offset + split); 432 } 433 434 if (iolen == -1) 435 return (errno); 436 if (residp) 437 *residp = len - iolen; 438 else if (iolen != len) 439 return (EIO); 440 return (0); 441 } 442 443 void 444 vn_close(vnode_t *vp) 445 { 446 close(vp->v_fd); 447 spa_strfree(vp->v_path); 448 umem_free(vp, sizeof (vnode_t)); 449 } 450 451 /* 452 * At a minimum we need to update the size since vdev_reopen() 453 * will no longer call vn_openat(). 454 */ 455 int 456 fop_getattr(vnode_t *vp, vattr_t *vap) 457 { 458 struct stat64 st; 459 460 if (fstat64(vp->v_fd, &st) == -1) { 461 close(vp->v_fd); 462 return (errno); 463 } 464 465 vap->va_size = st.st_size; 466 return (0); 467 } 468 469 #ifdef ZFS_DEBUG 470 471 /* 472 * ========================================================================= 473 * Figure out which debugging statements to print 474 * ========================================================================= 475 */ 476 477 static char *dprintf_string; 478 static int dprintf_print_all; 479 480 int 481 dprintf_find_string(const char *string) 482 { 483 char *tmp_str = dprintf_string; 484 int len = strlen(string); 485 486 /* 487 * Find out if this is a string we want to print. 488 * String format: file1.c,function_name1,file2.c,file3.c 489 */ 490 491 while (tmp_str != NULL) { 492 if (strncmp(tmp_str, string, len) == 0 && 493 (tmp_str[len] == ',' || tmp_str[len] == '\0')) 494 return (1); 495 tmp_str = strchr(tmp_str, ','); 496 if (tmp_str != NULL) 497 tmp_str++; /* Get rid of , */ 498 } 499 return (0); 500 } 501 502 void 503 dprintf_setup(int *argc, char **argv) 504 { 505 int i, j; 506 507 /* 508 * Debugging can be specified two ways: by setting the 509 * environment variable ZFS_DEBUG, or by including a 510 * "debug=..." argument on the command line. The command 511 * line setting overrides the environment variable. 512 */ 513 514 for (i = 1; i < *argc; i++) { 515 int len = strlen("debug="); 516 /* First look for a command line argument */ 517 if (strncmp("debug=", argv[i], len) == 0) { 518 dprintf_string = argv[i] + len; 519 /* Remove from args */ 520 for (j = i; j < *argc; j++) 521 argv[j] = argv[j+1]; 522 argv[j] = NULL; 523 (*argc)--; 524 } 525 } 526 527 if (dprintf_string == NULL) { 528 /* Look for ZFS_DEBUG environment variable */ 529 dprintf_string = getenv("ZFS_DEBUG"); 530 } 531 532 /* 533 * Are we just turning on all debugging? 534 */ 535 if (dprintf_find_string("on")) 536 dprintf_print_all = 1; 537 } 538 539 /* 540 * ========================================================================= 541 * debug printfs 542 * ========================================================================= 543 */ 544 void 545 __dprintf(const char *file, const char *func, int line, const char *fmt, ...) 546 { 547 const char *newfile; 548 va_list adx; 549 550 /* 551 * Get rid of annoying "../common/" prefix to filename. 552 */ 553 newfile = strrchr(file, '/'); 554 if (newfile != NULL) { 555 newfile = newfile + 1; /* Get rid of leading / */ 556 } else { 557 newfile = file; 558 } 559 560 if (dprintf_print_all || 561 dprintf_find_string(newfile) || 562 dprintf_find_string(func)) { 563 /* Print out just the function name if requested */ 564 flockfile(stdout); 565 if (dprintf_find_string("pid")) 566 (void) printf("%d ", getpid()); 567 if (dprintf_find_string("tid")) 568 (void) printf("%u ", thr_self()); 569 if (dprintf_find_string("cpu")) 570 (void) printf("%u ", getcpuid()); 571 if (dprintf_find_string("time")) 572 (void) printf("%llu ", gethrtime()); 573 if (dprintf_find_string("long")) 574 (void) printf("%s, line %d: ", newfile, line); 575 (void) printf("%s: ", func); 576 va_start(adx, fmt); 577 (void) vprintf(fmt, adx); 578 va_end(adx); 579 funlockfile(stdout); 580 } 581 } 582 583 #endif /* ZFS_DEBUG */ 584 585 /* 586 * ========================================================================= 587 * cmn_err() and panic() 588 * ========================================================================= 589 */ 590 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" }; 591 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" }; 592 593 void 594 vpanic(const char *fmt, va_list adx) 595 { 596 (void) fprintf(stderr, "error: "); 597 (void) vfprintf(stderr, fmt, adx); 598 (void) fprintf(stderr, "\n"); 599 600 abort(); /* think of it as a "user-level crash dump" */ 601 } 602 603 void 604 panic(const char *fmt, ...) 605 { 606 va_list adx; 607 608 va_start(adx, fmt); 609 vpanic(fmt, adx); 610 va_end(adx); 611 } 612 613 void 614 vcmn_err(int ce, const char *fmt, va_list adx) 615 { 616 if (ce == CE_PANIC) 617 vpanic(fmt, adx); 618 if (ce != CE_NOTE) { /* suppress noise in userland stress testing */ 619 (void) fprintf(stderr, "%s", ce_prefix[ce]); 620 (void) vfprintf(stderr, fmt, adx); 621 (void) fprintf(stderr, "%s", ce_suffix[ce]); 622 } 623 } 624 625 /*PRINTFLIKE2*/ 626 void 627 cmn_err(int ce, const char *fmt, ...) 628 { 629 va_list adx; 630 631 va_start(adx, fmt); 632 vcmn_err(ce, fmt, adx); 633 va_end(adx); 634 } 635 636 /* 637 * ========================================================================= 638 * kobj interfaces 639 * ========================================================================= 640 */ 641 struct _buf * 642 kobj_open_file(char *name) 643 { 644 struct _buf *file; 645 vnode_t *vp; 646 647 /* set vp as the _fd field of the file */ 648 if (vn_openat(name, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0, rootdir, 649 -1) != 0) 650 return ((void *)-1UL); 651 652 file = umem_zalloc(sizeof (struct _buf), UMEM_NOFAIL); 653 file->_fd = (intptr_t)vp; 654 return (file); 655 } 656 657 int 658 kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off) 659 { 660 ssize_t resid; 661 662 vn_rdwr(UIO_READ, (vnode_t *)file->_fd, buf, size, (offset_t)off, 663 UIO_SYSSPACE, 0, 0, 0, &resid); 664 665 return (size - resid); 666 } 667 668 void 669 kobj_close_file(struct _buf *file) 670 { 671 vn_close((vnode_t *)file->_fd); 672 umem_free(file, sizeof (struct _buf)); 673 } 674 675 int 676 kobj_get_filesize(struct _buf *file, uint64_t *size) 677 { 678 struct stat64 st; 679 vnode_t *vp = (vnode_t *)file->_fd; 680 681 if (fstat64(vp->v_fd, &st) == -1) { 682 vn_close(vp); 683 return (errno); 684 } 685 *size = st.st_size; 686 return (0); 687 } 688 689 /* 690 * ========================================================================= 691 * misc routines 692 * ========================================================================= 693 */ 694 695 void 696 delay(clock_t ticks) 697 { 698 poll(0, 0, ticks * (1000 / hz)); 699 } 700 701 /* 702 * Find highest one bit set. 703 * Returns bit number + 1 of highest bit that is set, otherwise returns 0. 704 * High order bit is 31 (or 63 in _LP64 kernel). 705 */ 706 int 707 highbit(ulong_t i) 708 { 709 register int h = 1; 710 711 if (i == 0) 712 return (0); 713 #ifdef _LP64 714 if (i & 0xffffffff00000000ul) { 715 h += 32; i >>= 32; 716 } 717 #endif 718 if (i & 0xffff0000) { 719 h += 16; i >>= 16; 720 } 721 if (i & 0xff00) { 722 h += 8; i >>= 8; 723 } 724 if (i & 0xf0) { 725 h += 4; i >>= 4; 726 } 727 if (i & 0xc) { 728 h += 2; i >>= 2; 729 } 730 if (i & 0x2) { 731 h += 1; 732 } 733 return (h); 734 } 735 736 static int random_fd = -1, urandom_fd = -1; 737 738 static int 739 random_get_bytes_common(uint8_t *ptr, size_t len, int fd) 740 { 741 size_t resid = len; 742 ssize_t bytes; 743 744 ASSERT(fd != -1); 745 746 while (resid != 0) { 747 bytes = read(fd, ptr, resid); 748 ASSERT3S(bytes, >=, 0); 749 ptr += bytes; 750 resid -= bytes; 751 } 752 753 return (0); 754 } 755 756 int 757 random_get_bytes(uint8_t *ptr, size_t len) 758 { 759 return (random_get_bytes_common(ptr, len, random_fd)); 760 } 761 762 int 763 random_get_pseudo_bytes(uint8_t *ptr, size_t len) 764 { 765 return (random_get_bytes_common(ptr, len, urandom_fd)); 766 } 767 768 int 769 ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result) 770 { 771 char *end; 772 773 *result = strtoul(hw_serial, &end, base); 774 if (*result == 0) 775 return (errno); 776 return (0); 777 } 778 779 int 780 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result) 781 { 782 char *end; 783 784 *result = strtoull(str, &end, base); 785 if (*result == 0) 786 return (errno); 787 return (0); 788 } 789 790 /* 791 * ========================================================================= 792 * kernel emulation setup & teardown 793 * ========================================================================= 794 */ 795 static int 796 umem_out_of_memory(void) 797 { 798 char errmsg[] = "out of memory -- generating core dump\n"; 799 800 write(fileno(stderr), errmsg, sizeof (errmsg)); 801 abort(); 802 return (0); 803 } 804 805 void 806 kernel_init(int mode) 807 { 808 umem_nofail_callback(umem_out_of_memory); 809 810 physmem = sysconf(_SC_PHYS_PAGES); 811 812 dprintf("physmem = %llu pages (%.2f GB)\n", physmem, 813 (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30)); 814 815 (void) snprintf(hw_serial, sizeof (hw_serial), "%ld", 816 (mode & FWRITE) ? gethostid() : 0); 817 818 VERIFY((random_fd = open("/dev/random", O_RDONLY)) != -1); 819 VERIFY((urandom_fd = open("/dev/urandom", O_RDONLY)) != -1); 820 821 system_taskq_init(); 822 823 spa_init(mode); 824 } 825 826 void 827 kernel_fini(void) 828 { 829 spa_fini(); 830 831 system_taskq_fini(); 832 833 close(random_fd); 834 close(urandom_fd); 835 836 random_fd = -1; 837 urandom_fd = -1; 838 } 839 840 int 841 z_uncompress(void *dst, size_t *dstlen, const void *src, size_t srclen) 842 { 843 int ret; 844 uLongf len = *dstlen; 845 846 if ((ret = uncompress(dst, &len, src, srclen)) == Z_OK) 847 *dstlen = (size_t)len; 848 849 return (ret); 850 } 851 852 int 853 z_compress_level(void *dst, size_t *dstlen, const void *src, size_t srclen, 854 int level) 855 { 856 int ret; 857 uLongf len = *dstlen; 858 859 if ((ret = compress2(dst, &len, src, srclen, level)) == Z_OK) 860 *dstlen = (size_t)len; 861 862 return (ret); 863 } 864 865 uid_t 866 crgetuid(cred_t *cr) 867 { 868 return (0); 869 } 870 871 gid_t 872 crgetgid(cred_t *cr) 873 { 874 return (0); 875 } 876 877 int 878 crgetngroups(cred_t *cr) 879 { 880 return (0); 881 } 882 883 gid_t * 884 crgetgroups(cred_t *cr) 885 { 886 return (NULL); 887 } 888 889 int 890 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr) 891 { 892 return (0); 893 } 894 895 int 896 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr) 897 { 898 return (0); 899 } 900 901 int 902 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr) 903 { 904 return (0); 905 } 906 907 ksiddomain_t * 908 ksid_lookupdomain(const char *dom) 909 { 910 ksiddomain_t *kd; 911 912 kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL); 913 kd->kd_name = spa_strdup(dom); 914 return (kd); 915 } 916 917 void 918 ksiddomain_rele(ksiddomain_t *ksid) 919 { 920 spa_strfree(ksid->kd_name); 921 umem_free(ksid, sizeof (ksiddomain_t)); 922 } 923 924 /* 925 * Do not change the length of the returned string; it must be freed 926 * with strfree(). 927 */ 928 char * 929 kmem_asprintf(const char *fmt, ...) 930 { 931 int size; 932 va_list adx; 933 char *buf; 934 935 va_start(adx, fmt); 936 size = vsnprintf(NULL, 0, fmt, adx) + 1; 937 va_end(adx); 938 939 buf = kmem_alloc(size, KM_SLEEP); 940 941 va_start(adx, fmt); 942 size = vsnprintf(buf, size, fmt, adx); 943 va_end(adx); 944 945 return (buf); 946 } 947