1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 25 */ 26 27 #include <assert.h> 28 #include <fcntl.h> 29 #include <poll.h> 30 #include <stdio.h> 31 #include <stdlib.h> 32 #include <string.h> 33 #include <zlib.h> 34 #include <sys/spa.h> 35 #include <sys/stat.h> 36 #include <sys/processor.h> 37 #include <sys/zfs_context.h> 38 #include <sys/rrwlock.h> 39 #include <sys/zmod.h> 40 #include <sys/utsname.h> 41 #include <sys/systeminfo.h> 42 43 /* 44 * Emulation of kernel services in userland. 45 */ 46 47 int aok; 48 uint64_t physmem; 49 vnode_t *rootdir = (vnode_t *)0xabcd1234; 50 char hw_serial[HW_HOSTID_LEN]; 51 kmutex_t cpu_lock; 52 vmem_t *zio_arena = NULL; 53 54 struct utsname utsname = { 55 "userland", "libzpool", "1", "1", "na" 56 }; 57 58 /* this only exists to have its address taken */ 59 struct proc p0; 60 61 /* 62 * ========================================================================= 63 * threads 64 * ========================================================================= 65 */ 66 /*ARGSUSED*/ 67 kthread_t * 68 zk_thread_create(void (*func)(), void *arg) 69 { 70 thread_t tid; 71 72 VERIFY(thr_create(0, 0, (void *(*)(void *))func, arg, THR_DETACHED, 73 &tid) == 0); 74 75 return ((void *)(uintptr_t)tid); 76 } 77 78 /* 79 * ========================================================================= 80 * kstats 81 * ========================================================================= 82 */ 83 /*ARGSUSED*/ 84 kstat_t * 85 kstat_create(const char *module, int instance, const char *name, 86 const char *class, uchar_t type, ulong_t ndata, uchar_t ks_flag) 87 { 88 return (NULL); 89 } 90 91 /*ARGSUSED*/ 92 void 93 kstat_install(kstat_t *ksp) 94 {} 95 96 /*ARGSUSED*/ 97 void 98 kstat_delete(kstat_t *ksp) 99 {} 100 101 /*ARGSUSED*/ 102 void 103 kstat_waitq_enter(kstat_io_t *kiop) 104 {} 105 106 /*ARGSUSED*/ 107 void 108 kstat_waitq_exit(kstat_io_t *kiop) 109 {} 110 111 /*ARGSUSED*/ 112 void 113 kstat_runq_enter(kstat_io_t *kiop) 114 {} 115 116 /*ARGSUSED*/ 117 void 118 kstat_runq_exit(kstat_io_t *kiop) 119 {} 120 121 /*ARGSUSED*/ 122 void 123 kstat_waitq_to_runq(kstat_io_t *kiop) 124 {} 125 126 /*ARGSUSED*/ 127 void 128 kstat_runq_back_to_waitq(kstat_io_t *kiop) 129 {} 130 131 /* 132 * ========================================================================= 133 * mutexes 134 * ========================================================================= 135 */ 136 void 137 zmutex_init(kmutex_t *mp) 138 { 139 mp->m_owner = NULL; 140 mp->initialized = B_TRUE; 141 (void) _mutex_init(&mp->m_lock, USYNC_THREAD, NULL); 142 } 143 144 void 145 zmutex_destroy(kmutex_t *mp) 146 { 147 ASSERT(mp->initialized == B_TRUE); 148 ASSERT(mp->m_owner == NULL); 149 (void) _mutex_destroy(&(mp)->m_lock); 150 mp->m_owner = (void *)-1UL; 151 mp->initialized = B_FALSE; 152 } 153 154 void 155 mutex_enter(kmutex_t *mp) 156 { 157 ASSERT(mp->initialized == B_TRUE); 158 ASSERT(mp->m_owner != (void *)-1UL); 159 ASSERT(mp->m_owner != curthread); 160 VERIFY(mutex_lock(&mp->m_lock) == 0); 161 ASSERT(mp->m_owner == NULL); 162 mp->m_owner = curthread; 163 } 164 165 int 166 mutex_tryenter(kmutex_t *mp) 167 { 168 ASSERT(mp->initialized == B_TRUE); 169 ASSERT(mp->m_owner != (void *)-1UL); 170 if (0 == mutex_trylock(&mp->m_lock)) { 171 ASSERT(mp->m_owner == NULL); 172 mp->m_owner = curthread; 173 return (1); 174 } else { 175 return (0); 176 } 177 } 178 179 void 180 mutex_exit(kmutex_t *mp) 181 { 182 ASSERT(mp->initialized == B_TRUE); 183 ASSERT(mutex_owner(mp) == curthread); 184 mp->m_owner = NULL; 185 VERIFY(mutex_unlock(&mp->m_lock) == 0); 186 } 187 188 void * 189 mutex_owner(kmutex_t *mp) 190 { 191 ASSERT(mp->initialized == B_TRUE); 192 return (mp->m_owner); 193 } 194 195 /* 196 * ========================================================================= 197 * rwlocks 198 * ========================================================================= 199 */ 200 /*ARGSUSED*/ 201 void 202 rw_init(krwlock_t *rwlp, char *name, int type, void *arg) 203 { 204 rwlock_init(&rwlp->rw_lock, USYNC_THREAD, NULL); 205 rwlp->rw_owner = NULL; 206 rwlp->initialized = B_TRUE; 207 } 208 209 void 210 rw_destroy(krwlock_t *rwlp) 211 { 212 rwlock_destroy(&rwlp->rw_lock); 213 rwlp->rw_owner = (void *)-1UL; 214 rwlp->initialized = B_FALSE; 215 } 216 217 void 218 rw_enter(krwlock_t *rwlp, krw_t rw) 219 { 220 ASSERT(!RW_LOCK_HELD(rwlp)); 221 ASSERT(rwlp->initialized == B_TRUE); 222 ASSERT(rwlp->rw_owner != (void *)-1UL); 223 ASSERT(rwlp->rw_owner != curthread); 224 225 if (rw == RW_WRITER) 226 VERIFY(rw_wrlock(&rwlp->rw_lock) == 0); 227 else 228 VERIFY(rw_rdlock(&rwlp->rw_lock) == 0); 229 230 rwlp->rw_owner = curthread; 231 } 232 233 void 234 rw_exit(krwlock_t *rwlp) 235 { 236 ASSERT(rwlp->initialized == B_TRUE); 237 ASSERT(rwlp->rw_owner != (void *)-1UL); 238 239 rwlp->rw_owner = NULL; 240 VERIFY(rw_unlock(&rwlp->rw_lock) == 0); 241 } 242 243 int 244 rw_tryenter(krwlock_t *rwlp, krw_t rw) 245 { 246 int rv; 247 248 ASSERT(rwlp->initialized == B_TRUE); 249 ASSERT(rwlp->rw_owner != (void *)-1UL); 250 251 if (rw == RW_WRITER) 252 rv = rw_trywrlock(&rwlp->rw_lock); 253 else 254 rv = rw_tryrdlock(&rwlp->rw_lock); 255 256 if (rv == 0) { 257 rwlp->rw_owner = curthread; 258 return (1); 259 } 260 261 return (0); 262 } 263 264 /*ARGSUSED*/ 265 int 266 rw_tryupgrade(krwlock_t *rwlp) 267 { 268 ASSERT(rwlp->initialized == B_TRUE); 269 ASSERT(rwlp->rw_owner != (void *)-1UL); 270 271 return (0); 272 } 273 274 /* 275 * ========================================================================= 276 * condition variables 277 * ========================================================================= 278 */ 279 /*ARGSUSED*/ 280 void 281 cv_init(kcondvar_t *cv, char *name, int type, void *arg) 282 { 283 VERIFY(cond_init(cv, type, NULL) == 0); 284 } 285 286 void 287 cv_destroy(kcondvar_t *cv) 288 { 289 VERIFY(cond_destroy(cv) == 0); 290 } 291 292 void 293 cv_wait(kcondvar_t *cv, kmutex_t *mp) 294 { 295 ASSERT(mutex_owner(mp) == curthread); 296 mp->m_owner = NULL; 297 int ret = cond_wait(cv, &mp->m_lock); 298 VERIFY(ret == 0 || ret == EINTR); 299 mp->m_owner = curthread; 300 } 301 302 clock_t 303 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime) 304 { 305 int error; 306 timestruc_t ts; 307 clock_t delta; 308 309 top: 310 delta = abstime - ddi_get_lbolt(); 311 if (delta <= 0) 312 return (-1); 313 314 ts.tv_sec = delta / hz; 315 ts.tv_nsec = (delta % hz) * (NANOSEC / hz); 316 317 ASSERT(mutex_owner(mp) == curthread); 318 mp->m_owner = NULL; 319 error = cond_reltimedwait(cv, &mp->m_lock, &ts); 320 mp->m_owner = curthread; 321 322 if (error == ETIME) 323 return (-1); 324 325 if (error == EINTR) 326 goto top; 327 328 ASSERT(error == 0); 329 330 return (1); 331 } 332 333 /*ARGSUSED*/ 334 clock_t 335 cv_timedwait_hires(kcondvar_t *cv, kmutex_t *mp, hrtime_t tim, hrtime_t res, 336 int flag) 337 { 338 int error; 339 timestruc_t ts; 340 hrtime_t delta; 341 342 ASSERT(flag == 0); 343 344 top: 345 delta = tim - gethrtime(); 346 if (delta <= 0) 347 return (-1); 348 349 ts.tv_sec = delta / NANOSEC; 350 ts.tv_nsec = delta % NANOSEC; 351 352 ASSERT(mutex_owner(mp) == curthread); 353 mp->m_owner = NULL; 354 error = cond_reltimedwait(cv, &mp->m_lock, &ts); 355 mp->m_owner = curthread; 356 357 if (error == ETIME) 358 return (-1); 359 360 if (error == EINTR) 361 goto top; 362 363 ASSERT(error == 0); 364 365 return (1); 366 } 367 368 void 369 cv_signal(kcondvar_t *cv) 370 { 371 VERIFY(cond_signal(cv) == 0); 372 } 373 374 void 375 cv_broadcast(kcondvar_t *cv) 376 { 377 VERIFY(cond_broadcast(cv) == 0); 378 } 379 380 /* 381 * ========================================================================= 382 * vnode operations 383 * ========================================================================= 384 */ 385 /* 386 * Note: for the xxxat() versions of these functions, we assume that the 387 * starting vp is always rootdir (which is true for spa_directory.c, the only 388 * ZFS consumer of these interfaces). We assert this is true, and then emulate 389 * them by adding '/' in front of the path. 390 */ 391 392 /*ARGSUSED*/ 393 int 394 vn_open(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3) 395 { 396 int fd; 397 vnode_t *vp; 398 int old_umask; 399 char realpath[MAXPATHLEN]; 400 struct stat64 st; 401 402 /* 403 * If we're accessing a real disk from userland, we need to use 404 * the character interface to avoid caching. This is particularly 405 * important if we're trying to look at a real in-kernel storage 406 * pool from userland, e.g. via zdb, because otherwise we won't 407 * see the changes occurring under the segmap cache. 408 * On the other hand, the stupid character device returns zero 409 * for its size. So -- gag -- we open the block device to get 410 * its size, and remember it for subsequent VOP_GETATTR(). 411 */ 412 if (strncmp(path, "/dev/", 5) == 0) { 413 char *dsk; 414 fd = open64(path, O_RDONLY); 415 if (fd == -1) 416 return (errno); 417 if (fstat64(fd, &st) == -1) { 418 close(fd); 419 return (errno); 420 } 421 close(fd); 422 (void) sprintf(realpath, "%s", path); 423 dsk = strstr(path, "/dsk/"); 424 if (dsk != NULL) 425 (void) sprintf(realpath + (dsk - path) + 1, "r%s", 426 dsk + 1); 427 } else { 428 (void) sprintf(realpath, "%s", path); 429 if (!(flags & FCREAT) && stat64(realpath, &st) == -1) 430 return (errno); 431 } 432 433 if (flags & FCREAT) 434 old_umask = umask(0); 435 436 /* 437 * The construct 'flags - FREAD' conveniently maps combinations of 438 * FREAD and FWRITE to the corresponding O_RDONLY, O_WRONLY, and O_RDWR. 439 */ 440 fd = open64(realpath, flags - FREAD, mode); 441 442 if (flags & FCREAT) 443 (void) umask(old_umask); 444 445 if (fd == -1) 446 return (errno); 447 448 if (fstat64(fd, &st) == -1) { 449 close(fd); 450 return (errno); 451 } 452 453 (void) fcntl(fd, F_SETFD, FD_CLOEXEC); 454 455 *vpp = vp = umem_zalloc(sizeof (vnode_t), UMEM_NOFAIL); 456 457 vp->v_fd = fd; 458 vp->v_size = st.st_size; 459 vp->v_path = spa_strdup(path); 460 461 return (0); 462 } 463 464 /*ARGSUSED*/ 465 int 466 vn_openat(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, 467 int x3, vnode_t *startvp, int fd) 468 { 469 char *realpath = umem_alloc(strlen(path) + 2, UMEM_NOFAIL); 470 int ret; 471 472 ASSERT(startvp == rootdir); 473 (void) sprintf(realpath, "/%s", path); 474 475 /* fd ignored for now, need if want to simulate nbmand support */ 476 ret = vn_open(realpath, x1, flags, mode, vpp, x2, x3); 477 478 umem_free(realpath, strlen(path) + 2); 479 480 return (ret); 481 } 482 483 /*ARGSUSED*/ 484 int 485 vn_rdwr(int uio, vnode_t *vp, void *addr, ssize_t len, offset_t offset, 486 int x1, int x2, rlim64_t x3, void *x4, ssize_t *residp) 487 { 488 ssize_t iolen, split; 489 490 if (uio == UIO_READ) { 491 iolen = pread64(vp->v_fd, addr, len, offset); 492 } else { 493 /* 494 * To simulate partial disk writes, we split writes into two 495 * system calls so that the process can be killed in between. 496 */ 497 int sectors = len >> SPA_MINBLOCKSHIFT; 498 split = (sectors > 0 ? rand() % sectors : 0) << 499 SPA_MINBLOCKSHIFT; 500 iolen = pwrite64(vp->v_fd, addr, split, offset); 501 iolen += pwrite64(vp->v_fd, (char *)addr + split, 502 len - split, offset + split); 503 } 504 505 if (iolen == -1) 506 return (errno); 507 if (residp) 508 *residp = len - iolen; 509 else if (iolen != len) 510 return (EIO); 511 return (0); 512 } 513 514 void 515 vn_close(vnode_t *vp) 516 { 517 close(vp->v_fd); 518 spa_strfree(vp->v_path); 519 umem_free(vp, sizeof (vnode_t)); 520 } 521 522 /* 523 * At a minimum we need to update the size since vdev_reopen() 524 * will no longer call vn_openat(). 525 */ 526 int 527 fop_getattr(vnode_t *vp, vattr_t *vap) 528 { 529 struct stat64 st; 530 531 if (fstat64(vp->v_fd, &st) == -1) { 532 close(vp->v_fd); 533 return (errno); 534 } 535 536 vap->va_size = st.st_size; 537 return (0); 538 } 539 540 #ifdef ZFS_DEBUG 541 542 /* 543 * ========================================================================= 544 * Figure out which debugging statements to print 545 * ========================================================================= 546 */ 547 548 static char *dprintf_string; 549 static int dprintf_print_all; 550 551 int 552 dprintf_find_string(const char *string) 553 { 554 char *tmp_str = dprintf_string; 555 int len = strlen(string); 556 557 /* 558 * Find out if this is a string we want to print. 559 * String format: file1.c,function_name1,file2.c,file3.c 560 */ 561 562 while (tmp_str != NULL) { 563 if (strncmp(tmp_str, string, len) == 0 && 564 (tmp_str[len] == ',' || tmp_str[len] == '\0')) 565 return (1); 566 tmp_str = strchr(tmp_str, ','); 567 if (tmp_str != NULL) 568 tmp_str++; /* Get rid of , */ 569 } 570 return (0); 571 } 572 573 void 574 dprintf_setup(int *argc, char **argv) 575 { 576 int i, j; 577 578 /* 579 * Debugging can be specified two ways: by setting the 580 * environment variable ZFS_DEBUG, or by including a 581 * "debug=..." argument on the command line. The command 582 * line setting overrides the environment variable. 583 */ 584 585 for (i = 1; i < *argc; i++) { 586 int len = strlen("debug="); 587 /* First look for a command line argument */ 588 if (strncmp("debug=", argv[i], len) == 0) { 589 dprintf_string = argv[i] + len; 590 /* Remove from args */ 591 for (j = i; j < *argc; j++) 592 argv[j] = argv[j+1]; 593 argv[j] = NULL; 594 (*argc)--; 595 } 596 } 597 598 if (dprintf_string == NULL) { 599 /* Look for ZFS_DEBUG environment variable */ 600 dprintf_string = getenv("ZFS_DEBUG"); 601 } 602 603 /* 604 * Are we just turning on all debugging? 605 */ 606 if (dprintf_find_string("on")) 607 dprintf_print_all = 1; 608 } 609 610 /* 611 * ========================================================================= 612 * debug printfs 613 * ========================================================================= 614 */ 615 void 616 __dprintf(const char *file, const char *func, int line, const char *fmt, ...) 617 { 618 const char *newfile; 619 va_list adx; 620 621 /* 622 * Get rid of annoying "../common/" prefix to filename. 623 */ 624 newfile = strrchr(file, '/'); 625 if (newfile != NULL) { 626 newfile = newfile + 1; /* Get rid of leading / */ 627 } else { 628 newfile = file; 629 } 630 631 if (dprintf_print_all || 632 dprintf_find_string(newfile) || 633 dprintf_find_string(func)) { 634 /* Print out just the function name if requested */ 635 flockfile(stdout); 636 if (dprintf_find_string("pid")) 637 (void) printf("%d ", getpid()); 638 if (dprintf_find_string("tid")) 639 (void) printf("%u ", thr_self()); 640 if (dprintf_find_string("cpu")) 641 (void) printf("%u ", getcpuid()); 642 if (dprintf_find_string("time")) 643 (void) printf("%llu ", gethrtime()); 644 if (dprintf_find_string("long")) 645 (void) printf("%s, line %d: ", newfile, line); 646 (void) printf("%s: ", func); 647 va_start(adx, fmt); 648 (void) vprintf(fmt, adx); 649 va_end(adx); 650 funlockfile(stdout); 651 } 652 } 653 654 #endif /* ZFS_DEBUG */ 655 656 /* 657 * ========================================================================= 658 * cmn_err() and panic() 659 * ========================================================================= 660 */ 661 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" }; 662 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" }; 663 664 void 665 vpanic(const char *fmt, va_list adx) 666 { 667 (void) fprintf(stderr, "error: "); 668 (void) vfprintf(stderr, fmt, adx); 669 (void) fprintf(stderr, "\n"); 670 671 abort(); /* think of it as a "user-level crash dump" */ 672 } 673 674 void 675 panic(const char *fmt, ...) 676 { 677 va_list adx; 678 679 va_start(adx, fmt); 680 vpanic(fmt, adx); 681 va_end(adx); 682 } 683 684 void 685 vcmn_err(int ce, const char *fmt, va_list adx) 686 { 687 if (ce == CE_PANIC) 688 vpanic(fmt, adx); 689 if (ce != CE_NOTE) { /* suppress noise in userland stress testing */ 690 (void) fprintf(stderr, "%s", ce_prefix[ce]); 691 (void) vfprintf(stderr, fmt, adx); 692 (void) fprintf(stderr, "%s", ce_suffix[ce]); 693 } 694 } 695 696 /*PRINTFLIKE2*/ 697 void 698 cmn_err(int ce, const char *fmt, ...) 699 { 700 va_list adx; 701 702 va_start(adx, fmt); 703 vcmn_err(ce, fmt, adx); 704 va_end(adx); 705 } 706 707 /* 708 * ========================================================================= 709 * kobj interfaces 710 * ========================================================================= 711 */ 712 struct _buf * 713 kobj_open_file(char *name) 714 { 715 struct _buf *file; 716 vnode_t *vp; 717 718 /* set vp as the _fd field of the file */ 719 if (vn_openat(name, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0, rootdir, 720 -1) != 0) 721 return ((void *)-1UL); 722 723 file = umem_zalloc(sizeof (struct _buf), UMEM_NOFAIL); 724 file->_fd = (intptr_t)vp; 725 return (file); 726 } 727 728 int 729 kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off) 730 { 731 ssize_t resid; 732 733 vn_rdwr(UIO_READ, (vnode_t *)file->_fd, buf, size, (offset_t)off, 734 UIO_SYSSPACE, 0, 0, 0, &resid); 735 736 return (size - resid); 737 } 738 739 void 740 kobj_close_file(struct _buf *file) 741 { 742 vn_close((vnode_t *)file->_fd); 743 umem_free(file, sizeof (struct _buf)); 744 } 745 746 int 747 kobj_get_filesize(struct _buf *file, uint64_t *size) 748 { 749 struct stat64 st; 750 vnode_t *vp = (vnode_t *)file->_fd; 751 752 if (fstat64(vp->v_fd, &st) == -1) { 753 vn_close(vp); 754 return (errno); 755 } 756 *size = st.st_size; 757 return (0); 758 } 759 760 /* 761 * ========================================================================= 762 * misc routines 763 * ========================================================================= 764 */ 765 766 void 767 delay(clock_t ticks) 768 { 769 poll(0, 0, ticks * (1000 / hz)); 770 } 771 772 /* 773 * Find highest one bit set. 774 * Returns bit number + 1 of highest bit that is set, otherwise returns 0. 775 * High order bit is 31 (or 63 in _LP64 kernel). 776 */ 777 int 778 highbit(ulong_t i) 779 { 780 register int h = 1; 781 782 if (i == 0) 783 return (0); 784 #ifdef _LP64 785 if (i & 0xffffffff00000000ul) { 786 h += 32; i >>= 32; 787 } 788 #endif 789 if (i & 0xffff0000) { 790 h += 16; i >>= 16; 791 } 792 if (i & 0xff00) { 793 h += 8; i >>= 8; 794 } 795 if (i & 0xf0) { 796 h += 4; i >>= 4; 797 } 798 if (i & 0xc) { 799 h += 2; i >>= 2; 800 } 801 if (i & 0x2) { 802 h += 1; 803 } 804 return (h); 805 } 806 807 static int random_fd = -1, urandom_fd = -1; 808 809 static int 810 random_get_bytes_common(uint8_t *ptr, size_t len, int fd) 811 { 812 size_t resid = len; 813 ssize_t bytes; 814 815 ASSERT(fd != -1); 816 817 while (resid != 0) { 818 bytes = read(fd, ptr, resid); 819 ASSERT3S(bytes, >=, 0); 820 ptr += bytes; 821 resid -= bytes; 822 } 823 824 return (0); 825 } 826 827 int 828 random_get_bytes(uint8_t *ptr, size_t len) 829 { 830 return (random_get_bytes_common(ptr, len, random_fd)); 831 } 832 833 int 834 random_get_pseudo_bytes(uint8_t *ptr, size_t len) 835 { 836 return (random_get_bytes_common(ptr, len, urandom_fd)); 837 } 838 839 int 840 ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result) 841 { 842 char *end; 843 844 *result = strtoul(hw_serial, &end, base); 845 if (*result == 0) 846 return (errno); 847 return (0); 848 } 849 850 int 851 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result) 852 { 853 char *end; 854 855 *result = strtoull(str, &end, base); 856 if (*result == 0) 857 return (errno); 858 return (0); 859 } 860 861 /* ARGSUSED */ 862 cyclic_id_t 863 cyclic_add(cyc_handler_t *hdlr, cyc_time_t *when) 864 { 865 return (1); 866 } 867 868 /* ARGSUSED */ 869 void 870 cyclic_remove(cyclic_id_t id) 871 { 872 } 873 874 /* ARGSUSED */ 875 int 876 cyclic_reprogram(cyclic_id_t id, hrtime_t expiration) 877 { 878 return (1); 879 } 880 881 /* 882 * ========================================================================= 883 * kernel emulation setup & teardown 884 * ========================================================================= 885 */ 886 static int 887 umem_out_of_memory(void) 888 { 889 char errmsg[] = "out of memory -- generating core dump\n"; 890 891 write(fileno(stderr), errmsg, sizeof (errmsg)); 892 abort(); 893 return (0); 894 } 895 896 void 897 kernel_init(int mode) 898 { 899 extern uint_t rrw_tsd_key; 900 901 umem_nofail_callback(umem_out_of_memory); 902 903 physmem = sysconf(_SC_PHYS_PAGES); 904 905 dprintf("physmem = %llu pages (%.2f GB)\n", physmem, 906 (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30)); 907 908 (void) snprintf(hw_serial, sizeof (hw_serial), "%ld", 909 (mode & FWRITE) ? gethostid() : 0); 910 911 VERIFY((random_fd = open("/dev/random", O_RDONLY)) != -1); 912 VERIFY((urandom_fd = open("/dev/urandom", O_RDONLY)) != -1); 913 914 system_taskq_init(); 915 916 mutex_init(&cpu_lock, NULL, MUTEX_DEFAULT, NULL); 917 918 spa_init(mode); 919 920 tsd_create(&rrw_tsd_key, rrw_tsd_destroy); 921 } 922 923 void 924 kernel_fini(void) 925 { 926 spa_fini(); 927 928 system_taskq_fini(); 929 930 close(random_fd); 931 close(urandom_fd); 932 933 random_fd = -1; 934 urandom_fd = -1; 935 } 936 937 int 938 z_uncompress(void *dst, size_t *dstlen, const void *src, size_t srclen) 939 { 940 int ret; 941 uLongf len = *dstlen; 942 943 if ((ret = uncompress(dst, &len, src, srclen)) == Z_OK) 944 *dstlen = (size_t)len; 945 946 return (ret); 947 } 948 949 int 950 z_compress_level(void *dst, size_t *dstlen, const void *src, size_t srclen, 951 int level) 952 { 953 int ret; 954 uLongf len = *dstlen; 955 956 if ((ret = compress2(dst, &len, src, srclen, level)) == Z_OK) 957 *dstlen = (size_t)len; 958 959 return (ret); 960 } 961 962 uid_t 963 crgetuid(cred_t *cr) 964 { 965 return (0); 966 } 967 968 uid_t 969 crgetruid(cred_t *cr) 970 { 971 return (0); 972 } 973 974 gid_t 975 crgetgid(cred_t *cr) 976 { 977 return (0); 978 } 979 980 int 981 crgetngroups(cred_t *cr) 982 { 983 return (0); 984 } 985 986 gid_t * 987 crgetgroups(cred_t *cr) 988 { 989 return (NULL); 990 } 991 992 int 993 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr) 994 { 995 return (0); 996 } 997 998 int 999 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr) 1000 { 1001 return (0); 1002 } 1003 1004 int 1005 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr) 1006 { 1007 return (0); 1008 } 1009 1010 ksiddomain_t * 1011 ksid_lookupdomain(const char *dom) 1012 { 1013 ksiddomain_t *kd; 1014 1015 kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL); 1016 kd->kd_name = spa_strdup(dom); 1017 return (kd); 1018 } 1019 1020 void 1021 ksiddomain_rele(ksiddomain_t *ksid) 1022 { 1023 spa_strfree(ksid->kd_name); 1024 umem_free(ksid, sizeof (ksiddomain_t)); 1025 } 1026 1027 /* 1028 * Do not change the length of the returned string; it must be freed 1029 * with strfree(). 1030 */ 1031 char * 1032 kmem_asprintf(const char *fmt, ...) 1033 { 1034 int size; 1035 va_list adx; 1036 char *buf; 1037 1038 va_start(adx, fmt); 1039 size = vsnprintf(NULL, 0, fmt, adx) + 1; 1040 va_end(adx); 1041 1042 buf = kmem_alloc(size, KM_SLEEP); 1043 1044 va_start(adx, fmt); 1045 size = vsnprintf(buf, size, fmt, adx); 1046 va_end(adx); 1047 1048 return (buf); 1049 } 1050 1051 /* ARGSUSED */ 1052 int 1053 zfs_onexit_fd_hold(int fd, minor_t *minorp) 1054 { 1055 *minorp = 0; 1056 return (0); 1057 } 1058 1059 /* ARGSUSED */ 1060 void 1061 zfs_onexit_fd_rele(int fd) 1062 { 1063 } 1064 1065 /* ARGSUSED */ 1066 int 1067 zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data, 1068 uint64_t *action_handle) 1069 { 1070 return (0); 1071 } 1072 1073 /* ARGSUSED */ 1074 int 1075 zfs_onexit_del_cb(minor_t minor, uint64_t action_handle, boolean_t fire) 1076 { 1077 return (0); 1078 } 1079 1080 /* ARGSUSED */ 1081 int 1082 zfs_onexit_cb_data(minor_t minor, uint64_t action_handle, void **data) 1083 { 1084 return (0); 1085 } 1086 1087 void 1088 bioinit(buf_t *bp) 1089 { 1090 bzero(bp, sizeof (buf_t)); 1091 } 1092 1093 void 1094 biodone(buf_t *bp) 1095 { 1096 if (bp->b_iodone != NULL) { 1097 (*(bp->b_iodone))(bp); 1098 return; 1099 } 1100 ASSERT((bp->b_flags & B_DONE) == 0); 1101 bp->b_flags |= B_DONE; 1102 } 1103 1104 void 1105 bioerror(buf_t *bp, int error) 1106 { 1107 ASSERT(bp != NULL); 1108 ASSERT(error >= 0); 1109 1110 if (error != 0) { 1111 bp->b_flags |= B_ERROR; 1112 } else { 1113 bp->b_flags &= ~B_ERROR; 1114 } 1115 bp->b_error = error; 1116 } 1117 1118 1119 int 1120 geterror(struct buf *bp) 1121 { 1122 int error = 0; 1123 1124 if (bp->b_flags & B_ERROR) { 1125 error = bp->b_error; 1126 if (!error) 1127 error = EIO; 1128 } 1129 return (error); 1130 } 1131