1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Pool import support functions. 28 * 29 * To import a pool, we rely on reading the configuration information from the 30 * ZFS label of each device. If we successfully read the label, then we 31 * organize the configuration information in the following hierarchy: 32 * 33 * pool guid -> toplevel vdev guid -> label txg 34 * 35 * Duplicate entries matching this same tuple will be discarded. Once we have 36 * examined every device, we pick the best label txg config for each toplevel 37 * vdev. We then arrange these toplevel vdevs into a complete pool config, and 38 * update any paths that have changed. Finally, we attempt to import the pool 39 * using our derived config, and record the results. 40 */ 41 42 #include <ctype.h> 43 #include <devid.h> 44 #include <dirent.h> 45 #include <errno.h> 46 #include <libintl.h> 47 #include <stddef.h> 48 #include <stdlib.h> 49 #include <string.h> 50 #include <sys/stat.h> 51 #include <unistd.h> 52 #include <fcntl.h> 53 #include <sys/vtoc.h> 54 #include <sys/dktp/fdisk.h> 55 #include <sys/efi_partition.h> 56 #include <thread_pool.h> 57 58 #include <sys/vdev_impl.h> 59 60 #include "libzfs.h" 61 #include "libzfs_impl.h" 62 63 /* 64 * Intermediate structures used to gather configuration information. 65 */ 66 typedef struct config_entry { 67 uint64_t ce_txg; 68 nvlist_t *ce_config; 69 struct config_entry *ce_next; 70 } config_entry_t; 71 72 typedef struct vdev_entry { 73 uint64_t ve_guid; 74 config_entry_t *ve_configs; 75 struct vdev_entry *ve_next; 76 } vdev_entry_t; 77 78 typedef struct pool_entry { 79 uint64_t pe_guid; 80 vdev_entry_t *pe_vdevs; 81 struct pool_entry *pe_next; 82 } pool_entry_t; 83 84 typedef struct name_entry { 85 char *ne_name; 86 uint64_t ne_guid; 87 struct name_entry *ne_next; 88 } name_entry_t; 89 90 typedef struct pool_list { 91 pool_entry_t *pools; 92 name_entry_t *names; 93 } pool_list_t; 94 95 static char * 96 get_devid(const char *path) 97 { 98 int fd; 99 ddi_devid_t devid; 100 char *minor, *ret; 101 102 if ((fd = open(path, O_RDONLY)) < 0) 103 return (NULL); 104 105 minor = NULL; 106 ret = NULL; 107 if (devid_get(fd, &devid) == 0) { 108 if (devid_get_minor_name(fd, &minor) == 0) 109 ret = devid_str_encode(devid, minor); 110 if (minor != NULL) 111 devid_str_free(minor); 112 devid_free(devid); 113 } 114 (void) close(fd); 115 116 return (ret); 117 } 118 119 120 /* 121 * Go through and fix up any path and/or devid information for the given vdev 122 * configuration. 123 */ 124 static int 125 fix_paths(nvlist_t *nv, name_entry_t *names) 126 { 127 nvlist_t **child; 128 uint_t c, children; 129 uint64_t guid; 130 name_entry_t *ne, *best; 131 char *path, *devid; 132 int matched; 133 134 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 135 &child, &children) == 0) { 136 for (c = 0; c < children; c++) 137 if (fix_paths(child[c], names) != 0) 138 return (-1); 139 return (0); 140 } 141 142 /* 143 * This is a leaf (file or disk) vdev. In either case, go through 144 * the name list and see if we find a matching guid. If so, replace 145 * the path and see if we can calculate a new devid. 146 * 147 * There may be multiple names associated with a particular guid, in 148 * which case we have overlapping slices or multiple paths to the same 149 * disk. If this is the case, then we want to pick the path that is 150 * the most similar to the original, where "most similar" is the number 151 * of matching characters starting from the end of the path. This will 152 * preserve slice numbers even if the disks have been reorganized, and 153 * will also catch preferred disk names if multiple paths exist. 154 */ 155 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0); 156 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0) 157 path = NULL; 158 159 matched = 0; 160 best = NULL; 161 for (ne = names; ne != NULL; ne = ne->ne_next) { 162 if (ne->ne_guid == guid) { 163 const char *src, *dst; 164 int count; 165 166 if (path == NULL) { 167 best = ne; 168 break; 169 } 170 171 src = ne->ne_name + strlen(ne->ne_name) - 1; 172 dst = path + strlen(path) - 1; 173 for (count = 0; src >= ne->ne_name && dst >= path; 174 src--, dst--, count++) 175 if (*src != *dst) 176 break; 177 178 /* 179 * At this point, 'count' is the number of characters 180 * matched from the end. 181 */ 182 if (count > matched || best == NULL) { 183 best = ne; 184 matched = count; 185 } 186 } 187 } 188 189 if (best == NULL) 190 return (0); 191 192 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0) 193 return (-1); 194 195 if ((devid = get_devid(best->ne_name)) == NULL) { 196 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID); 197 } else { 198 if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) 199 return (-1); 200 devid_str_free(devid); 201 } 202 203 return (0); 204 } 205 206 /* 207 * Add the given configuration to the list of known devices. 208 */ 209 static int 210 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path, 211 nvlist_t *config) 212 { 213 uint64_t pool_guid, vdev_guid, top_guid, txg, state; 214 pool_entry_t *pe; 215 vdev_entry_t *ve; 216 config_entry_t *ce; 217 name_entry_t *ne; 218 219 /* 220 * If this is a hot spare not currently in use or level 2 cache 221 * device, add it to the list of names to translate, but don't do 222 * anything else. 223 */ 224 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 225 &state) == 0 && 226 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) && 227 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) { 228 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) 229 return (-1); 230 231 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { 232 free(ne); 233 return (-1); 234 } 235 ne->ne_guid = vdev_guid; 236 ne->ne_next = pl->names; 237 pl->names = ne; 238 return (0); 239 } 240 241 /* 242 * If we have a valid config but cannot read any of these fields, then 243 * it means we have a half-initialized label. In vdev_label_init() 244 * we write a label with txg == 0 so that we can identify the device 245 * in case the user refers to the same disk later on. If we fail to 246 * create the pool, we'll be left with a label in this state 247 * which should not be considered part of a valid pool. 248 */ 249 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 250 &pool_guid) != 0 || 251 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 252 &vdev_guid) != 0 || 253 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID, 254 &top_guid) != 0 || 255 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 256 &txg) != 0 || txg == 0) { 257 nvlist_free(config); 258 return (0); 259 } 260 261 /* 262 * First, see if we know about this pool. If not, then add it to the 263 * list of known pools. 264 */ 265 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 266 if (pe->pe_guid == pool_guid) 267 break; 268 } 269 270 if (pe == NULL) { 271 if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) { 272 nvlist_free(config); 273 return (-1); 274 } 275 pe->pe_guid = pool_guid; 276 pe->pe_next = pl->pools; 277 pl->pools = pe; 278 } 279 280 /* 281 * Second, see if we know about this toplevel vdev. Add it if its 282 * missing. 283 */ 284 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 285 if (ve->ve_guid == top_guid) 286 break; 287 } 288 289 if (ve == NULL) { 290 if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) { 291 nvlist_free(config); 292 return (-1); 293 } 294 ve->ve_guid = top_guid; 295 ve->ve_next = pe->pe_vdevs; 296 pe->pe_vdevs = ve; 297 } 298 299 /* 300 * Third, see if we have a config with a matching transaction group. If 301 * so, then we do nothing. Otherwise, add it to the list of known 302 * configs. 303 */ 304 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { 305 if (ce->ce_txg == txg) 306 break; 307 } 308 309 if (ce == NULL) { 310 if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) { 311 nvlist_free(config); 312 return (-1); 313 } 314 ce->ce_txg = txg; 315 ce->ce_config = config; 316 ce->ce_next = ve->ve_configs; 317 ve->ve_configs = ce; 318 } else { 319 nvlist_free(config); 320 } 321 322 /* 323 * At this point we've successfully added our config to the list of 324 * known configs. The last thing to do is add the vdev guid -> path 325 * mappings so that we can fix up the configuration as necessary before 326 * doing the import. 327 */ 328 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) 329 return (-1); 330 331 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { 332 free(ne); 333 return (-1); 334 } 335 336 ne->ne_guid = vdev_guid; 337 ne->ne_next = pl->names; 338 pl->names = ne; 339 340 return (0); 341 } 342 343 /* 344 * Returns true if the named pool matches the given GUID. 345 */ 346 static int 347 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid, 348 boolean_t *isactive) 349 { 350 zpool_handle_t *zhp; 351 uint64_t theguid; 352 353 if (zpool_open_silent(hdl, name, &zhp) != 0) 354 return (-1); 355 356 if (zhp == NULL) { 357 *isactive = B_FALSE; 358 return (0); 359 } 360 361 verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID, 362 &theguid) == 0); 363 364 zpool_close(zhp); 365 366 *isactive = (theguid == guid); 367 return (0); 368 } 369 370 static nvlist_t * 371 refresh_config(libzfs_handle_t *hdl, nvlist_t *config) 372 { 373 nvlist_t *nvl; 374 zfs_cmd_t zc = { 0 }; 375 int err; 376 377 if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0) 378 return (NULL); 379 380 if (zcmd_alloc_dst_nvlist(hdl, &zc, 381 zc.zc_nvlist_conf_size * 2) != 0) { 382 zcmd_free_nvlists(&zc); 383 return (NULL); 384 } 385 386 while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT, 387 &zc)) != 0 && errno == ENOMEM) { 388 if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) { 389 zcmd_free_nvlists(&zc); 390 return (NULL); 391 } 392 } 393 394 if (err) { 395 zcmd_free_nvlists(&zc); 396 return (NULL); 397 } 398 399 if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) { 400 zcmd_free_nvlists(&zc); 401 return (NULL); 402 } 403 404 zcmd_free_nvlists(&zc); 405 return (nvl); 406 } 407 408 /* 409 * Determine if the vdev id is a hole in the namespace. 410 */ 411 boolean_t 412 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id) 413 { 414 for (int c = 0; c < holes; c++) { 415 416 /* Top-level is a hole */ 417 if (hole_array[c] == id) 418 return (B_TRUE); 419 } 420 return (B_FALSE); 421 } 422 423 /* 424 * Convert our list of pools into the definitive set of configurations. We 425 * start by picking the best config for each toplevel vdev. Once that's done, 426 * we assemble the toplevel vdevs into a full config for the pool. We make a 427 * pass to fix up any incorrect paths, and then add it to the main list to 428 * return to the user. 429 */ 430 static nvlist_t * 431 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok) 432 { 433 pool_entry_t *pe; 434 vdev_entry_t *ve; 435 config_entry_t *ce; 436 nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot; 437 nvlist_t **spares, **l2cache; 438 uint_t i, nspares, nl2cache; 439 boolean_t config_seen; 440 uint64_t best_txg; 441 char *name, *hostname; 442 uint64_t version, guid; 443 uint_t children = 0; 444 nvlist_t **child = NULL; 445 uint_t holes; 446 uint64_t *hole_array, max_id; 447 uint_t c; 448 boolean_t isactive; 449 uint64_t hostid; 450 nvlist_t *nvl; 451 boolean_t found_one = B_FALSE; 452 boolean_t valid_top_config = B_FALSE; 453 454 if (nvlist_alloc(&ret, 0, 0) != 0) 455 goto nomem; 456 457 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 458 uint64_t id, max_txg = 0; 459 460 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0) 461 goto nomem; 462 config_seen = B_FALSE; 463 464 /* 465 * Iterate over all toplevel vdevs. Grab the pool configuration 466 * from the first one we find, and then go through the rest and 467 * add them as necessary to the 'vdevs' member of the config. 468 */ 469 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 470 471 /* 472 * Determine the best configuration for this vdev by 473 * selecting the config with the latest transaction 474 * group. 475 */ 476 best_txg = 0; 477 for (ce = ve->ve_configs; ce != NULL; 478 ce = ce->ce_next) { 479 480 if (ce->ce_txg > best_txg) { 481 tmp = ce->ce_config; 482 best_txg = ce->ce_txg; 483 } 484 } 485 486 /* 487 * We rely on the fact that the max txg for the 488 * pool will contain the most up-to-date information 489 * about the valid top-levels in the vdev namespace. 490 */ 491 if (best_txg > max_txg) { 492 (void) nvlist_remove(config, 493 ZPOOL_CONFIG_VDEV_CHILDREN, 494 DATA_TYPE_UINT64); 495 (void) nvlist_remove(config, 496 ZPOOL_CONFIG_HOLE_ARRAY, 497 DATA_TYPE_UINT64_ARRAY); 498 499 max_txg = best_txg; 500 hole_array = NULL; 501 holes = 0; 502 max_id = 0; 503 valid_top_config = B_FALSE; 504 505 if (nvlist_lookup_uint64(tmp, 506 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) { 507 verify(nvlist_add_uint64(config, 508 ZPOOL_CONFIG_VDEV_CHILDREN, 509 max_id) == 0); 510 valid_top_config = B_TRUE; 511 } 512 513 if (nvlist_lookup_uint64_array(tmp, 514 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array, 515 &holes) == 0) { 516 verify(nvlist_add_uint64_array(config, 517 ZPOOL_CONFIG_HOLE_ARRAY, 518 hole_array, holes) == 0); 519 } 520 } 521 522 if (!config_seen) { 523 /* 524 * Copy the relevant pieces of data to the pool 525 * configuration: 526 * 527 * version 528 * pool guid 529 * name 530 * pool state 531 * hostid (if available) 532 * hostname (if available) 533 */ 534 uint64_t state; 535 536 verify(nvlist_lookup_uint64(tmp, 537 ZPOOL_CONFIG_VERSION, &version) == 0); 538 if (nvlist_add_uint64(config, 539 ZPOOL_CONFIG_VERSION, version) != 0) 540 goto nomem; 541 verify(nvlist_lookup_uint64(tmp, 542 ZPOOL_CONFIG_POOL_GUID, &guid) == 0); 543 if (nvlist_add_uint64(config, 544 ZPOOL_CONFIG_POOL_GUID, guid) != 0) 545 goto nomem; 546 verify(nvlist_lookup_string(tmp, 547 ZPOOL_CONFIG_POOL_NAME, &name) == 0); 548 if (nvlist_add_string(config, 549 ZPOOL_CONFIG_POOL_NAME, name) != 0) 550 goto nomem; 551 verify(nvlist_lookup_uint64(tmp, 552 ZPOOL_CONFIG_POOL_STATE, &state) == 0); 553 if (nvlist_add_uint64(config, 554 ZPOOL_CONFIG_POOL_STATE, state) != 0) 555 goto nomem; 556 hostid = 0; 557 if (nvlist_lookup_uint64(tmp, 558 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 559 if (nvlist_add_uint64(config, 560 ZPOOL_CONFIG_HOSTID, hostid) != 0) 561 goto nomem; 562 verify(nvlist_lookup_string(tmp, 563 ZPOOL_CONFIG_HOSTNAME, 564 &hostname) == 0); 565 if (nvlist_add_string(config, 566 ZPOOL_CONFIG_HOSTNAME, 567 hostname) != 0) 568 goto nomem; 569 } 570 571 config_seen = B_TRUE; 572 } 573 574 /* 575 * Add this top-level vdev to the child array. 576 */ 577 verify(nvlist_lookup_nvlist(tmp, 578 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); 579 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID, 580 &id) == 0); 581 582 if (id >= children) { 583 nvlist_t **newchild; 584 585 newchild = zfs_alloc(hdl, (id + 1) * 586 sizeof (nvlist_t *)); 587 if (newchild == NULL) 588 goto nomem; 589 590 for (c = 0; c < children; c++) 591 newchild[c] = child[c]; 592 593 free(child); 594 child = newchild; 595 children = id + 1; 596 } 597 if (nvlist_dup(nvtop, &child[id], 0) != 0) 598 goto nomem; 599 600 } 601 602 /* 603 * If we have information about all the top-levels then 604 * clean up the nvlist which we've constructed. This 605 * means removing any extraneous devices that are 606 * beyond the valid range or adding devices to the end 607 * of our array which appear to be missing. 608 */ 609 if (valid_top_config) { 610 if (max_id < children) { 611 for (c = max_id; c < children; c++) 612 nvlist_free(child[c]); 613 children = max_id; 614 } else if (max_id > children) { 615 nvlist_t **newchild; 616 617 newchild = zfs_alloc(hdl, (max_id) * 618 sizeof (nvlist_t *)); 619 if (newchild == NULL) 620 goto nomem; 621 622 for (c = 0; c < children; c++) 623 newchild[c] = child[c]; 624 625 free(child); 626 child = newchild; 627 children = max_id; 628 } 629 } 630 631 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 632 &guid) == 0); 633 634 /* 635 * The vdev namespace may contain holes as a result of 636 * device removal. We must add them back into the vdev 637 * tree before we process any missing devices. 638 */ 639 if (holes > 0) { 640 ASSERT(valid_top_config); 641 642 for (c = 0; c < children; c++) { 643 nvlist_t *holey; 644 645 if (child[c] != NULL || 646 !vdev_is_hole(hole_array, holes, c)) 647 continue; 648 649 if (nvlist_alloc(&holey, NV_UNIQUE_NAME, 650 0) != 0) 651 goto nomem; 652 653 /* 654 * Holes in the namespace are treated as 655 * "hole" top-level vdevs and have a 656 * special flag set on them. 657 */ 658 if (nvlist_add_string(holey, 659 ZPOOL_CONFIG_TYPE, 660 VDEV_TYPE_HOLE) != 0 || 661 nvlist_add_uint64(holey, 662 ZPOOL_CONFIG_ID, c) != 0 || 663 nvlist_add_uint64(holey, 664 ZPOOL_CONFIG_GUID, 0ULL) != 0) 665 goto nomem; 666 child[c] = holey; 667 } 668 } 669 670 /* 671 * Look for any missing top-level vdevs. If this is the case, 672 * create a faked up 'missing' vdev as a placeholder. We cannot 673 * simply compress the child array, because the kernel performs 674 * certain checks to make sure the vdev IDs match their location 675 * in the configuration. 676 */ 677 for (c = 0; c < children; c++) { 678 if (child[c] == NULL) { 679 nvlist_t *missing; 680 if (nvlist_alloc(&missing, NV_UNIQUE_NAME, 681 0) != 0) 682 goto nomem; 683 if (nvlist_add_string(missing, 684 ZPOOL_CONFIG_TYPE, 685 VDEV_TYPE_MISSING) != 0 || 686 nvlist_add_uint64(missing, 687 ZPOOL_CONFIG_ID, c) != 0 || 688 nvlist_add_uint64(missing, 689 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 690 nvlist_free(missing); 691 goto nomem; 692 } 693 child[c] = missing; 694 } 695 } 696 697 /* 698 * Put all of this pool's top-level vdevs into a root vdev. 699 */ 700 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) 701 goto nomem; 702 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 703 VDEV_TYPE_ROOT) != 0 || 704 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 || 705 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 || 706 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 707 child, children) != 0) { 708 nvlist_free(nvroot); 709 goto nomem; 710 } 711 712 for (c = 0; c < children; c++) 713 nvlist_free(child[c]); 714 free(child); 715 children = 0; 716 child = NULL; 717 718 /* 719 * Go through and fix up any paths and/or devids based on our 720 * known list of vdev GUID -> path mappings. 721 */ 722 if (fix_paths(nvroot, pl->names) != 0) { 723 nvlist_free(nvroot); 724 goto nomem; 725 } 726 727 /* 728 * Add the root vdev to this pool's configuration. 729 */ 730 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 731 nvroot) != 0) { 732 nvlist_free(nvroot); 733 goto nomem; 734 } 735 nvlist_free(nvroot); 736 737 /* 738 * zdb uses this path to report on active pools that were 739 * imported or created using -R. 740 */ 741 if (active_ok) 742 goto add_pool; 743 744 /* 745 * Determine if this pool is currently active, in which case we 746 * can't actually import it. 747 */ 748 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 749 &name) == 0); 750 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 751 &guid) == 0); 752 753 if (pool_active(hdl, name, guid, &isactive) != 0) 754 goto error; 755 756 if (isactive) { 757 nvlist_free(config); 758 config = NULL; 759 continue; 760 } 761 762 if ((nvl = refresh_config(hdl, config)) == NULL) { 763 nvlist_free(config); 764 config = NULL; 765 continue; 766 } 767 768 nvlist_free(config); 769 config = nvl; 770 771 /* 772 * Go through and update the paths for spares, now that we have 773 * them. 774 */ 775 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 776 &nvroot) == 0); 777 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 778 &spares, &nspares) == 0) { 779 for (i = 0; i < nspares; i++) { 780 if (fix_paths(spares[i], pl->names) != 0) 781 goto nomem; 782 } 783 } 784 785 /* 786 * Update the paths for l2cache devices. 787 */ 788 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 789 &l2cache, &nl2cache) == 0) { 790 for (i = 0; i < nl2cache; i++) { 791 if (fix_paths(l2cache[i], pl->names) != 0) 792 goto nomem; 793 } 794 } 795 796 /* 797 * Restore the original information read from the actual label. 798 */ 799 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID, 800 DATA_TYPE_UINT64); 801 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME, 802 DATA_TYPE_STRING); 803 if (hostid != 0) { 804 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, 805 hostid) == 0); 806 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, 807 hostname) == 0); 808 } 809 810 add_pool: 811 /* 812 * Add this pool to the list of configs. 813 */ 814 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 815 &name) == 0); 816 if (nvlist_add_nvlist(ret, name, config) != 0) 817 goto nomem; 818 819 found_one = B_TRUE; 820 nvlist_free(config); 821 config = NULL; 822 } 823 824 if (!found_one) { 825 nvlist_free(ret); 826 ret = NULL; 827 } 828 829 return (ret); 830 831 nomem: 832 (void) no_memory(hdl); 833 error: 834 nvlist_free(config); 835 nvlist_free(ret); 836 for (c = 0; c < children; c++) 837 nvlist_free(child[c]); 838 free(child); 839 840 return (NULL); 841 } 842 843 /* 844 * Return the offset of the given label. 845 */ 846 static uint64_t 847 label_offset(uint64_t size, int l) 848 { 849 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0); 850 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 851 0 : size - VDEV_LABELS * sizeof (vdev_label_t))); 852 } 853 854 /* 855 * Given a file descriptor, read the label information and return an nvlist 856 * describing the configuration, if there is one. 857 */ 858 int 859 zpool_read_label(int fd, nvlist_t **config) 860 { 861 struct stat64 statbuf; 862 int l; 863 vdev_label_t *label; 864 uint64_t state, txg, size; 865 866 *config = NULL; 867 868 if (fstat64(fd, &statbuf) == -1) 869 return (0); 870 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 871 872 if ((label = malloc(sizeof (vdev_label_t))) == NULL) 873 return (-1); 874 875 for (l = 0; l < VDEV_LABELS; l++) { 876 if (pread64(fd, label, sizeof (vdev_label_t), 877 label_offset(size, l)) != sizeof (vdev_label_t)) 878 continue; 879 880 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist, 881 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) 882 continue; 883 884 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 885 &state) != 0 || state > POOL_STATE_L2CACHE) { 886 nvlist_free(*config); 887 continue; 888 } 889 890 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 891 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 892 &txg) != 0 || txg == 0)) { 893 nvlist_free(*config); 894 continue; 895 } 896 897 free(label); 898 return (0); 899 } 900 901 free(label); 902 *config = NULL; 903 return (0); 904 } 905 906 typedef struct rdsk_node { 907 char *rn_name; 908 int rn_dfd; 909 libzfs_handle_t *rn_hdl; 910 nvlist_t *rn_config; 911 avl_tree_t *rn_avl; 912 avl_node_t rn_node; 913 boolean_t rn_nozpool; 914 } rdsk_node_t; 915 916 static int 917 slice_cache_compare(const void *arg1, const void *arg2) 918 { 919 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name; 920 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name; 921 char *nm1slice, *nm2slice; 922 int rv; 923 924 /* 925 * slices zero and two are the most likely to provide results, 926 * so put those first 927 */ 928 nm1slice = strstr(nm1, "s0"); 929 nm2slice = strstr(nm2, "s0"); 930 if (nm1slice && !nm2slice) { 931 return (-1); 932 } 933 if (!nm1slice && nm2slice) { 934 return (1); 935 } 936 nm1slice = strstr(nm1, "s2"); 937 nm2slice = strstr(nm2, "s2"); 938 if (nm1slice && !nm2slice) { 939 return (-1); 940 } 941 if (!nm1slice && nm2slice) { 942 return (1); 943 } 944 945 rv = strcmp(nm1, nm2); 946 if (rv == 0) 947 return (0); 948 return (rv > 0 ? 1 : -1); 949 } 950 951 static void 952 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno, 953 diskaddr_t size, uint_t blksz) 954 { 955 rdsk_node_t tmpnode; 956 rdsk_node_t *node; 957 char sname[MAXNAMELEN]; 958 959 tmpnode.rn_name = &sname[0]; 960 (void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u", 961 diskname, partno); 962 /* 963 * protect against division by zero for disk labels that 964 * contain a bogus sector size 965 */ 966 if (blksz == 0) 967 blksz = DEV_BSIZE; 968 /* too small to contain a zpool? */ 969 if ((size < (SPA_MINDEVSIZE / blksz)) && 970 (node = avl_find(r, &tmpnode, NULL))) 971 node->rn_nozpool = B_TRUE; 972 } 973 974 static void 975 nozpool_all_slices(avl_tree_t *r, const char *sname) 976 { 977 char diskname[MAXNAMELEN]; 978 char *ptr; 979 int i; 980 981 (void) strncpy(diskname, sname, MAXNAMELEN); 982 if (((ptr = strrchr(diskname, 's')) == NULL) && 983 ((ptr = strrchr(diskname, 'p')) == NULL)) 984 return; 985 ptr[0] = 's'; 986 ptr[1] = '\0'; 987 for (i = 0; i < NDKMAP; i++) 988 check_one_slice(r, diskname, i, 0, 1); 989 ptr[0] = 'p'; 990 for (i = 0; i <= FD_NUMPART; i++) 991 check_one_slice(r, diskname, i, 0, 1); 992 } 993 994 static void 995 check_slices(avl_tree_t *r, int fd, const char *sname) 996 { 997 struct extvtoc vtoc; 998 struct dk_gpt *gpt; 999 char diskname[MAXNAMELEN]; 1000 char *ptr; 1001 int i; 1002 1003 (void) strncpy(diskname, sname, MAXNAMELEN); 1004 if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1])) 1005 return; 1006 ptr[1] = '\0'; 1007 1008 if (read_extvtoc(fd, &vtoc) >= 0) { 1009 for (i = 0; i < NDKMAP; i++) 1010 check_one_slice(r, diskname, i, 1011 vtoc.v_part[i].p_size, vtoc.v_sectorsz); 1012 } else if (efi_alloc_and_read(fd, &gpt) >= 0) { 1013 /* 1014 * on x86 we'll still have leftover links that point 1015 * to slices s[9-15], so use NDKMAP instead 1016 */ 1017 for (i = 0; i < NDKMAP; i++) 1018 check_one_slice(r, diskname, i, 1019 gpt->efi_parts[i].p_size, gpt->efi_lbasize); 1020 /* nodes p[1-4] are never used with EFI labels */ 1021 ptr[0] = 'p'; 1022 for (i = 1; i <= FD_NUMPART; i++) 1023 check_one_slice(r, diskname, i, 0, 1); 1024 efi_free(gpt); 1025 } 1026 } 1027 1028 static void 1029 zpool_open_func(void *arg) 1030 { 1031 rdsk_node_t *rn = arg; 1032 struct stat64 statbuf; 1033 nvlist_t *config; 1034 int fd; 1035 1036 if (rn->rn_nozpool) 1037 return; 1038 if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) { 1039 /* symlink to a device that's no longer there */ 1040 if (errno == ENOENT) 1041 nozpool_all_slices(rn->rn_avl, rn->rn_name); 1042 return; 1043 } 1044 /* 1045 * Ignore failed stats. We only want regular 1046 * files, character devs and block devs. 1047 */ 1048 if (fstat64(fd, &statbuf) != 0 || 1049 (!S_ISREG(statbuf.st_mode) && 1050 !S_ISCHR(statbuf.st_mode) && 1051 !S_ISBLK(statbuf.st_mode))) { 1052 (void) close(fd); 1053 return; 1054 } 1055 /* this file is too small to hold a zpool */ 1056 if (S_ISREG(statbuf.st_mode) && 1057 statbuf.st_size < SPA_MINDEVSIZE) { 1058 (void) close(fd); 1059 return; 1060 } else if (!S_ISREG(statbuf.st_mode)) { 1061 /* 1062 * Try to read the disk label first so we don't have to 1063 * open a bunch of minor nodes that can't have a zpool. 1064 */ 1065 check_slices(rn->rn_avl, fd, rn->rn_name); 1066 } 1067 1068 if ((zpool_read_label(fd, &config)) != 0) { 1069 (void) close(fd); 1070 (void) no_memory(rn->rn_hdl); 1071 return; 1072 } 1073 (void) close(fd); 1074 1075 1076 rn->rn_config = config; 1077 if (config != NULL) { 1078 assert(rn->rn_nozpool == B_FALSE); 1079 } 1080 } 1081 1082 /* 1083 * Given a file descriptor, clear (zero) the label information. This function 1084 * is currently only used in the appliance stack as part of the ZFS sysevent 1085 * module. 1086 */ 1087 int 1088 zpool_clear_label(int fd) 1089 { 1090 struct stat64 statbuf; 1091 int l; 1092 vdev_label_t *label; 1093 uint64_t size; 1094 1095 if (fstat64(fd, &statbuf) == -1) 1096 return (0); 1097 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 1098 1099 if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL) 1100 return (-1); 1101 1102 for (l = 0; l < VDEV_LABELS; l++) { 1103 if (pwrite64(fd, label, sizeof (vdev_label_t), 1104 label_offset(size, l)) != sizeof (vdev_label_t)) 1105 return (-1); 1106 } 1107 1108 free(label); 1109 return (0); 1110 } 1111 1112 /* 1113 * Given a list of directories to search, find all pools stored on disk. This 1114 * includes partial pools which are not available to import. If no args are 1115 * given (argc is 0), then the default directory (/dev/dsk) is searched. 1116 * poolname or guid (but not both) are provided by the caller when trying 1117 * to import a specific pool. 1118 */ 1119 static nvlist_t * 1120 zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg) 1121 { 1122 int i, dirs = iarg->paths; 1123 DIR *dirp = NULL; 1124 struct dirent64 *dp; 1125 char path[MAXPATHLEN]; 1126 char *end, **dir = iarg->path; 1127 size_t pathleft; 1128 nvlist_t *ret = NULL; 1129 static char *default_dir = "/dev/dsk"; 1130 pool_list_t pools = { 0 }; 1131 pool_entry_t *pe, *penext; 1132 vdev_entry_t *ve, *venext; 1133 config_entry_t *ce, *cenext; 1134 name_entry_t *ne, *nenext; 1135 avl_tree_t slice_cache; 1136 rdsk_node_t *slice; 1137 void *cookie; 1138 1139 if (dirs == 0) { 1140 dirs = 1; 1141 dir = &default_dir; 1142 } 1143 1144 /* 1145 * Go through and read the label configuration information from every 1146 * possible device, organizing the information according to pool GUID 1147 * and toplevel GUID. 1148 */ 1149 for (i = 0; i < dirs; i++) { 1150 tpool_t *t; 1151 char *rdsk; 1152 int dfd; 1153 1154 /* use realpath to normalize the path */ 1155 if (realpath(dir[i], path) == 0) { 1156 (void) zfs_error_fmt(hdl, EZFS_BADPATH, 1157 dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]); 1158 goto error; 1159 } 1160 end = &path[strlen(path)]; 1161 *end++ = '/'; 1162 *end = 0; 1163 pathleft = &path[sizeof (path)] - end; 1164 1165 /* 1166 * Using raw devices instead of block devices when we're 1167 * reading the labels skips a bunch of slow operations during 1168 * close(2) processing, so we replace /dev/dsk with /dev/rdsk. 1169 */ 1170 if (strcmp(path, "/dev/dsk/") == 0) 1171 rdsk = "/dev/rdsk/"; 1172 else 1173 rdsk = path; 1174 1175 if ((dfd = open64(rdsk, O_RDONLY)) < 0 || 1176 (dirp = fdopendir(dfd)) == NULL) { 1177 zfs_error_aux(hdl, strerror(errno)); 1178 (void) zfs_error_fmt(hdl, EZFS_BADPATH, 1179 dgettext(TEXT_DOMAIN, "cannot open '%s'"), 1180 rdsk); 1181 goto error; 1182 } 1183 1184 avl_create(&slice_cache, slice_cache_compare, 1185 sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node)); 1186 /* 1187 * This is not MT-safe, but we have no MT consumers of libzfs 1188 */ 1189 while ((dp = readdir64(dirp)) != NULL) { 1190 const char *name = dp->d_name; 1191 if (name[0] == '.' && 1192 (name[1] == 0 || (name[1] == '.' && name[2] == 0))) 1193 continue; 1194 1195 slice = zfs_alloc(hdl, sizeof (rdsk_node_t)); 1196 slice->rn_name = zfs_strdup(hdl, name); 1197 slice->rn_avl = &slice_cache; 1198 slice->rn_dfd = dfd; 1199 slice->rn_hdl = hdl; 1200 slice->rn_nozpool = B_FALSE; 1201 avl_add(&slice_cache, slice); 1202 } 1203 /* 1204 * create a thread pool to do all of this in parallel; 1205 * rn_nozpool is not protected, so this is racy in that 1206 * multiple tasks could decide that the same slice can 1207 * not hold a zpool, which is benign. Also choose 1208 * double the number of processors; we hold a lot of 1209 * locks in the kernel, so going beyond this doesn't 1210 * buy us much. 1211 */ 1212 t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN), 1213 0, NULL); 1214 for (slice = avl_first(&slice_cache); slice; 1215 (slice = avl_walk(&slice_cache, slice, 1216 AVL_AFTER))) 1217 (void) tpool_dispatch(t, zpool_open_func, slice); 1218 tpool_wait(t); 1219 tpool_destroy(t); 1220 1221 cookie = NULL; 1222 while ((slice = avl_destroy_nodes(&slice_cache, 1223 &cookie)) != NULL) { 1224 if (slice->rn_config != NULL) { 1225 nvlist_t *config = slice->rn_config; 1226 boolean_t matched = B_TRUE; 1227 1228 if (iarg->poolname != NULL) { 1229 char *pname; 1230 1231 matched = nvlist_lookup_string(config, 1232 ZPOOL_CONFIG_POOL_NAME, 1233 &pname) == 0 && 1234 strcmp(iarg->poolname, pname) == 0; 1235 } else if (iarg->guid != 0) { 1236 uint64_t this_guid; 1237 1238 matched = nvlist_lookup_uint64(config, 1239 ZPOOL_CONFIG_POOL_GUID, 1240 &this_guid) == 0 && 1241 iarg->guid == this_guid; 1242 } 1243 if (!matched) { 1244 nvlist_free(config); 1245 config = NULL; 1246 continue; 1247 } 1248 /* use the non-raw path for the config */ 1249 (void) strlcpy(end, slice->rn_name, pathleft); 1250 if (add_config(hdl, &pools, path, config) != 0) 1251 goto error; 1252 } 1253 free(slice->rn_name); 1254 free(slice); 1255 } 1256 avl_destroy(&slice_cache); 1257 1258 (void) closedir(dirp); 1259 dirp = NULL; 1260 } 1261 1262 ret = get_configs(hdl, &pools, iarg->can_be_active); 1263 1264 error: 1265 for (pe = pools.pools; pe != NULL; pe = penext) { 1266 penext = pe->pe_next; 1267 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) { 1268 venext = ve->ve_next; 1269 for (ce = ve->ve_configs; ce != NULL; ce = cenext) { 1270 cenext = ce->ce_next; 1271 if (ce->ce_config) 1272 nvlist_free(ce->ce_config); 1273 free(ce); 1274 } 1275 free(ve); 1276 } 1277 free(pe); 1278 } 1279 1280 for (ne = pools.names; ne != NULL; ne = nenext) { 1281 nenext = ne->ne_next; 1282 if (ne->ne_name) 1283 free(ne->ne_name); 1284 free(ne); 1285 } 1286 1287 if (dirp) 1288 (void) closedir(dirp); 1289 1290 return (ret); 1291 } 1292 1293 nvlist_t * 1294 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv) 1295 { 1296 importargs_t iarg = { 0 }; 1297 1298 iarg.paths = argc; 1299 iarg.path = argv; 1300 1301 return (zpool_find_import_impl(hdl, &iarg)); 1302 } 1303 1304 /* 1305 * Given a cache file, return the contents as a list of importable pools. 1306 * poolname or guid (but not both) are provided by the caller when trying 1307 * to import a specific pool. 1308 */ 1309 nvlist_t * 1310 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile, 1311 char *poolname, uint64_t guid) 1312 { 1313 char *buf; 1314 int fd; 1315 struct stat64 statbuf; 1316 nvlist_t *raw, *src, *dst; 1317 nvlist_t *pools; 1318 nvpair_t *elem; 1319 char *name; 1320 uint64_t this_guid; 1321 boolean_t active; 1322 1323 verify(poolname == NULL || guid == 0); 1324 1325 if ((fd = open(cachefile, O_RDONLY)) < 0) { 1326 zfs_error_aux(hdl, "%s", strerror(errno)); 1327 (void) zfs_error(hdl, EZFS_BADCACHE, 1328 dgettext(TEXT_DOMAIN, "failed to open cache file")); 1329 return (NULL); 1330 } 1331 1332 if (fstat64(fd, &statbuf) != 0) { 1333 zfs_error_aux(hdl, "%s", strerror(errno)); 1334 (void) close(fd); 1335 (void) zfs_error(hdl, EZFS_BADCACHE, 1336 dgettext(TEXT_DOMAIN, "failed to get size of cache file")); 1337 return (NULL); 1338 } 1339 1340 if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) { 1341 (void) close(fd); 1342 return (NULL); 1343 } 1344 1345 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 1346 (void) close(fd); 1347 free(buf); 1348 (void) zfs_error(hdl, EZFS_BADCACHE, 1349 dgettext(TEXT_DOMAIN, 1350 "failed to read cache file contents")); 1351 return (NULL); 1352 } 1353 1354 (void) close(fd); 1355 1356 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) { 1357 free(buf); 1358 (void) zfs_error(hdl, EZFS_BADCACHE, 1359 dgettext(TEXT_DOMAIN, 1360 "invalid or corrupt cache file contents")); 1361 return (NULL); 1362 } 1363 1364 free(buf); 1365 1366 /* 1367 * Go through and get the current state of the pools and refresh their 1368 * state. 1369 */ 1370 if (nvlist_alloc(&pools, 0, 0) != 0) { 1371 (void) no_memory(hdl); 1372 nvlist_free(raw); 1373 return (NULL); 1374 } 1375 1376 elem = NULL; 1377 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) { 1378 verify(nvpair_value_nvlist(elem, &src) == 0); 1379 1380 verify(nvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME, 1381 &name) == 0); 1382 if (poolname != NULL && strcmp(poolname, name) != 0) 1383 continue; 1384 1385 verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID, 1386 &this_guid) == 0); 1387 if (guid != 0) { 1388 verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID, 1389 &this_guid) == 0); 1390 if (guid != this_guid) 1391 continue; 1392 } 1393 1394 if (pool_active(hdl, name, this_guid, &active) != 0) { 1395 nvlist_free(raw); 1396 nvlist_free(pools); 1397 return (NULL); 1398 } 1399 1400 if (active) 1401 continue; 1402 1403 if ((dst = refresh_config(hdl, src)) == NULL) { 1404 nvlist_free(raw); 1405 nvlist_free(pools); 1406 return (NULL); 1407 } 1408 1409 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) { 1410 (void) no_memory(hdl); 1411 nvlist_free(dst); 1412 nvlist_free(raw); 1413 nvlist_free(pools); 1414 return (NULL); 1415 } 1416 nvlist_free(dst); 1417 } 1418 1419 nvlist_free(raw); 1420 return (pools); 1421 } 1422 1423 static int 1424 name_or_guid_exists(zpool_handle_t *zhp, void *data) 1425 { 1426 importargs_t *import = data; 1427 int found = 0; 1428 1429 if (import->poolname != NULL) { 1430 char *pool_name; 1431 1432 verify(nvlist_lookup_string(zhp->zpool_config, 1433 ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0); 1434 if (strcmp(pool_name, import->poolname) == 0) 1435 found = 1; 1436 } else { 1437 uint64_t pool_guid; 1438 1439 verify(nvlist_lookup_uint64(zhp->zpool_config, 1440 ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0); 1441 if (pool_guid == import->guid) 1442 found = 1; 1443 } 1444 1445 zpool_close(zhp); 1446 return (found); 1447 } 1448 1449 nvlist_t * 1450 zpool_search_import(libzfs_handle_t *hdl, importargs_t *import) 1451 { 1452 verify(import->poolname == NULL || import->guid == 0); 1453 1454 if (import->unique) 1455 import->exists = zpool_iter(hdl, name_or_guid_exists, import); 1456 1457 if (import->cachefile != NULL) 1458 return (zpool_find_import_cached(hdl, import->cachefile, 1459 import->poolname, import->guid)); 1460 1461 return (zpool_find_import_impl(hdl, import)); 1462 } 1463 1464 boolean_t 1465 find_guid(nvlist_t *nv, uint64_t guid) 1466 { 1467 uint64_t tmp; 1468 nvlist_t **child; 1469 uint_t c, children; 1470 1471 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0); 1472 if (tmp == guid) 1473 return (B_TRUE); 1474 1475 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1476 &child, &children) == 0) { 1477 for (c = 0; c < children; c++) 1478 if (find_guid(child[c], guid)) 1479 return (B_TRUE); 1480 } 1481 1482 return (B_FALSE); 1483 } 1484 1485 typedef struct aux_cbdata { 1486 const char *cb_type; 1487 uint64_t cb_guid; 1488 zpool_handle_t *cb_zhp; 1489 } aux_cbdata_t; 1490 1491 static int 1492 find_aux(zpool_handle_t *zhp, void *data) 1493 { 1494 aux_cbdata_t *cbp = data; 1495 nvlist_t **list; 1496 uint_t i, count; 1497 uint64_t guid; 1498 nvlist_t *nvroot; 1499 1500 verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE, 1501 &nvroot) == 0); 1502 1503 if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type, 1504 &list, &count) == 0) { 1505 for (i = 0; i < count; i++) { 1506 verify(nvlist_lookup_uint64(list[i], 1507 ZPOOL_CONFIG_GUID, &guid) == 0); 1508 if (guid == cbp->cb_guid) { 1509 cbp->cb_zhp = zhp; 1510 return (1); 1511 } 1512 } 1513 } 1514 1515 zpool_close(zhp); 1516 return (0); 1517 } 1518 1519 /* 1520 * Determines if the pool is in use. If so, it returns true and the state of 1521 * the pool as well as the name of the pool. Both strings are allocated and 1522 * must be freed by the caller. 1523 */ 1524 int 1525 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr, 1526 boolean_t *inuse) 1527 { 1528 nvlist_t *config; 1529 char *name; 1530 boolean_t ret; 1531 uint64_t guid, vdev_guid; 1532 zpool_handle_t *zhp; 1533 nvlist_t *pool_config; 1534 uint64_t stateval, isspare; 1535 aux_cbdata_t cb = { 0 }; 1536 boolean_t isactive; 1537 1538 *inuse = B_FALSE; 1539 1540 if (zpool_read_label(fd, &config) != 0) { 1541 (void) no_memory(hdl); 1542 return (-1); 1543 } 1544 1545 if (config == NULL) 1546 return (0); 1547 1548 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 1549 &stateval) == 0); 1550 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 1551 &vdev_guid) == 0); 1552 1553 if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) { 1554 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 1555 &name) == 0); 1556 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 1557 &guid) == 0); 1558 } 1559 1560 switch (stateval) { 1561 case POOL_STATE_EXPORTED: 1562 ret = B_TRUE; 1563 break; 1564 1565 case POOL_STATE_ACTIVE: 1566 /* 1567 * For an active pool, we have to determine if it's really part 1568 * of a currently active pool (in which case the pool will exist 1569 * and the guid will be the same), or whether it's part of an 1570 * active pool that was disconnected without being explicitly 1571 * exported. 1572 */ 1573 if (pool_active(hdl, name, guid, &isactive) != 0) { 1574 nvlist_free(config); 1575 return (-1); 1576 } 1577 1578 if (isactive) { 1579 /* 1580 * Because the device may have been removed while 1581 * offlined, we only report it as active if the vdev is 1582 * still present in the config. Otherwise, pretend like 1583 * it's not in use. 1584 */ 1585 if ((zhp = zpool_open_canfail(hdl, name)) != NULL && 1586 (pool_config = zpool_get_config(zhp, NULL)) 1587 != NULL) { 1588 nvlist_t *nvroot; 1589 1590 verify(nvlist_lookup_nvlist(pool_config, 1591 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 1592 ret = find_guid(nvroot, vdev_guid); 1593 } else { 1594 ret = B_FALSE; 1595 } 1596 1597 /* 1598 * If this is an active spare within another pool, we 1599 * treat it like an unused hot spare. This allows the 1600 * user to create a pool with a hot spare that currently 1601 * in use within another pool. Since we return B_TRUE, 1602 * libdiskmgt will continue to prevent generic consumers 1603 * from using the device. 1604 */ 1605 if (ret && nvlist_lookup_uint64(config, 1606 ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare) 1607 stateval = POOL_STATE_SPARE; 1608 1609 if (zhp != NULL) 1610 zpool_close(zhp); 1611 } else { 1612 stateval = POOL_STATE_POTENTIALLY_ACTIVE; 1613 ret = B_TRUE; 1614 } 1615 break; 1616 1617 case POOL_STATE_SPARE: 1618 /* 1619 * For a hot spare, it can be either definitively in use, or 1620 * potentially active. To determine if it's in use, we iterate 1621 * over all pools in the system and search for one with a spare 1622 * with a matching guid. 1623 * 1624 * Due to the shared nature of spares, we don't actually report 1625 * the potentially active case as in use. This means the user 1626 * can freely create pools on the hot spares of exported pools, 1627 * but to do otherwise makes the resulting code complicated, and 1628 * we end up having to deal with this case anyway. 1629 */ 1630 cb.cb_zhp = NULL; 1631 cb.cb_guid = vdev_guid; 1632 cb.cb_type = ZPOOL_CONFIG_SPARES; 1633 if (zpool_iter(hdl, find_aux, &cb) == 1) { 1634 name = (char *)zpool_get_name(cb.cb_zhp); 1635 ret = TRUE; 1636 } else { 1637 ret = FALSE; 1638 } 1639 break; 1640 1641 case POOL_STATE_L2CACHE: 1642 1643 /* 1644 * Check if any pool is currently using this l2cache device. 1645 */ 1646 cb.cb_zhp = NULL; 1647 cb.cb_guid = vdev_guid; 1648 cb.cb_type = ZPOOL_CONFIG_L2CACHE; 1649 if (zpool_iter(hdl, find_aux, &cb) == 1) { 1650 name = (char *)zpool_get_name(cb.cb_zhp); 1651 ret = TRUE; 1652 } else { 1653 ret = FALSE; 1654 } 1655 break; 1656 1657 default: 1658 ret = B_FALSE; 1659 } 1660 1661 1662 if (ret) { 1663 if ((*namestr = zfs_strdup(hdl, name)) == NULL) { 1664 if (cb.cb_zhp) 1665 zpool_close(cb.cb_zhp); 1666 nvlist_free(config); 1667 return (-1); 1668 } 1669 *state = (pool_state_t)stateval; 1670 } 1671 1672 if (cb.cb_zhp) 1673 zpool_close(cb.cb_zhp); 1674 1675 nvlist_free(config); 1676 *inuse = ret; 1677 return (0); 1678 } 1679