1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Pool import support functions. 30 * 31 * To import a pool, we rely on reading the configuration information from the 32 * ZFS label of each device. If we successfully read the label, then we 33 * organize the configuration information in the following hierarchy: 34 * 35 * pool guid -> toplevel vdev guid -> label txg 36 * 37 * Duplicate entries matching this same tuple will be discarded. Once we have 38 * examined every device, we pick the best label txg config for each toplevel 39 * vdev. We then arrange these toplevel vdevs into a complete pool config, and 40 * update any paths that have changed. Finally, we attempt to import the pool 41 * using our derived config, and record the results. 42 */ 43 44 #include <devid.h> 45 #include <dirent.h> 46 #include <errno.h> 47 #include <libintl.h> 48 #include <stdlib.h> 49 #include <string.h> 50 #include <sys/stat.h> 51 #include <unistd.h> 52 #include <fcntl.h> 53 54 #include <sys/vdev_impl.h> 55 56 #include "libzfs.h" 57 #include "libzfs_impl.h" 58 59 /* 60 * Intermediate structures used to gather configuration information. 61 */ 62 typedef struct config_entry { 63 uint64_t ce_txg; 64 nvlist_t *ce_config; 65 struct config_entry *ce_next; 66 } config_entry_t; 67 68 typedef struct vdev_entry { 69 uint64_t ve_guid; 70 config_entry_t *ve_configs; 71 struct vdev_entry *ve_next; 72 } vdev_entry_t; 73 74 typedef struct pool_entry { 75 uint64_t pe_guid; 76 vdev_entry_t *pe_vdevs; 77 struct pool_entry *pe_next; 78 } pool_entry_t; 79 80 typedef struct name_entry { 81 char *ne_name; 82 uint64_t ne_guid; 83 struct name_entry *ne_next; 84 } name_entry_t; 85 86 typedef struct pool_list { 87 pool_entry_t *pools; 88 name_entry_t *names; 89 } pool_list_t; 90 91 static char * 92 get_devid(const char *path) 93 { 94 int fd; 95 ddi_devid_t devid; 96 char *minor, *ret; 97 98 if ((fd = open(path, O_RDONLY)) < 0) 99 return (NULL); 100 101 minor = NULL; 102 ret = NULL; 103 if (devid_get(fd, &devid) == 0) { 104 if (devid_get_minor_name(fd, &minor) == 0) 105 ret = devid_str_encode(devid, minor); 106 if (minor != NULL) 107 devid_str_free(minor); 108 devid_free(devid); 109 } 110 (void) close(fd); 111 112 return (ret); 113 } 114 115 116 /* 117 * Go through and fix up any path and/or devid information for the given vdev 118 * configuration. 119 */ 120 static int 121 fix_paths(nvlist_t *nv, name_entry_t *names) 122 { 123 nvlist_t **child; 124 uint_t c, children; 125 uint64_t guid; 126 name_entry_t *ne, *best; 127 char *path, *devid; 128 int matched; 129 130 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 131 &child, &children) == 0) { 132 for (c = 0; c < children; c++) 133 if (fix_paths(child[c], names) != 0) 134 return (-1); 135 return (0); 136 } 137 138 /* 139 * This is a leaf (file or disk) vdev. In either case, go through 140 * the name list and see if we find a matching guid. If so, replace 141 * the path and see if we can calculate a new devid. 142 * 143 * There may be multiple names associated with a particular guid, in 144 * which case we have overlapping slices or multiple paths to the same 145 * disk. If this is the case, then we want to pick the path that is 146 * the most similar to the original, where "most similar" is the number 147 * of matching characters starting from the end of the path. This will 148 * preserve slice numbers even if the disks have been reorganized, and 149 * will also catch preferred disk names if multiple paths exist. 150 */ 151 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0); 152 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0) 153 path = NULL; 154 155 matched = 0; 156 best = NULL; 157 for (ne = names; ne != NULL; ne = ne->ne_next) { 158 if (ne->ne_guid == guid) { 159 const char *src, *dst; 160 int count; 161 162 if (path == NULL) { 163 best = ne; 164 break; 165 } 166 167 src = ne->ne_name + strlen(ne->ne_name) - 1; 168 dst = path + strlen(path) - 1; 169 for (count = 0; src >= ne->ne_name && dst >= path; 170 src--, dst--, count++) 171 if (*src != *dst) 172 break; 173 174 /* 175 * At this point, 'count' is the number of characters 176 * matched from the end. 177 */ 178 if (count > matched || best == NULL) { 179 best = ne; 180 matched = count; 181 } 182 } 183 } 184 185 if (best == NULL) 186 return (0); 187 188 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0) 189 return (-1); 190 191 if ((devid = get_devid(best->ne_name)) == NULL) { 192 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID); 193 } else { 194 if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) 195 return (-1); 196 devid_str_free(devid); 197 } 198 199 return (0); 200 } 201 202 /* 203 * Add the given configuration to the list of known devices. 204 */ 205 static int 206 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path, 207 nvlist_t *config) 208 { 209 uint64_t pool_guid, vdev_guid, top_guid, txg, state; 210 pool_entry_t *pe; 211 vdev_entry_t *ve; 212 config_entry_t *ce; 213 name_entry_t *ne; 214 215 /* 216 * If this is a hot spare not currently in use, add it to the list of 217 * names to translate, but don't do anything else. 218 */ 219 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 220 &state) == 0 && state == POOL_STATE_SPARE && 221 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) { 222 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) 223 return (-1); 224 225 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { 226 free(ne); 227 return (-1); 228 } 229 ne->ne_guid = vdev_guid; 230 ne->ne_next = pl->names; 231 pl->names = ne; 232 return (0); 233 } 234 235 /* 236 * If we have a valid config but cannot read any of these fields, then 237 * it means we have a half-initialized label. In vdev_label_init() 238 * we write a label with txg == 0 so that we can identify the device 239 * in case the user refers to the same disk later on. If we fail to 240 * create the pool, we'll be left with a label in this state 241 * which should not be considered part of a valid pool. 242 */ 243 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 244 &pool_guid) != 0 || 245 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 246 &vdev_guid) != 0 || 247 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID, 248 &top_guid) != 0 || 249 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 250 &txg) != 0 || txg == 0) { 251 nvlist_free(config); 252 return (0); 253 } 254 255 /* 256 * First, see if we know about this pool. If not, then add it to the 257 * list of known pools. 258 */ 259 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 260 if (pe->pe_guid == pool_guid) 261 break; 262 } 263 264 if (pe == NULL) { 265 if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) { 266 nvlist_free(config); 267 return (-1); 268 } 269 pe->pe_guid = pool_guid; 270 pe->pe_next = pl->pools; 271 pl->pools = pe; 272 } 273 274 /* 275 * Second, see if we know about this toplevel vdev. Add it if its 276 * missing. 277 */ 278 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 279 if (ve->ve_guid == top_guid) 280 break; 281 } 282 283 if (ve == NULL) { 284 if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) { 285 nvlist_free(config); 286 return (-1); 287 } 288 ve->ve_guid = top_guid; 289 ve->ve_next = pe->pe_vdevs; 290 pe->pe_vdevs = ve; 291 } 292 293 /* 294 * Third, see if we have a config with a matching transaction group. If 295 * so, then we do nothing. Otherwise, add it to the list of known 296 * configs. 297 */ 298 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { 299 if (ce->ce_txg == txg) 300 break; 301 } 302 303 if (ce == NULL) { 304 if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) { 305 nvlist_free(config); 306 return (-1); 307 } 308 ce->ce_txg = txg; 309 ce->ce_config = config; 310 ce->ce_next = ve->ve_configs; 311 ve->ve_configs = ce; 312 } else { 313 nvlist_free(config); 314 } 315 316 /* 317 * At this point we've successfully added our config to the list of 318 * known configs. The last thing to do is add the vdev guid -> path 319 * mappings so that we can fix up the configuration as necessary before 320 * doing the import. 321 */ 322 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) 323 return (-1); 324 325 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { 326 free(ne); 327 return (-1); 328 } 329 330 ne->ne_guid = vdev_guid; 331 ne->ne_next = pl->names; 332 pl->names = ne; 333 334 return (0); 335 } 336 337 /* 338 * Returns true if the named pool matches the given GUID. 339 */ 340 static int 341 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid, 342 boolean_t *isactive) 343 { 344 zpool_handle_t *zhp; 345 uint64_t theguid; 346 347 if (zpool_open_silent(hdl, name, &zhp) != 0) 348 return (-1); 349 350 if (zhp == NULL) { 351 *isactive = B_FALSE; 352 return (0); 353 } 354 355 verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID, 356 &theguid) == 0); 357 358 zpool_close(zhp); 359 360 *isactive = (theguid == guid); 361 return (0); 362 } 363 364 /* 365 * Convert our list of pools into the definitive set of configurations. We 366 * start by picking the best config for each toplevel vdev. Once that's done, 367 * we assemble the toplevel vdevs into a full config for the pool. We make a 368 * pass to fix up any incorrect paths, and then add it to the main list to 369 * return to the user. 370 */ 371 static nvlist_t * 372 get_configs(libzfs_handle_t *hdl, pool_list_t *pl) 373 { 374 pool_entry_t *pe; 375 vdev_entry_t *ve; 376 config_entry_t *ce; 377 nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot; 378 nvlist_t **spares; 379 uint_t i, nspares; 380 boolean_t config_seen; 381 uint64_t best_txg; 382 char *name; 383 zfs_cmd_t zc = { 0 }; 384 uint64_t version, guid; 385 char *packed; 386 size_t len; 387 int err; 388 uint_t children = 0; 389 nvlist_t **child = NULL; 390 uint_t c; 391 boolean_t isactive; 392 393 if (nvlist_alloc(&ret, 0, 0) != 0) 394 goto nomem; 395 396 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 397 uint64_t id; 398 399 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0) 400 goto nomem; 401 config_seen = B_FALSE; 402 403 /* 404 * Iterate over all toplevel vdevs. Grab the pool configuration 405 * from the first one we find, and then go through the rest and 406 * add them as necessary to the 'vdevs' member of the config. 407 */ 408 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 409 410 /* 411 * Determine the best configuration for this vdev by 412 * selecting the config with the latest transaction 413 * group. 414 */ 415 best_txg = 0; 416 for (ce = ve->ve_configs; ce != NULL; 417 ce = ce->ce_next) { 418 419 if (ce->ce_txg > best_txg) { 420 tmp = ce->ce_config; 421 best_txg = ce->ce_txg; 422 } 423 } 424 425 if (!config_seen) { 426 /* 427 * Copy the relevant pieces of data to the pool 428 * configuration: 429 * 430 * version 431 * pool guid 432 * name 433 * pool state 434 */ 435 uint64_t state; 436 437 verify(nvlist_lookup_uint64(tmp, 438 ZPOOL_CONFIG_VERSION, &version) == 0); 439 if (nvlist_add_uint64(config, 440 ZPOOL_CONFIG_VERSION, version) != 0) 441 goto nomem; 442 verify(nvlist_lookup_uint64(tmp, 443 ZPOOL_CONFIG_POOL_GUID, &guid) == 0); 444 if (nvlist_add_uint64(config, 445 ZPOOL_CONFIG_POOL_GUID, guid) != 0) 446 goto nomem; 447 verify(nvlist_lookup_string(tmp, 448 ZPOOL_CONFIG_POOL_NAME, &name) == 0); 449 if (nvlist_add_string(config, 450 ZPOOL_CONFIG_POOL_NAME, name) != 0) 451 goto nomem; 452 verify(nvlist_lookup_uint64(tmp, 453 ZPOOL_CONFIG_POOL_STATE, &state) == 0); 454 if (nvlist_add_uint64(config, 455 ZPOOL_CONFIG_POOL_STATE, state) != 0) 456 goto nomem; 457 458 config_seen = B_TRUE; 459 } 460 461 /* 462 * Add this top-level vdev to the child array. 463 */ 464 verify(nvlist_lookup_nvlist(tmp, 465 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); 466 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID, 467 &id) == 0); 468 if (id >= children) { 469 nvlist_t **newchild; 470 471 newchild = zfs_alloc(hdl, (id + 1) * 472 sizeof (nvlist_t *)); 473 if (newchild == NULL) 474 goto nomem; 475 476 for (c = 0; c < children; c++) 477 newchild[c] = child[c]; 478 479 free(child); 480 child = newchild; 481 children = id + 1; 482 } 483 if (nvlist_dup(nvtop, &child[id], 0) != 0) 484 goto nomem; 485 486 } 487 488 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 489 &guid) == 0); 490 491 /* 492 * Look for any missing top-level vdevs. If this is the case, 493 * create a faked up 'missing' vdev as a placeholder. We cannot 494 * simply compress the child array, because the kernel performs 495 * certain checks to make sure the vdev IDs match their location 496 * in the configuration. 497 */ 498 for (c = 0; c < children; c++) 499 if (child[c] == NULL) { 500 nvlist_t *missing; 501 if (nvlist_alloc(&missing, NV_UNIQUE_NAME, 502 0) != 0) 503 goto nomem; 504 if (nvlist_add_string(missing, 505 ZPOOL_CONFIG_TYPE, 506 VDEV_TYPE_MISSING) != 0 || 507 nvlist_add_uint64(missing, 508 ZPOOL_CONFIG_ID, c) != 0 || 509 nvlist_add_uint64(missing, 510 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 511 nvlist_free(missing); 512 goto nomem; 513 } 514 child[c] = missing; 515 } 516 517 /* 518 * Put all of this pool's top-level vdevs into a root vdev. 519 */ 520 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) 521 goto nomem; 522 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 523 VDEV_TYPE_ROOT) != 0 || 524 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 || 525 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 || 526 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 527 child, children) != 0) { 528 nvlist_free(nvroot); 529 goto nomem; 530 } 531 532 for (c = 0; c < children; c++) 533 nvlist_free(child[c]); 534 free(child); 535 children = 0; 536 child = NULL; 537 538 /* 539 * Go through and fix up any paths and/or devids based on our 540 * known list of vdev GUID -> path mappings. 541 */ 542 if (fix_paths(nvroot, pl->names) != 0) { 543 nvlist_free(nvroot); 544 goto nomem; 545 } 546 547 /* 548 * Add the root vdev to this pool's configuration. 549 */ 550 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 551 nvroot) != 0) { 552 nvlist_free(nvroot); 553 goto nomem; 554 } 555 nvlist_free(nvroot); 556 557 /* 558 * Determine if this pool is currently active, in which case we 559 * can't actually import it. 560 */ 561 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 562 &name) == 0); 563 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 564 &guid) == 0); 565 566 if (pool_active(hdl, name, guid, &isactive) != 0) 567 goto error; 568 569 if (isactive) { 570 nvlist_free(config); 571 config = NULL; 572 continue; 573 } 574 575 /* 576 * Try to do the import in order to get vdev state. 577 */ 578 if ((err = nvlist_size(config, &len, NV_ENCODE_NATIVE)) != 0) 579 goto nomem; 580 581 if ((packed = zfs_alloc(hdl, len)) == NULL) 582 goto nomem; 583 584 if ((err = nvlist_pack(config, &packed, &len, 585 NV_ENCODE_NATIVE, 0)) != 0) 586 goto nomem; 587 588 nvlist_free(config); 589 config = NULL; 590 591 zc.zc_config_src_size = len; 592 zc.zc_config_src = (uint64_t)(uintptr_t)packed; 593 594 zc.zc_config_dst_size = 2 * len; 595 if ((zc.zc_config_dst = (uint64_t)(uintptr_t) 596 zfs_alloc(hdl, zc.zc_config_dst_size)) == NULL) 597 goto nomem; 598 599 while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT, 600 &zc)) != 0 && errno == ENOMEM) { 601 free((void *)(uintptr_t)zc.zc_config_dst); 602 if ((zc.zc_config_dst = (uint64_t)(uintptr_t) 603 zfs_alloc(hdl, zc.zc_config_dst_size)) == NULL) 604 goto nomem; 605 } 606 607 free(packed); 608 609 if (err) { 610 (void) zpool_standard_error(hdl, errno, 611 dgettext(TEXT_DOMAIN, "cannot discover pools")); 612 free((void *)(uintptr_t)zc.zc_config_dst); 613 goto error; 614 } 615 616 if (nvlist_unpack((void *)(uintptr_t)zc.zc_config_dst, 617 zc.zc_config_dst_size, &config, 0) != 0) { 618 free((void *)(uintptr_t)zc.zc_config_dst); 619 goto nomem; 620 } 621 free((void *)(uintptr_t)zc.zc_config_dst); 622 623 /* 624 * Go through and update the paths for spares, now that we have 625 * them. 626 */ 627 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 628 &nvroot) == 0); 629 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 630 &spares, &nspares) == 0) { 631 for (i = 0; i < nspares; i++) { 632 if (fix_paths(spares[i], pl->names) != 0) 633 goto nomem; 634 } 635 } 636 637 if (set_pool_health(config) != 0) 638 goto nomem; 639 640 /* 641 * Add this pool to the list of configs. 642 */ 643 if (nvlist_add_nvlist(ret, name, config) != 0) 644 goto nomem; 645 646 nvlist_free(config); 647 config = NULL; 648 } 649 650 return (ret); 651 652 nomem: 653 (void) no_memory(hdl); 654 error: 655 nvlist_free(config); 656 nvlist_free(ret); 657 for (c = 0; c < children; c++) 658 nvlist_free(child[c]); 659 free(child); 660 661 return (NULL); 662 } 663 664 /* 665 * Return the offset of the given label. 666 */ 667 static uint64_t 668 label_offset(size_t size, int l) 669 { 670 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 671 0 : size - VDEV_LABELS * sizeof (vdev_label_t))); 672 } 673 674 /* 675 * Given a file descriptor, read the label information and return an nvlist 676 * describing the configuration, if there is one. 677 */ 678 int 679 zpool_read_label(int fd, nvlist_t **config) 680 { 681 struct stat64 statbuf; 682 int l; 683 vdev_label_t *label; 684 uint64_t state, txg; 685 686 *config = NULL; 687 688 if (fstat64(fd, &statbuf) == -1) 689 return (0); 690 691 if ((label = malloc(sizeof (vdev_label_t))) == NULL) 692 return (-1); 693 694 for (l = 0; l < VDEV_LABELS; l++) { 695 if (pread(fd, label, sizeof (vdev_label_t), 696 label_offset(statbuf.st_size, l)) != sizeof (vdev_label_t)) 697 continue; 698 699 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist, 700 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) 701 continue; 702 703 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 704 &state) != 0 || state > POOL_STATE_SPARE) { 705 nvlist_free(*config); 706 continue; 707 } 708 709 if (state != POOL_STATE_SPARE && 710 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 711 &txg) != 0 || txg == 0)) { 712 nvlist_free(*config); 713 continue; 714 } 715 716 free(label); 717 return (0); 718 } 719 720 free(label); 721 *config = NULL; 722 return (0); 723 } 724 725 /* 726 * Given a list of directories to search, find all pools stored on disk. This 727 * includes partial pools which are not available to import. If no args are 728 * given (argc is 0), then the default directory (/dev/dsk) is searched. 729 */ 730 nvlist_t * 731 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv) 732 { 733 int i; 734 DIR *dirp; 735 struct dirent64 *dp; 736 char path[MAXPATHLEN]; 737 struct stat64 statbuf; 738 nvlist_t *ret = NULL, *config; 739 static char *default_dir = "/dev/dsk"; 740 int fd; 741 pool_list_t pools = { 0 }; 742 pool_entry_t *pe, *penext; 743 vdev_entry_t *ve, *venext; 744 config_entry_t *ce, *cenext; 745 name_entry_t *ne, *nenext; 746 747 748 if (argc == 0) { 749 argc = 1; 750 argv = &default_dir; 751 } 752 753 /* 754 * Go through and read the label configuration information from every 755 * possible device, organizing the information according to pool GUID 756 * and toplevel GUID. 757 */ 758 for (i = 0; i < argc; i++) { 759 if (argv[i][0] != '/') { 760 (void) zfs_error(hdl, EZFS_BADPATH, 761 dgettext(TEXT_DOMAIN, "cannot open '%s'"), 762 argv[i]); 763 goto error; 764 } 765 766 if ((dirp = opendir(argv[i])) == NULL) { 767 zfs_error_aux(hdl, strerror(errno)); 768 (void) zfs_error(hdl, EZFS_BADPATH, 769 dgettext(TEXT_DOMAIN, "cannot open '%s'"), 770 argv[i]); 771 goto error; 772 } 773 774 /* 775 * This is not MT-safe, but we have no MT consumers of libzfs 776 */ 777 while ((dp = readdir64(dirp)) != NULL) { 778 779 (void) snprintf(path, sizeof (path), "%s/%s", 780 argv[i], dp->d_name); 781 782 if (stat64(path, &statbuf) != 0) 783 continue; 784 785 /* 786 * Ignore directories (which includes "." and ".."). 787 */ 788 if (S_ISDIR(statbuf.st_mode)) 789 continue; 790 791 if ((fd = open64(path, O_RDONLY)) < 0) 792 continue; 793 794 if ((zpool_read_label(fd, &config)) != 0) { 795 (void) no_memory(hdl); 796 goto error; 797 } 798 799 (void) close(fd); 800 801 if (config != NULL) 802 if (add_config(hdl, &pools, path, config) != 0) 803 goto error; 804 } 805 } 806 807 ret = get_configs(hdl, &pools); 808 809 error: 810 for (pe = pools.pools; pe != NULL; pe = penext) { 811 penext = pe->pe_next; 812 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) { 813 venext = ve->ve_next; 814 for (ce = ve->ve_configs; ce != NULL; ce = cenext) { 815 cenext = ce->ce_next; 816 if (ce->ce_config) 817 nvlist_free(ce->ce_config); 818 free(ce); 819 } 820 free(ve); 821 } 822 free(pe); 823 } 824 825 for (ne = pools.names; ne != NULL; ne = nenext) { 826 nenext = ne->ne_next; 827 if (ne->ne_name) 828 free(ne->ne_name); 829 free(ne); 830 } 831 832 833 return (ret); 834 } 835 836 boolean_t 837 find_guid(nvlist_t *nv, uint64_t guid) 838 { 839 uint64_t tmp; 840 nvlist_t **child; 841 uint_t c, children; 842 843 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0); 844 if (tmp == guid) 845 return (B_TRUE); 846 847 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 848 &child, &children) == 0) { 849 for (c = 0; c < children; c++) 850 if (find_guid(child[c], guid)) 851 return (B_TRUE); 852 } 853 854 return (B_FALSE); 855 } 856 857 typedef struct spare_cbdata { 858 uint64_t cb_guid; 859 zpool_handle_t *cb_zhp; 860 } spare_cbdata_t; 861 862 static int 863 find_spare(zpool_handle_t *zhp, void *data) 864 { 865 spare_cbdata_t *cbp = data; 866 nvlist_t **spares; 867 uint_t i, nspares; 868 uint64_t guid; 869 nvlist_t *nvroot; 870 871 verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE, 872 &nvroot) == 0); 873 874 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 875 &spares, &nspares) == 0) { 876 for (i = 0; i < nspares; i++) { 877 verify(nvlist_lookup_uint64(spares[i], 878 ZPOOL_CONFIG_GUID, &guid) == 0); 879 if (guid == cbp->cb_guid) { 880 cbp->cb_zhp = zhp; 881 return (1); 882 } 883 } 884 } 885 886 zpool_close(zhp); 887 return (0); 888 } 889 890 /* 891 * Determines if the pool is in use. If so, it returns true and the state of 892 * the pool as well as the name of the pool. Both strings are allocated and 893 * must be freed by the caller. 894 */ 895 int 896 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr, 897 boolean_t *inuse) 898 { 899 nvlist_t *config; 900 char *name; 901 boolean_t ret; 902 uint64_t guid, vdev_guid; 903 zpool_handle_t *zhp; 904 nvlist_t *pool_config; 905 uint64_t stateval; 906 spare_cbdata_t cb = { 0 }; 907 boolean_t isactive; 908 909 *inuse = B_FALSE; 910 911 if (zpool_read_label(fd, &config) != 0) { 912 (void) no_memory(hdl); 913 return (-1); 914 } 915 916 if (config == NULL) 917 return (0); 918 919 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 920 &stateval) == 0); 921 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 922 &vdev_guid) == 0); 923 924 if (stateval != POOL_STATE_SPARE) { 925 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 926 &name) == 0); 927 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 928 &guid) == 0); 929 } 930 931 switch (stateval) { 932 case POOL_STATE_EXPORTED: 933 ret = B_TRUE; 934 break; 935 936 case POOL_STATE_ACTIVE: 937 /* 938 * For an active pool, we have to determine if it's really part 939 * of a currently active pool (in which case the pool will exist 940 * and the guid will be the same), or whether it's part of an 941 * active pool that was disconnected without being explicitly 942 * exported. 943 */ 944 if (pool_active(hdl, name, guid, &isactive) != 0) { 945 nvlist_free(config); 946 return (-1); 947 } 948 949 if (isactive) { 950 /* 951 * Because the device may have been removed while 952 * offlined, we only report it as active if the vdev is 953 * still present in the config. Otherwise, pretend like 954 * it's not in use. 955 */ 956 if ((zhp = zpool_open_canfail(hdl, name)) != NULL && 957 (pool_config = zpool_get_config(zhp, NULL)) 958 != NULL) { 959 nvlist_t *nvroot; 960 961 verify(nvlist_lookup_nvlist(pool_config, 962 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 963 ret = find_guid(nvroot, vdev_guid); 964 } else { 965 ret = B_FALSE; 966 } 967 968 if (zhp != NULL) 969 zpool_close(zhp); 970 } else { 971 stateval = POOL_STATE_POTENTIALLY_ACTIVE; 972 ret = B_TRUE; 973 } 974 break; 975 976 case POOL_STATE_SPARE: 977 /* 978 * For a hot spare, it can be either definitively in use, or 979 * potentially active. To determine if it's in use, we iterate 980 * over all pools in the system and search for one with a spare 981 * with a matching guid. 982 * 983 * Due to the shared nature of spares, we don't actually report 984 * the potentially active case as in use. This means the user 985 * can freely create pools on the hot spares of exported pools, 986 * but to do otherwise makes the resulting code complicated, and 987 * we end up having to deal with this case anyway. 988 */ 989 cb.cb_zhp = NULL; 990 cb.cb_guid = vdev_guid; 991 if (zpool_iter(hdl, find_spare, &cb) == 1) { 992 name = (char *)zpool_get_name(cb.cb_zhp); 993 ret = TRUE; 994 } else { 995 ret = FALSE; 996 } 997 break; 998 999 default: 1000 ret = B_FALSE; 1001 } 1002 1003 1004 if (ret) { 1005 if ((*namestr = zfs_strdup(hdl, name)) == NULL) { 1006 nvlist_free(config); 1007 return (-1); 1008 } 1009 *state = (pool_state_t)stateval; 1010 } 1011 1012 if (cb.cb_zhp) 1013 zpool_close(cb.cb_zhp); 1014 1015 nvlist_free(config); 1016 *inuse = ret; 1017 return (0); 1018 } 1019