xref: /titanic_41/usr/src/lib/libzfs/common/libzfs_import.c (revision 21ad40f5447a73ac8a7ed2b9b66dd73ff1b088c1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24  * Copyright (c) 2011 by Delphix. All rights reserved.
25  */
26 
27 /*
28  * Pool import support functions.
29  *
30  * To import a pool, we rely on reading the configuration information from the
31  * ZFS label of each device.  If we successfully read the label, then we
32  * organize the configuration information in the following hierarchy:
33  *
34  * 	pool guid -> toplevel vdev guid -> label txg
35  *
36  * Duplicate entries matching this same tuple will be discarded.  Once we have
37  * examined every device, we pick the best label txg config for each toplevel
38  * vdev.  We then arrange these toplevel vdevs into a complete pool config, and
39  * update any paths that have changed.  Finally, we attempt to import the pool
40  * using our derived config, and record the results.
41  */
42 
43 #include <ctype.h>
44 #include <devid.h>
45 #include <dirent.h>
46 #include <errno.h>
47 #include <libintl.h>
48 #include <stddef.h>
49 #include <stdlib.h>
50 #include <string.h>
51 #include <sys/stat.h>
52 #include <unistd.h>
53 #include <fcntl.h>
54 #include <sys/vtoc.h>
55 #include <sys/dktp/fdisk.h>
56 #include <sys/efi_partition.h>
57 #include <thread_pool.h>
58 
59 #include <sys/vdev_impl.h>
60 
61 #include "libzfs.h"
62 #include "libzfs_impl.h"
63 
64 /*
65  * Intermediate structures used to gather configuration information.
66  */
67 typedef struct config_entry {
68 	uint64_t		ce_txg;
69 	nvlist_t		*ce_config;
70 	struct config_entry	*ce_next;
71 } config_entry_t;
72 
73 typedef struct vdev_entry {
74 	uint64_t		ve_guid;
75 	config_entry_t		*ve_configs;
76 	struct vdev_entry	*ve_next;
77 } vdev_entry_t;
78 
79 typedef struct pool_entry {
80 	uint64_t		pe_guid;
81 	vdev_entry_t		*pe_vdevs;
82 	struct pool_entry	*pe_next;
83 } pool_entry_t;
84 
85 typedef struct name_entry {
86 	char			*ne_name;
87 	uint64_t		ne_guid;
88 	struct name_entry	*ne_next;
89 } name_entry_t;
90 
91 typedef struct pool_list {
92 	pool_entry_t		*pools;
93 	name_entry_t		*names;
94 } pool_list_t;
95 
96 static char *
97 get_devid(const char *path)
98 {
99 	int fd;
100 	ddi_devid_t devid;
101 	char *minor, *ret;
102 
103 	if ((fd = open(path, O_RDONLY)) < 0)
104 		return (NULL);
105 
106 	minor = NULL;
107 	ret = NULL;
108 	if (devid_get(fd, &devid) == 0) {
109 		if (devid_get_minor_name(fd, &minor) == 0)
110 			ret = devid_str_encode(devid, minor);
111 		if (minor != NULL)
112 			devid_str_free(minor);
113 		devid_free(devid);
114 	}
115 	(void) close(fd);
116 
117 	return (ret);
118 }
119 
120 
121 /*
122  * Go through and fix up any path and/or devid information for the given vdev
123  * configuration.
124  */
125 static int
126 fix_paths(nvlist_t *nv, name_entry_t *names)
127 {
128 	nvlist_t **child;
129 	uint_t c, children;
130 	uint64_t guid;
131 	name_entry_t *ne, *best;
132 	char *path, *devid;
133 	int matched;
134 
135 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
136 	    &child, &children) == 0) {
137 		for (c = 0; c < children; c++)
138 			if (fix_paths(child[c], names) != 0)
139 				return (-1);
140 		return (0);
141 	}
142 
143 	/*
144 	 * This is a leaf (file or disk) vdev.  In either case, go through
145 	 * the name list and see if we find a matching guid.  If so, replace
146 	 * the path and see if we can calculate a new devid.
147 	 *
148 	 * There may be multiple names associated with a particular guid, in
149 	 * which case we have overlapping slices or multiple paths to the same
150 	 * disk.  If this is the case, then we want to pick the path that is
151 	 * the most similar to the original, where "most similar" is the number
152 	 * of matching characters starting from the end of the path.  This will
153 	 * preserve slice numbers even if the disks have been reorganized, and
154 	 * will also catch preferred disk names if multiple paths exist.
155 	 */
156 	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
157 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
158 		path = NULL;
159 
160 	matched = 0;
161 	best = NULL;
162 	for (ne = names; ne != NULL; ne = ne->ne_next) {
163 		if (ne->ne_guid == guid) {
164 			const char *src, *dst;
165 			int count;
166 
167 			if (path == NULL) {
168 				best = ne;
169 				break;
170 			}
171 
172 			src = ne->ne_name + strlen(ne->ne_name) - 1;
173 			dst = path + strlen(path) - 1;
174 			for (count = 0; src >= ne->ne_name && dst >= path;
175 			    src--, dst--, count++)
176 				if (*src != *dst)
177 					break;
178 
179 			/*
180 			 * At this point, 'count' is the number of characters
181 			 * matched from the end.
182 			 */
183 			if (count > matched || best == NULL) {
184 				best = ne;
185 				matched = count;
186 			}
187 		}
188 	}
189 
190 	if (best == NULL)
191 		return (0);
192 
193 	if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
194 		return (-1);
195 
196 	if ((devid = get_devid(best->ne_name)) == NULL) {
197 		(void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
198 	} else {
199 		if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0)
200 			return (-1);
201 		devid_str_free(devid);
202 	}
203 
204 	return (0);
205 }
206 
207 /*
208  * Add the given configuration to the list of known devices.
209  */
210 static int
211 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
212     nvlist_t *config)
213 {
214 	uint64_t pool_guid, vdev_guid, top_guid, txg, state;
215 	pool_entry_t *pe;
216 	vdev_entry_t *ve;
217 	config_entry_t *ce;
218 	name_entry_t *ne;
219 
220 	/*
221 	 * If this is a hot spare not currently in use or level 2 cache
222 	 * device, add it to the list of names to translate, but don't do
223 	 * anything else.
224 	 */
225 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
226 	    &state) == 0 &&
227 	    (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
228 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
229 		if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
230 			return (-1);
231 
232 		if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
233 			free(ne);
234 			return (-1);
235 		}
236 		ne->ne_guid = vdev_guid;
237 		ne->ne_next = pl->names;
238 		pl->names = ne;
239 		return (0);
240 	}
241 
242 	/*
243 	 * If we have a valid config but cannot read any of these fields, then
244 	 * it means we have a half-initialized label.  In vdev_label_init()
245 	 * we write a label with txg == 0 so that we can identify the device
246 	 * in case the user refers to the same disk later on.  If we fail to
247 	 * create the pool, we'll be left with a label in this state
248 	 * which should not be considered part of a valid pool.
249 	 */
250 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
251 	    &pool_guid) != 0 ||
252 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
253 	    &vdev_guid) != 0 ||
254 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
255 	    &top_guid) != 0 ||
256 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
257 	    &txg) != 0 || txg == 0) {
258 		nvlist_free(config);
259 		return (0);
260 	}
261 
262 	/*
263 	 * First, see if we know about this pool.  If not, then add it to the
264 	 * list of known pools.
265 	 */
266 	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
267 		if (pe->pe_guid == pool_guid)
268 			break;
269 	}
270 
271 	if (pe == NULL) {
272 		if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
273 			nvlist_free(config);
274 			return (-1);
275 		}
276 		pe->pe_guid = pool_guid;
277 		pe->pe_next = pl->pools;
278 		pl->pools = pe;
279 	}
280 
281 	/*
282 	 * Second, see if we know about this toplevel vdev.  Add it if its
283 	 * missing.
284 	 */
285 	for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
286 		if (ve->ve_guid == top_guid)
287 			break;
288 	}
289 
290 	if (ve == NULL) {
291 		if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
292 			nvlist_free(config);
293 			return (-1);
294 		}
295 		ve->ve_guid = top_guid;
296 		ve->ve_next = pe->pe_vdevs;
297 		pe->pe_vdevs = ve;
298 	}
299 
300 	/*
301 	 * Third, see if we have a config with a matching transaction group.  If
302 	 * so, then we do nothing.  Otherwise, add it to the list of known
303 	 * configs.
304 	 */
305 	for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
306 		if (ce->ce_txg == txg)
307 			break;
308 	}
309 
310 	if (ce == NULL) {
311 		if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
312 			nvlist_free(config);
313 			return (-1);
314 		}
315 		ce->ce_txg = txg;
316 		ce->ce_config = config;
317 		ce->ce_next = ve->ve_configs;
318 		ve->ve_configs = ce;
319 	} else {
320 		nvlist_free(config);
321 	}
322 
323 	/*
324 	 * At this point we've successfully added our config to the list of
325 	 * known configs.  The last thing to do is add the vdev guid -> path
326 	 * mappings so that we can fix up the configuration as necessary before
327 	 * doing the import.
328 	 */
329 	if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
330 		return (-1);
331 
332 	if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
333 		free(ne);
334 		return (-1);
335 	}
336 
337 	ne->ne_guid = vdev_guid;
338 	ne->ne_next = pl->names;
339 	pl->names = ne;
340 
341 	return (0);
342 }
343 
344 /*
345  * Returns true if the named pool matches the given GUID.
346  */
347 static int
348 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
349     boolean_t *isactive)
350 {
351 	zpool_handle_t *zhp;
352 	uint64_t theguid;
353 
354 	if (zpool_open_silent(hdl, name, &zhp) != 0)
355 		return (-1);
356 
357 	if (zhp == NULL) {
358 		*isactive = B_FALSE;
359 		return (0);
360 	}
361 
362 	verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
363 	    &theguid) == 0);
364 
365 	zpool_close(zhp);
366 
367 	*isactive = (theguid == guid);
368 	return (0);
369 }
370 
371 static nvlist_t *
372 refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
373 {
374 	nvlist_t *nvl;
375 	zfs_cmd_t zc = { 0 };
376 	int err;
377 
378 	if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
379 		return (NULL);
380 
381 	if (zcmd_alloc_dst_nvlist(hdl, &zc,
382 	    zc.zc_nvlist_conf_size * 2) != 0) {
383 		zcmd_free_nvlists(&zc);
384 		return (NULL);
385 	}
386 
387 	while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
388 	    &zc)) != 0 && errno == ENOMEM) {
389 		if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
390 			zcmd_free_nvlists(&zc);
391 			return (NULL);
392 		}
393 	}
394 
395 	if (err) {
396 		zcmd_free_nvlists(&zc);
397 		return (NULL);
398 	}
399 
400 	if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
401 		zcmd_free_nvlists(&zc);
402 		return (NULL);
403 	}
404 
405 	zcmd_free_nvlists(&zc);
406 	return (nvl);
407 }
408 
409 /*
410  * Determine if the vdev id is a hole in the namespace.
411  */
412 boolean_t
413 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
414 {
415 	for (int c = 0; c < holes; c++) {
416 
417 		/* Top-level is a hole */
418 		if (hole_array[c] == id)
419 			return (B_TRUE);
420 	}
421 	return (B_FALSE);
422 }
423 
424 /*
425  * Convert our list of pools into the definitive set of configurations.  We
426  * start by picking the best config for each toplevel vdev.  Once that's done,
427  * we assemble the toplevel vdevs into a full config for the pool.  We make a
428  * pass to fix up any incorrect paths, and then add it to the main list to
429  * return to the user.
430  */
431 static nvlist_t *
432 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok)
433 {
434 	pool_entry_t *pe;
435 	vdev_entry_t *ve;
436 	config_entry_t *ce;
437 	nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot;
438 	nvlist_t **spares, **l2cache;
439 	uint_t i, nspares, nl2cache;
440 	boolean_t config_seen;
441 	uint64_t best_txg;
442 	char *name, *hostname, *comment;
443 	uint64_t version, guid;
444 	uint_t children = 0;
445 	nvlist_t **child = NULL;
446 	uint_t holes;
447 	uint64_t *hole_array, max_id;
448 	uint_t c;
449 	boolean_t isactive;
450 	uint64_t hostid;
451 	nvlist_t *nvl;
452 	boolean_t found_one = B_FALSE;
453 	boolean_t valid_top_config = B_FALSE;
454 
455 	if (nvlist_alloc(&ret, 0, 0) != 0)
456 		goto nomem;
457 
458 	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
459 		uint64_t id, max_txg = 0;
460 
461 		if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
462 			goto nomem;
463 		config_seen = B_FALSE;
464 
465 		/*
466 		 * Iterate over all toplevel vdevs.  Grab the pool configuration
467 		 * from the first one we find, and then go through the rest and
468 		 * add them as necessary to the 'vdevs' member of the config.
469 		 */
470 		for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
471 
472 			/*
473 			 * Determine the best configuration for this vdev by
474 			 * selecting the config with the latest transaction
475 			 * group.
476 			 */
477 			best_txg = 0;
478 			for (ce = ve->ve_configs; ce != NULL;
479 			    ce = ce->ce_next) {
480 
481 				if (ce->ce_txg > best_txg) {
482 					tmp = ce->ce_config;
483 					best_txg = ce->ce_txg;
484 				}
485 			}
486 
487 			/*
488 			 * We rely on the fact that the max txg for the
489 			 * pool will contain the most up-to-date information
490 			 * about the valid top-levels in the vdev namespace.
491 			 */
492 			if (best_txg > max_txg) {
493 				(void) nvlist_remove(config,
494 				    ZPOOL_CONFIG_VDEV_CHILDREN,
495 				    DATA_TYPE_UINT64);
496 				(void) nvlist_remove(config,
497 				    ZPOOL_CONFIG_HOLE_ARRAY,
498 				    DATA_TYPE_UINT64_ARRAY);
499 
500 				max_txg = best_txg;
501 				hole_array = NULL;
502 				holes = 0;
503 				max_id = 0;
504 				valid_top_config = B_FALSE;
505 
506 				if (nvlist_lookup_uint64(tmp,
507 				    ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
508 					verify(nvlist_add_uint64(config,
509 					    ZPOOL_CONFIG_VDEV_CHILDREN,
510 					    max_id) == 0);
511 					valid_top_config = B_TRUE;
512 				}
513 
514 				if (nvlist_lookup_uint64_array(tmp,
515 				    ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
516 				    &holes) == 0) {
517 					verify(nvlist_add_uint64_array(config,
518 					    ZPOOL_CONFIG_HOLE_ARRAY,
519 					    hole_array, holes) == 0);
520 				}
521 			}
522 
523 			if (!config_seen) {
524 				/*
525 				 * Copy the relevant pieces of data to the pool
526 				 * configuration:
527 				 *
528 				 *	version
529 				 * 	pool guid
530 				 * 	name
531 				 *	comment (if available)
532 				 * 	pool state
533 				 *	hostid (if available)
534 				 *	hostname (if available)
535 				 */
536 				uint64_t state;
537 
538 				verify(nvlist_lookup_uint64(tmp,
539 				    ZPOOL_CONFIG_VERSION, &version) == 0);
540 				if (nvlist_add_uint64(config,
541 				    ZPOOL_CONFIG_VERSION, version) != 0)
542 					goto nomem;
543 				verify(nvlist_lookup_uint64(tmp,
544 				    ZPOOL_CONFIG_POOL_GUID, &guid) == 0);
545 				if (nvlist_add_uint64(config,
546 				    ZPOOL_CONFIG_POOL_GUID, guid) != 0)
547 					goto nomem;
548 				verify(nvlist_lookup_string(tmp,
549 				    ZPOOL_CONFIG_POOL_NAME, &name) == 0);
550 				if (nvlist_add_string(config,
551 				    ZPOOL_CONFIG_POOL_NAME, name) != 0)
552 					goto nomem;
553 
554 				/*
555 				 * COMMENT is optional, don't bail if it's not
556 				 * there, instead, set it to NULL.
557 				 */
558 				if (nvlist_lookup_string(tmp,
559 				    ZPOOL_CONFIG_COMMENT, &comment) != 0)
560 					comment = NULL;
561 				else if (nvlist_add_string(config,
562 				    ZPOOL_CONFIG_COMMENT, comment) != 0)
563 					goto nomem;
564 
565 				verify(nvlist_lookup_uint64(tmp,
566 				    ZPOOL_CONFIG_POOL_STATE, &state) == 0);
567 				if (nvlist_add_uint64(config,
568 				    ZPOOL_CONFIG_POOL_STATE, state) != 0)
569 					goto nomem;
570 
571 				hostid = 0;
572 				if (nvlist_lookup_uint64(tmp,
573 				    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
574 					if (nvlist_add_uint64(config,
575 					    ZPOOL_CONFIG_HOSTID, hostid) != 0)
576 						goto nomem;
577 					verify(nvlist_lookup_string(tmp,
578 					    ZPOOL_CONFIG_HOSTNAME,
579 					    &hostname) == 0);
580 					if (nvlist_add_string(config,
581 					    ZPOOL_CONFIG_HOSTNAME,
582 					    hostname) != 0)
583 						goto nomem;
584 				}
585 
586 				config_seen = B_TRUE;
587 			}
588 
589 			/*
590 			 * Add this top-level vdev to the child array.
591 			 */
592 			verify(nvlist_lookup_nvlist(tmp,
593 			    ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
594 			verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
595 			    &id) == 0);
596 
597 			if (id >= children) {
598 				nvlist_t **newchild;
599 
600 				newchild = zfs_alloc(hdl, (id + 1) *
601 				    sizeof (nvlist_t *));
602 				if (newchild == NULL)
603 					goto nomem;
604 
605 				for (c = 0; c < children; c++)
606 					newchild[c] = child[c];
607 
608 				free(child);
609 				child = newchild;
610 				children = id + 1;
611 			}
612 			if (nvlist_dup(nvtop, &child[id], 0) != 0)
613 				goto nomem;
614 
615 		}
616 
617 		/*
618 		 * If we have information about all the top-levels then
619 		 * clean up the nvlist which we've constructed. This
620 		 * means removing any extraneous devices that are
621 		 * beyond the valid range or adding devices to the end
622 		 * of our array which appear to be missing.
623 		 */
624 		if (valid_top_config) {
625 			if (max_id < children) {
626 				for (c = max_id; c < children; c++)
627 					nvlist_free(child[c]);
628 				children = max_id;
629 			} else if (max_id > children) {
630 				nvlist_t **newchild;
631 
632 				newchild = zfs_alloc(hdl, (max_id) *
633 				    sizeof (nvlist_t *));
634 				if (newchild == NULL)
635 					goto nomem;
636 
637 				for (c = 0; c < children; c++)
638 					newchild[c] = child[c];
639 
640 				free(child);
641 				child = newchild;
642 				children = max_id;
643 			}
644 		}
645 
646 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
647 		    &guid) == 0);
648 
649 		/*
650 		 * The vdev namespace may contain holes as a result of
651 		 * device removal. We must add them back into the vdev
652 		 * tree before we process any missing devices.
653 		 */
654 		if (holes > 0) {
655 			ASSERT(valid_top_config);
656 
657 			for (c = 0; c < children; c++) {
658 				nvlist_t *holey;
659 
660 				if (child[c] != NULL ||
661 				    !vdev_is_hole(hole_array, holes, c))
662 					continue;
663 
664 				if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
665 				    0) != 0)
666 					goto nomem;
667 
668 				/*
669 				 * Holes in the namespace are treated as
670 				 * "hole" top-level vdevs and have a
671 				 * special flag set on them.
672 				 */
673 				if (nvlist_add_string(holey,
674 				    ZPOOL_CONFIG_TYPE,
675 				    VDEV_TYPE_HOLE) != 0 ||
676 				    nvlist_add_uint64(holey,
677 				    ZPOOL_CONFIG_ID, c) != 0 ||
678 				    nvlist_add_uint64(holey,
679 				    ZPOOL_CONFIG_GUID, 0ULL) != 0)
680 					goto nomem;
681 				child[c] = holey;
682 			}
683 		}
684 
685 		/*
686 		 * Look for any missing top-level vdevs.  If this is the case,
687 		 * create a faked up 'missing' vdev as a placeholder.  We cannot
688 		 * simply compress the child array, because the kernel performs
689 		 * certain checks to make sure the vdev IDs match their location
690 		 * in the configuration.
691 		 */
692 		for (c = 0; c < children; c++) {
693 			if (child[c] == NULL) {
694 				nvlist_t *missing;
695 				if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
696 				    0) != 0)
697 					goto nomem;
698 				if (nvlist_add_string(missing,
699 				    ZPOOL_CONFIG_TYPE,
700 				    VDEV_TYPE_MISSING) != 0 ||
701 				    nvlist_add_uint64(missing,
702 				    ZPOOL_CONFIG_ID, c) != 0 ||
703 				    nvlist_add_uint64(missing,
704 				    ZPOOL_CONFIG_GUID, 0ULL) != 0) {
705 					nvlist_free(missing);
706 					goto nomem;
707 				}
708 				child[c] = missing;
709 			}
710 		}
711 
712 		/*
713 		 * Put all of this pool's top-level vdevs into a root vdev.
714 		 */
715 		if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
716 			goto nomem;
717 		if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
718 		    VDEV_TYPE_ROOT) != 0 ||
719 		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
720 		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
721 		    nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
722 		    child, children) != 0) {
723 			nvlist_free(nvroot);
724 			goto nomem;
725 		}
726 
727 		for (c = 0; c < children; c++)
728 			nvlist_free(child[c]);
729 		free(child);
730 		children = 0;
731 		child = NULL;
732 
733 		/*
734 		 * Go through and fix up any paths and/or devids based on our
735 		 * known list of vdev GUID -> path mappings.
736 		 */
737 		if (fix_paths(nvroot, pl->names) != 0) {
738 			nvlist_free(nvroot);
739 			goto nomem;
740 		}
741 
742 		/*
743 		 * Add the root vdev to this pool's configuration.
744 		 */
745 		if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
746 		    nvroot) != 0) {
747 			nvlist_free(nvroot);
748 			goto nomem;
749 		}
750 		nvlist_free(nvroot);
751 
752 		/*
753 		 * zdb uses this path to report on active pools that were
754 		 * imported or created using -R.
755 		 */
756 		if (active_ok)
757 			goto add_pool;
758 
759 		/*
760 		 * Determine if this pool is currently active, in which case we
761 		 * can't actually import it.
762 		 */
763 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
764 		    &name) == 0);
765 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
766 		    &guid) == 0);
767 
768 		if (pool_active(hdl, name, guid, &isactive) != 0)
769 			goto error;
770 
771 		if (isactive) {
772 			nvlist_free(config);
773 			config = NULL;
774 			continue;
775 		}
776 
777 		if ((nvl = refresh_config(hdl, config)) == NULL) {
778 			nvlist_free(config);
779 			config = NULL;
780 			continue;
781 		}
782 
783 		nvlist_free(config);
784 		config = nvl;
785 
786 		/*
787 		 * Go through and update the paths for spares, now that we have
788 		 * them.
789 		 */
790 		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
791 		    &nvroot) == 0);
792 		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
793 		    &spares, &nspares) == 0) {
794 			for (i = 0; i < nspares; i++) {
795 				if (fix_paths(spares[i], pl->names) != 0)
796 					goto nomem;
797 			}
798 		}
799 
800 		/*
801 		 * Update the paths for l2cache devices.
802 		 */
803 		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
804 		    &l2cache, &nl2cache) == 0) {
805 			for (i = 0; i < nl2cache; i++) {
806 				if (fix_paths(l2cache[i], pl->names) != 0)
807 					goto nomem;
808 			}
809 		}
810 
811 		/*
812 		 * Restore the original information read from the actual label.
813 		 */
814 		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
815 		    DATA_TYPE_UINT64);
816 		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
817 		    DATA_TYPE_STRING);
818 		if (hostid != 0) {
819 			verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
820 			    hostid) == 0);
821 			verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
822 			    hostname) == 0);
823 		}
824 
825 add_pool:
826 		/*
827 		 * Add this pool to the list of configs.
828 		 */
829 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
830 		    &name) == 0);
831 		if (nvlist_add_nvlist(ret, name, config) != 0)
832 			goto nomem;
833 
834 		found_one = B_TRUE;
835 		nvlist_free(config);
836 		config = NULL;
837 	}
838 
839 	if (!found_one) {
840 		nvlist_free(ret);
841 		ret = NULL;
842 	}
843 
844 	return (ret);
845 
846 nomem:
847 	(void) no_memory(hdl);
848 error:
849 	nvlist_free(config);
850 	nvlist_free(ret);
851 	for (c = 0; c < children; c++)
852 		nvlist_free(child[c]);
853 	free(child);
854 
855 	return (NULL);
856 }
857 
858 /*
859  * Return the offset of the given label.
860  */
861 static uint64_t
862 label_offset(uint64_t size, int l)
863 {
864 	ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
865 	return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
866 	    0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
867 }
868 
869 /*
870  * Given a file descriptor, read the label information and return an nvlist
871  * describing the configuration, if there is one.
872  */
873 int
874 zpool_read_label(int fd, nvlist_t **config)
875 {
876 	struct stat64 statbuf;
877 	int l;
878 	vdev_label_t *label;
879 	uint64_t state, txg, size;
880 
881 	*config = NULL;
882 
883 	if (fstat64(fd, &statbuf) == -1)
884 		return (0);
885 	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
886 
887 	if ((label = malloc(sizeof (vdev_label_t))) == NULL)
888 		return (-1);
889 
890 	for (l = 0; l < VDEV_LABELS; l++) {
891 		if (pread64(fd, label, sizeof (vdev_label_t),
892 		    label_offset(size, l)) != sizeof (vdev_label_t))
893 			continue;
894 
895 		if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
896 		    sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
897 			continue;
898 
899 		if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
900 		    &state) != 0 || state > POOL_STATE_L2CACHE) {
901 			nvlist_free(*config);
902 			continue;
903 		}
904 
905 		if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
906 		    (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
907 		    &txg) != 0 || txg == 0)) {
908 			nvlist_free(*config);
909 			continue;
910 		}
911 
912 		free(label);
913 		return (0);
914 	}
915 
916 	free(label);
917 	*config = NULL;
918 	return (0);
919 }
920 
921 typedef struct rdsk_node {
922 	char *rn_name;
923 	int rn_dfd;
924 	libzfs_handle_t *rn_hdl;
925 	nvlist_t *rn_config;
926 	avl_tree_t *rn_avl;
927 	avl_node_t rn_node;
928 	boolean_t rn_nozpool;
929 } rdsk_node_t;
930 
931 static int
932 slice_cache_compare(const void *arg1, const void *arg2)
933 {
934 	const char  *nm1 = ((rdsk_node_t *)arg1)->rn_name;
935 	const char  *nm2 = ((rdsk_node_t *)arg2)->rn_name;
936 	char *nm1slice, *nm2slice;
937 	int rv;
938 
939 	/*
940 	 * slices zero and two are the most likely to provide results,
941 	 * so put those first
942 	 */
943 	nm1slice = strstr(nm1, "s0");
944 	nm2slice = strstr(nm2, "s0");
945 	if (nm1slice && !nm2slice) {
946 		return (-1);
947 	}
948 	if (!nm1slice && nm2slice) {
949 		return (1);
950 	}
951 	nm1slice = strstr(nm1, "s2");
952 	nm2slice = strstr(nm2, "s2");
953 	if (nm1slice && !nm2slice) {
954 		return (-1);
955 	}
956 	if (!nm1slice && nm2slice) {
957 		return (1);
958 	}
959 
960 	rv = strcmp(nm1, nm2);
961 	if (rv == 0)
962 		return (0);
963 	return (rv > 0 ? 1 : -1);
964 }
965 
966 static void
967 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno,
968     diskaddr_t size, uint_t blksz)
969 {
970 	rdsk_node_t tmpnode;
971 	rdsk_node_t *node;
972 	char sname[MAXNAMELEN];
973 
974 	tmpnode.rn_name = &sname[0];
975 	(void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u",
976 	    diskname, partno);
977 	/*
978 	 * protect against division by zero for disk labels that
979 	 * contain a bogus sector size
980 	 */
981 	if (blksz == 0)
982 		blksz = DEV_BSIZE;
983 	/* too small to contain a zpool? */
984 	if ((size < (SPA_MINDEVSIZE / blksz)) &&
985 	    (node = avl_find(r, &tmpnode, NULL)))
986 		node->rn_nozpool = B_TRUE;
987 }
988 
989 static void
990 nozpool_all_slices(avl_tree_t *r, const char *sname)
991 {
992 	char diskname[MAXNAMELEN];
993 	char *ptr;
994 	int i;
995 
996 	(void) strncpy(diskname, sname, MAXNAMELEN);
997 	if (((ptr = strrchr(diskname, 's')) == NULL) &&
998 	    ((ptr = strrchr(diskname, 'p')) == NULL))
999 		return;
1000 	ptr[0] = 's';
1001 	ptr[1] = '\0';
1002 	for (i = 0; i < NDKMAP; i++)
1003 		check_one_slice(r, diskname, i, 0, 1);
1004 	ptr[0] = 'p';
1005 	for (i = 0; i <= FD_NUMPART; i++)
1006 		check_one_slice(r, diskname, i, 0, 1);
1007 }
1008 
1009 static void
1010 check_slices(avl_tree_t *r, int fd, const char *sname)
1011 {
1012 	struct extvtoc vtoc;
1013 	struct dk_gpt *gpt;
1014 	char diskname[MAXNAMELEN];
1015 	char *ptr;
1016 	int i;
1017 
1018 	(void) strncpy(diskname, sname, MAXNAMELEN);
1019 	if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1]))
1020 		return;
1021 	ptr[1] = '\0';
1022 
1023 	if (read_extvtoc(fd, &vtoc) >= 0) {
1024 		for (i = 0; i < NDKMAP; i++)
1025 			check_one_slice(r, diskname, i,
1026 			    vtoc.v_part[i].p_size, vtoc.v_sectorsz);
1027 	} else if (efi_alloc_and_read(fd, &gpt) >= 0) {
1028 		/*
1029 		 * on x86 we'll still have leftover links that point
1030 		 * to slices s[9-15], so use NDKMAP instead
1031 		 */
1032 		for (i = 0; i < NDKMAP; i++)
1033 			check_one_slice(r, diskname, i,
1034 			    gpt->efi_parts[i].p_size, gpt->efi_lbasize);
1035 		/* nodes p[1-4] are never used with EFI labels */
1036 		ptr[0] = 'p';
1037 		for (i = 1; i <= FD_NUMPART; i++)
1038 			check_one_slice(r, diskname, i, 0, 1);
1039 		efi_free(gpt);
1040 	}
1041 }
1042 
1043 static void
1044 zpool_open_func(void *arg)
1045 {
1046 	rdsk_node_t *rn = arg;
1047 	struct stat64 statbuf;
1048 	nvlist_t *config;
1049 	int fd;
1050 
1051 	if (rn->rn_nozpool)
1052 		return;
1053 	if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
1054 		/* symlink to a device that's no longer there */
1055 		if (errno == ENOENT)
1056 			nozpool_all_slices(rn->rn_avl, rn->rn_name);
1057 		return;
1058 	}
1059 	/*
1060 	 * Ignore failed stats.  We only want regular
1061 	 * files, character devs and block devs.
1062 	 */
1063 	if (fstat64(fd, &statbuf) != 0 ||
1064 	    (!S_ISREG(statbuf.st_mode) &&
1065 	    !S_ISCHR(statbuf.st_mode) &&
1066 	    !S_ISBLK(statbuf.st_mode))) {
1067 		(void) close(fd);
1068 		return;
1069 	}
1070 	/* this file is too small to hold a zpool */
1071 	if (S_ISREG(statbuf.st_mode) &&
1072 	    statbuf.st_size < SPA_MINDEVSIZE) {
1073 		(void) close(fd);
1074 		return;
1075 	} else if (!S_ISREG(statbuf.st_mode)) {
1076 		/*
1077 		 * Try to read the disk label first so we don't have to
1078 		 * open a bunch of minor nodes that can't have a zpool.
1079 		 */
1080 		check_slices(rn->rn_avl, fd, rn->rn_name);
1081 	}
1082 
1083 	if ((zpool_read_label(fd, &config)) != 0) {
1084 		(void) close(fd);
1085 		(void) no_memory(rn->rn_hdl);
1086 		return;
1087 	}
1088 	(void) close(fd);
1089 
1090 
1091 	rn->rn_config = config;
1092 	if (config != NULL) {
1093 		assert(rn->rn_nozpool == B_FALSE);
1094 	}
1095 }
1096 
1097 /*
1098  * Given a file descriptor, clear (zero) the label information.  This function
1099  * is currently only used in the appliance stack as part of the ZFS sysevent
1100  * module.
1101  */
1102 int
1103 zpool_clear_label(int fd)
1104 {
1105 	struct stat64 statbuf;
1106 	int l;
1107 	vdev_label_t *label;
1108 	uint64_t size;
1109 
1110 	if (fstat64(fd, &statbuf) == -1)
1111 		return (0);
1112 	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1113 
1114 	if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
1115 		return (-1);
1116 
1117 	for (l = 0; l < VDEV_LABELS; l++) {
1118 		if (pwrite64(fd, label, sizeof (vdev_label_t),
1119 		    label_offset(size, l)) != sizeof (vdev_label_t))
1120 			return (-1);
1121 	}
1122 
1123 	free(label);
1124 	return (0);
1125 }
1126 
1127 /*
1128  * Given a list of directories to search, find all pools stored on disk.  This
1129  * includes partial pools which are not available to import.  If no args are
1130  * given (argc is 0), then the default directory (/dev/dsk) is searched.
1131  * poolname or guid (but not both) are provided by the caller when trying
1132  * to import a specific pool.
1133  */
1134 static nvlist_t *
1135 zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
1136 {
1137 	int i, dirs = iarg->paths;
1138 	DIR *dirp = NULL;
1139 	struct dirent64 *dp;
1140 	char path[MAXPATHLEN];
1141 	char *end, **dir = iarg->path;
1142 	size_t pathleft;
1143 	nvlist_t *ret = NULL;
1144 	static char *default_dir = "/dev/dsk";
1145 	pool_list_t pools = { 0 };
1146 	pool_entry_t *pe, *penext;
1147 	vdev_entry_t *ve, *venext;
1148 	config_entry_t *ce, *cenext;
1149 	name_entry_t *ne, *nenext;
1150 	avl_tree_t slice_cache;
1151 	rdsk_node_t *slice;
1152 	void *cookie;
1153 
1154 	if (dirs == 0) {
1155 		dirs = 1;
1156 		dir = &default_dir;
1157 	}
1158 
1159 	/*
1160 	 * Go through and read the label configuration information from every
1161 	 * possible device, organizing the information according to pool GUID
1162 	 * and toplevel GUID.
1163 	 */
1164 	for (i = 0; i < dirs; i++) {
1165 		tpool_t *t;
1166 		char *rdsk;
1167 		int dfd;
1168 
1169 		/* use realpath to normalize the path */
1170 		if (realpath(dir[i], path) == 0) {
1171 			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1172 			    dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
1173 			goto error;
1174 		}
1175 		end = &path[strlen(path)];
1176 		*end++ = '/';
1177 		*end = 0;
1178 		pathleft = &path[sizeof (path)] - end;
1179 
1180 		/*
1181 		 * Using raw devices instead of block devices when we're
1182 		 * reading the labels skips a bunch of slow operations during
1183 		 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
1184 		 */
1185 		if (strcmp(path, "/dev/dsk/") == 0)
1186 			rdsk = "/dev/rdsk/";
1187 		else
1188 			rdsk = path;
1189 
1190 		if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
1191 		    (dirp = fdopendir(dfd)) == NULL) {
1192 			zfs_error_aux(hdl, strerror(errno));
1193 			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1194 			    dgettext(TEXT_DOMAIN, "cannot open '%s'"),
1195 			    rdsk);
1196 			goto error;
1197 		}
1198 
1199 		avl_create(&slice_cache, slice_cache_compare,
1200 		    sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));
1201 		/*
1202 		 * This is not MT-safe, but we have no MT consumers of libzfs
1203 		 */
1204 		while ((dp = readdir64(dirp)) != NULL) {
1205 			const char *name = dp->d_name;
1206 			if (name[0] == '.' &&
1207 			    (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1208 				continue;
1209 
1210 			slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1211 			slice->rn_name = zfs_strdup(hdl, name);
1212 			slice->rn_avl = &slice_cache;
1213 			slice->rn_dfd = dfd;
1214 			slice->rn_hdl = hdl;
1215 			slice->rn_nozpool = B_FALSE;
1216 			avl_add(&slice_cache, slice);
1217 		}
1218 		/*
1219 		 * create a thread pool to do all of this in parallel;
1220 		 * rn_nozpool is not protected, so this is racy in that
1221 		 * multiple tasks could decide that the same slice can
1222 		 * not hold a zpool, which is benign.  Also choose
1223 		 * double the number of processors; we hold a lot of
1224 		 * locks in the kernel, so going beyond this doesn't
1225 		 * buy us much.
1226 		 */
1227 		t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN),
1228 		    0, NULL);
1229 		for (slice = avl_first(&slice_cache); slice;
1230 		    (slice = avl_walk(&slice_cache, slice,
1231 		    AVL_AFTER)))
1232 			(void) tpool_dispatch(t, zpool_open_func, slice);
1233 		tpool_wait(t);
1234 		tpool_destroy(t);
1235 
1236 		cookie = NULL;
1237 		while ((slice = avl_destroy_nodes(&slice_cache,
1238 		    &cookie)) != NULL) {
1239 			if (slice->rn_config != NULL) {
1240 				nvlist_t *config = slice->rn_config;
1241 				boolean_t matched = B_TRUE;
1242 
1243 				if (iarg->poolname != NULL) {
1244 					char *pname;
1245 
1246 					matched = nvlist_lookup_string(config,
1247 					    ZPOOL_CONFIG_POOL_NAME,
1248 					    &pname) == 0 &&
1249 					    strcmp(iarg->poolname, pname) == 0;
1250 				} else if (iarg->guid != 0) {
1251 					uint64_t this_guid;
1252 
1253 					matched = nvlist_lookup_uint64(config,
1254 					    ZPOOL_CONFIG_POOL_GUID,
1255 					    &this_guid) == 0 &&
1256 					    iarg->guid == this_guid;
1257 				}
1258 				if (!matched) {
1259 					nvlist_free(config);
1260 					config = NULL;
1261 					continue;
1262 				}
1263 				/* use the non-raw path for the config */
1264 				(void) strlcpy(end, slice->rn_name, pathleft);
1265 				if (add_config(hdl, &pools, path, config) != 0)
1266 					goto error;
1267 			}
1268 			free(slice->rn_name);
1269 			free(slice);
1270 		}
1271 		avl_destroy(&slice_cache);
1272 
1273 		(void) closedir(dirp);
1274 		dirp = NULL;
1275 	}
1276 
1277 	ret = get_configs(hdl, &pools, iarg->can_be_active);
1278 
1279 error:
1280 	for (pe = pools.pools; pe != NULL; pe = penext) {
1281 		penext = pe->pe_next;
1282 		for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1283 			venext = ve->ve_next;
1284 			for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1285 				cenext = ce->ce_next;
1286 				if (ce->ce_config)
1287 					nvlist_free(ce->ce_config);
1288 				free(ce);
1289 			}
1290 			free(ve);
1291 		}
1292 		free(pe);
1293 	}
1294 
1295 	for (ne = pools.names; ne != NULL; ne = nenext) {
1296 		nenext = ne->ne_next;
1297 		if (ne->ne_name)
1298 			free(ne->ne_name);
1299 		free(ne);
1300 	}
1301 
1302 	if (dirp)
1303 		(void) closedir(dirp);
1304 
1305 	return (ret);
1306 }
1307 
1308 nvlist_t *
1309 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
1310 {
1311 	importargs_t iarg = { 0 };
1312 
1313 	iarg.paths = argc;
1314 	iarg.path = argv;
1315 
1316 	return (zpool_find_import_impl(hdl, &iarg));
1317 }
1318 
1319 /*
1320  * Given a cache file, return the contents as a list of importable pools.
1321  * poolname or guid (but not both) are provided by the caller when trying
1322  * to import a specific pool.
1323  */
1324 nvlist_t *
1325 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
1326     char *poolname, uint64_t guid)
1327 {
1328 	char *buf;
1329 	int fd;
1330 	struct stat64 statbuf;
1331 	nvlist_t *raw, *src, *dst;
1332 	nvlist_t *pools;
1333 	nvpair_t *elem;
1334 	char *name;
1335 	uint64_t this_guid;
1336 	boolean_t active;
1337 
1338 	verify(poolname == NULL || guid == 0);
1339 
1340 	if ((fd = open(cachefile, O_RDONLY)) < 0) {
1341 		zfs_error_aux(hdl, "%s", strerror(errno));
1342 		(void) zfs_error(hdl, EZFS_BADCACHE,
1343 		    dgettext(TEXT_DOMAIN, "failed to open cache file"));
1344 		return (NULL);
1345 	}
1346 
1347 	if (fstat64(fd, &statbuf) != 0) {
1348 		zfs_error_aux(hdl, "%s", strerror(errno));
1349 		(void) close(fd);
1350 		(void) zfs_error(hdl, EZFS_BADCACHE,
1351 		    dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1352 		return (NULL);
1353 	}
1354 
1355 	if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1356 		(void) close(fd);
1357 		return (NULL);
1358 	}
1359 
1360 	if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1361 		(void) close(fd);
1362 		free(buf);
1363 		(void) zfs_error(hdl, EZFS_BADCACHE,
1364 		    dgettext(TEXT_DOMAIN,
1365 		    "failed to read cache file contents"));
1366 		return (NULL);
1367 	}
1368 
1369 	(void) close(fd);
1370 
1371 	if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1372 		free(buf);
1373 		(void) zfs_error(hdl, EZFS_BADCACHE,
1374 		    dgettext(TEXT_DOMAIN,
1375 		    "invalid or corrupt cache file contents"));
1376 		return (NULL);
1377 	}
1378 
1379 	free(buf);
1380 
1381 	/*
1382 	 * Go through and get the current state of the pools and refresh their
1383 	 * state.
1384 	 */
1385 	if (nvlist_alloc(&pools, 0, 0) != 0) {
1386 		(void) no_memory(hdl);
1387 		nvlist_free(raw);
1388 		return (NULL);
1389 	}
1390 
1391 	elem = NULL;
1392 	while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1393 		verify(nvpair_value_nvlist(elem, &src) == 0);
1394 
1395 		verify(nvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME,
1396 		    &name) == 0);
1397 		if (poolname != NULL && strcmp(poolname, name) != 0)
1398 			continue;
1399 
1400 		verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1401 		    &this_guid) == 0);
1402 		if (guid != 0) {
1403 			verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1404 			    &this_guid) == 0);
1405 			if (guid != this_guid)
1406 				continue;
1407 		}
1408 
1409 		if (pool_active(hdl, name, this_guid, &active) != 0) {
1410 			nvlist_free(raw);
1411 			nvlist_free(pools);
1412 			return (NULL);
1413 		}
1414 
1415 		if (active)
1416 			continue;
1417 
1418 		if ((dst = refresh_config(hdl, src)) == NULL) {
1419 			nvlist_free(raw);
1420 			nvlist_free(pools);
1421 			return (NULL);
1422 		}
1423 
1424 		if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1425 			(void) no_memory(hdl);
1426 			nvlist_free(dst);
1427 			nvlist_free(raw);
1428 			nvlist_free(pools);
1429 			return (NULL);
1430 		}
1431 		nvlist_free(dst);
1432 	}
1433 
1434 	nvlist_free(raw);
1435 	return (pools);
1436 }
1437 
1438 static int
1439 name_or_guid_exists(zpool_handle_t *zhp, void *data)
1440 {
1441 	importargs_t *import = data;
1442 	int found = 0;
1443 
1444 	if (import->poolname != NULL) {
1445 		char *pool_name;
1446 
1447 		verify(nvlist_lookup_string(zhp->zpool_config,
1448 		    ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
1449 		if (strcmp(pool_name, import->poolname) == 0)
1450 			found = 1;
1451 	} else {
1452 		uint64_t pool_guid;
1453 
1454 		verify(nvlist_lookup_uint64(zhp->zpool_config,
1455 		    ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
1456 		if (pool_guid == import->guid)
1457 			found = 1;
1458 	}
1459 
1460 	zpool_close(zhp);
1461 	return (found);
1462 }
1463 
1464 nvlist_t *
1465 zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
1466 {
1467 	verify(import->poolname == NULL || import->guid == 0);
1468 
1469 	if (import->unique)
1470 		import->exists = zpool_iter(hdl, name_or_guid_exists, import);
1471 
1472 	if (import->cachefile != NULL)
1473 		return (zpool_find_import_cached(hdl, import->cachefile,
1474 		    import->poolname, import->guid));
1475 
1476 	return (zpool_find_import_impl(hdl, import));
1477 }
1478 
1479 boolean_t
1480 find_guid(nvlist_t *nv, uint64_t guid)
1481 {
1482 	uint64_t tmp;
1483 	nvlist_t **child;
1484 	uint_t c, children;
1485 
1486 	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
1487 	if (tmp == guid)
1488 		return (B_TRUE);
1489 
1490 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1491 	    &child, &children) == 0) {
1492 		for (c = 0; c < children; c++)
1493 			if (find_guid(child[c], guid))
1494 				return (B_TRUE);
1495 	}
1496 
1497 	return (B_FALSE);
1498 }
1499 
1500 typedef struct aux_cbdata {
1501 	const char	*cb_type;
1502 	uint64_t	cb_guid;
1503 	zpool_handle_t	*cb_zhp;
1504 } aux_cbdata_t;
1505 
1506 static int
1507 find_aux(zpool_handle_t *zhp, void *data)
1508 {
1509 	aux_cbdata_t *cbp = data;
1510 	nvlist_t **list;
1511 	uint_t i, count;
1512 	uint64_t guid;
1513 	nvlist_t *nvroot;
1514 
1515 	verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
1516 	    &nvroot) == 0);
1517 
1518 	if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
1519 	    &list, &count) == 0) {
1520 		for (i = 0; i < count; i++) {
1521 			verify(nvlist_lookup_uint64(list[i],
1522 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1523 			if (guid == cbp->cb_guid) {
1524 				cbp->cb_zhp = zhp;
1525 				return (1);
1526 			}
1527 		}
1528 	}
1529 
1530 	zpool_close(zhp);
1531 	return (0);
1532 }
1533 
1534 /*
1535  * Determines if the pool is in use.  If so, it returns true and the state of
1536  * the pool as well as the name of the pool.  Both strings are allocated and
1537  * must be freed by the caller.
1538  */
1539 int
1540 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
1541     boolean_t *inuse)
1542 {
1543 	nvlist_t *config;
1544 	char *name;
1545 	boolean_t ret;
1546 	uint64_t guid, vdev_guid;
1547 	zpool_handle_t *zhp;
1548 	nvlist_t *pool_config;
1549 	uint64_t stateval, isspare;
1550 	aux_cbdata_t cb = { 0 };
1551 	boolean_t isactive;
1552 
1553 	*inuse = B_FALSE;
1554 
1555 	if (zpool_read_label(fd, &config) != 0) {
1556 		(void) no_memory(hdl);
1557 		return (-1);
1558 	}
1559 
1560 	if (config == NULL)
1561 		return (0);
1562 
1563 	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1564 	    &stateval) == 0);
1565 	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
1566 	    &vdev_guid) == 0);
1567 
1568 	if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
1569 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1570 		    &name) == 0);
1571 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1572 		    &guid) == 0);
1573 	}
1574 
1575 	switch (stateval) {
1576 	case POOL_STATE_EXPORTED:
1577 		/*
1578 		 * A pool with an exported state may in fact be imported
1579 		 * read-only, so check the in-core state to see if it's
1580 		 * active and imported read-only.  If it is, set
1581 		 * its state to active.
1582 		 */
1583 		if (pool_active(hdl, name, guid, &isactive) == 0 && isactive &&
1584 		    (zhp = zpool_open_canfail(hdl, name)) != NULL &&
1585 		    zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL))
1586 			stateval = POOL_STATE_ACTIVE;
1587 
1588 		ret = B_TRUE;
1589 		break;
1590 
1591 	case POOL_STATE_ACTIVE:
1592 		/*
1593 		 * For an active pool, we have to determine if it's really part
1594 		 * of a currently active pool (in which case the pool will exist
1595 		 * and the guid will be the same), or whether it's part of an
1596 		 * active pool that was disconnected without being explicitly
1597 		 * exported.
1598 		 */
1599 		if (pool_active(hdl, name, guid, &isactive) != 0) {
1600 			nvlist_free(config);
1601 			return (-1);
1602 		}
1603 
1604 		if (isactive) {
1605 			/*
1606 			 * Because the device may have been removed while
1607 			 * offlined, we only report it as active if the vdev is
1608 			 * still present in the config.  Otherwise, pretend like
1609 			 * it's not in use.
1610 			 */
1611 			if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
1612 			    (pool_config = zpool_get_config(zhp, NULL))
1613 			    != NULL) {
1614 				nvlist_t *nvroot;
1615 
1616 				verify(nvlist_lookup_nvlist(pool_config,
1617 				    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1618 				ret = find_guid(nvroot, vdev_guid);
1619 			} else {
1620 				ret = B_FALSE;
1621 			}
1622 
1623 			/*
1624 			 * If this is an active spare within another pool, we
1625 			 * treat it like an unused hot spare.  This allows the
1626 			 * user to create a pool with a hot spare that currently
1627 			 * in use within another pool.  Since we return B_TRUE,
1628 			 * libdiskmgt will continue to prevent generic consumers
1629 			 * from using the device.
1630 			 */
1631 			if (ret && nvlist_lookup_uint64(config,
1632 			    ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1633 				stateval = POOL_STATE_SPARE;
1634 
1635 			if (zhp != NULL)
1636 				zpool_close(zhp);
1637 		} else {
1638 			stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1639 			ret = B_TRUE;
1640 		}
1641 		break;
1642 
1643 	case POOL_STATE_SPARE:
1644 		/*
1645 		 * For a hot spare, it can be either definitively in use, or
1646 		 * potentially active.  To determine if it's in use, we iterate
1647 		 * over all pools in the system and search for one with a spare
1648 		 * with a matching guid.
1649 		 *
1650 		 * Due to the shared nature of spares, we don't actually report
1651 		 * the potentially active case as in use.  This means the user
1652 		 * can freely create pools on the hot spares of exported pools,
1653 		 * but to do otherwise makes the resulting code complicated, and
1654 		 * we end up having to deal with this case anyway.
1655 		 */
1656 		cb.cb_zhp = NULL;
1657 		cb.cb_guid = vdev_guid;
1658 		cb.cb_type = ZPOOL_CONFIG_SPARES;
1659 		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1660 			name = (char *)zpool_get_name(cb.cb_zhp);
1661 			ret = TRUE;
1662 		} else {
1663 			ret = FALSE;
1664 		}
1665 		break;
1666 
1667 	case POOL_STATE_L2CACHE:
1668 
1669 		/*
1670 		 * Check if any pool is currently using this l2cache device.
1671 		 */
1672 		cb.cb_zhp = NULL;
1673 		cb.cb_guid = vdev_guid;
1674 		cb.cb_type = ZPOOL_CONFIG_L2CACHE;
1675 		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1676 			name = (char *)zpool_get_name(cb.cb_zhp);
1677 			ret = TRUE;
1678 		} else {
1679 			ret = FALSE;
1680 		}
1681 		break;
1682 
1683 	default:
1684 		ret = B_FALSE;
1685 	}
1686 
1687 
1688 	if (ret) {
1689 		if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1690 			if (cb.cb_zhp)
1691 				zpool_close(cb.cb_zhp);
1692 			nvlist_free(config);
1693 			return (-1);
1694 		}
1695 		*state = (pool_state_t)stateval;
1696 	}
1697 
1698 	if (cb.cb_zhp)
1699 		zpool_close(cb.cb_zhp);
1700 
1701 	nvlist_free(config);
1702 	*inuse = ret;
1703 	return (0);
1704 }
1705