1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * based on usr/src/uts/common/os/kmem.c r1.64 from 2001/12/18 31 * 32 * The slab allocator, as described in the following two papers: 33 * 34 * Jeff Bonwick, 35 * The Slab Allocator: An Object-Caching Kernel Memory Allocator. 36 * Proceedings of the Summer 1994 Usenix Conference. 37 * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf. 38 * 39 * Jeff Bonwick and Jonathan Adams, 40 * Magazines and vmem: Extending the Slab Allocator to Many CPUs and 41 * Arbitrary Resources. 42 * Proceedings of the 2001 Usenix Conference. 43 * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf. 44 * 45 * 1. Overview 46 * ----------- 47 * umem is very close to kmem in implementation. There are four major 48 * areas of divergence: 49 * 50 * * Initialization 51 * 52 * * CPU handling 53 * 54 * * umem_update() 55 * 56 * * KM_SLEEP v.s. UMEM_NOFAIL 57 * 58 * * lock ordering 59 * 60 * 2. Initialization 61 * ----------------- 62 * kmem is initialized early on in boot, and knows that no one will call 63 * into it before it is ready. umem does not have these luxuries. Instead, 64 * initialization is divided into two phases: 65 * 66 * * library initialization, and 67 * 68 * * first use 69 * 70 * umem's full initialization happens at the time of the first allocation 71 * request (via malloc() and friends, umem_alloc(), or umem_zalloc()), 72 * or the first call to umem_cache_create(). 73 * 74 * umem_free(), and umem_cache_alloc() do not require special handling, 75 * since the only way to get valid arguments for them is to successfully 76 * call a function from the first group. 77 * 78 * 2.1. Library Initialization: umem_startup() 79 * ------------------------------------------- 80 * umem_startup() is libumem.so's .init section. It calls pthread_atfork() 81 * to install the handlers necessary for umem's Fork1-Safety. Because of 82 * race condition issues, all other pre-umem_init() initialization is done 83 * statically (i.e. by the dynamic linker). 84 * 85 * For standalone use, umem_startup() returns everything to its initial 86 * state. 87 * 88 * 2.2. First use: umem_init() 89 * ------------------------------ 90 * The first time any memory allocation function is used, we have to 91 * create the backing caches and vmem arenas which are needed for it. 92 * umem_init() is the central point for that task. When it completes, 93 * umem_ready is either UMEM_READY (all set) or UMEM_READY_INIT_FAILED (unable 94 * to initialize, probably due to lack of memory). 95 * 96 * There are four different paths from which umem_init() is called: 97 * 98 * * from umem_alloc() or umem_zalloc(), with 0 < size < UMEM_MAXBUF, 99 * 100 * * from umem_alloc() or umem_zalloc(), with size > UMEM_MAXBUF, 101 * 102 * * from umem_cache_create(), and 103 * 104 * * from memalign(), with align > UMEM_ALIGN. 105 * 106 * The last three just check if umem is initialized, and call umem_init() 107 * if it is not. For performance reasons, the first case is more complicated. 108 * 109 * 2.2.1. umem_alloc()/umem_zalloc(), with 0 < size < UMEM_MAXBUF 110 * ----------------------------------------------------------------- 111 * In this case, umem_cache_alloc(&umem_null_cache, ...) is called. 112 * There is special case code in which causes any allocation on 113 * &umem_null_cache to fail by returning (NULL), regardless of the 114 * flags argument. 115 * 116 * So umem_cache_alloc() returns NULL, and umem_alloc()/umem_zalloc() call 117 * umem_alloc_retry(). umem_alloc_retry() sees that the allocation 118 * was agains &umem_null_cache, and calls umem_init(). 119 * 120 * If initialization is successful, umem_alloc_retry() returns 1, which 121 * causes umem_alloc()/umem_zalloc() to start over, which causes it to load 122 * the (now valid) cache pointer from umem_alloc_table. 123 * 124 * 2.2.2. Dealing with race conditions 125 * ----------------------------------- 126 * There are a couple race conditions resulting from the initialization 127 * code that we have to guard against: 128 * 129 * * In umem_cache_create(), there is a special UMC_INTERNAL cflag 130 * that is passed for caches created during initialization. It 131 * is illegal for a user to try to create a UMC_INTERNAL cache. 132 * This allows initialization to proceed, but any other 133 * umem_cache_create()s will block by calling umem_init(). 134 * 135 * * Since umem_null_cache has a 1-element cache_cpu, it's cache_cpu_mask 136 * is always zero. umem_cache_alloc uses cp->cache_cpu_mask to 137 * mask the cpu number. This prevents a race between grabbing a 138 * cache pointer out of umem_alloc_table and growing the cpu array. 139 * 140 * 141 * 3. CPU handling 142 * --------------- 143 * kmem uses the CPU's sequence number to determine which "cpu cache" to 144 * use for an allocation. Currently, there is no way to get the sequence 145 * number in userspace. 146 * 147 * umem keeps track of cpu information in umem_cpus, an array of umem_max_ncpus 148 * umem_cpu_t structures. CURCPU() is a a "hint" function, which we then mask 149 * with either umem_cpu_mask or cp->cache_cpu_mask to find the actual "cpu" id. 150 * The mechanics of this is all in the CPU(mask) macro. 151 * 152 * Currently, umem uses _lwp_self() as its hint. 153 * 154 * 155 * 4. The update thread 156 * -------------------- 157 * kmem uses a task queue, kmem_taskq, to do periodic maintenance on 158 * every kmem cache. vmem has a periodic timeout for hash table resizing. 159 * The kmem_taskq also provides a separate context for kmem_cache_reap()'s 160 * to be done in, avoiding issues of the context of kmem_reap() callers. 161 * 162 * Instead, umem has the concept of "updates", which are asynchronous requests 163 * for work attached to single caches. All caches with pending work are 164 * on a doubly linked list rooted at the umem_null_cache. All update state 165 * is protected by the umem_update_lock mutex, and the umem_update_cv is used 166 * for notification between threads. 167 * 168 * 4.1. Cache states with regards to updates 169 * ----------------------------------------- 170 * A given cache is in one of three states: 171 * 172 * Inactive cache_uflags is zero, cache_u{next,prev} are NULL 173 * 174 * Work Requested cache_uflags is non-zero (but UMU_ACTIVE is not set), 175 * cache_u{next,prev} link the cache onto the global 176 * update list 177 * 178 * Active cache_uflags has UMU_ACTIVE set, cache_u{next,prev} 179 * are NULL, and either umem_update_thr or 180 * umem_st_update_thr are actively doing work on the 181 * cache. 182 * 183 * An update can be added to any cache in any state -- if the cache is 184 * Inactive, it transitions to being Work Requested. If the cache is 185 * Active, the worker will notice the new update and act on it before 186 * transitioning the cache to the Inactive state. 187 * 188 * If a cache is in the Active state, UMU_NOTIFY can be set, which asks 189 * the worker to broadcast the umem_update_cv when it has finished. 190 * 191 * 4.2. Update interface 192 * --------------------- 193 * umem_add_update() adds an update to a particular cache. 194 * umem_updateall() adds an update to all caches. 195 * umem_remove_updates() returns a cache to the Inactive state. 196 * 197 * umem_process_updates() process all caches in the Work Requested state. 198 * 199 * 4.3. Reaping 200 * ------------ 201 * When umem_reap() is called (at the time of heap growth), it schedule 202 * UMU_REAP updates on every cache. It then checks to see if the update 203 * thread exists (umem_update_thr != 0). If it is, it broadcasts 204 * the umem_update_cv to wake the update thread up, and returns. 205 * 206 * If the update thread does not exist (umem_update_thr == 0), and the 207 * program currently has multiple threads, umem_reap() attempts to create 208 * a new update thread. 209 * 210 * If the process is not multithreaded, or the creation fails, umem_reap() 211 * calls umem_st_update() to do an inline update. 212 * 213 * 4.4. The update thread 214 * ---------------------- 215 * The update thread spends most of its time in cond_timedwait() on the 216 * umem_update_cv. It wakes up under two conditions: 217 * 218 * * The timedwait times out, in which case it needs to run a global 219 * update, or 220 * 221 * * someone cond_broadcast(3THR)s the umem_update_cv, in which case 222 * it needs to check if there are any caches in the Work Requested 223 * state. 224 * 225 * When it is time for another global update, umem calls umem_cache_update() 226 * on every cache, then calls vmem_update(), which tunes the vmem structures. 227 * umem_cache_update() can request further work using umem_add_update(). 228 * 229 * After any work from the global update completes, the update timer is 230 * reset to umem_reap_interval seconds in the future. This makes the 231 * updates self-throttling. 232 * 233 * Reaps are similarly self-throttling. After a UMU_REAP update has 234 * been scheduled on all caches, umem_reap() sets a flag and wakes up the 235 * update thread. The update thread notices the flag, and resets the 236 * reap state. 237 * 238 * 4.5. Inline updates 239 * ------------------- 240 * If the update thread is not running, umem_st_update() is used instead. It 241 * immediately does a global update (as above), then calls 242 * umem_process_updates() to process both the reaps that umem_reap() added and 243 * any work generated by the global update. Afterwards, it resets the reap 244 * state. 245 * 246 * While the umem_st_update() is running, umem_st_update_thr holds the thread 247 * id of the thread performing the update. 248 * 249 * 4.6. Updates and fork1() 250 * ------------------------ 251 * umem has fork1() pre- and post-handlers which lock up (and release) every 252 * mutex in every cache. They also lock up the umem_update_lock. Since 253 * fork1() only copies over a single lwp, other threads (including the update 254 * thread) could have been actively using a cache in the parent. This 255 * can lead to inconsistencies in the child process. 256 * 257 * Because we locked all of the mutexes, the only possible inconsistancies are: 258 * 259 * * a umem_cache_alloc() could leak its buffer. 260 * 261 * * a caller of umem_depot_alloc() could leak a magazine, and all the 262 * buffers contained in it. 263 * 264 * * a cache could be in the Active update state. In the child, there 265 * would be no thread actually working on it. 266 * 267 * * a umem_hash_rescale() could leak the new hash table. 268 * 269 * * a umem_magazine_resize() could be in progress. 270 * 271 * * a umem_reap() could be in progress. 272 * 273 * The memory leaks we can't do anything about. umem_release_child() resets 274 * the update state, moves any caches in the Active state to the Work Requested 275 * state. This might cause some updates to be re-run, but UMU_REAP and 276 * UMU_HASH_RESCALE are effectively idempotent, and the worst that can 277 * happen from umem_magazine_resize() is resizing the magazine twice in close 278 * succession. 279 * 280 * Much of the cleanup in umem_release_child() is skipped if 281 * umem_st_update_thr == thr_self(). This is so that applications which call 282 * fork1() from a cache callback does not break. Needless to say, any such 283 * application is tremendously broken. 284 * 285 * 286 * 5. KM_SLEEP v.s. UMEM_NOFAIL 287 * ---------------------------- 288 * Allocations against kmem and vmem have two basic modes: SLEEP and 289 * NOSLEEP. A sleeping allocation is will go to sleep (waiting for 290 * more memory) instead of failing (returning NULL). 291 * 292 * SLEEP allocations presume an extremely multithreaded model, with 293 * a lot of allocation and deallocation activity. umem cannot presume 294 * that its clients have any particular type of behavior. Instead, 295 * it provides two types of allocations: 296 * 297 * * UMEM_DEFAULT, equivalent to KM_NOSLEEP (i.e. return NULL on 298 * failure) 299 * 300 * * UMEM_NOFAIL, which, on failure, calls an optional callback 301 * (registered with umem_nofail_callback()). 302 * 303 * The callback is invoked with no locks held, and can do an arbitrary 304 * amount of work. It then has a choice between: 305 * 306 * * Returning UMEM_CALLBACK_RETRY, which will cause the allocation 307 * to be restarted. 308 * 309 * * Returning UMEM_CALLBACK_EXIT(status), which will cause exit(2) 310 * to be invoked with status. If multiple threads attempt to do 311 * this simultaneously, only one will call exit(2). 312 * 313 * * Doing some kind of non-local exit (thr_exit(3thr), longjmp(3C), 314 * etc.) 315 * 316 * The default callback returns UMEM_CALLBACK_EXIT(255). 317 * 318 * To have these callbacks without risk of state corruption (in the case of 319 * a non-local exit), we have to ensure that the callbacks get invoked 320 * close to the original allocation, with no inconsistent state or held 321 * locks. The following steps are taken: 322 * 323 * * All invocations of vmem are VM_NOSLEEP. 324 * 325 * * All constructor callbacks (which can themselves to allocations) 326 * are passed UMEM_DEFAULT as their required allocation argument. This 327 * way, the constructor will fail, allowing the highest-level allocation 328 * invoke the nofail callback. 329 * 330 * If a constructor callback _does_ do a UMEM_NOFAIL allocation, and 331 * the nofail callback does a non-local exit, we will leak the 332 * partially-constructed buffer. 333 * 334 * 335 * 6. Lock Ordering 336 * ---------------- 337 * umem has a few more locks than kmem does, mostly in the update path. The 338 * overall lock ordering (earlier locks must be acquired first) is: 339 * 340 * umem_init_lock 341 * 342 * vmem_list_lock 343 * vmem_nosleep_lock.vmpl_mutex 344 * vmem_t's: 345 * vm_lock 346 * sbrk_faillock 347 * 348 * umem_cache_lock 349 * umem_update_lock 350 * umem_flags_lock 351 * umem_cache_t's: 352 * cache_cpu[*].cc_lock 353 * cache_depot_lock 354 * cache_lock 355 * umem_log_header_t's: 356 * lh_cpu[*].clh_lock 357 * lh_lock 358 */ 359 360 #include "mtlib.h" 361 #include <umem_impl.h> 362 #include <sys/vmem_impl_user.h> 363 #include "umem_base.h" 364 #include "vmem_base.h" 365 366 #include <sys/processor.h> 367 #include <sys/sysmacros.h> 368 369 #include <alloca.h> 370 #include <errno.h> 371 #include <limits.h> 372 #include <stdio.h> 373 #include <stdlib.h> 374 #include <string.h> 375 #include <strings.h> 376 #include <signal.h> 377 #include <unistd.h> 378 #include <atomic.h> 379 380 #include "misc.h" 381 382 #define UMEM_VMFLAGS(umflag) (VM_NOSLEEP) 383 384 size_t pagesize; 385 386 /* 387 * The default set of caches to back umem_alloc(). 388 * These sizes should be reevaluated periodically. 389 * 390 * We want allocations that are multiples of the coherency granularity 391 * (64 bytes) to be satisfied from a cache which is a multiple of 64 392 * bytes, so that it will be 64-byte aligned. For all multiples of 64, 393 * the next kmem_cache_size greater than or equal to it must be a 394 * multiple of 64. 395 */ 396 static const int umem_alloc_sizes[] = { 397 #ifdef _LP64 398 1 * 8, 399 1 * 16, 400 2 * 16, 401 3 * 16, 402 #else 403 1 * 8, 404 2 * 8, 405 3 * 8, 406 4 * 8, 5 * 8, 6 * 8, 7 * 8, 407 #endif 408 4 * 16, 5 * 16, 6 * 16, 7 * 16, 409 4 * 32, 5 * 32, 6 * 32, 7 * 32, 410 4 * 64, 5 * 64, 6 * 64, 7 * 64, 411 4 * 128, 5 * 128, 6 * 128, 7 * 128, 412 P2ALIGN(8192 / 7, 64), 413 P2ALIGN(8192 / 6, 64), 414 P2ALIGN(8192 / 5, 64), 415 P2ALIGN(8192 / 4, 64), 416 P2ALIGN(8192 / 3, 64), 417 P2ALIGN(8192 / 2, 64), 418 P2ALIGN(8192 / 1, 64), 419 4096 * 3, 420 8192 * 2, 421 }; 422 #define NUM_ALLOC_SIZES (sizeof (umem_alloc_sizes) / sizeof (*umem_alloc_sizes)) 423 424 #define UMEM_MAXBUF 16384 425 426 static umem_magtype_t umem_magtype[] = { 427 { 1, 8, 3200, 65536 }, 428 { 3, 16, 256, 32768 }, 429 { 7, 32, 64, 16384 }, 430 { 15, 64, 0, 8192 }, 431 { 31, 64, 0, 4096 }, 432 { 47, 64, 0, 2048 }, 433 { 63, 64, 0, 1024 }, 434 { 95, 64, 0, 512 }, 435 { 143, 64, 0, 0 }, 436 }; 437 438 /* 439 * umem tunables 440 */ 441 uint32_t umem_max_ncpus; /* # of CPU caches. */ 442 443 uint32_t umem_stack_depth = 15; /* # stack frames in a bufctl_audit */ 444 uint32_t umem_reap_interval = 10; /* max reaping rate (seconds) */ 445 uint_t umem_depot_contention = 2; /* max failed trylocks per real interval */ 446 uint_t umem_abort = 1; /* whether to abort on error */ 447 uint_t umem_output = 0; /* whether to write to standard error */ 448 uint_t umem_logging = 0; /* umem_log_enter() override */ 449 uint32_t umem_mtbf = 0; /* mean time between failures [default: off] */ 450 size_t umem_transaction_log_size; /* size of transaction log */ 451 size_t umem_content_log_size; /* size of content log */ 452 size_t umem_failure_log_size; /* failure log [4 pages per CPU] */ 453 size_t umem_slab_log_size; /* slab create log [4 pages per CPU] */ 454 size_t umem_content_maxsave = 256; /* UMF_CONTENTS max bytes to log */ 455 size_t umem_lite_minsize = 0; /* minimum buffer size for UMF_LITE */ 456 size_t umem_lite_maxalign = 1024; /* maximum buffer alignment for UMF_LITE */ 457 size_t umem_maxverify; /* maximum bytes to inspect in debug routines */ 458 size_t umem_minfirewall; /* hardware-enforced redzone threshold */ 459 460 uint_t umem_flags = 0; 461 462 mutex_t umem_init_lock; /* locks initialization */ 463 cond_t umem_init_cv; /* initialization CV */ 464 thread_t umem_init_thr; /* thread initializing */ 465 int umem_init_env_ready; /* environ pre-initted */ 466 int umem_ready = UMEM_READY_STARTUP; 467 468 static umem_nofail_callback_t *nofail_callback; 469 static mutex_t umem_nofail_exit_lock; 470 static thread_t umem_nofail_exit_thr; 471 472 static umem_cache_t *umem_slab_cache; 473 static umem_cache_t *umem_bufctl_cache; 474 static umem_cache_t *umem_bufctl_audit_cache; 475 476 mutex_t umem_flags_lock; 477 478 static vmem_t *heap_arena; 479 static vmem_alloc_t *heap_alloc; 480 static vmem_free_t *heap_free; 481 482 static vmem_t *umem_internal_arena; 483 static vmem_t *umem_cache_arena; 484 static vmem_t *umem_hash_arena; 485 static vmem_t *umem_log_arena; 486 static vmem_t *umem_oversize_arena; 487 static vmem_t *umem_va_arena; 488 static vmem_t *umem_default_arena; 489 static vmem_t *umem_firewall_va_arena; 490 static vmem_t *umem_firewall_arena; 491 492 vmem_t *umem_memalign_arena; 493 494 umem_log_header_t *umem_transaction_log; 495 umem_log_header_t *umem_content_log; 496 umem_log_header_t *umem_failure_log; 497 umem_log_header_t *umem_slab_log; 498 499 extern thread_t _thr_self(void); 500 #define CPUHINT() (_thr_self()) 501 #define CPUHINT_MAX() INT_MAX 502 503 #define CPU(mask) (umem_cpus + (CPUHINT() & (mask))) 504 static umem_cpu_t umem_startup_cpu = { /* initial, single, cpu */ 505 UMEM_CACHE_SIZE(0), 506 0 507 }; 508 509 static uint32_t umem_cpu_mask = 0; /* global cpu mask */ 510 static umem_cpu_t *umem_cpus = &umem_startup_cpu; /* cpu list */ 511 512 volatile uint32_t umem_reaping; 513 514 thread_t umem_update_thr; 515 struct timeval umem_update_next; /* timeofday of next update */ 516 volatile thread_t umem_st_update_thr; /* only used when single-thd */ 517 518 #define IN_UPDATE() (thr_self() == umem_update_thr || \ 519 thr_self() == umem_st_update_thr) 520 #define IN_REAP() IN_UPDATE() 521 522 mutex_t umem_update_lock; /* cache_u{next,prev,flags} */ 523 cond_t umem_update_cv; 524 525 volatile hrtime_t umem_reap_next; /* min hrtime of next reap */ 526 527 mutex_t umem_cache_lock; /* inter-cache linkage only */ 528 529 #ifdef UMEM_STANDALONE 530 umem_cache_t umem_null_cache; 531 static const umem_cache_t umem_null_cache_template = { 532 #else 533 umem_cache_t umem_null_cache = { 534 #endif 535 0, 0, 0, 0, 0, 536 0, 0, 537 0, 0, 538 0, 0, 539 "invalid_cache", 540 0, 0, 541 NULL, NULL, NULL, NULL, 542 NULL, 543 0, 0, 0, 0, 544 &umem_null_cache, &umem_null_cache, 545 &umem_null_cache, &umem_null_cache, 546 0, 547 DEFAULTMUTEX, /* start of slab layer */ 548 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 549 &umem_null_cache.cache_nullslab, 550 { 551 &umem_null_cache, 552 NULL, 553 &umem_null_cache.cache_nullslab, 554 &umem_null_cache.cache_nullslab, 555 NULL, 556 -1, 557 0 558 }, 559 NULL, 560 NULL, 561 DEFAULTMUTEX, /* start of depot layer */ 562 NULL, { 563 NULL, 0, 0, 0, 0 564 }, { 565 NULL, 0, 0, 0, 0 566 }, { 567 { 568 DEFAULTMUTEX, /* start of CPU cache */ 569 0, 0, NULL, NULL, -1, -1, 0 570 } 571 } 572 }; 573 574 #define ALLOC_TABLE_4 \ 575 &umem_null_cache, &umem_null_cache, &umem_null_cache, &umem_null_cache 576 577 #define ALLOC_TABLE_64 \ 578 ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \ 579 ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \ 580 ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \ 581 ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4 582 583 #define ALLOC_TABLE_1024 \ 584 ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \ 585 ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \ 586 ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \ 587 ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64 588 589 static umem_cache_t *umem_alloc_table[UMEM_MAXBUF >> UMEM_ALIGN_SHIFT] = { 590 ALLOC_TABLE_1024, 591 ALLOC_TABLE_1024 592 }; 593 594 595 /* Used to constrain audit-log stack traces */ 596 caddr_t umem_min_stack; 597 caddr_t umem_max_stack; 598 599 600 /* 601 * we use the _ versions, since we don't want to be cancelled. 602 * Actually, this is automatically taken care of by including "mtlib.h". 603 */ 604 extern int _cond_wait(cond_t *cv, mutex_t *mutex); 605 606 #define UMERR_MODIFIED 0 /* buffer modified while on freelist */ 607 #define UMERR_REDZONE 1 /* redzone violation (write past end of buf) */ 608 #define UMERR_DUPFREE 2 /* freed a buffer twice */ 609 #define UMERR_BADADDR 3 /* freed a bad (unallocated) address */ 610 #define UMERR_BADBUFTAG 4 /* buftag corrupted */ 611 #define UMERR_BADBUFCTL 5 /* bufctl corrupted */ 612 #define UMERR_BADCACHE 6 /* freed a buffer to the wrong cache */ 613 #define UMERR_BADSIZE 7 /* alloc size != free size */ 614 #define UMERR_BADBASE 8 /* buffer base address wrong */ 615 616 struct { 617 hrtime_t ump_timestamp; /* timestamp of error */ 618 int ump_error; /* type of umem error (UMERR_*) */ 619 void *ump_buffer; /* buffer that induced abort */ 620 void *ump_realbuf; /* real start address for buffer */ 621 umem_cache_t *ump_cache; /* buffer's cache according to client */ 622 umem_cache_t *ump_realcache; /* actual cache containing buffer */ 623 umem_slab_t *ump_slab; /* slab accoring to umem_findslab() */ 624 umem_bufctl_t *ump_bufctl; /* bufctl */ 625 } umem_abort_info; 626 627 static void 628 copy_pattern(uint64_t pattern, void *buf_arg, size_t size) 629 { 630 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 631 uint64_t *buf = buf_arg; 632 633 while (buf < bufend) 634 *buf++ = pattern; 635 } 636 637 static void * 638 verify_pattern(uint64_t pattern, void *buf_arg, size_t size) 639 { 640 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 641 uint64_t *buf; 642 643 for (buf = buf_arg; buf < bufend; buf++) 644 if (*buf != pattern) 645 return (buf); 646 return (NULL); 647 } 648 649 static void * 650 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size) 651 { 652 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 653 uint64_t *buf; 654 655 for (buf = buf_arg; buf < bufend; buf++) { 656 if (*buf != old) { 657 copy_pattern(old, buf_arg, 658 (char *)buf - (char *)buf_arg); 659 return (buf); 660 } 661 *buf = new; 662 } 663 664 return (NULL); 665 } 666 667 void 668 umem_cache_applyall(void (*func)(umem_cache_t *)) 669 { 670 umem_cache_t *cp; 671 672 (void) mutex_lock(&umem_cache_lock); 673 for (cp = umem_null_cache.cache_next; cp != &umem_null_cache; 674 cp = cp->cache_next) 675 func(cp); 676 (void) mutex_unlock(&umem_cache_lock); 677 } 678 679 static void 680 umem_add_update_unlocked(umem_cache_t *cp, int flags) 681 { 682 umem_cache_t *cnext, *cprev; 683 684 flags &= ~UMU_ACTIVE; 685 686 if (!flags) 687 return; 688 689 if (cp->cache_uflags & UMU_ACTIVE) { 690 cp->cache_uflags |= flags; 691 } else { 692 if (cp->cache_unext != NULL) { 693 ASSERT(cp->cache_uflags != 0); 694 cp->cache_uflags |= flags; 695 } else { 696 ASSERT(cp->cache_uflags == 0); 697 cp->cache_uflags = flags; 698 cp->cache_unext = cnext = &umem_null_cache; 699 cp->cache_uprev = cprev = umem_null_cache.cache_uprev; 700 cnext->cache_uprev = cp; 701 cprev->cache_unext = cp; 702 } 703 } 704 } 705 706 static void 707 umem_add_update(umem_cache_t *cp, int flags) 708 { 709 (void) mutex_lock(&umem_update_lock); 710 711 umem_add_update_unlocked(cp, flags); 712 713 if (!IN_UPDATE()) 714 (void) cond_broadcast(&umem_update_cv); 715 716 (void) mutex_unlock(&umem_update_lock); 717 } 718 719 /* 720 * Remove a cache from the update list, waiting for any in-progress work to 721 * complete first. 722 */ 723 static void 724 umem_remove_updates(umem_cache_t *cp) 725 { 726 (void) mutex_lock(&umem_update_lock); 727 728 /* 729 * Get it out of the active state 730 */ 731 while (cp->cache_uflags & UMU_ACTIVE) { 732 ASSERT(cp->cache_unext == NULL); 733 734 cp->cache_uflags |= UMU_NOTIFY; 735 736 /* 737 * Make sure the update state is sane, before we wait 738 */ 739 ASSERT(umem_update_thr != 0 || umem_st_update_thr != 0); 740 ASSERT(umem_update_thr != thr_self() && 741 umem_st_update_thr != thr_self()); 742 743 (void) _cond_wait(&umem_update_cv, &umem_update_lock); 744 } 745 /* 746 * Get it out of the Work Requested state 747 */ 748 if (cp->cache_unext != NULL) { 749 cp->cache_uprev->cache_unext = cp->cache_unext; 750 cp->cache_unext->cache_uprev = cp->cache_uprev; 751 cp->cache_uprev = cp->cache_unext = NULL; 752 cp->cache_uflags = 0; 753 } 754 /* 755 * Make sure it is in the Inactive state 756 */ 757 ASSERT(cp->cache_unext == NULL && cp->cache_uflags == 0); 758 (void) mutex_unlock(&umem_update_lock); 759 } 760 761 static void 762 umem_updateall(int flags) 763 { 764 umem_cache_t *cp; 765 766 /* 767 * NOTE: To prevent deadlock, umem_cache_lock is always acquired first. 768 * 769 * (umem_add_update is called from things run via umem_cache_applyall) 770 */ 771 (void) mutex_lock(&umem_cache_lock); 772 (void) mutex_lock(&umem_update_lock); 773 774 for (cp = umem_null_cache.cache_next; cp != &umem_null_cache; 775 cp = cp->cache_next) 776 umem_add_update_unlocked(cp, flags); 777 778 if (!IN_UPDATE()) 779 (void) cond_broadcast(&umem_update_cv); 780 781 (void) mutex_unlock(&umem_update_lock); 782 (void) mutex_unlock(&umem_cache_lock); 783 } 784 785 /* 786 * Debugging support. Given a buffer address, find its slab. 787 */ 788 static umem_slab_t * 789 umem_findslab(umem_cache_t *cp, void *buf) 790 { 791 umem_slab_t *sp; 792 793 (void) mutex_lock(&cp->cache_lock); 794 for (sp = cp->cache_nullslab.slab_next; 795 sp != &cp->cache_nullslab; sp = sp->slab_next) { 796 if (UMEM_SLAB_MEMBER(sp, buf)) { 797 (void) mutex_unlock(&cp->cache_lock); 798 return (sp); 799 } 800 } 801 (void) mutex_unlock(&cp->cache_lock); 802 803 return (NULL); 804 } 805 806 static void 807 umem_error(int error, umem_cache_t *cparg, void *bufarg) 808 { 809 umem_buftag_t *btp = NULL; 810 umem_bufctl_t *bcp = NULL; 811 umem_cache_t *cp = cparg; 812 umem_slab_t *sp; 813 uint64_t *off; 814 void *buf = bufarg; 815 816 int old_logging = umem_logging; 817 818 umem_logging = 0; /* stop logging when a bad thing happens */ 819 820 umem_abort_info.ump_timestamp = gethrtime(); 821 822 sp = umem_findslab(cp, buf); 823 if (sp == NULL) { 824 for (cp = umem_null_cache.cache_prev; cp != &umem_null_cache; 825 cp = cp->cache_prev) { 826 if ((sp = umem_findslab(cp, buf)) != NULL) 827 break; 828 } 829 } 830 831 if (sp == NULL) { 832 cp = NULL; 833 error = UMERR_BADADDR; 834 } else { 835 if (cp != cparg) 836 error = UMERR_BADCACHE; 837 else 838 buf = (char *)bufarg - ((uintptr_t)bufarg - 839 (uintptr_t)sp->slab_base) % cp->cache_chunksize; 840 if (buf != bufarg) 841 error = UMERR_BADBASE; 842 if (cp->cache_flags & UMF_BUFTAG) 843 btp = UMEM_BUFTAG(cp, buf); 844 if (cp->cache_flags & UMF_HASH) { 845 (void) mutex_lock(&cp->cache_lock); 846 for (bcp = *UMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next) 847 if (bcp->bc_addr == buf) 848 break; 849 (void) mutex_unlock(&cp->cache_lock); 850 if (bcp == NULL && btp != NULL) 851 bcp = btp->bt_bufctl; 852 if (umem_findslab(cp->cache_bufctl_cache, bcp) == 853 NULL || P2PHASE((uintptr_t)bcp, UMEM_ALIGN) || 854 bcp->bc_addr != buf) { 855 error = UMERR_BADBUFCTL; 856 bcp = NULL; 857 } 858 } 859 } 860 861 umem_abort_info.ump_error = error; 862 umem_abort_info.ump_buffer = bufarg; 863 umem_abort_info.ump_realbuf = buf; 864 umem_abort_info.ump_cache = cparg; 865 umem_abort_info.ump_realcache = cp; 866 umem_abort_info.ump_slab = sp; 867 umem_abort_info.ump_bufctl = bcp; 868 869 umem_printf("umem allocator: "); 870 871 switch (error) { 872 873 case UMERR_MODIFIED: 874 umem_printf("buffer modified after being freed\n"); 875 off = verify_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify); 876 if (off == NULL) /* shouldn't happen */ 877 off = buf; 878 umem_printf("modification occurred at offset 0x%lx " 879 "(0x%llx replaced by 0x%llx)\n", 880 (uintptr_t)off - (uintptr_t)buf, 881 (longlong_t)UMEM_FREE_PATTERN, (longlong_t)*off); 882 break; 883 884 case UMERR_REDZONE: 885 umem_printf("redzone violation: write past end of buffer\n"); 886 break; 887 888 case UMERR_BADADDR: 889 umem_printf("invalid free: buffer not in cache\n"); 890 break; 891 892 case UMERR_DUPFREE: 893 umem_printf("duplicate free: buffer freed twice\n"); 894 break; 895 896 case UMERR_BADBUFTAG: 897 umem_printf("boundary tag corrupted\n"); 898 umem_printf("bcp ^ bxstat = %lx, should be %lx\n", 899 (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat, 900 UMEM_BUFTAG_FREE); 901 break; 902 903 case UMERR_BADBUFCTL: 904 umem_printf("bufctl corrupted\n"); 905 break; 906 907 case UMERR_BADCACHE: 908 umem_printf("buffer freed to wrong cache\n"); 909 umem_printf("buffer was allocated from %s,\n", cp->cache_name); 910 umem_printf("caller attempting free to %s.\n", 911 cparg->cache_name); 912 break; 913 914 case UMERR_BADSIZE: 915 umem_printf("bad free: free size (%u) != alloc size (%u)\n", 916 UMEM_SIZE_DECODE(((uint32_t *)btp)[0]), 917 UMEM_SIZE_DECODE(((uint32_t *)btp)[1])); 918 break; 919 920 case UMERR_BADBASE: 921 umem_printf("bad free: free address (%p) != alloc address " 922 "(%p)\n", bufarg, buf); 923 break; 924 } 925 926 umem_printf("buffer=%p bufctl=%p cache: %s\n", 927 bufarg, (void *)bcp, cparg->cache_name); 928 929 if (bcp != NULL && (cp->cache_flags & UMF_AUDIT) && 930 error != UMERR_BADBUFCTL) { 931 int d; 932 timespec_t ts; 933 hrtime_t diff; 934 umem_bufctl_audit_t *bcap = (umem_bufctl_audit_t *)bcp; 935 936 diff = umem_abort_info.ump_timestamp - bcap->bc_timestamp; 937 ts.tv_sec = diff / NANOSEC; 938 ts.tv_nsec = diff % NANOSEC; 939 940 umem_printf("previous transaction on buffer %p:\n", buf); 941 umem_printf("thread=%p time=T-%ld.%09ld slab=%p cache: %s\n", 942 (void *)(intptr_t)bcap->bc_thread, ts.tv_sec, ts.tv_nsec, 943 (void *)sp, cp->cache_name); 944 for (d = 0; d < MIN(bcap->bc_depth, umem_stack_depth); d++) { 945 (void) print_sym((void *)bcap->bc_stack[d]); 946 umem_printf("\n"); 947 } 948 } 949 950 umem_err_recoverable("umem: heap corruption detected"); 951 952 umem_logging = old_logging; /* resume logging */ 953 } 954 955 void 956 umem_nofail_callback(umem_nofail_callback_t *cb) 957 { 958 nofail_callback = cb; 959 } 960 961 static int 962 umem_alloc_retry(umem_cache_t *cp, int umflag) 963 { 964 if (cp == &umem_null_cache) { 965 if (umem_init()) 966 return (1); /* retry */ 967 /* 968 * Initialization failed. Do normal failure processing. 969 */ 970 } 971 if (umflag & UMEM_NOFAIL) { 972 int def_result = UMEM_CALLBACK_EXIT(255); 973 int result = def_result; 974 umem_nofail_callback_t *callback = nofail_callback; 975 976 if (callback != NULL) 977 result = callback(); 978 979 if (result == UMEM_CALLBACK_RETRY) 980 return (1); 981 982 if ((result & ~0xFF) != UMEM_CALLBACK_EXIT(0)) { 983 log_message("nofail callback returned %x\n", result); 984 result = def_result; 985 } 986 987 /* 988 * only one thread will call exit 989 */ 990 if (umem_nofail_exit_thr == thr_self()) 991 umem_panic("recursive UMEM_CALLBACK_EXIT()\n"); 992 993 (void) mutex_lock(&umem_nofail_exit_lock); 994 umem_nofail_exit_thr = thr_self(); 995 exit(result & 0xFF); 996 /*NOTREACHED*/ 997 } 998 return (0); 999 } 1000 1001 static umem_log_header_t * 1002 umem_log_init(size_t logsize) 1003 { 1004 umem_log_header_t *lhp; 1005 int nchunks = 4 * umem_max_ncpus; 1006 size_t lhsize = offsetof(umem_log_header_t, lh_cpu[umem_max_ncpus]); 1007 int i; 1008 1009 if (logsize == 0) 1010 return (NULL); 1011 1012 /* 1013 * Make sure that lhp->lh_cpu[] is nicely aligned 1014 * to prevent false sharing of cache lines. 1015 */ 1016 lhsize = P2ROUNDUP(lhsize, UMEM_ALIGN); 1017 lhp = vmem_xalloc(umem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0, 1018 NULL, NULL, VM_NOSLEEP); 1019 if (lhp == NULL) 1020 goto fail; 1021 1022 bzero(lhp, lhsize); 1023 1024 (void) mutex_init(&lhp->lh_lock, USYNC_THREAD, NULL); 1025 lhp->lh_nchunks = nchunks; 1026 lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks, PAGESIZE); 1027 if (lhp->lh_chunksize == 0) 1028 lhp->lh_chunksize = PAGESIZE; 1029 1030 lhp->lh_base = vmem_alloc(umem_log_arena, 1031 lhp->lh_chunksize * nchunks, VM_NOSLEEP); 1032 if (lhp->lh_base == NULL) 1033 goto fail; 1034 1035 lhp->lh_free = vmem_alloc(umem_log_arena, 1036 nchunks * sizeof (int), VM_NOSLEEP); 1037 if (lhp->lh_free == NULL) 1038 goto fail; 1039 1040 bzero(lhp->lh_base, lhp->lh_chunksize * nchunks); 1041 1042 for (i = 0; i < umem_max_ncpus; i++) { 1043 umem_cpu_log_header_t *clhp = &lhp->lh_cpu[i]; 1044 (void) mutex_init(&clhp->clh_lock, USYNC_THREAD, NULL); 1045 clhp->clh_chunk = i; 1046 } 1047 1048 for (i = umem_max_ncpus; i < nchunks; i++) 1049 lhp->lh_free[i] = i; 1050 1051 lhp->lh_head = umem_max_ncpus; 1052 lhp->lh_tail = 0; 1053 1054 return (lhp); 1055 1056 fail: 1057 if (lhp != NULL) { 1058 if (lhp->lh_base != NULL) 1059 vmem_free(umem_log_arena, lhp->lh_base, 1060 lhp->lh_chunksize * nchunks); 1061 1062 vmem_xfree(umem_log_arena, lhp, lhsize); 1063 } 1064 return (NULL); 1065 } 1066 1067 static void * 1068 umem_log_enter(umem_log_header_t *lhp, void *data, size_t size) 1069 { 1070 void *logspace; 1071 umem_cpu_log_header_t *clhp = 1072 &lhp->lh_cpu[CPU(umem_cpu_mask)->cpu_number]; 1073 1074 if (lhp == NULL || umem_logging == 0) 1075 return (NULL); 1076 1077 (void) mutex_lock(&clhp->clh_lock); 1078 clhp->clh_hits++; 1079 if (size > clhp->clh_avail) { 1080 (void) mutex_lock(&lhp->lh_lock); 1081 lhp->lh_hits++; 1082 lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk; 1083 lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks; 1084 clhp->clh_chunk = lhp->lh_free[lhp->lh_head]; 1085 lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks; 1086 clhp->clh_current = lhp->lh_base + 1087 clhp->clh_chunk * lhp->lh_chunksize; 1088 clhp->clh_avail = lhp->lh_chunksize; 1089 if (size > lhp->lh_chunksize) 1090 size = lhp->lh_chunksize; 1091 (void) mutex_unlock(&lhp->lh_lock); 1092 } 1093 logspace = clhp->clh_current; 1094 clhp->clh_current += size; 1095 clhp->clh_avail -= size; 1096 bcopy(data, logspace, size); 1097 (void) mutex_unlock(&clhp->clh_lock); 1098 return (logspace); 1099 } 1100 1101 #define UMEM_AUDIT(lp, cp, bcp) \ 1102 { \ 1103 umem_bufctl_audit_t *_bcp = (umem_bufctl_audit_t *)(bcp); \ 1104 _bcp->bc_timestamp = gethrtime(); \ 1105 _bcp->bc_thread = thr_self(); \ 1106 _bcp->bc_depth = getpcstack(_bcp->bc_stack, umem_stack_depth, \ 1107 (cp != NULL) && (cp->cache_flags & UMF_CHECKSIGNAL)); \ 1108 _bcp->bc_lastlog = umem_log_enter((lp), _bcp, \ 1109 UMEM_BUFCTL_AUDIT_SIZE); \ 1110 } 1111 1112 static void 1113 umem_log_event(umem_log_header_t *lp, umem_cache_t *cp, 1114 umem_slab_t *sp, void *addr) 1115 { 1116 umem_bufctl_audit_t *bcp; 1117 UMEM_LOCAL_BUFCTL_AUDIT(&bcp); 1118 1119 bzero(bcp, UMEM_BUFCTL_AUDIT_SIZE); 1120 bcp->bc_addr = addr; 1121 bcp->bc_slab = sp; 1122 bcp->bc_cache = cp; 1123 UMEM_AUDIT(lp, cp, bcp); 1124 } 1125 1126 /* 1127 * Create a new slab for cache cp. 1128 */ 1129 static umem_slab_t * 1130 umem_slab_create(umem_cache_t *cp, int umflag) 1131 { 1132 size_t slabsize = cp->cache_slabsize; 1133 size_t chunksize = cp->cache_chunksize; 1134 int cache_flags = cp->cache_flags; 1135 size_t color, chunks; 1136 char *buf, *slab; 1137 umem_slab_t *sp; 1138 umem_bufctl_t *bcp; 1139 vmem_t *vmp = cp->cache_arena; 1140 1141 color = cp->cache_color + cp->cache_align; 1142 if (color > cp->cache_maxcolor) 1143 color = cp->cache_mincolor; 1144 cp->cache_color = color; 1145 1146 slab = vmem_alloc(vmp, slabsize, UMEM_VMFLAGS(umflag)); 1147 1148 if (slab == NULL) 1149 goto vmem_alloc_failure; 1150 1151 ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0); 1152 1153 if (!(cp->cache_cflags & UMC_NOTOUCH) && 1154 (cp->cache_flags & UMF_DEADBEEF)) 1155 copy_pattern(UMEM_UNINITIALIZED_PATTERN, slab, slabsize); 1156 1157 if (cache_flags & UMF_HASH) { 1158 if ((sp = _umem_cache_alloc(umem_slab_cache, umflag)) == NULL) 1159 goto slab_alloc_failure; 1160 chunks = (slabsize - color) / chunksize; 1161 } else { 1162 sp = UMEM_SLAB(cp, slab); 1163 chunks = (slabsize - sizeof (umem_slab_t) - color) / chunksize; 1164 } 1165 1166 sp->slab_cache = cp; 1167 sp->slab_head = NULL; 1168 sp->slab_refcnt = 0; 1169 sp->slab_base = buf = slab + color; 1170 sp->slab_chunks = chunks; 1171 1172 ASSERT(chunks > 0); 1173 while (chunks-- != 0) { 1174 if (cache_flags & UMF_HASH) { 1175 bcp = _umem_cache_alloc(cp->cache_bufctl_cache, umflag); 1176 if (bcp == NULL) 1177 goto bufctl_alloc_failure; 1178 if (cache_flags & UMF_AUDIT) { 1179 umem_bufctl_audit_t *bcap = 1180 (umem_bufctl_audit_t *)bcp; 1181 bzero(bcap, UMEM_BUFCTL_AUDIT_SIZE); 1182 bcap->bc_cache = cp; 1183 } 1184 bcp->bc_addr = buf; 1185 bcp->bc_slab = sp; 1186 } else { 1187 bcp = UMEM_BUFCTL(cp, buf); 1188 } 1189 if (cache_flags & UMF_BUFTAG) { 1190 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); 1191 btp->bt_redzone = UMEM_REDZONE_PATTERN; 1192 btp->bt_bufctl = bcp; 1193 btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE; 1194 if (cache_flags & UMF_DEADBEEF) { 1195 copy_pattern(UMEM_FREE_PATTERN, buf, 1196 cp->cache_verify); 1197 } 1198 } 1199 bcp->bc_next = sp->slab_head; 1200 sp->slab_head = bcp; 1201 buf += chunksize; 1202 } 1203 1204 umem_log_event(umem_slab_log, cp, sp, slab); 1205 1206 return (sp); 1207 1208 bufctl_alloc_failure: 1209 1210 while ((bcp = sp->slab_head) != NULL) { 1211 sp->slab_head = bcp->bc_next; 1212 _umem_cache_free(cp->cache_bufctl_cache, bcp); 1213 } 1214 _umem_cache_free(umem_slab_cache, sp); 1215 1216 slab_alloc_failure: 1217 1218 vmem_free(vmp, slab, slabsize); 1219 1220 vmem_alloc_failure: 1221 1222 umem_log_event(umem_failure_log, cp, NULL, NULL); 1223 atomic_add_64(&cp->cache_alloc_fail, 1); 1224 1225 return (NULL); 1226 } 1227 1228 /* 1229 * Destroy a slab. 1230 */ 1231 static void 1232 umem_slab_destroy(umem_cache_t *cp, umem_slab_t *sp) 1233 { 1234 vmem_t *vmp = cp->cache_arena; 1235 void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum); 1236 1237 if (cp->cache_flags & UMF_HASH) { 1238 umem_bufctl_t *bcp; 1239 while ((bcp = sp->slab_head) != NULL) { 1240 sp->slab_head = bcp->bc_next; 1241 _umem_cache_free(cp->cache_bufctl_cache, bcp); 1242 } 1243 _umem_cache_free(umem_slab_cache, sp); 1244 } 1245 vmem_free(vmp, slab, cp->cache_slabsize); 1246 } 1247 1248 /* 1249 * Allocate a raw (unconstructed) buffer from cp's slab layer. 1250 */ 1251 static void * 1252 umem_slab_alloc(umem_cache_t *cp, int umflag) 1253 { 1254 umem_bufctl_t *bcp, **hash_bucket; 1255 umem_slab_t *sp; 1256 void *buf; 1257 1258 (void) mutex_lock(&cp->cache_lock); 1259 cp->cache_slab_alloc++; 1260 sp = cp->cache_freelist; 1261 ASSERT(sp->slab_cache == cp); 1262 if (sp->slab_head == NULL) { 1263 /* 1264 * The freelist is empty. Create a new slab. 1265 */ 1266 (void) mutex_unlock(&cp->cache_lock); 1267 if (cp == &umem_null_cache) 1268 return (NULL); 1269 if ((sp = umem_slab_create(cp, umflag)) == NULL) 1270 return (NULL); 1271 (void) mutex_lock(&cp->cache_lock); 1272 cp->cache_slab_create++; 1273 if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax) 1274 cp->cache_bufmax = cp->cache_buftotal; 1275 sp->slab_next = cp->cache_freelist; 1276 sp->slab_prev = cp->cache_freelist->slab_prev; 1277 sp->slab_next->slab_prev = sp; 1278 sp->slab_prev->slab_next = sp; 1279 cp->cache_freelist = sp; 1280 } 1281 1282 sp->slab_refcnt++; 1283 ASSERT(sp->slab_refcnt <= sp->slab_chunks); 1284 1285 /* 1286 * If we're taking the last buffer in the slab, 1287 * remove the slab from the cache's freelist. 1288 */ 1289 bcp = sp->slab_head; 1290 if ((sp->slab_head = bcp->bc_next) == NULL) { 1291 cp->cache_freelist = sp->slab_next; 1292 ASSERT(sp->slab_refcnt == sp->slab_chunks); 1293 } 1294 1295 if (cp->cache_flags & UMF_HASH) { 1296 /* 1297 * Add buffer to allocated-address hash table. 1298 */ 1299 buf = bcp->bc_addr; 1300 hash_bucket = UMEM_HASH(cp, buf); 1301 bcp->bc_next = *hash_bucket; 1302 *hash_bucket = bcp; 1303 if ((cp->cache_flags & (UMF_AUDIT | UMF_BUFTAG)) == UMF_AUDIT) { 1304 UMEM_AUDIT(umem_transaction_log, cp, bcp); 1305 } 1306 } else { 1307 buf = UMEM_BUF(cp, bcp); 1308 } 1309 1310 ASSERT(UMEM_SLAB_MEMBER(sp, buf)); 1311 1312 (void) mutex_unlock(&cp->cache_lock); 1313 1314 return (buf); 1315 } 1316 1317 /* 1318 * Free a raw (unconstructed) buffer to cp's slab layer. 1319 */ 1320 static void 1321 umem_slab_free(umem_cache_t *cp, void *buf) 1322 { 1323 umem_slab_t *sp; 1324 umem_bufctl_t *bcp, **prev_bcpp; 1325 1326 ASSERT(buf != NULL); 1327 1328 (void) mutex_lock(&cp->cache_lock); 1329 cp->cache_slab_free++; 1330 1331 if (cp->cache_flags & UMF_HASH) { 1332 /* 1333 * Look up buffer in allocated-address hash table. 1334 */ 1335 prev_bcpp = UMEM_HASH(cp, buf); 1336 while ((bcp = *prev_bcpp) != NULL) { 1337 if (bcp->bc_addr == buf) { 1338 *prev_bcpp = bcp->bc_next; 1339 sp = bcp->bc_slab; 1340 break; 1341 } 1342 cp->cache_lookup_depth++; 1343 prev_bcpp = &bcp->bc_next; 1344 } 1345 } else { 1346 bcp = UMEM_BUFCTL(cp, buf); 1347 sp = UMEM_SLAB(cp, buf); 1348 } 1349 1350 if (bcp == NULL || sp->slab_cache != cp || !UMEM_SLAB_MEMBER(sp, buf)) { 1351 (void) mutex_unlock(&cp->cache_lock); 1352 umem_error(UMERR_BADADDR, cp, buf); 1353 return; 1354 } 1355 1356 if ((cp->cache_flags & (UMF_AUDIT | UMF_BUFTAG)) == UMF_AUDIT) { 1357 if (cp->cache_flags & UMF_CONTENTS) 1358 ((umem_bufctl_audit_t *)bcp)->bc_contents = 1359 umem_log_enter(umem_content_log, buf, 1360 cp->cache_contents); 1361 UMEM_AUDIT(umem_transaction_log, cp, bcp); 1362 } 1363 1364 /* 1365 * If this slab isn't currently on the freelist, put it there. 1366 */ 1367 if (sp->slab_head == NULL) { 1368 ASSERT(sp->slab_refcnt == sp->slab_chunks); 1369 ASSERT(cp->cache_freelist != sp); 1370 sp->slab_next->slab_prev = sp->slab_prev; 1371 sp->slab_prev->slab_next = sp->slab_next; 1372 sp->slab_next = cp->cache_freelist; 1373 sp->slab_prev = cp->cache_freelist->slab_prev; 1374 sp->slab_next->slab_prev = sp; 1375 sp->slab_prev->slab_next = sp; 1376 cp->cache_freelist = sp; 1377 } 1378 1379 bcp->bc_next = sp->slab_head; 1380 sp->slab_head = bcp; 1381 1382 ASSERT(sp->slab_refcnt >= 1); 1383 if (--sp->slab_refcnt == 0) { 1384 /* 1385 * There are no outstanding allocations from this slab, 1386 * so we can reclaim the memory. 1387 */ 1388 sp->slab_next->slab_prev = sp->slab_prev; 1389 sp->slab_prev->slab_next = sp->slab_next; 1390 if (sp == cp->cache_freelist) 1391 cp->cache_freelist = sp->slab_next; 1392 cp->cache_slab_destroy++; 1393 cp->cache_buftotal -= sp->slab_chunks; 1394 (void) mutex_unlock(&cp->cache_lock); 1395 umem_slab_destroy(cp, sp); 1396 return; 1397 } 1398 (void) mutex_unlock(&cp->cache_lock); 1399 } 1400 1401 static int 1402 umem_cache_alloc_debug(umem_cache_t *cp, void *buf, int umflag) 1403 { 1404 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); 1405 umem_bufctl_audit_t *bcp = (umem_bufctl_audit_t *)btp->bt_bufctl; 1406 uint32_t mtbf; 1407 int flags_nfatal; 1408 1409 if (btp->bt_bxstat != ((intptr_t)bcp ^ UMEM_BUFTAG_FREE)) { 1410 umem_error(UMERR_BADBUFTAG, cp, buf); 1411 return (-1); 1412 } 1413 1414 btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_ALLOC; 1415 1416 if ((cp->cache_flags & UMF_HASH) && bcp->bc_addr != buf) { 1417 umem_error(UMERR_BADBUFCTL, cp, buf); 1418 return (-1); 1419 } 1420 1421 btp->bt_redzone = UMEM_REDZONE_PATTERN; 1422 1423 if (cp->cache_flags & UMF_DEADBEEF) { 1424 if (verify_and_copy_pattern(UMEM_FREE_PATTERN, 1425 UMEM_UNINITIALIZED_PATTERN, buf, cp->cache_verify)) { 1426 umem_error(UMERR_MODIFIED, cp, buf); 1427 return (-1); 1428 } 1429 } 1430 1431 if ((mtbf = umem_mtbf | cp->cache_mtbf) != 0 && 1432 gethrtime() % mtbf == 0 && 1433 (umflag & (UMEM_FATAL_FLAGS)) == 0) { 1434 umem_log_event(umem_failure_log, cp, NULL, NULL); 1435 } else { 1436 mtbf = 0; 1437 } 1438 1439 /* 1440 * We do not pass fatal flags on to the constructor. This prevents 1441 * leaking buffers in the event of a subordinate constructor failing. 1442 */ 1443 flags_nfatal = UMEM_DEFAULT; 1444 if (mtbf || (cp->cache_constructor != NULL && 1445 cp->cache_constructor(buf, cp->cache_private, flags_nfatal) != 0)) { 1446 atomic_add_64(&cp->cache_alloc_fail, 1); 1447 btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE; 1448 copy_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify); 1449 umem_slab_free(cp, buf); 1450 return (-1); 1451 } 1452 1453 if (cp->cache_flags & UMF_AUDIT) { 1454 UMEM_AUDIT(umem_transaction_log, cp, bcp); 1455 } 1456 1457 return (0); 1458 } 1459 1460 static int 1461 umem_cache_free_debug(umem_cache_t *cp, void *buf) 1462 { 1463 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); 1464 umem_bufctl_audit_t *bcp = (umem_bufctl_audit_t *)btp->bt_bufctl; 1465 umem_slab_t *sp; 1466 1467 if (btp->bt_bxstat != ((intptr_t)bcp ^ UMEM_BUFTAG_ALLOC)) { 1468 if (btp->bt_bxstat == ((intptr_t)bcp ^ UMEM_BUFTAG_FREE)) { 1469 umem_error(UMERR_DUPFREE, cp, buf); 1470 return (-1); 1471 } 1472 sp = umem_findslab(cp, buf); 1473 if (sp == NULL || sp->slab_cache != cp) 1474 umem_error(UMERR_BADADDR, cp, buf); 1475 else 1476 umem_error(UMERR_REDZONE, cp, buf); 1477 return (-1); 1478 } 1479 1480 btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE; 1481 1482 if ((cp->cache_flags & UMF_HASH) && bcp->bc_addr != buf) { 1483 umem_error(UMERR_BADBUFCTL, cp, buf); 1484 return (-1); 1485 } 1486 1487 if (btp->bt_redzone != UMEM_REDZONE_PATTERN) { 1488 umem_error(UMERR_REDZONE, cp, buf); 1489 return (-1); 1490 } 1491 1492 if (cp->cache_flags & UMF_AUDIT) { 1493 if (cp->cache_flags & UMF_CONTENTS) 1494 bcp->bc_contents = umem_log_enter(umem_content_log, 1495 buf, cp->cache_contents); 1496 UMEM_AUDIT(umem_transaction_log, cp, bcp); 1497 } 1498 1499 if (cp->cache_destructor != NULL) 1500 cp->cache_destructor(buf, cp->cache_private); 1501 1502 if (cp->cache_flags & UMF_DEADBEEF) 1503 copy_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify); 1504 1505 return (0); 1506 } 1507 1508 /* 1509 * Free each object in magazine mp to cp's slab layer, and free mp itself. 1510 */ 1511 static void 1512 umem_magazine_destroy(umem_cache_t *cp, umem_magazine_t *mp, int nrounds) 1513 { 1514 int round; 1515 1516 ASSERT(cp->cache_next == NULL || IN_UPDATE()); 1517 1518 for (round = 0; round < nrounds; round++) { 1519 void *buf = mp->mag_round[round]; 1520 1521 if ((cp->cache_flags & UMF_DEADBEEF) && 1522 verify_pattern(UMEM_FREE_PATTERN, buf, 1523 cp->cache_verify) != NULL) { 1524 umem_error(UMERR_MODIFIED, cp, buf); 1525 continue; 1526 } 1527 1528 if (!(cp->cache_flags & UMF_BUFTAG) && 1529 cp->cache_destructor != NULL) 1530 cp->cache_destructor(buf, cp->cache_private); 1531 1532 umem_slab_free(cp, buf); 1533 } 1534 ASSERT(UMEM_MAGAZINE_VALID(cp, mp)); 1535 _umem_cache_free(cp->cache_magtype->mt_cache, mp); 1536 } 1537 1538 /* 1539 * Allocate a magazine from the depot. 1540 */ 1541 static umem_magazine_t * 1542 umem_depot_alloc(umem_cache_t *cp, umem_maglist_t *mlp) 1543 { 1544 umem_magazine_t *mp; 1545 1546 /* 1547 * If we can't get the depot lock without contention, 1548 * update our contention count. We use the depot 1549 * contention rate to determine whether we need to 1550 * increase the magazine size for better scalability. 1551 */ 1552 if (mutex_trylock(&cp->cache_depot_lock) != 0) { 1553 (void) mutex_lock(&cp->cache_depot_lock); 1554 cp->cache_depot_contention++; 1555 } 1556 1557 if ((mp = mlp->ml_list) != NULL) { 1558 ASSERT(UMEM_MAGAZINE_VALID(cp, mp)); 1559 mlp->ml_list = mp->mag_next; 1560 if (--mlp->ml_total < mlp->ml_min) 1561 mlp->ml_min = mlp->ml_total; 1562 mlp->ml_alloc++; 1563 } 1564 1565 (void) mutex_unlock(&cp->cache_depot_lock); 1566 1567 return (mp); 1568 } 1569 1570 /* 1571 * Free a magazine to the depot. 1572 */ 1573 static void 1574 umem_depot_free(umem_cache_t *cp, umem_maglist_t *mlp, umem_magazine_t *mp) 1575 { 1576 (void) mutex_lock(&cp->cache_depot_lock); 1577 ASSERT(UMEM_MAGAZINE_VALID(cp, mp)); 1578 mp->mag_next = mlp->ml_list; 1579 mlp->ml_list = mp; 1580 mlp->ml_total++; 1581 (void) mutex_unlock(&cp->cache_depot_lock); 1582 } 1583 1584 /* 1585 * Update the working set statistics for cp's depot. 1586 */ 1587 static void 1588 umem_depot_ws_update(umem_cache_t *cp) 1589 { 1590 (void) mutex_lock(&cp->cache_depot_lock); 1591 cp->cache_full.ml_reaplimit = cp->cache_full.ml_min; 1592 cp->cache_full.ml_min = cp->cache_full.ml_total; 1593 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min; 1594 cp->cache_empty.ml_min = cp->cache_empty.ml_total; 1595 (void) mutex_unlock(&cp->cache_depot_lock); 1596 } 1597 1598 /* 1599 * Reap all magazines that have fallen out of the depot's working set. 1600 */ 1601 static void 1602 umem_depot_ws_reap(umem_cache_t *cp) 1603 { 1604 long reap; 1605 umem_magazine_t *mp; 1606 1607 ASSERT(cp->cache_next == NULL || IN_REAP()); 1608 1609 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 1610 while (reap-- && (mp = umem_depot_alloc(cp, &cp->cache_full)) != NULL) 1611 umem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize); 1612 1613 reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min); 1614 while (reap-- && (mp = umem_depot_alloc(cp, &cp->cache_empty)) != NULL) 1615 umem_magazine_destroy(cp, mp, 0); 1616 } 1617 1618 static void 1619 umem_cpu_reload(umem_cpu_cache_t *ccp, umem_magazine_t *mp, int rounds) 1620 { 1621 ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) || 1622 (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize)); 1623 ASSERT(ccp->cc_magsize > 0); 1624 1625 ccp->cc_ploaded = ccp->cc_loaded; 1626 ccp->cc_prounds = ccp->cc_rounds; 1627 ccp->cc_loaded = mp; 1628 ccp->cc_rounds = rounds; 1629 } 1630 1631 /* 1632 * Allocate a constructed object from cache cp. 1633 */ 1634 #pragma weak umem_cache_alloc = _umem_cache_alloc 1635 void * 1636 _umem_cache_alloc(umem_cache_t *cp, int umflag) 1637 { 1638 umem_cpu_cache_t *ccp; 1639 umem_magazine_t *fmp; 1640 void *buf; 1641 int flags_nfatal; 1642 1643 retry: 1644 ccp = UMEM_CPU_CACHE(cp, CPU(cp->cache_cpu_mask)); 1645 (void) mutex_lock(&ccp->cc_lock); 1646 for (;;) { 1647 /* 1648 * If there's an object available in the current CPU's 1649 * loaded magazine, just take it and return. 1650 */ 1651 if (ccp->cc_rounds > 0) { 1652 buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds]; 1653 ccp->cc_alloc++; 1654 (void) mutex_unlock(&ccp->cc_lock); 1655 if ((ccp->cc_flags & UMF_BUFTAG) && 1656 umem_cache_alloc_debug(cp, buf, umflag) == -1) { 1657 if (umem_alloc_retry(cp, umflag)) { 1658 goto retry; 1659 } 1660 1661 return (NULL); 1662 } 1663 return (buf); 1664 } 1665 1666 /* 1667 * The loaded magazine is empty. If the previously loaded 1668 * magazine was full, exchange them and try again. 1669 */ 1670 if (ccp->cc_prounds > 0) { 1671 umem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 1672 continue; 1673 } 1674 1675 /* 1676 * If the magazine layer is disabled, break out now. 1677 */ 1678 if (ccp->cc_magsize == 0) 1679 break; 1680 1681 /* 1682 * Try to get a full magazine from the depot. 1683 */ 1684 fmp = umem_depot_alloc(cp, &cp->cache_full); 1685 if (fmp != NULL) { 1686 if (ccp->cc_ploaded != NULL) 1687 umem_depot_free(cp, &cp->cache_empty, 1688 ccp->cc_ploaded); 1689 umem_cpu_reload(ccp, fmp, ccp->cc_magsize); 1690 continue; 1691 } 1692 1693 /* 1694 * There are no full magazines in the depot, 1695 * so fall through to the slab layer. 1696 */ 1697 break; 1698 } 1699 (void) mutex_unlock(&ccp->cc_lock); 1700 1701 /* 1702 * We couldn't allocate a constructed object from the magazine layer, 1703 * so get a raw buffer from the slab layer and apply its constructor. 1704 */ 1705 buf = umem_slab_alloc(cp, umflag); 1706 1707 if (buf == NULL) { 1708 if (cp == &umem_null_cache) 1709 return (NULL); 1710 if (umem_alloc_retry(cp, umflag)) { 1711 goto retry; 1712 } 1713 1714 return (NULL); 1715 } 1716 1717 if (cp->cache_flags & UMF_BUFTAG) { 1718 /* 1719 * Let umem_cache_alloc_debug() apply the constructor for us. 1720 */ 1721 if (umem_cache_alloc_debug(cp, buf, umflag) == -1) { 1722 if (umem_alloc_retry(cp, umflag)) { 1723 goto retry; 1724 } 1725 return (NULL); 1726 } 1727 return (buf); 1728 } 1729 1730 /* 1731 * We do not pass fatal flags on to the constructor. This prevents 1732 * leaking buffers in the event of a subordinate constructor failing. 1733 */ 1734 flags_nfatal = UMEM_DEFAULT; 1735 if (cp->cache_constructor != NULL && 1736 cp->cache_constructor(buf, cp->cache_private, flags_nfatal) != 0) { 1737 atomic_add_64(&cp->cache_alloc_fail, 1); 1738 umem_slab_free(cp, buf); 1739 1740 if (umem_alloc_retry(cp, umflag)) { 1741 goto retry; 1742 } 1743 return (NULL); 1744 } 1745 1746 return (buf); 1747 } 1748 1749 /* 1750 * Free a constructed object to cache cp. 1751 */ 1752 #pragma weak umem_cache_free = _umem_cache_free 1753 void 1754 _umem_cache_free(umem_cache_t *cp, void *buf) 1755 { 1756 umem_cpu_cache_t *ccp = UMEM_CPU_CACHE(cp, CPU(cp->cache_cpu_mask)); 1757 umem_magazine_t *emp; 1758 umem_magtype_t *mtp; 1759 1760 if (ccp->cc_flags & UMF_BUFTAG) 1761 if (umem_cache_free_debug(cp, buf) == -1) 1762 return; 1763 1764 (void) mutex_lock(&ccp->cc_lock); 1765 for (;;) { 1766 /* 1767 * If there's a slot available in the current CPU's 1768 * loaded magazine, just put the object there and return. 1769 */ 1770 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) { 1771 ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf; 1772 ccp->cc_free++; 1773 (void) mutex_unlock(&ccp->cc_lock); 1774 return; 1775 } 1776 1777 /* 1778 * The loaded magazine is full. If the previously loaded 1779 * magazine was empty, exchange them and try again. 1780 */ 1781 if (ccp->cc_prounds == 0) { 1782 umem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 1783 continue; 1784 } 1785 1786 /* 1787 * If the magazine layer is disabled, break out now. 1788 */ 1789 if (ccp->cc_magsize == 0) 1790 break; 1791 1792 /* 1793 * Try to get an empty magazine from the depot. 1794 */ 1795 emp = umem_depot_alloc(cp, &cp->cache_empty); 1796 if (emp != NULL) { 1797 if (ccp->cc_ploaded != NULL) 1798 umem_depot_free(cp, &cp->cache_full, 1799 ccp->cc_ploaded); 1800 umem_cpu_reload(ccp, emp, 0); 1801 continue; 1802 } 1803 1804 /* 1805 * There are no empty magazines in the depot, 1806 * so try to allocate a new one. We must drop all locks 1807 * across umem_cache_alloc() because lower layers may 1808 * attempt to allocate from this cache. 1809 */ 1810 mtp = cp->cache_magtype; 1811 (void) mutex_unlock(&ccp->cc_lock); 1812 emp = _umem_cache_alloc(mtp->mt_cache, UMEM_DEFAULT); 1813 (void) mutex_lock(&ccp->cc_lock); 1814 1815 if (emp != NULL) { 1816 /* 1817 * We successfully allocated an empty magazine. 1818 * However, we had to drop ccp->cc_lock to do it, 1819 * so the cache's magazine size may have changed. 1820 * If so, free the magazine and try again. 1821 */ 1822 if (ccp->cc_magsize != mtp->mt_magsize) { 1823 (void) mutex_unlock(&ccp->cc_lock); 1824 _umem_cache_free(mtp->mt_cache, emp); 1825 (void) mutex_lock(&ccp->cc_lock); 1826 continue; 1827 } 1828 1829 /* 1830 * We got a magazine of the right size. Add it to 1831 * the depot and try the whole dance again. 1832 */ 1833 umem_depot_free(cp, &cp->cache_empty, emp); 1834 continue; 1835 } 1836 1837 /* 1838 * We couldn't allocate an empty magazine, 1839 * so fall through to the slab layer. 1840 */ 1841 break; 1842 } 1843 (void) mutex_unlock(&ccp->cc_lock); 1844 1845 /* 1846 * We couldn't free our constructed object to the magazine layer, 1847 * so apply its destructor and free it to the slab layer. 1848 * Note that if UMF_BUFTAG is in effect, umem_cache_free_debug() 1849 * will have already applied the destructor. 1850 */ 1851 if (!(cp->cache_flags & UMF_BUFTAG) && cp->cache_destructor != NULL) 1852 cp->cache_destructor(buf, cp->cache_private); 1853 1854 umem_slab_free(cp, buf); 1855 } 1856 1857 #pragma weak umem_zalloc = _umem_zalloc 1858 void * 1859 _umem_zalloc(size_t size, int umflag) 1860 { 1861 size_t index = (size - 1) >> UMEM_ALIGN_SHIFT; 1862 void *buf; 1863 1864 retry: 1865 if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) { 1866 umem_cache_t *cp = umem_alloc_table[index]; 1867 buf = _umem_cache_alloc(cp, umflag); 1868 if (buf != NULL) { 1869 if (cp->cache_flags & UMF_BUFTAG) { 1870 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); 1871 ((uint8_t *)buf)[size] = UMEM_REDZONE_BYTE; 1872 ((uint32_t *)btp)[1] = UMEM_SIZE_ENCODE(size); 1873 } 1874 bzero(buf, size); 1875 } else if (umem_alloc_retry(cp, umflag)) 1876 goto retry; 1877 } else { 1878 buf = _umem_alloc(size, umflag); /* handles failure */ 1879 if (buf != NULL) 1880 bzero(buf, size); 1881 } 1882 return (buf); 1883 } 1884 1885 #pragma weak umem_alloc = _umem_alloc 1886 void * 1887 _umem_alloc(size_t size, int umflag) 1888 { 1889 size_t index = (size - 1) >> UMEM_ALIGN_SHIFT; 1890 void *buf; 1891 umem_alloc_retry: 1892 if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) { 1893 umem_cache_t *cp = umem_alloc_table[index]; 1894 buf = _umem_cache_alloc(cp, umflag); 1895 if ((cp->cache_flags & UMF_BUFTAG) && buf != NULL) { 1896 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); 1897 ((uint8_t *)buf)[size] = UMEM_REDZONE_BYTE; 1898 ((uint32_t *)btp)[1] = UMEM_SIZE_ENCODE(size); 1899 } 1900 if (buf == NULL && umem_alloc_retry(cp, umflag)) 1901 goto umem_alloc_retry; 1902 return (buf); 1903 } 1904 if (size == 0) 1905 return (NULL); 1906 if (umem_oversize_arena == NULL) { 1907 if (umem_init()) 1908 ASSERT(umem_oversize_arena != NULL); 1909 else 1910 return (NULL); 1911 } 1912 buf = vmem_alloc(umem_oversize_arena, size, UMEM_VMFLAGS(umflag)); 1913 if (buf == NULL) { 1914 umem_log_event(umem_failure_log, NULL, NULL, (void *)size); 1915 if (umem_alloc_retry(NULL, umflag)) 1916 goto umem_alloc_retry; 1917 } 1918 return (buf); 1919 } 1920 1921 #pragma weak umem_alloc_align = _umem_alloc_align 1922 void * 1923 _umem_alloc_align(size_t size, size_t align, int umflag) 1924 { 1925 void *buf; 1926 1927 if (size == 0) 1928 return (NULL); 1929 if ((align & (align - 1)) != 0) 1930 return (NULL); 1931 if (align < UMEM_ALIGN) 1932 align = UMEM_ALIGN; 1933 1934 umem_alloc_align_retry: 1935 if (umem_memalign_arena == NULL) { 1936 if (umem_init()) 1937 ASSERT(umem_oversize_arena != NULL); 1938 else 1939 return (NULL); 1940 } 1941 buf = vmem_xalloc(umem_memalign_arena, size, align, 0, 0, NULL, NULL, 1942 UMEM_VMFLAGS(umflag)); 1943 if (buf == NULL) { 1944 umem_log_event(umem_failure_log, NULL, NULL, (void *)size); 1945 if (umem_alloc_retry(NULL, umflag)) 1946 goto umem_alloc_align_retry; 1947 } 1948 return (buf); 1949 } 1950 1951 #pragma weak umem_free = _umem_free 1952 void 1953 _umem_free(void *buf, size_t size) 1954 { 1955 size_t index = (size - 1) >> UMEM_ALIGN_SHIFT; 1956 1957 if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) { 1958 umem_cache_t *cp = umem_alloc_table[index]; 1959 if (cp->cache_flags & UMF_BUFTAG) { 1960 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); 1961 uint32_t *ip = (uint32_t *)btp; 1962 if (ip[1] != UMEM_SIZE_ENCODE(size)) { 1963 if (*(uint64_t *)buf == UMEM_FREE_PATTERN) { 1964 umem_error(UMERR_DUPFREE, cp, buf); 1965 return; 1966 } 1967 if (UMEM_SIZE_VALID(ip[1])) { 1968 ip[0] = UMEM_SIZE_ENCODE(size); 1969 umem_error(UMERR_BADSIZE, cp, buf); 1970 } else { 1971 umem_error(UMERR_REDZONE, cp, buf); 1972 } 1973 return; 1974 } 1975 if (((uint8_t *)buf)[size] != UMEM_REDZONE_BYTE) { 1976 umem_error(UMERR_REDZONE, cp, buf); 1977 return; 1978 } 1979 btp->bt_redzone = UMEM_REDZONE_PATTERN; 1980 } 1981 _umem_cache_free(cp, buf); 1982 } else { 1983 if (buf == NULL && size == 0) 1984 return; 1985 vmem_free(umem_oversize_arena, buf, size); 1986 } 1987 } 1988 1989 #pragma weak umem_free_align = _umem_free_align 1990 void 1991 _umem_free_align(void *buf, size_t size) 1992 { 1993 if (buf == NULL && size == 0) 1994 return; 1995 vmem_xfree(umem_memalign_arena, buf, size); 1996 } 1997 1998 static void * 1999 umem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag) 2000 { 2001 size_t realsize = size + vmp->vm_quantum; 2002 2003 /* 2004 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding 2005 * vm_quantum will cause integer wraparound. Check for this, and 2006 * blow off the firewall page in this case. Note that such a 2007 * giant allocation (the entire address space) can never be 2008 * satisfied, so it will either fail immediately (VM_NOSLEEP) 2009 * or sleep forever (VM_SLEEP). Thus, there is no need for a 2010 * corresponding check in umem_firewall_va_free(). 2011 */ 2012 if (realsize < size) 2013 realsize = size; 2014 2015 return (vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT)); 2016 } 2017 2018 static void 2019 umem_firewall_va_free(vmem_t *vmp, void *addr, size_t size) 2020 { 2021 vmem_free(vmp, addr, size + vmp->vm_quantum); 2022 } 2023 2024 /* 2025 * Reclaim all unused memory from a cache. 2026 */ 2027 static void 2028 umem_cache_reap(umem_cache_t *cp) 2029 { 2030 /* 2031 * Ask the cache's owner to free some memory if possible. 2032 * The idea is to handle things like the inode cache, which 2033 * typically sits on a bunch of memory that it doesn't truly 2034 * *need*. Reclaim policy is entirely up to the owner; this 2035 * callback is just an advisory plea for help. 2036 */ 2037 if (cp->cache_reclaim != NULL) 2038 cp->cache_reclaim(cp->cache_private); 2039 2040 umem_depot_ws_reap(cp); 2041 } 2042 2043 /* 2044 * Purge all magazines from a cache and set its magazine limit to zero. 2045 * All calls are serialized by being done by the update thread, except for 2046 * the final call from umem_cache_destroy(). 2047 */ 2048 static void 2049 umem_cache_magazine_purge(umem_cache_t *cp) 2050 { 2051 umem_cpu_cache_t *ccp; 2052 umem_magazine_t *mp, *pmp; 2053 int rounds, prounds, cpu_seqid; 2054 2055 ASSERT(cp->cache_next == NULL || IN_UPDATE()); 2056 2057 for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) { 2058 ccp = &cp->cache_cpu[cpu_seqid]; 2059 2060 (void) mutex_lock(&ccp->cc_lock); 2061 mp = ccp->cc_loaded; 2062 pmp = ccp->cc_ploaded; 2063 rounds = ccp->cc_rounds; 2064 prounds = ccp->cc_prounds; 2065 ccp->cc_loaded = NULL; 2066 ccp->cc_ploaded = NULL; 2067 ccp->cc_rounds = -1; 2068 ccp->cc_prounds = -1; 2069 ccp->cc_magsize = 0; 2070 (void) mutex_unlock(&ccp->cc_lock); 2071 2072 if (mp) 2073 umem_magazine_destroy(cp, mp, rounds); 2074 if (pmp) 2075 umem_magazine_destroy(cp, pmp, prounds); 2076 } 2077 2078 /* 2079 * Updating the working set statistics twice in a row has the 2080 * effect of setting the working set size to zero, so everything 2081 * is eligible for reaping. 2082 */ 2083 umem_depot_ws_update(cp); 2084 umem_depot_ws_update(cp); 2085 2086 umem_depot_ws_reap(cp); 2087 } 2088 2089 /* 2090 * Enable per-cpu magazines on a cache. 2091 */ 2092 static void 2093 umem_cache_magazine_enable(umem_cache_t *cp) 2094 { 2095 int cpu_seqid; 2096 2097 if (cp->cache_flags & UMF_NOMAGAZINE) 2098 return; 2099 2100 for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) { 2101 umem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 2102 (void) mutex_lock(&ccp->cc_lock); 2103 ccp->cc_magsize = cp->cache_magtype->mt_magsize; 2104 (void) mutex_unlock(&ccp->cc_lock); 2105 } 2106 2107 } 2108 2109 /* 2110 * Recompute a cache's magazine size. The trade-off is that larger magazines 2111 * provide a higher transfer rate with the depot, while smaller magazines 2112 * reduce memory consumption. Magazine resizing is an expensive operation; 2113 * it should not be done frequently. 2114 * 2115 * Changes to the magazine size are serialized by only having one thread 2116 * doing updates. (the update thread) 2117 * 2118 * Note: at present this only grows the magazine size. It might be useful 2119 * to allow shrinkage too. 2120 */ 2121 static void 2122 umem_cache_magazine_resize(umem_cache_t *cp) 2123 { 2124 umem_magtype_t *mtp = cp->cache_magtype; 2125 2126 ASSERT(IN_UPDATE()); 2127 2128 if (cp->cache_chunksize < mtp->mt_maxbuf) { 2129 umem_cache_magazine_purge(cp); 2130 (void) mutex_lock(&cp->cache_depot_lock); 2131 cp->cache_magtype = ++mtp; 2132 cp->cache_depot_contention_prev = 2133 cp->cache_depot_contention + INT_MAX; 2134 (void) mutex_unlock(&cp->cache_depot_lock); 2135 umem_cache_magazine_enable(cp); 2136 } 2137 } 2138 2139 /* 2140 * Rescale a cache's hash table, so that the table size is roughly the 2141 * cache size. We want the average lookup time to be extremely small. 2142 */ 2143 static void 2144 umem_hash_rescale(umem_cache_t *cp) 2145 { 2146 umem_bufctl_t **old_table, **new_table, *bcp; 2147 size_t old_size, new_size, h; 2148 2149 ASSERT(IN_UPDATE()); 2150 2151 new_size = MAX(UMEM_HASH_INITIAL, 2152 1 << (highbit(3 * cp->cache_buftotal + 4) - 2)); 2153 old_size = cp->cache_hash_mask + 1; 2154 2155 if ((old_size >> 1) <= new_size && new_size <= (old_size << 1)) 2156 return; 2157 2158 new_table = vmem_alloc(umem_hash_arena, new_size * sizeof (void *), 2159 VM_NOSLEEP); 2160 if (new_table == NULL) 2161 return; 2162 bzero(new_table, new_size * sizeof (void *)); 2163 2164 (void) mutex_lock(&cp->cache_lock); 2165 2166 old_size = cp->cache_hash_mask + 1; 2167 old_table = cp->cache_hash_table; 2168 2169 cp->cache_hash_mask = new_size - 1; 2170 cp->cache_hash_table = new_table; 2171 cp->cache_rescale++; 2172 2173 for (h = 0; h < old_size; h++) { 2174 bcp = old_table[h]; 2175 while (bcp != NULL) { 2176 void *addr = bcp->bc_addr; 2177 umem_bufctl_t *next_bcp = bcp->bc_next; 2178 umem_bufctl_t **hash_bucket = UMEM_HASH(cp, addr); 2179 bcp->bc_next = *hash_bucket; 2180 *hash_bucket = bcp; 2181 bcp = next_bcp; 2182 } 2183 } 2184 2185 (void) mutex_unlock(&cp->cache_lock); 2186 2187 vmem_free(umem_hash_arena, old_table, old_size * sizeof (void *)); 2188 } 2189 2190 /* 2191 * Perform periodic maintenance on a cache: hash rescaling, 2192 * depot working-set update, and magazine resizing. 2193 */ 2194 void 2195 umem_cache_update(umem_cache_t *cp) 2196 { 2197 int update_flags = 0; 2198 2199 ASSERT(MUTEX_HELD(&umem_cache_lock)); 2200 2201 /* 2202 * If the cache has become much larger or smaller than its hash table, 2203 * fire off a request to rescale the hash table. 2204 */ 2205 (void) mutex_lock(&cp->cache_lock); 2206 2207 if ((cp->cache_flags & UMF_HASH) && 2208 (cp->cache_buftotal > (cp->cache_hash_mask << 1) || 2209 (cp->cache_buftotal < (cp->cache_hash_mask >> 1) && 2210 cp->cache_hash_mask > UMEM_HASH_INITIAL))) 2211 update_flags |= UMU_HASH_RESCALE; 2212 2213 (void) mutex_unlock(&cp->cache_lock); 2214 2215 /* 2216 * Update the depot working set statistics. 2217 */ 2218 umem_depot_ws_update(cp); 2219 2220 /* 2221 * If there's a lot of contention in the depot, 2222 * increase the magazine size. 2223 */ 2224 (void) mutex_lock(&cp->cache_depot_lock); 2225 2226 if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf && 2227 (int)(cp->cache_depot_contention - 2228 cp->cache_depot_contention_prev) > umem_depot_contention) 2229 update_flags |= UMU_MAGAZINE_RESIZE; 2230 2231 cp->cache_depot_contention_prev = cp->cache_depot_contention; 2232 2233 (void) mutex_unlock(&cp->cache_depot_lock); 2234 2235 if (update_flags) 2236 umem_add_update(cp, update_flags); 2237 } 2238 2239 /* 2240 * Runs all pending updates. 2241 * 2242 * The update lock must be held on entrance, and will be held on exit. 2243 */ 2244 void 2245 umem_process_updates(void) 2246 { 2247 ASSERT(MUTEX_HELD(&umem_update_lock)); 2248 2249 while (umem_null_cache.cache_unext != &umem_null_cache) { 2250 int notify = 0; 2251 umem_cache_t *cp = umem_null_cache.cache_unext; 2252 2253 cp->cache_uprev->cache_unext = cp->cache_unext; 2254 cp->cache_unext->cache_uprev = cp->cache_uprev; 2255 cp->cache_uprev = cp->cache_unext = NULL; 2256 2257 ASSERT(!(cp->cache_uflags & UMU_ACTIVE)); 2258 2259 while (cp->cache_uflags) { 2260 int uflags = (cp->cache_uflags |= UMU_ACTIVE); 2261 (void) mutex_unlock(&umem_update_lock); 2262 2263 /* 2264 * The order here is important. Each step can speed up 2265 * later steps. 2266 */ 2267 2268 if (uflags & UMU_HASH_RESCALE) 2269 umem_hash_rescale(cp); 2270 2271 if (uflags & UMU_MAGAZINE_RESIZE) 2272 umem_cache_magazine_resize(cp); 2273 2274 if (uflags & UMU_REAP) 2275 umem_cache_reap(cp); 2276 2277 (void) mutex_lock(&umem_update_lock); 2278 2279 /* 2280 * check if anyone has requested notification 2281 */ 2282 if (cp->cache_uflags & UMU_NOTIFY) { 2283 uflags |= UMU_NOTIFY; 2284 notify = 1; 2285 } 2286 cp->cache_uflags &= ~uflags; 2287 } 2288 if (notify) 2289 (void) cond_broadcast(&umem_update_cv); 2290 } 2291 } 2292 2293 #ifndef UMEM_STANDALONE 2294 static void 2295 umem_st_update(void) 2296 { 2297 ASSERT(MUTEX_HELD(&umem_update_lock)); 2298 ASSERT(umem_update_thr == 0 && umem_st_update_thr == 0); 2299 2300 umem_st_update_thr = thr_self(); 2301 2302 (void) mutex_unlock(&umem_update_lock); 2303 2304 vmem_update(NULL); 2305 umem_cache_applyall(umem_cache_update); 2306 2307 (void) mutex_lock(&umem_update_lock); 2308 2309 umem_process_updates(); /* does all of the requested work */ 2310 2311 umem_reap_next = gethrtime() + 2312 (hrtime_t)umem_reap_interval * NANOSEC; 2313 2314 umem_reaping = UMEM_REAP_DONE; 2315 2316 umem_st_update_thr = 0; 2317 } 2318 #endif 2319 2320 /* 2321 * Reclaim all unused memory from all caches. Called from vmem when memory 2322 * gets tight. Must be called with no locks held. 2323 * 2324 * This just requests a reap on all caches, and notifies the update thread. 2325 */ 2326 void 2327 umem_reap(void) 2328 { 2329 #ifndef UMEM_STANDALONE 2330 extern int __nthreads(void); 2331 #endif 2332 2333 if (umem_ready != UMEM_READY || umem_reaping != UMEM_REAP_DONE || 2334 gethrtime() < umem_reap_next) 2335 return; 2336 2337 (void) mutex_lock(&umem_update_lock); 2338 2339 if (umem_reaping != UMEM_REAP_DONE || gethrtime() < umem_reap_next) { 2340 (void) mutex_unlock(&umem_update_lock); 2341 return; 2342 } 2343 umem_reaping = UMEM_REAP_ADDING; /* lock out other reaps */ 2344 2345 (void) mutex_unlock(&umem_update_lock); 2346 2347 umem_updateall(UMU_REAP); 2348 2349 (void) mutex_lock(&umem_update_lock); 2350 2351 umem_reaping = UMEM_REAP_ACTIVE; 2352 2353 /* Standalone is single-threaded */ 2354 #ifndef UMEM_STANDALONE 2355 if (umem_update_thr == 0) { 2356 /* 2357 * The update thread does not exist. If the process is 2358 * multi-threaded, create it. If not, or the creation fails, 2359 * do the update processing inline. 2360 */ 2361 ASSERT(umem_st_update_thr == 0); 2362 2363 if (__nthreads() <= 1 || umem_create_update_thread() == 0) 2364 umem_st_update(); 2365 } 2366 2367 (void) cond_broadcast(&umem_update_cv); /* wake up the update thread */ 2368 #endif 2369 2370 (void) mutex_unlock(&umem_update_lock); 2371 } 2372 2373 umem_cache_t * 2374 umem_cache_create( 2375 char *name, /* descriptive name for this cache */ 2376 size_t bufsize, /* size of the objects it manages */ 2377 size_t align, /* required object alignment */ 2378 umem_constructor_t *constructor, /* object constructor */ 2379 umem_destructor_t *destructor, /* object destructor */ 2380 umem_reclaim_t *reclaim, /* memory reclaim callback */ 2381 void *private, /* pass-thru arg for constr/destr/reclaim */ 2382 vmem_t *vmp, /* vmem source for slab allocation */ 2383 int cflags) /* cache creation flags */ 2384 { 2385 int cpu_seqid; 2386 size_t chunksize; 2387 umem_cache_t *cp, *cnext, *cprev; 2388 umem_magtype_t *mtp; 2389 size_t csize; 2390 size_t phase; 2391 2392 /* 2393 * The init thread is allowed to create internal and quantum caches. 2394 * 2395 * Other threads must wait until until initialization is complete. 2396 */ 2397 if (umem_init_thr == thr_self()) 2398 ASSERT((cflags & (UMC_INTERNAL | UMC_QCACHE)) != 0); 2399 else { 2400 ASSERT(!(cflags & UMC_INTERNAL)); 2401 if (umem_ready != UMEM_READY && umem_init() == 0) { 2402 errno = EAGAIN; 2403 return (NULL); 2404 } 2405 } 2406 2407 csize = UMEM_CACHE_SIZE(umem_max_ncpus); 2408 phase = P2NPHASE(csize, UMEM_CPU_CACHE_SIZE); 2409 2410 if (vmp == NULL) 2411 vmp = umem_default_arena; 2412 2413 ASSERT(P2PHASE(phase, UMEM_ALIGN) == 0); 2414 2415 /* 2416 * Check that the arguments are reasonable 2417 */ 2418 if ((align & (align - 1)) != 0 || align > vmp->vm_quantum || 2419 ((cflags & UMC_NOHASH) && (cflags & UMC_NOTOUCH)) || 2420 name == NULL || bufsize == 0) { 2421 errno = EINVAL; 2422 return (NULL); 2423 } 2424 2425 /* 2426 * If align == 0, we set it to the minimum required alignment. 2427 * 2428 * If align < UMEM_ALIGN, we round it up to UMEM_ALIGN, unless 2429 * UMC_NOTOUCH was passed. 2430 */ 2431 if (align == 0) { 2432 if (P2ROUNDUP(bufsize, UMEM_ALIGN) >= UMEM_SECOND_ALIGN) 2433 align = UMEM_SECOND_ALIGN; 2434 else 2435 align = UMEM_ALIGN; 2436 } else if (align < UMEM_ALIGN && (cflags & UMC_NOTOUCH) == 0) 2437 align = UMEM_ALIGN; 2438 2439 2440 /* 2441 * Get a umem_cache structure. We arrange that cp->cache_cpu[] 2442 * is aligned on a UMEM_CPU_CACHE_SIZE boundary to prevent 2443 * false sharing of per-CPU data. 2444 */ 2445 cp = vmem_xalloc(umem_cache_arena, csize, UMEM_CPU_CACHE_SIZE, phase, 2446 0, NULL, NULL, VM_NOSLEEP); 2447 2448 if (cp == NULL) { 2449 errno = EAGAIN; 2450 return (NULL); 2451 } 2452 2453 bzero(cp, csize); 2454 2455 (void) mutex_lock(&umem_flags_lock); 2456 if (umem_flags & UMF_RANDOMIZE) 2457 umem_flags = (((umem_flags | ~UMF_RANDOM) + 1) & UMF_RANDOM) | 2458 UMF_RANDOMIZE; 2459 cp->cache_flags = umem_flags | (cflags & UMF_DEBUG); 2460 (void) mutex_unlock(&umem_flags_lock); 2461 2462 /* 2463 * Make sure all the various flags are reasonable. 2464 */ 2465 if (cp->cache_flags & UMF_LITE) { 2466 if (bufsize >= umem_lite_minsize && 2467 align <= umem_lite_maxalign && 2468 P2PHASE(bufsize, umem_lite_maxalign) != 0) { 2469 cp->cache_flags |= UMF_BUFTAG; 2470 cp->cache_flags &= ~(UMF_AUDIT | UMF_FIREWALL); 2471 } else { 2472 cp->cache_flags &= ~UMF_DEBUG; 2473 } 2474 } 2475 2476 if ((cflags & UMC_QCACHE) && (cp->cache_flags & UMF_AUDIT)) 2477 cp->cache_flags |= UMF_NOMAGAZINE; 2478 2479 if (cflags & UMC_NODEBUG) 2480 cp->cache_flags &= ~UMF_DEBUG; 2481 2482 if (cflags & UMC_NOTOUCH) 2483 cp->cache_flags &= ~UMF_TOUCH; 2484 2485 if (cflags & UMC_NOHASH) 2486 cp->cache_flags &= ~(UMF_AUDIT | UMF_FIREWALL); 2487 2488 if (cflags & UMC_NOMAGAZINE) 2489 cp->cache_flags |= UMF_NOMAGAZINE; 2490 2491 if ((cp->cache_flags & UMF_AUDIT) && !(cflags & UMC_NOTOUCH)) 2492 cp->cache_flags |= UMF_REDZONE; 2493 2494 if ((cp->cache_flags & UMF_BUFTAG) && bufsize >= umem_minfirewall && 2495 !(cp->cache_flags & UMF_LITE) && !(cflags & UMC_NOHASH)) 2496 cp->cache_flags |= UMF_FIREWALL; 2497 2498 if (vmp != umem_default_arena || umem_firewall_arena == NULL) 2499 cp->cache_flags &= ~UMF_FIREWALL; 2500 2501 if (cp->cache_flags & UMF_FIREWALL) { 2502 cp->cache_flags &= ~UMF_BUFTAG; 2503 cp->cache_flags |= UMF_NOMAGAZINE; 2504 ASSERT(vmp == umem_default_arena); 2505 vmp = umem_firewall_arena; 2506 } 2507 2508 /* 2509 * Set cache properties. 2510 */ 2511 (void) strncpy(cp->cache_name, name, sizeof (cp->cache_name) - 1); 2512 cp->cache_bufsize = bufsize; 2513 cp->cache_align = align; 2514 cp->cache_constructor = constructor; 2515 cp->cache_destructor = destructor; 2516 cp->cache_reclaim = reclaim; 2517 cp->cache_private = private; 2518 cp->cache_arena = vmp; 2519 cp->cache_cflags = cflags; 2520 cp->cache_cpu_mask = umem_cpu_mask; 2521 2522 /* 2523 * Determine the chunk size. 2524 */ 2525 chunksize = bufsize; 2526 2527 if (align >= UMEM_ALIGN) { 2528 chunksize = P2ROUNDUP(chunksize, UMEM_ALIGN); 2529 cp->cache_bufctl = chunksize - UMEM_ALIGN; 2530 } 2531 2532 if (cp->cache_flags & UMF_BUFTAG) { 2533 cp->cache_bufctl = chunksize; 2534 cp->cache_buftag = chunksize; 2535 chunksize += sizeof (umem_buftag_t); 2536 } 2537 2538 if (cp->cache_flags & UMF_DEADBEEF) { 2539 cp->cache_verify = MIN(cp->cache_buftag, umem_maxverify); 2540 if (cp->cache_flags & UMF_LITE) 2541 cp->cache_verify = MIN(cp->cache_verify, UMEM_ALIGN); 2542 } 2543 2544 cp->cache_contents = MIN(cp->cache_bufctl, umem_content_maxsave); 2545 2546 cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align); 2547 2548 if (chunksize < bufsize) { 2549 errno = ENOMEM; 2550 goto fail; 2551 } 2552 2553 /* 2554 * Now that we know the chunk size, determine the optimal slab size. 2555 */ 2556 if (vmp == umem_firewall_arena) { 2557 cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum); 2558 cp->cache_mincolor = cp->cache_slabsize - chunksize; 2559 cp->cache_maxcolor = cp->cache_mincolor; 2560 cp->cache_flags |= UMF_HASH; 2561 ASSERT(!(cp->cache_flags & UMF_BUFTAG)); 2562 } else if ((cflags & UMC_NOHASH) || (!(cflags & UMC_NOTOUCH) && 2563 !(cp->cache_flags & UMF_AUDIT) && 2564 chunksize < vmp->vm_quantum / UMEM_VOID_FRACTION)) { 2565 cp->cache_slabsize = vmp->vm_quantum; 2566 cp->cache_mincolor = 0; 2567 cp->cache_maxcolor = 2568 (cp->cache_slabsize - sizeof (umem_slab_t)) % chunksize; 2569 2570 if (chunksize + sizeof (umem_slab_t) > cp->cache_slabsize) { 2571 errno = EINVAL; 2572 goto fail; 2573 } 2574 ASSERT(!(cp->cache_flags & UMF_AUDIT)); 2575 } else { 2576 size_t chunks, bestfit, waste, slabsize; 2577 size_t minwaste = LONG_MAX; 2578 2579 for (chunks = 1; chunks <= UMEM_VOID_FRACTION; chunks++) { 2580 slabsize = P2ROUNDUP(chunksize * chunks, 2581 vmp->vm_quantum); 2582 /* 2583 * check for overflow 2584 */ 2585 if ((slabsize / chunks) < chunksize) { 2586 errno = ENOMEM; 2587 goto fail; 2588 } 2589 chunks = slabsize / chunksize; 2590 waste = (slabsize % chunksize) / chunks; 2591 if (waste < minwaste) { 2592 minwaste = waste; 2593 bestfit = slabsize; 2594 } 2595 } 2596 if (cflags & UMC_QCACHE) 2597 bestfit = MAX(1 << highbit(3 * vmp->vm_qcache_max), 64); 2598 cp->cache_slabsize = bestfit; 2599 cp->cache_mincolor = 0; 2600 cp->cache_maxcolor = bestfit % chunksize; 2601 cp->cache_flags |= UMF_HASH; 2602 } 2603 2604 if (cp->cache_flags & UMF_HASH) { 2605 ASSERT(!(cflags & UMC_NOHASH)); 2606 cp->cache_bufctl_cache = (cp->cache_flags & UMF_AUDIT) ? 2607 umem_bufctl_audit_cache : umem_bufctl_cache; 2608 } 2609 2610 if (cp->cache_maxcolor >= vmp->vm_quantum) 2611 cp->cache_maxcolor = vmp->vm_quantum - 1; 2612 2613 cp->cache_color = cp->cache_mincolor; 2614 2615 /* 2616 * Initialize the rest of the slab layer. 2617 */ 2618 (void) mutex_init(&cp->cache_lock, USYNC_THREAD, NULL); 2619 2620 cp->cache_freelist = &cp->cache_nullslab; 2621 cp->cache_nullslab.slab_cache = cp; 2622 cp->cache_nullslab.slab_refcnt = -1; 2623 cp->cache_nullslab.slab_next = &cp->cache_nullslab; 2624 cp->cache_nullslab.slab_prev = &cp->cache_nullslab; 2625 2626 if (cp->cache_flags & UMF_HASH) { 2627 cp->cache_hash_table = vmem_alloc(umem_hash_arena, 2628 UMEM_HASH_INITIAL * sizeof (void *), VM_NOSLEEP); 2629 if (cp->cache_hash_table == NULL) { 2630 errno = EAGAIN; 2631 goto fail_lock; 2632 } 2633 bzero(cp->cache_hash_table, 2634 UMEM_HASH_INITIAL * sizeof (void *)); 2635 cp->cache_hash_mask = UMEM_HASH_INITIAL - 1; 2636 cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1; 2637 } 2638 2639 /* 2640 * Initialize the depot. 2641 */ 2642 (void) mutex_init(&cp->cache_depot_lock, USYNC_THREAD, NULL); 2643 2644 for (mtp = umem_magtype; chunksize <= mtp->mt_minbuf; mtp++) 2645 continue; 2646 2647 cp->cache_magtype = mtp; 2648 2649 /* 2650 * Initialize the CPU layer. 2651 */ 2652 for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) { 2653 umem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 2654 (void) mutex_init(&ccp->cc_lock, USYNC_THREAD, NULL); 2655 ccp->cc_flags = cp->cache_flags; 2656 ccp->cc_rounds = -1; 2657 ccp->cc_prounds = -1; 2658 } 2659 2660 /* 2661 * Add the cache to the global list. This makes it visible 2662 * to umem_update(), so the cache must be ready for business. 2663 */ 2664 (void) mutex_lock(&umem_cache_lock); 2665 cp->cache_next = cnext = &umem_null_cache; 2666 cp->cache_prev = cprev = umem_null_cache.cache_prev; 2667 cnext->cache_prev = cp; 2668 cprev->cache_next = cp; 2669 (void) mutex_unlock(&umem_cache_lock); 2670 2671 if (umem_ready == UMEM_READY) 2672 umem_cache_magazine_enable(cp); 2673 2674 return (cp); 2675 2676 fail_lock: 2677 (void) mutex_destroy(&cp->cache_lock); 2678 fail: 2679 vmem_xfree(umem_cache_arena, cp, csize); 2680 return (NULL); 2681 } 2682 2683 void 2684 umem_cache_destroy(umem_cache_t *cp) 2685 { 2686 int cpu_seqid; 2687 2688 /* 2689 * Remove the cache from the global cache list so that no new updates 2690 * will be scheduled on its behalf, wait for any pending tasks to 2691 * complete, purge the cache, and then destroy it. 2692 */ 2693 (void) mutex_lock(&umem_cache_lock); 2694 cp->cache_prev->cache_next = cp->cache_next; 2695 cp->cache_next->cache_prev = cp->cache_prev; 2696 cp->cache_prev = cp->cache_next = NULL; 2697 (void) mutex_unlock(&umem_cache_lock); 2698 2699 umem_remove_updates(cp); 2700 2701 umem_cache_magazine_purge(cp); 2702 2703 (void) mutex_lock(&cp->cache_lock); 2704 if (cp->cache_buftotal != 0) 2705 log_message("umem_cache_destroy: '%s' (%p) not empty\n", 2706 cp->cache_name, (void *)cp); 2707 cp->cache_reclaim = NULL; 2708 /* 2709 * The cache is now dead. There should be no further activity. 2710 * We enforce this by setting land mines in the constructor and 2711 * destructor routines that induce a segmentation fault if invoked. 2712 */ 2713 cp->cache_constructor = (umem_constructor_t *)1; 2714 cp->cache_destructor = (umem_destructor_t *)2; 2715 (void) mutex_unlock(&cp->cache_lock); 2716 2717 if (cp->cache_hash_table != NULL) 2718 vmem_free(umem_hash_arena, cp->cache_hash_table, 2719 (cp->cache_hash_mask + 1) * sizeof (void *)); 2720 2721 for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) 2722 (void) mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock); 2723 2724 (void) mutex_destroy(&cp->cache_depot_lock); 2725 (void) mutex_destroy(&cp->cache_lock); 2726 2727 vmem_free(umem_cache_arena, cp, UMEM_CACHE_SIZE(umem_max_ncpus)); 2728 } 2729 2730 static int 2731 umem_cache_init(void) 2732 { 2733 int i; 2734 size_t size, max_size; 2735 umem_cache_t *cp; 2736 umem_magtype_t *mtp; 2737 char name[UMEM_CACHE_NAMELEN + 1]; 2738 umem_cache_t *umem_alloc_caches[NUM_ALLOC_SIZES]; 2739 2740 for (i = 0; i < sizeof (umem_magtype) / sizeof (*mtp); i++) { 2741 mtp = &umem_magtype[i]; 2742 (void) snprintf(name, sizeof (name), "umem_magazine_%d", 2743 mtp->mt_magsize); 2744 mtp->mt_cache = umem_cache_create(name, 2745 (mtp->mt_magsize + 1) * sizeof (void *), 2746 mtp->mt_align, NULL, NULL, NULL, NULL, 2747 umem_internal_arena, UMC_NOHASH | UMC_INTERNAL); 2748 if (mtp->mt_cache == NULL) 2749 return (0); 2750 } 2751 2752 umem_slab_cache = umem_cache_create("umem_slab_cache", 2753 sizeof (umem_slab_t), 0, NULL, NULL, NULL, NULL, 2754 umem_internal_arena, UMC_NOHASH | UMC_INTERNAL); 2755 2756 if (umem_slab_cache == NULL) 2757 return (0); 2758 2759 umem_bufctl_cache = umem_cache_create("umem_bufctl_cache", 2760 sizeof (umem_bufctl_t), 0, NULL, NULL, NULL, NULL, 2761 umem_internal_arena, UMC_NOHASH | UMC_INTERNAL); 2762 2763 if (umem_bufctl_cache == NULL) 2764 return (0); 2765 2766 /* 2767 * The size of the umem_bufctl_audit structure depends upon 2768 * umem_stack_depth. See umem_impl.h for details on the size 2769 * restrictions. 2770 */ 2771 2772 size = UMEM_BUFCTL_AUDIT_SIZE_DEPTH(umem_stack_depth); 2773 max_size = UMEM_BUFCTL_AUDIT_MAX_SIZE; 2774 2775 if (size > max_size) { /* too large -- truncate */ 2776 int max_frames = UMEM_MAX_STACK_DEPTH; 2777 2778 ASSERT(UMEM_BUFCTL_AUDIT_SIZE_DEPTH(max_frames) <= max_size); 2779 2780 umem_stack_depth = max_frames; 2781 size = UMEM_BUFCTL_AUDIT_SIZE_DEPTH(umem_stack_depth); 2782 } 2783 2784 umem_bufctl_audit_cache = umem_cache_create("umem_bufctl_audit_cache", 2785 size, 0, NULL, NULL, NULL, NULL, umem_internal_arena, 2786 UMC_NOHASH | UMC_INTERNAL); 2787 2788 if (umem_bufctl_audit_cache == NULL) 2789 return (0); 2790 2791 if (vmem_backend & VMEM_BACKEND_MMAP) 2792 umem_va_arena = vmem_create("umem_va", 2793 NULL, 0, pagesize, 2794 vmem_alloc, vmem_free, heap_arena, 2795 8 * pagesize, VM_NOSLEEP); 2796 else 2797 umem_va_arena = heap_arena; 2798 2799 if (umem_va_arena == NULL) 2800 return (0); 2801 2802 umem_default_arena = vmem_create("umem_default", 2803 NULL, 0, pagesize, 2804 heap_alloc, heap_free, umem_va_arena, 2805 0, VM_NOSLEEP); 2806 2807 if (umem_default_arena == NULL) 2808 return (0); 2809 2810 /* 2811 * make sure the umem_alloc table initializer is correct 2812 */ 2813 i = sizeof (umem_alloc_table) / sizeof (*umem_alloc_table); 2814 ASSERT(umem_alloc_table[i - 1] == &umem_null_cache); 2815 2816 /* 2817 * Create the default caches to back umem_alloc() 2818 */ 2819 for (i = 0; i < NUM_ALLOC_SIZES; i++) { 2820 size_t cache_size = umem_alloc_sizes[i]; 2821 size_t align = 0; 2822 /* 2823 * If they allocate a multiple of the coherency granularity, 2824 * they get a coherency-granularity-aligned address. 2825 */ 2826 if (IS_P2ALIGNED(cache_size, 64)) 2827 align = 64; 2828 if (IS_P2ALIGNED(cache_size, pagesize)) 2829 align = pagesize; 2830 (void) snprintf(name, sizeof (name), "umem_alloc_%lu", 2831 (long)cache_size); 2832 2833 cp = umem_cache_create(name, cache_size, align, 2834 NULL, NULL, NULL, NULL, NULL, UMC_INTERNAL); 2835 if (cp == NULL) 2836 return (0); 2837 2838 umem_alloc_caches[i] = cp; 2839 } 2840 2841 /* 2842 * Initialization cannot fail at this point. Make the caches 2843 * visible to umem_alloc() and friends. 2844 */ 2845 size = UMEM_ALIGN; 2846 for (i = 0; i < NUM_ALLOC_SIZES; i++) { 2847 size_t cache_size = umem_alloc_sizes[i]; 2848 2849 cp = umem_alloc_caches[i]; 2850 2851 while (size <= cache_size) { 2852 umem_alloc_table[(size - 1) >> UMEM_ALIGN_SHIFT] = cp; 2853 size += UMEM_ALIGN; 2854 } 2855 } 2856 return (1); 2857 } 2858 2859 /* 2860 * umem_startup() is called early on, and must be called explicitly if we're 2861 * the standalone version. 2862 */ 2863 #ifdef UMEM_STANDALONE 2864 void 2865 #else 2866 #pragma init(umem_startup) 2867 static void 2868 #endif 2869 umem_startup(caddr_t start, size_t len, size_t pagesize, caddr_t minstack, 2870 caddr_t maxstack) 2871 { 2872 #ifdef UMEM_STANDALONE 2873 int idx; 2874 /* Standalone doesn't fork */ 2875 #else 2876 umem_forkhandler_init(); /* register the fork handler */ 2877 #endif 2878 2879 #ifdef __lint 2880 /* make lint happy */ 2881 minstack = maxstack; 2882 #endif 2883 2884 #ifdef UMEM_STANDALONE 2885 umem_ready = UMEM_READY_STARTUP; 2886 umem_init_env_ready = 0; 2887 2888 umem_min_stack = minstack; 2889 umem_max_stack = maxstack; 2890 2891 nofail_callback = NULL; 2892 umem_slab_cache = NULL; 2893 umem_bufctl_cache = NULL; 2894 umem_bufctl_audit_cache = NULL; 2895 heap_arena = NULL; 2896 heap_alloc = NULL; 2897 heap_free = NULL; 2898 umem_internal_arena = NULL; 2899 umem_cache_arena = NULL; 2900 umem_hash_arena = NULL; 2901 umem_log_arena = NULL; 2902 umem_oversize_arena = NULL; 2903 umem_va_arena = NULL; 2904 umem_default_arena = NULL; 2905 umem_firewall_va_arena = NULL; 2906 umem_firewall_arena = NULL; 2907 umem_memalign_arena = NULL; 2908 umem_transaction_log = NULL; 2909 umem_content_log = NULL; 2910 umem_failure_log = NULL; 2911 umem_slab_log = NULL; 2912 umem_cpu_mask = 0; 2913 2914 umem_cpus = &umem_startup_cpu; 2915 umem_startup_cpu.cpu_cache_offset = UMEM_CACHE_SIZE(0); 2916 umem_startup_cpu.cpu_number = 0; 2917 2918 bcopy(&umem_null_cache_template, &umem_null_cache, 2919 sizeof (umem_cache_t)); 2920 2921 for (idx = 0; idx < (UMEM_MAXBUF >> UMEM_ALIGN_SHIFT); idx++) 2922 umem_alloc_table[idx] = &umem_null_cache; 2923 #endif 2924 2925 /* 2926 * Perform initialization specific to the way we've been compiled 2927 * (library or standalone) 2928 */ 2929 umem_type_init(start, len, pagesize); 2930 2931 vmem_startup(); 2932 } 2933 2934 int 2935 umem_init(void) 2936 { 2937 size_t maxverify, minfirewall; 2938 size_t size; 2939 int idx; 2940 umem_cpu_t *new_cpus; 2941 2942 vmem_t *memalign_arena, *oversize_arena; 2943 2944 if (thr_self() != umem_init_thr) { 2945 /* 2946 * The usual case -- non-recursive invocation of umem_init(). 2947 */ 2948 (void) mutex_lock(&umem_init_lock); 2949 if (umem_ready != UMEM_READY_STARTUP) { 2950 /* 2951 * someone else beat us to initializing umem. Wait 2952 * for them to complete, then return. 2953 */ 2954 while (umem_ready == UMEM_READY_INITING) 2955 (void) _cond_wait(&umem_init_cv, 2956 &umem_init_lock); 2957 ASSERT(umem_ready == UMEM_READY || 2958 umem_ready == UMEM_READY_INIT_FAILED); 2959 (void) mutex_unlock(&umem_init_lock); 2960 return (umem_ready == UMEM_READY); 2961 } 2962 2963 ASSERT(umem_ready == UMEM_READY_STARTUP); 2964 ASSERT(umem_init_env_ready == 0); 2965 2966 umem_ready = UMEM_READY_INITING; 2967 umem_init_thr = thr_self(); 2968 2969 (void) mutex_unlock(&umem_init_lock); 2970 umem_setup_envvars(0); /* can recurse -- see below */ 2971 if (umem_init_env_ready) { 2972 /* 2973 * initialization was completed already 2974 */ 2975 ASSERT(umem_ready == UMEM_READY || 2976 umem_ready == UMEM_READY_INIT_FAILED); 2977 ASSERT(umem_init_thr == 0); 2978 return (umem_ready == UMEM_READY); 2979 } 2980 } else if (!umem_init_env_ready) { 2981 /* 2982 * The umem_setup_envvars() call (above) makes calls into 2983 * the dynamic linker and directly into user-supplied code. 2984 * Since we cannot know what that code will do, we could be 2985 * recursively invoked (by, say, a malloc() call in the code 2986 * itself, or in a (C++) _init section it causes to be fired). 2987 * 2988 * This code is where we end up if such recursion occurs. We 2989 * first clean up any partial results in the envvar code, then 2990 * proceed to finish initialization processing in the recursive 2991 * call. The original call will notice this, and return 2992 * immediately. 2993 */ 2994 umem_setup_envvars(1); /* clean up any partial state */ 2995 } else { 2996 umem_panic( 2997 "recursive allocation while initializing umem\n"); 2998 } 2999 umem_init_env_ready = 1; 3000 3001 /* 3002 * From this point until we finish, recursion into umem_init() will 3003 * cause a umem_panic(). 3004 */ 3005 maxverify = minfirewall = ULONG_MAX; 3006 3007 /* LINTED constant condition */ 3008 if (sizeof (umem_cpu_cache_t) != UMEM_CPU_CACHE_SIZE) { 3009 umem_panic("sizeof (umem_cpu_cache_t) = %d, should be %d\n", 3010 sizeof (umem_cpu_cache_t), UMEM_CPU_CACHE_SIZE); 3011 } 3012 3013 umem_max_ncpus = umem_get_max_ncpus(); 3014 3015 /* 3016 * load tunables from environment 3017 */ 3018 umem_process_envvars(); 3019 3020 if (issetugid()) 3021 umem_mtbf = 0; 3022 3023 /* 3024 * set up vmem 3025 */ 3026 if (!(umem_flags & UMF_AUDIT)) 3027 vmem_no_debug(); 3028 3029 heap_arena = vmem_heap_arena(&heap_alloc, &heap_free); 3030 3031 pagesize = heap_arena->vm_quantum; 3032 3033 umem_internal_arena = vmem_create("umem_internal", NULL, 0, pagesize, 3034 heap_alloc, heap_free, heap_arena, 0, VM_NOSLEEP); 3035 3036 umem_default_arena = umem_internal_arena; 3037 3038 if (umem_internal_arena == NULL) 3039 goto fail; 3040 3041 umem_cache_arena = vmem_create("umem_cache", NULL, 0, UMEM_ALIGN, 3042 vmem_alloc, vmem_free, umem_internal_arena, 0, VM_NOSLEEP); 3043 3044 umem_hash_arena = vmem_create("umem_hash", NULL, 0, UMEM_ALIGN, 3045 vmem_alloc, vmem_free, umem_internal_arena, 0, VM_NOSLEEP); 3046 3047 umem_log_arena = vmem_create("umem_log", NULL, 0, UMEM_ALIGN, 3048 heap_alloc, heap_free, heap_arena, 0, VM_NOSLEEP); 3049 3050 umem_firewall_va_arena = vmem_create("umem_firewall_va", 3051 NULL, 0, pagesize, 3052 umem_firewall_va_alloc, umem_firewall_va_free, heap_arena, 3053 0, VM_NOSLEEP); 3054 3055 if (umem_cache_arena == NULL || umem_hash_arena == NULL || 3056 umem_log_arena == NULL || umem_firewall_va_arena == NULL) 3057 goto fail; 3058 3059 umem_firewall_arena = vmem_create("umem_firewall", NULL, 0, pagesize, 3060 heap_alloc, heap_free, umem_firewall_va_arena, 0, 3061 VM_NOSLEEP); 3062 3063 if (umem_firewall_arena == NULL) 3064 goto fail; 3065 3066 oversize_arena = vmem_create("umem_oversize", NULL, 0, pagesize, 3067 heap_alloc, heap_free, minfirewall < ULONG_MAX ? 3068 umem_firewall_va_arena : heap_arena, 0, VM_NOSLEEP); 3069 3070 memalign_arena = vmem_create("umem_memalign", NULL, 0, UMEM_ALIGN, 3071 heap_alloc, heap_free, minfirewall < ULONG_MAX ? 3072 umem_firewall_va_arena : heap_arena, 0, VM_NOSLEEP); 3073 3074 if (oversize_arena == NULL || memalign_arena == NULL) 3075 goto fail; 3076 3077 if (umem_max_ncpus > CPUHINT_MAX()) 3078 umem_max_ncpus = CPUHINT_MAX(); 3079 3080 while ((umem_max_ncpus & (umem_max_ncpus - 1)) != 0) 3081 umem_max_ncpus++; 3082 3083 if (umem_max_ncpus == 0) 3084 umem_max_ncpus = 1; 3085 3086 size = umem_max_ncpus * sizeof (umem_cpu_t); 3087 new_cpus = vmem_alloc(umem_internal_arena, size, VM_NOSLEEP); 3088 if (new_cpus == NULL) 3089 goto fail; 3090 3091 bzero(new_cpus, size); 3092 for (idx = 0; idx < umem_max_ncpus; idx++) { 3093 new_cpus[idx].cpu_number = idx; 3094 new_cpus[idx].cpu_cache_offset = UMEM_CACHE_SIZE(idx); 3095 } 3096 umem_cpus = new_cpus; 3097 umem_cpu_mask = (umem_max_ncpus - 1); 3098 3099 if (umem_maxverify == 0) 3100 umem_maxverify = maxverify; 3101 3102 if (umem_minfirewall == 0) 3103 umem_minfirewall = minfirewall; 3104 3105 /* 3106 * Set up updating and reaping 3107 */ 3108 umem_reap_next = gethrtime() + NANOSEC; 3109 3110 #ifndef UMEM_STANDALONE 3111 (void) gettimeofday(&umem_update_next, NULL); 3112 #endif 3113 3114 /* 3115 * Set up logging -- failure here is okay, since it will just disable 3116 * the logs 3117 */ 3118 if (umem_logging) { 3119 umem_transaction_log = umem_log_init(umem_transaction_log_size); 3120 umem_content_log = umem_log_init(umem_content_log_size); 3121 umem_failure_log = umem_log_init(umem_failure_log_size); 3122 umem_slab_log = umem_log_init(umem_slab_log_size); 3123 } 3124 3125 /* 3126 * Set up caches -- if successful, initialization cannot fail, since 3127 * allocations from other threads can now succeed. 3128 */ 3129 if (umem_cache_init() == 0) { 3130 log_message("unable to create initial caches\n"); 3131 goto fail; 3132 } 3133 umem_oversize_arena = oversize_arena; 3134 umem_memalign_arena = memalign_arena; 3135 3136 umem_cache_applyall(umem_cache_magazine_enable); 3137 3138 /* 3139 * initialization done, ready to go 3140 */ 3141 (void) mutex_lock(&umem_init_lock); 3142 umem_ready = UMEM_READY; 3143 umem_init_thr = 0; 3144 (void) cond_broadcast(&umem_init_cv); 3145 (void) mutex_unlock(&umem_init_lock); 3146 return (1); 3147 3148 fail: 3149 log_message("umem initialization failed\n"); 3150 3151 (void) mutex_lock(&umem_init_lock); 3152 umem_ready = UMEM_READY_INIT_FAILED; 3153 umem_init_thr = 0; 3154 (void) cond_broadcast(&umem_init_cv); 3155 (void) mutex_unlock(&umem_init_lock); 3156 return (0); 3157 } 3158