1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * based on usr/src/uts/common/os/kmem.c r1.64 from 2001/12/18 31 * 32 * The slab allocator, as described in the following two papers: 33 * 34 * Jeff Bonwick, 35 * The Slab Allocator: An Object-Caching Kernel Memory Allocator. 36 * Proceedings of the Summer 1994 Usenix Conference. 37 * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf. 38 * 39 * Jeff Bonwick and Jonathan Adams, 40 * Magazines and vmem: Extending the Slab Allocator to Many CPUs and 41 * Arbitrary Resources. 42 * Proceedings of the 2001 Usenix Conference. 43 * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf. 44 * 45 * 1. Overview 46 * ----------- 47 * umem is very close to kmem in implementation. There are four major 48 * areas of divergence: 49 * 50 * * Initialization 51 * 52 * * CPU handling 53 * 54 * * umem_update() 55 * 56 * * KM_SLEEP v.s. UMEM_NOFAIL 57 * 58 * * lock ordering 59 * 60 * 2. Initialization 61 * ----------------- 62 * kmem is initialized early on in boot, and knows that no one will call 63 * into it before it is ready. umem does not have these luxuries. Instead, 64 * initialization is divided into two phases: 65 * 66 * * library initialization, and 67 * 68 * * first use 69 * 70 * umem's full initialization happens at the time of the first allocation 71 * request (via malloc() and friends, umem_alloc(), or umem_zalloc()), 72 * or the first call to umem_cache_create(). 73 * 74 * umem_free(), and umem_cache_alloc() do not require special handling, 75 * since the only way to get valid arguments for them is to successfully 76 * call a function from the first group. 77 * 78 * 2.1. Library Initialization: umem_startup() 79 * ------------------------------------------- 80 * umem_startup() is libumem.so's .init section. It calls pthread_atfork() 81 * to install the handlers necessary for umem's Fork1-Safety. Because of 82 * race condition issues, all other pre-umem_init() initialization is done 83 * statically (i.e. by the dynamic linker). 84 * 85 * For standalone use, umem_startup() returns everything to its initial 86 * state. 87 * 88 * 2.2. First use: umem_init() 89 * ------------------------------ 90 * The first time any memory allocation function is used, we have to 91 * create the backing caches and vmem arenas which are needed for it. 92 * umem_init() is the central point for that task. When it completes, 93 * umem_ready is either UMEM_READY (all set) or UMEM_READY_INIT_FAILED (unable 94 * to initialize, probably due to lack of memory). 95 * 96 * There are four different paths from which umem_init() is called: 97 * 98 * * from umem_alloc() or umem_zalloc(), with 0 < size < UMEM_MAXBUF, 99 * 100 * * from umem_alloc() or umem_zalloc(), with size > UMEM_MAXBUF, 101 * 102 * * from umem_cache_create(), and 103 * 104 * * from memalign(), with align > UMEM_ALIGN. 105 * 106 * The last three just check if umem is initialized, and call umem_init() 107 * if it is not. For performance reasons, the first case is more complicated. 108 * 109 * 2.2.1. umem_alloc()/umem_zalloc(), with 0 < size < UMEM_MAXBUF 110 * ----------------------------------------------------------------- 111 * In this case, umem_cache_alloc(&umem_null_cache, ...) is called. 112 * There is special case code in which causes any allocation on 113 * &umem_null_cache to fail by returning (NULL), regardless of the 114 * flags argument. 115 * 116 * So umem_cache_alloc() returns NULL, and umem_alloc()/umem_zalloc() call 117 * umem_alloc_retry(). umem_alloc_retry() sees that the allocation 118 * was agains &umem_null_cache, and calls umem_init(). 119 * 120 * If initialization is successful, umem_alloc_retry() returns 1, which 121 * causes umem_alloc()/umem_zalloc() to start over, which causes it to load 122 * the (now valid) cache pointer from umem_alloc_table. 123 * 124 * 2.2.2. Dealing with race conditions 125 * ----------------------------------- 126 * There are a couple race conditions resulting from the initialization 127 * code that we have to guard against: 128 * 129 * * In umem_cache_create(), there is a special UMC_INTERNAL cflag 130 * that is passed for caches created during initialization. It 131 * is illegal for a user to try to create a UMC_INTERNAL cache. 132 * This allows initialization to proceed, but any other 133 * umem_cache_create()s will block by calling umem_init(). 134 * 135 * * Since umem_null_cache has a 1-element cache_cpu, it's cache_cpu_mask 136 * is always zero. umem_cache_alloc uses cp->cache_cpu_mask to 137 * mask the cpu number. This prevents a race between grabbing a 138 * cache pointer out of umem_alloc_table and growing the cpu array. 139 * 140 * 141 * 3. CPU handling 142 * --------------- 143 * kmem uses the CPU's sequence number to determine which "cpu cache" to 144 * use for an allocation. Currently, there is no way to get the sequence 145 * number in userspace. 146 * 147 * umem keeps track of cpu information in umem_cpus, an array of umem_max_ncpus 148 * umem_cpu_t structures. CURCPU() is a a "hint" function, which we then mask 149 * with either umem_cpu_mask or cp->cache_cpu_mask to find the actual "cpu" id. 150 * The mechanics of this is all in the CPU(mask) macro. 151 * 152 * Currently, umem uses _lwp_self() as its hint. 153 * 154 * 155 * 4. The update thread 156 * -------------------- 157 * kmem uses a task queue, kmem_taskq, to do periodic maintenance on 158 * every kmem cache. vmem has a periodic timeout for hash table resizing. 159 * The kmem_taskq also provides a separate context for kmem_cache_reap()'s 160 * to be done in, avoiding issues of the context of kmem_reap() callers. 161 * 162 * Instead, umem has the concept of "updates", which are asynchronous requests 163 * for work attached to single caches. All caches with pending work are 164 * on a doubly linked list rooted at the umem_null_cache. All update state 165 * is protected by the umem_update_lock mutex, and the umem_update_cv is used 166 * for notification between threads. 167 * 168 * 4.1. Cache states with regards to updates 169 * ----------------------------------------- 170 * A given cache is in one of three states: 171 * 172 * Inactive cache_uflags is zero, cache_u{next,prev} are NULL 173 * 174 * Work Requested cache_uflags is non-zero (but UMU_ACTIVE is not set), 175 * cache_u{next,prev} link the cache onto the global 176 * update list 177 * 178 * Active cache_uflags has UMU_ACTIVE set, cache_u{next,prev} 179 * are NULL, and either umem_update_thr or 180 * umem_st_update_thr are actively doing work on the 181 * cache. 182 * 183 * An update can be added to any cache in any state -- if the cache is 184 * Inactive, it transitions to being Work Requested. If the cache is 185 * Active, the worker will notice the new update and act on it before 186 * transitioning the cache to the Inactive state. 187 * 188 * If a cache is in the Active state, UMU_NOTIFY can be set, which asks 189 * the worker to broadcast the umem_update_cv when it has finished. 190 * 191 * 4.2. Update interface 192 * --------------------- 193 * umem_add_update() adds an update to a particular cache. 194 * umem_updateall() adds an update to all caches. 195 * umem_remove_updates() returns a cache to the Inactive state. 196 * 197 * umem_process_updates() process all caches in the Work Requested state. 198 * 199 * 4.3. Reaping 200 * ------------ 201 * When umem_reap() is called (at the time of heap growth), it schedule 202 * UMU_REAP updates on every cache. It then checks to see if the update 203 * thread exists (umem_update_thr != 0). If it is, it broadcasts 204 * the umem_update_cv to wake the update thread up, and returns. 205 * 206 * If the update thread does not exist (umem_update_thr == 0), and the 207 * program currently has multiple threads, umem_reap() attempts to create 208 * a new update thread. 209 * 210 * If the process is not multithreaded, or the creation fails, umem_reap() 211 * calls umem_st_update() to do an inline update. 212 * 213 * 4.4. The update thread 214 * ---------------------- 215 * The update thread spends most of its time in cond_timedwait() on the 216 * umem_update_cv. It wakes up under two conditions: 217 * 218 * * The timedwait times out, in which case it needs to run a global 219 * update, or 220 * 221 * * someone cond_broadcast(3THR)s the umem_update_cv, in which case 222 * it needs to check if there are any caches in the Work Requested 223 * state. 224 * 225 * When it is time for another global update, umem calls umem_cache_update() 226 * on every cache, then calls vmem_update(), which tunes the vmem structures. 227 * umem_cache_update() can request further work using umem_add_update(). 228 * 229 * After any work from the global update completes, the update timer is 230 * reset to umem_reap_interval seconds in the future. This makes the 231 * updates self-throttling. 232 * 233 * Reaps are similarly self-throttling. After a UMU_REAP update has 234 * been scheduled on all caches, umem_reap() sets a flag and wakes up the 235 * update thread. The update thread notices the flag, and resets the 236 * reap state. 237 * 238 * 4.5. Inline updates 239 * ------------------- 240 * If the update thread is not running, umem_st_update() is used instead. It 241 * immediately does a global update (as above), then calls 242 * umem_process_updates() to process both the reaps that umem_reap() added and 243 * any work generated by the global update. Afterwards, it resets the reap 244 * state. 245 * 246 * While the umem_st_update() is running, umem_st_update_thr holds the thread 247 * id of the thread performing the update. 248 * 249 * 4.6. Updates and fork1() 250 * ------------------------ 251 * umem has fork1() pre- and post-handlers which lock up (and release) every 252 * mutex in every cache. They also lock up the umem_update_lock. Since 253 * fork1() only copies over a single lwp, other threads (including the update 254 * thread) could have been actively using a cache in the parent. This 255 * can lead to inconsistencies in the child process. 256 * 257 * Because we locked all of the mutexes, the only possible inconsistancies are: 258 * 259 * * a umem_cache_alloc() could leak its buffer. 260 * 261 * * a caller of umem_depot_alloc() could leak a magazine, and all the 262 * buffers contained in it. 263 * 264 * * a cache could be in the Active update state. In the child, there 265 * would be no thread actually working on it. 266 * 267 * * a umem_hash_rescale() could leak the new hash table. 268 * 269 * * a umem_magazine_resize() could be in progress. 270 * 271 * * a umem_reap() could be in progress. 272 * 273 * The memory leaks we can't do anything about. umem_release_child() resets 274 * the update state, moves any caches in the Active state to the Work Requested 275 * state. This might cause some updates to be re-run, but UMU_REAP and 276 * UMU_HASH_RESCALE are effectively idempotent, and the worst that can 277 * happen from umem_magazine_resize() is resizing the magazine twice in close 278 * succession. 279 * 280 * Much of the cleanup in umem_release_child() is skipped if 281 * umem_st_update_thr == thr_self(). This is so that applications which call 282 * fork1() from a cache callback does not break. Needless to say, any such 283 * application is tremendously broken. 284 * 285 * 286 * 5. KM_SLEEP v.s. UMEM_NOFAIL 287 * ---------------------------- 288 * Allocations against kmem and vmem have two basic modes: SLEEP and 289 * NOSLEEP. A sleeping allocation is will go to sleep (waiting for 290 * more memory) instead of failing (returning NULL). 291 * 292 * SLEEP allocations presume an extremely multithreaded model, with 293 * a lot of allocation and deallocation activity. umem cannot presume 294 * that its clients have any particular type of behavior. Instead, 295 * it provides two types of allocations: 296 * 297 * * UMEM_DEFAULT, equivalent to KM_NOSLEEP (i.e. return NULL on 298 * failure) 299 * 300 * * UMEM_NOFAIL, which, on failure, calls an optional callback 301 * (registered with umem_nofail_callback()). 302 * 303 * The callback is invoked with no locks held, and can do an arbitrary 304 * amount of work. It then has a choice between: 305 * 306 * * Returning UMEM_CALLBACK_RETRY, which will cause the allocation 307 * to be restarted. 308 * 309 * * Returning UMEM_CALLBACK_EXIT(status), which will cause exit(2) 310 * to be invoked with status. If multiple threads attempt to do 311 * this simultaneously, only one will call exit(2). 312 * 313 * * Doing some kind of non-local exit (thr_exit(3thr), longjmp(3C), 314 * etc.) 315 * 316 * The default callback returns UMEM_CALLBACK_EXIT(255). 317 * 318 * To have these callbacks without risk of state corruption (in the case of 319 * a non-local exit), we have to ensure that the callbacks get invoked 320 * close to the original allocation, with no inconsistent state or held 321 * locks. The following steps are taken: 322 * 323 * * All invocations of vmem are VM_NOSLEEP. 324 * 325 * * All constructor callbacks (which can themselves to allocations) 326 * are passed UMEM_DEFAULT as their required allocation argument. This 327 * way, the constructor will fail, allowing the highest-level allocation 328 * invoke the nofail callback. 329 * 330 * If a constructor callback _does_ do a UMEM_NOFAIL allocation, and 331 * the nofail callback does a non-local exit, we will leak the 332 * partially-constructed buffer. 333 * 334 * 335 * 6. Lock Ordering 336 * ---------------- 337 * umem has a few more locks than kmem does, mostly in the update path. The 338 * overall lock ordering (earlier locks must be acquired first) is: 339 * 340 * umem_init_lock 341 * 342 * vmem_list_lock 343 * vmem_nosleep_lock.vmpl_mutex 344 * vmem_t's: 345 * vm_lock 346 * sbrk_lock 347 * 348 * umem_cache_lock 349 * umem_update_lock 350 * umem_flags_lock 351 * umem_cache_t's: 352 * cache_cpu[*].cc_lock 353 * cache_depot_lock 354 * cache_lock 355 * umem_log_header_t's: 356 * lh_cpu[*].clh_lock 357 * lh_lock 358 */ 359 360 #include "c_synonyms.h" 361 #include <umem_impl.h> 362 #include <sys/vmem_impl_user.h> 363 #include "umem_base.h" 364 #include "vmem_base.h" 365 366 #include <sys/processor.h> 367 #include <sys/sysmacros.h> 368 369 #include <alloca.h> 370 #include <errno.h> 371 #include <limits.h> 372 #include <stdio.h> 373 #include <stdlib.h> 374 #include <string.h> 375 #include <strings.h> 376 #include <signal.h> 377 #include <unistd.h> 378 #include <atomic.h> 379 380 #include "misc.h" 381 382 #define UMEM_VMFLAGS(umflag) (VM_NOSLEEP) 383 384 size_t pagesize; 385 386 /* 387 * The default set of caches to back umem_alloc(). 388 * These sizes should be reevaluated periodically. 389 * 390 * We want allocations that are multiples of the coherency granularity 391 * (64 bytes) to be satisfied from a cache which is a multiple of 64 392 * bytes, so that it will be 64-byte aligned. For all multiples of 64, 393 * the next kmem_cache_size greater than or equal to it must be a 394 * multiple of 64. 395 * 396 * This table must be in sorted order, from smallest to highest. The 397 * highest slot must be UMEM_MAXBUF, and every slot afterwards must be 398 * zero. 399 */ 400 static int umem_alloc_sizes[] = { 401 #ifdef _LP64 402 1 * 8, 403 1 * 16, 404 2 * 16, 405 3 * 16, 406 #else 407 1 * 8, 408 2 * 8, 409 3 * 8, 410 4 * 8, 5 * 8, 6 * 8, 7 * 8, 411 #endif 412 4 * 16, 5 * 16, 6 * 16, 7 * 16, 413 4 * 32, 5 * 32, 6 * 32, 7 * 32, 414 4 * 64, 5 * 64, 6 * 64, 7 * 64, 415 4 * 128, 5 * 128, 6 * 128, 7 * 128, 416 P2ALIGN(8192 / 7, 64), 417 P2ALIGN(8192 / 6, 64), 418 P2ALIGN(8192 / 5, 64), 419 P2ALIGN(8192 / 4, 64), 2304, 420 P2ALIGN(8192 / 3, 64), 421 P2ALIGN(8192 / 2, 64), 4544, 422 P2ALIGN(8192 / 1, 64), 9216, 423 4096 * 3, 424 UMEM_MAXBUF, /* = 8192 * 2 */ 425 /* 24 slots for user expansion */ 426 0, 0, 0, 0, 0, 0, 0, 0, 427 0, 0, 0, 0, 0, 0, 0, 0, 428 0, 0, 0, 0, 0, 0, 0, 0, 429 }; 430 #define NUM_ALLOC_SIZES (sizeof (umem_alloc_sizes) / sizeof (*umem_alloc_sizes)) 431 432 static umem_magtype_t umem_magtype[] = { 433 { 1, 8, 3200, 65536 }, 434 { 3, 16, 256, 32768 }, 435 { 7, 32, 64, 16384 }, 436 { 15, 64, 0, 8192 }, 437 { 31, 64, 0, 4096 }, 438 { 47, 64, 0, 2048 }, 439 { 63, 64, 0, 1024 }, 440 { 95, 64, 0, 512 }, 441 { 143, 64, 0, 0 }, 442 }; 443 444 /* 445 * umem tunables 446 */ 447 uint32_t umem_max_ncpus; /* # of CPU caches. */ 448 449 uint32_t umem_stack_depth = 15; /* # stack frames in a bufctl_audit */ 450 uint32_t umem_reap_interval = 10; /* max reaping rate (seconds) */ 451 uint_t umem_depot_contention = 2; /* max failed trylocks per real interval */ 452 uint_t umem_abort = 1; /* whether to abort on error */ 453 uint_t umem_output = 0; /* whether to write to standard error */ 454 uint_t umem_logging = 0; /* umem_log_enter() override */ 455 uint32_t umem_mtbf = 0; /* mean time between failures [default: off] */ 456 size_t umem_transaction_log_size; /* size of transaction log */ 457 size_t umem_content_log_size; /* size of content log */ 458 size_t umem_failure_log_size; /* failure log [4 pages per CPU] */ 459 size_t umem_slab_log_size; /* slab create log [4 pages per CPU] */ 460 size_t umem_content_maxsave = 256; /* UMF_CONTENTS max bytes to log */ 461 size_t umem_lite_minsize = 0; /* minimum buffer size for UMF_LITE */ 462 size_t umem_lite_maxalign = 1024; /* maximum buffer alignment for UMF_LITE */ 463 size_t umem_maxverify; /* maximum bytes to inspect in debug routines */ 464 size_t umem_minfirewall; /* hardware-enforced redzone threshold */ 465 466 uint_t umem_flags = 0; 467 468 mutex_t umem_init_lock; /* locks initialization */ 469 cond_t umem_init_cv; /* initialization CV */ 470 thread_t umem_init_thr; /* thread initializing */ 471 int umem_init_env_ready; /* environ pre-initted */ 472 int umem_ready = UMEM_READY_STARTUP; 473 474 static umem_nofail_callback_t *nofail_callback; 475 static mutex_t umem_nofail_exit_lock; 476 static thread_t umem_nofail_exit_thr; 477 478 static umem_cache_t *umem_slab_cache; 479 static umem_cache_t *umem_bufctl_cache; 480 static umem_cache_t *umem_bufctl_audit_cache; 481 482 mutex_t umem_flags_lock; 483 484 static vmem_t *heap_arena; 485 static vmem_alloc_t *heap_alloc; 486 static vmem_free_t *heap_free; 487 488 static vmem_t *umem_internal_arena; 489 static vmem_t *umem_cache_arena; 490 static vmem_t *umem_hash_arena; 491 static vmem_t *umem_log_arena; 492 static vmem_t *umem_oversize_arena; 493 static vmem_t *umem_va_arena; 494 static vmem_t *umem_default_arena; 495 static vmem_t *umem_firewall_va_arena; 496 static vmem_t *umem_firewall_arena; 497 498 vmem_t *umem_memalign_arena; 499 500 umem_log_header_t *umem_transaction_log; 501 umem_log_header_t *umem_content_log; 502 umem_log_header_t *umem_failure_log; 503 umem_log_header_t *umem_slab_log; 504 505 extern thread_t _thr_self(void); 506 #define CPUHINT() (_thr_self()) 507 #define CPUHINT_MAX() INT_MAX 508 509 #define CPU(mask) (umem_cpus + (CPUHINT() & (mask))) 510 static umem_cpu_t umem_startup_cpu = { /* initial, single, cpu */ 511 UMEM_CACHE_SIZE(0), 512 0 513 }; 514 515 static uint32_t umem_cpu_mask = 0; /* global cpu mask */ 516 static umem_cpu_t *umem_cpus = &umem_startup_cpu; /* cpu list */ 517 518 volatile uint32_t umem_reaping; 519 520 thread_t umem_update_thr; 521 struct timeval umem_update_next; /* timeofday of next update */ 522 volatile thread_t umem_st_update_thr; /* only used when single-thd */ 523 524 #define IN_UPDATE() (thr_self() == umem_update_thr || \ 525 thr_self() == umem_st_update_thr) 526 #define IN_REAP() IN_UPDATE() 527 528 mutex_t umem_update_lock; /* cache_u{next,prev,flags} */ 529 cond_t umem_update_cv; 530 531 volatile hrtime_t umem_reap_next; /* min hrtime of next reap */ 532 533 mutex_t umem_cache_lock; /* inter-cache linkage only */ 534 535 #ifdef UMEM_STANDALONE 536 umem_cache_t umem_null_cache; 537 static const umem_cache_t umem_null_cache_template = { 538 #else 539 umem_cache_t umem_null_cache = { 540 #endif 541 0, 0, 0, 0, 0, 542 0, 0, 543 0, 0, 544 0, 0, 545 "invalid_cache", 546 0, 0, 547 NULL, NULL, NULL, NULL, 548 NULL, 549 0, 0, 0, 0, 550 &umem_null_cache, &umem_null_cache, 551 &umem_null_cache, &umem_null_cache, 552 0, 553 DEFAULTMUTEX, /* start of slab layer */ 554 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 555 &umem_null_cache.cache_nullslab, 556 { 557 &umem_null_cache, 558 NULL, 559 &umem_null_cache.cache_nullslab, 560 &umem_null_cache.cache_nullslab, 561 NULL, 562 -1, 563 0 564 }, 565 NULL, 566 NULL, 567 DEFAULTMUTEX, /* start of depot layer */ 568 NULL, { 569 NULL, 0, 0, 0, 0 570 }, { 571 NULL, 0, 0, 0, 0 572 }, { 573 { 574 DEFAULTMUTEX, /* start of CPU cache */ 575 0, 0, NULL, NULL, -1, -1, 0 576 } 577 } 578 }; 579 580 #define ALLOC_TABLE_4 \ 581 &umem_null_cache, &umem_null_cache, &umem_null_cache, &umem_null_cache 582 583 #define ALLOC_TABLE_64 \ 584 ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \ 585 ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \ 586 ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \ 587 ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4 588 589 #define ALLOC_TABLE_1024 \ 590 ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \ 591 ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \ 592 ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \ 593 ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64 594 595 static umem_cache_t *umem_alloc_table[UMEM_MAXBUF >> UMEM_ALIGN_SHIFT] = { 596 ALLOC_TABLE_1024, 597 ALLOC_TABLE_1024 598 }; 599 600 601 /* Used to constrain audit-log stack traces */ 602 caddr_t umem_min_stack; 603 caddr_t umem_max_stack; 604 605 606 #define UMERR_MODIFIED 0 /* buffer modified while on freelist */ 607 #define UMERR_REDZONE 1 /* redzone violation (write past end of buf) */ 608 #define UMERR_DUPFREE 2 /* freed a buffer twice */ 609 #define UMERR_BADADDR 3 /* freed a bad (unallocated) address */ 610 #define UMERR_BADBUFTAG 4 /* buftag corrupted */ 611 #define UMERR_BADBUFCTL 5 /* bufctl corrupted */ 612 #define UMERR_BADCACHE 6 /* freed a buffer to the wrong cache */ 613 #define UMERR_BADSIZE 7 /* alloc size != free size */ 614 #define UMERR_BADBASE 8 /* buffer base address wrong */ 615 616 struct { 617 hrtime_t ump_timestamp; /* timestamp of error */ 618 int ump_error; /* type of umem error (UMERR_*) */ 619 void *ump_buffer; /* buffer that induced abort */ 620 void *ump_realbuf; /* real start address for buffer */ 621 umem_cache_t *ump_cache; /* buffer's cache according to client */ 622 umem_cache_t *ump_realcache; /* actual cache containing buffer */ 623 umem_slab_t *ump_slab; /* slab accoring to umem_findslab() */ 624 umem_bufctl_t *ump_bufctl; /* bufctl */ 625 } umem_abort_info; 626 627 static void 628 copy_pattern(uint64_t pattern, void *buf_arg, size_t size) 629 { 630 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 631 uint64_t *buf = buf_arg; 632 633 while (buf < bufend) 634 *buf++ = pattern; 635 } 636 637 static void * 638 verify_pattern(uint64_t pattern, void *buf_arg, size_t size) 639 { 640 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 641 uint64_t *buf; 642 643 for (buf = buf_arg; buf < bufend; buf++) 644 if (*buf != pattern) 645 return (buf); 646 return (NULL); 647 } 648 649 static void * 650 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size) 651 { 652 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 653 uint64_t *buf; 654 655 for (buf = buf_arg; buf < bufend; buf++) { 656 if (*buf != old) { 657 copy_pattern(old, buf_arg, 658 (char *)buf - (char *)buf_arg); 659 return (buf); 660 } 661 *buf = new; 662 } 663 664 return (NULL); 665 } 666 667 void 668 umem_cache_applyall(void (*func)(umem_cache_t *)) 669 { 670 umem_cache_t *cp; 671 672 (void) mutex_lock(&umem_cache_lock); 673 for (cp = umem_null_cache.cache_next; cp != &umem_null_cache; 674 cp = cp->cache_next) 675 func(cp); 676 (void) mutex_unlock(&umem_cache_lock); 677 } 678 679 static void 680 umem_add_update_unlocked(umem_cache_t *cp, int flags) 681 { 682 umem_cache_t *cnext, *cprev; 683 684 flags &= ~UMU_ACTIVE; 685 686 if (!flags) 687 return; 688 689 if (cp->cache_uflags & UMU_ACTIVE) { 690 cp->cache_uflags |= flags; 691 } else { 692 if (cp->cache_unext != NULL) { 693 ASSERT(cp->cache_uflags != 0); 694 cp->cache_uflags |= flags; 695 } else { 696 ASSERT(cp->cache_uflags == 0); 697 cp->cache_uflags = flags; 698 cp->cache_unext = cnext = &umem_null_cache; 699 cp->cache_uprev = cprev = umem_null_cache.cache_uprev; 700 cnext->cache_uprev = cp; 701 cprev->cache_unext = cp; 702 } 703 } 704 } 705 706 static void 707 umem_add_update(umem_cache_t *cp, int flags) 708 { 709 (void) mutex_lock(&umem_update_lock); 710 711 umem_add_update_unlocked(cp, flags); 712 713 if (!IN_UPDATE()) 714 (void) cond_broadcast(&umem_update_cv); 715 716 (void) mutex_unlock(&umem_update_lock); 717 } 718 719 /* 720 * Remove a cache from the update list, waiting for any in-progress work to 721 * complete first. 722 */ 723 static void 724 umem_remove_updates(umem_cache_t *cp) 725 { 726 (void) mutex_lock(&umem_update_lock); 727 728 /* 729 * Get it out of the active state 730 */ 731 while (cp->cache_uflags & UMU_ACTIVE) { 732 int cancel_state; 733 734 ASSERT(cp->cache_unext == NULL); 735 736 cp->cache_uflags |= UMU_NOTIFY; 737 738 /* 739 * Make sure the update state is sane, before we wait 740 */ 741 ASSERT(umem_update_thr != 0 || umem_st_update_thr != 0); 742 ASSERT(umem_update_thr != thr_self() && 743 umem_st_update_thr != thr_self()); 744 745 (void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, 746 &cancel_state); 747 (void) cond_wait(&umem_update_cv, &umem_update_lock); 748 (void) pthread_setcancelstate(cancel_state, NULL); 749 } 750 /* 751 * Get it out of the Work Requested state 752 */ 753 if (cp->cache_unext != NULL) { 754 cp->cache_uprev->cache_unext = cp->cache_unext; 755 cp->cache_unext->cache_uprev = cp->cache_uprev; 756 cp->cache_uprev = cp->cache_unext = NULL; 757 cp->cache_uflags = 0; 758 } 759 /* 760 * Make sure it is in the Inactive state 761 */ 762 ASSERT(cp->cache_unext == NULL && cp->cache_uflags == 0); 763 (void) mutex_unlock(&umem_update_lock); 764 } 765 766 static void 767 umem_updateall(int flags) 768 { 769 umem_cache_t *cp; 770 771 /* 772 * NOTE: To prevent deadlock, umem_cache_lock is always acquired first. 773 * 774 * (umem_add_update is called from things run via umem_cache_applyall) 775 */ 776 (void) mutex_lock(&umem_cache_lock); 777 (void) mutex_lock(&umem_update_lock); 778 779 for (cp = umem_null_cache.cache_next; cp != &umem_null_cache; 780 cp = cp->cache_next) 781 umem_add_update_unlocked(cp, flags); 782 783 if (!IN_UPDATE()) 784 (void) cond_broadcast(&umem_update_cv); 785 786 (void) mutex_unlock(&umem_update_lock); 787 (void) mutex_unlock(&umem_cache_lock); 788 } 789 790 /* 791 * Debugging support. Given a buffer address, find its slab. 792 */ 793 static umem_slab_t * 794 umem_findslab(umem_cache_t *cp, void *buf) 795 { 796 umem_slab_t *sp; 797 798 (void) mutex_lock(&cp->cache_lock); 799 for (sp = cp->cache_nullslab.slab_next; 800 sp != &cp->cache_nullslab; sp = sp->slab_next) { 801 if (UMEM_SLAB_MEMBER(sp, buf)) { 802 (void) mutex_unlock(&cp->cache_lock); 803 return (sp); 804 } 805 } 806 (void) mutex_unlock(&cp->cache_lock); 807 808 return (NULL); 809 } 810 811 static void 812 umem_error(int error, umem_cache_t *cparg, void *bufarg) 813 { 814 umem_buftag_t *btp = NULL; 815 umem_bufctl_t *bcp = NULL; 816 umem_cache_t *cp = cparg; 817 umem_slab_t *sp; 818 uint64_t *off; 819 void *buf = bufarg; 820 821 int old_logging = umem_logging; 822 823 umem_logging = 0; /* stop logging when a bad thing happens */ 824 825 umem_abort_info.ump_timestamp = gethrtime(); 826 827 sp = umem_findslab(cp, buf); 828 if (sp == NULL) { 829 for (cp = umem_null_cache.cache_prev; cp != &umem_null_cache; 830 cp = cp->cache_prev) { 831 if ((sp = umem_findslab(cp, buf)) != NULL) 832 break; 833 } 834 } 835 836 if (sp == NULL) { 837 cp = NULL; 838 error = UMERR_BADADDR; 839 } else { 840 if (cp != cparg) 841 error = UMERR_BADCACHE; 842 else 843 buf = (char *)bufarg - ((uintptr_t)bufarg - 844 (uintptr_t)sp->slab_base) % cp->cache_chunksize; 845 if (buf != bufarg) 846 error = UMERR_BADBASE; 847 if (cp->cache_flags & UMF_BUFTAG) 848 btp = UMEM_BUFTAG(cp, buf); 849 if (cp->cache_flags & UMF_HASH) { 850 (void) mutex_lock(&cp->cache_lock); 851 for (bcp = *UMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next) 852 if (bcp->bc_addr == buf) 853 break; 854 (void) mutex_unlock(&cp->cache_lock); 855 if (bcp == NULL && btp != NULL) 856 bcp = btp->bt_bufctl; 857 if (umem_findslab(cp->cache_bufctl_cache, bcp) == 858 NULL || P2PHASE((uintptr_t)bcp, UMEM_ALIGN) || 859 bcp->bc_addr != buf) { 860 error = UMERR_BADBUFCTL; 861 bcp = NULL; 862 } 863 } 864 } 865 866 umem_abort_info.ump_error = error; 867 umem_abort_info.ump_buffer = bufarg; 868 umem_abort_info.ump_realbuf = buf; 869 umem_abort_info.ump_cache = cparg; 870 umem_abort_info.ump_realcache = cp; 871 umem_abort_info.ump_slab = sp; 872 umem_abort_info.ump_bufctl = bcp; 873 874 umem_printf("umem allocator: "); 875 876 switch (error) { 877 878 case UMERR_MODIFIED: 879 umem_printf("buffer modified after being freed\n"); 880 off = verify_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify); 881 if (off == NULL) /* shouldn't happen */ 882 off = buf; 883 umem_printf("modification occurred at offset 0x%lx " 884 "(0x%llx replaced by 0x%llx)\n", 885 (uintptr_t)off - (uintptr_t)buf, 886 (longlong_t)UMEM_FREE_PATTERN, (longlong_t)*off); 887 break; 888 889 case UMERR_REDZONE: 890 umem_printf("redzone violation: write past end of buffer\n"); 891 break; 892 893 case UMERR_BADADDR: 894 umem_printf("invalid free: buffer not in cache\n"); 895 break; 896 897 case UMERR_DUPFREE: 898 umem_printf("duplicate free: buffer freed twice\n"); 899 break; 900 901 case UMERR_BADBUFTAG: 902 umem_printf("boundary tag corrupted\n"); 903 umem_printf("bcp ^ bxstat = %lx, should be %lx\n", 904 (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat, 905 UMEM_BUFTAG_FREE); 906 break; 907 908 case UMERR_BADBUFCTL: 909 umem_printf("bufctl corrupted\n"); 910 break; 911 912 case UMERR_BADCACHE: 913 umem_printf("buffer freed to wrong cache\n"); 914 umem_printf("buffer was allocated from %s,\n", cp->cache_name); 915 umem_printf("caller attempting free to %s.\n", 916 cparg->cache_name); 917 break; 918 919 case UMERR_BADSIZE: 920 umem_printf("bad free: free size (%u) != alloc size (%u)\n", 921 UMEM_SIZE_DECODE(((uint32_t *)btp)[0]), 922 UMEM_SIZE_DECODE(((uint32_t *)btp)[1])); 923 break; 924 925 case UMERR_BADBASE: 926 umem_printf("bad free: free address (%p) != alloc address " 927 "(%p)\n", bufarg, buf); 928 break; 929 } 930 931 umem_printf("buffer=%p bufctl=%p cache: %s\n", 932 bufarg, (void *)bcp, cparg->cache_name); 933 934 if (bcp != NULL && (cp->cache_flags & UMF_AUDIT) && 935 error != UMERR_BADBUFCTL) { 936 int d; 937 timespec_t ts; 938 hrtime_t diff; 939 umem_bufctl_audit_t *bcap = (umem_bufctl_audit_t *)bcp; 940 941 diff = umem_abort_info.ump_timestamp - bcap->bc_timestamp; 942 ts.tv_sec = diff / NANOSEC; 943 ts.tv_nsec = diff % NANOSEC; 944 945 umem_printf("previous transaction on buffer %p:\n", buf); 946 umem_printf("thread=%p time=T-%ld.%09ld slab=%p cache: %s\n", 947 (void *)(intptr_t)bcap->bc_thread, ts.tv_sec, ts.tv_nsec, 948 (void *)sp, cp->cache_name); 949 for (d = 0; d < MIN(bcap->bc_depth, umem_stack_depth); d++) { 950 (void) print_sym((void *)bcap->bc_stack[d]); 951 umem_printf("\n"); 952 } 953 } 954 955 umem_err_recoverable("umem: heap corruption detected"); 956 957 umem_logging = old_logging; /* resume logging */ 958 } 959 960 void 961 umem_nofail_callback(umem_nofail_callback_t *cb) 962 { 963 nofail_callback = cb; 964 } 965 966 static int 967 umem_alloc_retry(umem_cache_t *cp, int umflag) 968 { 969 if (cp == &umem_null_cache) { 970 if (umem_init()) 971 return (1); /* retry */ 972 /* 973 * Initialization failed. Do normal failure processing. 974 */ 975 } 976 if (umflag & UMEM_NOFAIL) { 977 int def_result = UMEM_CALLBACK_EXIT(255); 978 int result = def_result; 979 umem_nofail_callback_t *callback = nofail_callback; 980 981 if (callback != NULL) 982 result = callback(); 983 984 if (result == UMEM_CALLBACK_RETRY) 985 return (1); 986 987 if ((result & ~0xFF) != UMEM_CALLBACK_EXIT(0)) { 988 log_message("nofail callback returned %x\n", result); 989 result = def_result; 990 } 991 992 /* 993 * only one thread will call exit 994 */ 995 if (umem_nofail_exit_thr == thr_self()) 996 umem_panic("recursive UMEM_CALLBACK_EXIT()\n"); 997 998 (void) mutex_lock(&umem_nofail_exit_lock); 999 umem_nofail_exit_thr = thr_self(); 1000 exit(result & 0xFF); 1001 /*NOTREACHED*/ 1002 } 1003 return (0); 1004 } 1005 1006 static umem_log_header_t * 1007 umem_log_init(size_t logsize) 1008 { 1009 umem_log_header_t *lhp; 1010 int nchunks = 4 * umem_max_ncpus; 1011 size_t lhsize = offsetof(umem_log_header_t, lh_cpu[umem_max_ncpus]); 1012 int i; 1013 1014 if (logsize == 0) 1015 return (NULL); 1016 1017 /* 1018 * Make sure that lhp->lh_cpu[] is nicely aligned 1019 * to prevent false sharing of cache lines. 1020 */ 1021 lhsize = P2ROUNDUP(lhsize, UMEM_ALIGN); 1022 lhp = vmem_xalloc(umem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0, 1023 NULL, NULL, VM_NOSLEEP); 1024 if (lhp == NULL) 1025 goto fail; 1026 1027 bzero(lhp, lhsize); 1028 1029 (void) mutex_init(&lhp->lh_lock, USYNC_THREAD, NULL); 1030 lhp->lh_nchunks = nchunks; 1031 lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks, PAGESIZE); 1032 if (lhp->lh_chunksize == 0) 1033 lhp->lh_chunksize = PAGESIZE; 1034 1035 lhp->lh_base = vmem_alloc(umem_log_arena, 1036 lhp->lh_chunksize * nchunks, VM_NOSLEEP); 1037 if (lhp->lh_base == NULL) 1038 goto fail; 1039 1040 lhp->lh_free = vmem_alloc(umem_log_arena, 1041 nchunks * sizeof (int), VM_NOSLEEP); 1042 if (lhp->lh_free == NULL) 1043 goto fail; 1044 1045 bzero(lhp->lh_base, lhp->lh_chunksize * nchunks); 1046 1047 for (i = 0; i < umem_max_ncpus; i++) { 1048 umem_cpu_log_header_t *clhp = &lhp->lh_cpu[i]; 1049 (void) mutex_init(&clhp->clh_lock, USYNC_THREAD, NULL); 1050 clhp->clh_chunk = i; 1051 } 1052 1053 for (i = umem_max_ncpus; i < nchunks; i++) 1054 lhp->lh_free[i] = i; 1055 1056 lhp->lh_head = umem_max_ncpus; 1057 lhp->lh_tail = 0; 1058 1059 return (lhp); 1060 1061 fail: 1062 if (lhp != NULL) { 1063 if (lhp->lh_base != NULL) 1064 vmem_free(umem_log_arena, lhp->lh_base, 1065 lhp->lh_chunksize * nchunks); 1066 1067 vmem_xfree(umem_log_arena, lhp, lhsize); 1068 } 1069 return (NULL); 1070 } 1071 1072 static void * 1073 umem_log_enter(umem_log_header_t *lhp, void *data, size_t size) 1074 { 1075 void *logspace; 1076 umem_cpu_log_header_t *clhp = 1077 &lhp->lh_cpu[CPU(umem_cpu_mask)->cpu_number]; 1078 1079 if (lhp == NULL || umem_logging == 0) 1080 return (NULL); 1081 1082 (void) mutex_lock(&clhp->clh_lock); 1083 clhp->clh_hits++; 1084 if (size > clhp->clh_avail) { 1085 (void) mutex_lock(&lhp->lh_lock); 1086 lhp->lh_hits++; 1087 lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk; 1088 lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks; 1089 clhp->clh_chunk = lhp->lh_free[lhp->lh_head]; 1090 lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks; 1091 clhp->clh_current = lhp->lh_base + 1092 clhp->clh_chunk * lhp->lh_chunksize; 1093 clhp->clh_avail = lhp->lh_chunksize; 1094 if (size > lhp->lh_chunksize) 1095 size = lhp->lh_chunksize; 1096 (void) mutex_unlock(&lhp->lh_lock); 1097 } 1098 logspace = clhp->clh_current; 1099 clhp->clh_current += size; 1100 clhp->clh_avail -= size; 1101 bcopy(data, logspace, size); 1102 (void) mutex_unlock(&clhp->clh_lock); 1103 return (logspace); 1104 } 1105 1106 #define UMEM_AUDIT(lp, cp, bcp) \ 1107 { \ 1108 umem_bufctl_audit_t *_bcp = (umem_bufctl_audit_t *)(bcp); \ 1109 _bcp->bc_timestamp = gethrtime(); \ 1110 _bcp->bc_thread = thr_self(); \ 1111 _bcp->bc_depth = getpcstack(_bcp->bc_stack, umem_stack_depth, \ 1112 (cp != NULL) && (cp->cache_flags & UMF_CHECKSIGNAL)); \ 1113 _bcp->bc_lastlog = umem_log_enter((lp), _bcp, \ 1114 UMEM_BUFCTL_AUDIT_SIZE); \ 1115 } 1116 1117 static void 1118 umem_log_event(umem_log_header_t *lp, umem_cache_t *cp, 1119 umem_slab_t *sp, void *addr) 1120 { 1121 umem_bufctl_audit_t *bcp; 1122 UMEM_LOCAL_BUFCTL_AUDIT(&bcp); 1123 1124 bzero(bcp, UMEM_BUFCTL_AUDIT_SIZE); 1125 bcp->bc_addr = addr; 1126 bcp->bc_slab = sp; 1127 bcp->bc_cache = cp; 1128 UMEM_AUDIT(lp, cp, bcp); 1129 } 1130 1131 /* 1132 * Create a new slab for cache cp. 1133 */ 1134 static umem_slab_t * 1135 umem_slab_create(umem_cache_t *cp, int umflag) 1136 { 1137 size_t slabsize = cp->cache_slabsize; 1138 size_t chunksize = cp->cache_chunksize; 1139 int cache_flags = cp->cache_flags; 1140 size_t color, chunks; 1141 char *buf, *slab; 1142 umem_slab_t *sp; 1143 umem_bufctl_t *bcp; 1144 vmem_t *vmp = cp->cache_arena; 1145 1146 color = cp->cache_color + cp->cache_align; 1147 if (color > cp->cache_maxcolor) 1148 color = cp->cache_mincolor; 1149 cp->cache_color = color; 1150 1151 slab = vmem_alloc(vmp, slabsize, UMEM_VMFLAGS(umflag)); 1152 1153 if (slab == NULL) 1154 goto vmem_alloc_failure; 1155 1156 ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0); 1157 1158 if (!(cp->cache_cflags & UMC_NOTOUCH) && 1159 (cp->cache_flags & UMF_DEADBEEF)) 1160 copy_pattern(UMEM_UNINITIALIZED_PATTERN, slab, slabsize); 1161 1162 if (cache_flags & UMF_HASH) { 1163 if ((sp = _umem_cache_alloc(umem_slab_cache, umflag)) == NULL) 1164 goto slab_alloc_failure; 1165 chunks = (slabsize - color) / chunksize; 1166 } else { 1167 sp = UMEM_SLAB(cp, slab); 1168 chunks = (slabsize - sizeof (umem_slab_t) - color) / chunksize; 1169 } 1170 1171 sp->slab_cache = cp; 1172 sp->slab_head = NULL; 1173 sp->slab_refcnt = 0; 1174 sp->slab_base = buf = slab + color; 1175 sp->slab_chunks = chunks; 1176 1177 ASSERT(chunks > 0); 1178 while (chunks-- != 0) { 1179 if (cache_flags & UMF_HASH) { 1180 bcp = _umem_cache_alloc(cp->cache_bufctl_cache, umflag); 1181 if (bcp == NULL) 1182 goto bufctl_alloc_failure; 1183 if (cache_flags & UMF_AUDIT) { 1184 umem_bufctl_audit_t *bcap = 1185 (umem_bufctl_audit_t *)bcp; 1186 bzero(bcap, UMEM_BUFCTL_AUDIT_SIZE); 1187 bcap->bc_cache = cp; 1188 } 1189 bcp->bc_addr = buf; 1190 bcp->bc_slab = sp; 1191 } else { 1192 bcp = UMEM_BUFCTL(cp, buf); 1193 } 1194 if (cache_flags & UMF_BUFTAG) { 1195 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); 1196 btp->bt_redzone = UMEM_REDZONE_PATTERN; 1197 btp->bt_bufctl = bcp; 1198 btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE; 1199 if (cache_flags & UMF_DEADBEEF) { 1200 copy_pattern(UMEM_FREE_PATTERN, buf, 1201 cp->cache_verify); 1202 } 1203 } 1204 bcp->bc_next = sp->slab_head; 1205 sp->slab_head = bcp; 1206 buf += chunksize; 1207 } 1208 1209 umem_log_event(umem_slab_log, cp, sp, slab); 1210 1211 return (sp); 1212 1213 bufctl_alloc_failure: 1214 1215 while ((bcp = sp->slab_head) != NULL) { 1216 sp->slab_head = bcp->bc_next; 1217 _umem_cache_free(cp->cache_bufctl_cache, bcp); 1218 } 1219 _umem_cache_free(umem_slab_cache, sp); 1220 1221 slab_alloc_failure: 1222 1223 vmem_free(vmp, slab, slabsize); 1224 1225 vmem_alloc_failure: 1226 1227 umem_log_event(umem_failure_log, cp, NULL, NULL); 1228 atomic_add_64(&cp->cache_alloc_fail, 1); 1229 1230 return (NULL); 1231 } 1232 1233 /* 1234 * Destroy a slab. 1235 */ 1236 static void 1237 umem_slab_destroy(umem_cache_t *cp, umem_slab_t *sp) 1238 { 1239 vmem_t *vmp = cp->cache_arena; 1240 void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum); 1241 1242 if (cp->cache_flags & UMF_HASH) { 1243 umem_bufctl_t *bcp; 1244 while ((bcp = sp->slab_head) != NULL) { 1245 sp->slab_head = bcp->bc_next; 1246 _umem_cache_free(cp->cache_bufctl_cache, bcp); 1247 } 1248 _umem_cache_free(umem_slab_cache, sp); 1249 } 1250 vmem_free(vmp, slab, cp->cache_slabsize); 1251 } 1252 1253 /* 1254 * Allocate a raw (unconstructed) buffer from cp's slab layer. 1255 */ 1256 static void * 1257 umem_slab_alloc(umem_cache_t *cp, int umflag) 1258 { 1259 umem_bufctl_t *bcp, **hash_bucket; 1260 umem_slab_t *sp; 1261 void *buf; 1262 1263 (void) mutex_lock(&cp->cache_lock); 1264 cp->cache_slab_alloc++; 1265 sp = cp->cache_freelist; 1266 ASSERT(sp->slab_cache == cp); 1267 if (sp->slab_head == NULL) { 1268 /* 1269 * The freelist is empty. Create a new slab. 1270 */ 1271 (void) mutex_unlock(&cp->cache_lock); 1272 if (cp == &umem_null_cache) 1273 return (NULL); 1274 if ((sp = umem_slab_create(cp, umflag)) == NULL) 1275 return (NULL); 1276 (void) mutex_lock(&cp->cache_lock); 1277 cp->cache_slab_create++; 1278 if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax) 1279 cp->cache_bufmax = cp->cache_buftotal; 1280 sp->slab_next = cp->cache_freelist; 1281 sp->slab_prev = cp->cache_freelist->slab_prev; 1282 sp->slab_next->slab_prev = sp; 1283 sp->slab_prev->slab_next = sp; 1284 cp->cache_freelist = sp; 1285 } 1286 1287 sp->slab_refcnt++; 1288 ASSERT(sp->slab_refcnt <= sp->slab_chunks); 1289 1290 /* 1291 * If we're taking the last buffer in the slab, 1292 * remove the slab from the cache's freelist. 1293 */ 1294 bcp = sp->slab_head; 1295 if ((sp->slab_head = bcp->bc_next) == NULL) { 1296 cp->cache_freelist = sp->slab_next; 1297 ASSERT(sp->slab_refcnt == sp->slab_chunks); 1298 } 1299 1300 if (cp->cache_flags & UMF_HASH) { 1301 /* 1302 * Add buffer to allocated-address hash table. 1303 */ 1304 buf = bcp->bc_addr; 1305 hash_bucket = UMEM_HASH(cp, buf); 1306 bcp->bc_next = *hash_bucket; 1307 *hash_bucket = bcp; 1308 if ((cp->cache_flags & (UMF_AUDIT | UMF_BUFTAG)) == UMF_AUDIT) { 1309 UMEM_AUDIT(umem_transaction_log, cp, bcp); 1310 } 1311 } else { 1312 buf = UMEM_BUF(cp, bcp); 1313 } 1314 1315 ASSERT(UMEM_SLAB_MEMBER(sp, buf)); 1316 1317 (void) mutex_unlock(&cp->cache_lock); 1318 1319 return (buf); 1320 } 1321 1322 /* 1323 * Free a raw (unconstructed) buffer to cp's slab layer. 1324 */ 1325 static void 1326 umem_slab_free(umem_cache_t *cp, void *buf) 1327 { 1328 umem_slab_t *sp; 1329 umem_bufctl_t *bcp, **prev_bcpp; 1330 1331 ASSERT(buf != NULL); 1332 1333 (void) mutex_lock(&cp->cache_lock); 1334 cp->cache_slab_free++; 1335 1336 if (cp->cache_flags & UMF_HASH) { 1337 /* 1338 * Look up buffer in allocated-address hash table. 1339 */ 1340 prev_bcpp = UMEM_HASH(cp, buf); 1341 while ((bcp = *prev_bcpp) != NULL) { 1342 if (bcp->bc_addr == buf) { 1343 *prev_bcpp = bcp->bc_next; 1344 sp = bcp->bc_slab; 1345 break; 1346 } 1347 cp->cache_lookup_depth++; 1348 prev_bcpp = &bcp->bc_next; 1349 } 1350 } else { 1351 bcp = UMEM_BUFCTL(cp, buf); 1352 sp = UMEM_SLAB(cp, buf); 1353 } 1354 1355 if (bcp == NULL || sp->slab_cache != cp || !UMEM_SLAB_MEMBER(sp, buf)) { 1356 (void) mutex_unlock(&cp->cache_lock); 1357 umem_error(UMERR_BADADDR, cp, buf); 1358 return; 1359 } 1360 1361 if ((cp->cache_flags & (UMF_AUDIT | UMF_BUFTAG)) == UMF_AUDIT) { 1362 if (cp->cache_flags & UMF_CONTENTS) 1363 ((umem_bufctl_audit_t *)bcp)->bc_contents = 1364 umem_log_enter(umem_content_log, buf, 1365 cp->cache_contents); 1366 UMEM_AUDIT(umem_transaction_log, cp, bcp); 1367 } 1368 1369 /* 1370 * If this slab isn't currently on the freelist, put it there. 1371 */ 1372 if (sp->slab_head == NULL) { 1373 ASSERT(sp->slab_refcnt == sp->slab_chunks); 1374 ASSERT(cp->cache_freelist != sp); 1375 sp->slab_next->slab_prev = sp->slab_prev; 1376 sp->slab_prev->slab_next = sp->slab_next; 1377 sp->slab_next = cp->cache_freelist; 1378 sp->slab_prev = cp->cache_freelist->slab_prev; 1379 sp->slab_next->slab_prev = sp; 1380 sp->slab_prev->slab_next = sp; 1381 cp->cache_freelist = sp; 1382 } 1383 1384 bcp->bc_next = sp->slab_head; 1385 sp->slab_head = bcp; 1386 1387 ASSERT(sp->slab_refcnt >= 1); 1388 if (--sp->slab_refcnt == 0) { 1389 /* 1390 * There are no outstanding allocations from this slab, 1391 * so we can reclaim the memory. 1392 */ 1393 sp->slab_next->slab_prev = sp->slab_prev; 1394 sp->slab_prev->slab_next = sp->slab_next; 1395 if (sp == cp->cache_freelist) 1396 cp->cache_freelist = sp->slab_next; 1397 cp->cache_slab_destroy++; 1398 cp->cache_buftotal -= sp->slab_chunks; 1399 (void) mutex_unlock(&cp->cache_lock); 1400 umem_slab_destroy(cp, sp); 1401 return; 1402 } 1403 (void) mutex_unlock(&cp->cache_lock); 1404 } 1405 1406 static int 1407 umem_cache_alloc_debug(umem_cache_t *cp, void *buf, int umflag) 1408 { 1409 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); 1410 umem_bufctl_audit_t *bcp = (umem_bufctl_audit_t *)btp->bt_bufctl; 1411 uint32_t mtbf; 1412 int flags_nfatal; 1413 1414 if (btp->bt_bxstat != ((intptr_t)bcp ^ UMEM_BUFTAG_FREE)) { 1415 umem_error(UMERR_BADBUFTAG, cp, buf); 1416 return (-1); 1417 } 1418 1419 btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_ALLOC; 1420 1421 if ((cp->cache_flags & UMF_HASH) && bcp->bc_addr != buf) { 1422 umem_error(UMERR_BADBUFCTL, cp, buf); 1423 return (-1); 1424 } 1425 1426 btp->bt_redzone = UMEM_REDZONE_PATTERN; 1427 1428 if (cp->cache_flags & UMF_DEADBEEF) { 1429 if (verify_and_copy_pattern(UMEM_FREE_PATTERN, 1430 UMEM_UNINITIALIZED_PATTERN, buf, cp->cache_verify)) { 1431 umem_error(UMERR_MODIFIED, cp, buf); 1432 return (-1); 1433 } 1434 } 1435 1436 if ((mtbf = umem_mtbf | cp->cache_mtbf) != 0 && 1437 gethrtime() % mtbf == 0 && 1438 (umflag & (UMEM_FATAL_FLAGS)) == 0) { 1439 umem_log_event(umem_failure_log, cp, NULL, NULL); 1440 } else { 1441 mtbf = 0; 1442 } 1443 1444 /* 1445 * We do not pass fatal flags on to the constructor. This prevents 1446 * leaking buffers in the event of a subordinate constructor failing. 1447 */ 1448 flags_nfatal = UMEM_DEFAULT; 1449 if (mtbf || (cp->cache_constructor != NULL && 1450 cp->cache_constructor(buf, cp->cache_private, flags_nfatal) != 0)) { 1451 atomic_add_64(&cp->cache_alloc_fail, 1); 1452 btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE; 1453 copy_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify); 1454 umem_slab_free(cp, buf); 1455 return (-1); 1456 } 1457 1458 if (cp->cache_flags & UMF_AUDIT) { 1459 UMEM_AUDIT(umem_transaction_log, cp, bcp); 1460 } 1461 1462 return (0); 1463 } 1464 1465 static int 1466 umem_cache_free_debug(umem_cache_t *cp, void *buf) 1467 { 1468 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); 1469 umem_bufctl_audit_t *bcp = (umem_bufctl_audit_t *)btp->bt_bufctl; 1470 umem_slab_t *sp; 1471 1472 if (btp->bt_bxstat != ((intptr_t)bcp ^ UMEM_BUFTAG_ALLOC)) { 1473 if (btp->bt_bxstat == ((intptr_t)bcp ^ UMEM_BUFTAG_FREE)) { 1474 umem_error(UMERR_DUPFREE, cp, buf); 1475 return (-1); 1476 } 1477 sp = umem_findslab(cp, buf); 1478 if (sp == NULL || sp->slab_cache != cp) 1479 umem_error(UMERR_BADADDR, cp, buf); 1480 else 1481 umem_error(UMERR_REDZONE, cp, buf); 1482 return (-1); 1483 } 1484 1485 btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE; 1486 1487 if ((cp->cache_flags & UMF_HASH) && bcp->bc_addr != buf) { 1488 umem_error(UMERR_BADBUFCTL, cp, buf); 1489 return (-1); 1490 } 1491 1492 if (btp->bt_redzone != UMEM_REDZONE_PATTERN) { 1493 umem_error(UMERR_REDZONE, cp, buf); 1494 return (-1); 1495 } 1496 1497 if (cp->cache_flags & UMF_AUDIT) { 1498 if (cp->cache_flags & UMF_CONTENTS) 1499 bcp->bc_contents = umem_log_enter(umem_content_log, 1500 buf, cp->cache_contents); 1501 UMEM_AUDIT(umem_transaction_log, cp, bcp); 1502 } 1503 1504 if (cp->cache_destructor != NULL) 1505 cp->cache_destructor(buf, cp->cache_private); 1506 1507 if (cp->cache_flags & UMF_DEADBEEF) 1508 copy_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify); 1509 1510 return (0); 1511 } 1512 1513 /* 1514 * Free each object in magazine mp to cp's slab layer, and free mp itself. 1515 */ 1516 static void 1517 umem_magazine_destroy(umem_cache_t *cp, umem_magazine_t *mp, int nrounds) 1518 { 1519 int round; 1520 1521 ASSERT(cp->cache_next == NULL || IN_UPDATE()); 1522 1523 for (round = 0; round < nrounds; round++) { 1524 void *buf = mp->mag_round[round]; 1525 1526 if ((cp->cache_flags & UMF_DEADBEEF) && 1527 verify_pattern(UMEM_FREE_PATTERN, buf, 1528 cp->cache_verify) != NULL) { 1529 umem_error(UMERR_MODIFIED, cp, buf); 1530 continue; 1531 } 1532 1533 if (!(cp->cache_flags & UMF_BUFTAG) && 1534 cp->cache_destructor != NULL) 1535 cp->cache_destructor(buf, cp->cache_private); 1536 1537 umem_slab_free(cp, buf); 1538 } 1539 ASSERT(UMEM_MAGAZINE_VALID(cp, mp)); 1540 _umem_cache_free(cp->cache_magtype->mt_cache, mp); 1541 } 1542 1543 /* 1544 * Allocate a magazine from the depot. 1545 */ 1546 static umem_magazine_t * 1547 umem_depot_alloc(umem_cache_t *cp, umem_maglist_t *mlp) 1548 { 1549 umem_magazine_t *mp; 1550 1551 /* 1552 * If we can't get the depot lock without contention, 1553 * update our contention count. We use the depot 1554 * contention rate to determine whether we need to 1555 * increase the magazine size for better scalability. 1556 */ 1557 if (mutex_trylock(&cp->cache_depot_lock) != 0) { 1558 (void) mutex_lock(&cp->cache_depot_lock); 1559 cp->cache_depot_contention++; 1560 } 1561 1562 if ((mp = mlp->ml_list) != NULL) { 1563 ASSERT(UMEM_MAGAZINE_VALID(cp, mp)); 1564 mlp->ml_list = mp->mag_next; 1565 if (--mlp->ml_total < mlp->ml_min) 1566 mlp->ml_min = mlp->ml_total; 1567 mlp->ml_alloc++; 1568 } 1569 1570 (void) mutex_unlock(&cp->cache_depot_lock); 1571 1572 return (mp); 1573 } 1574 1575 /* 1576 * Free a magazine to the depot. 1577 */ 1578 static void 1579 umem_depot_free(umem_cache_t *cp, umem_maglist_t *mlp, umem_magazine_t *mp) 1580 { 1581 (void) mutex_lock(&cp->cache_depot_lock); 1582 ASSERT(UMEM_MAGAZINE_VALID(cp, mp)); 1583 mp->mag_next = mlp->ml_list; 1584 mlp->ml_list = mp; 1585 mlp->ml_total++; 1586 (void) mutex_unlock(&cp->cache_depot_lock); 1587 } 1588 1589 /* 1590 * Update the working set statistics for cp's depot. 1591 */ 1592 static void 1593 umem_depot_ws_update(umem_cache_t *cp) 1594 { 1595 (void) mutex_lock(&cp->cache_depot_lock); 1596 cp->cache_full.ml_reaplimit = cp->cache_full.ml_min; 1597 cp->cache_full.ml_min = cp->cache_full.ml_total; 1598 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min; 1599 cp->cache_empty.ml_min = cp->cache_empty.ml_total; 1600 (void) mutex_unlock(&cp->cache_depot_lock); 1601 } 1602 1603 /* 1604 * Reap all magazines that have fallen out of the depot's working set. 1605 */ 1606 static void 1607 umem_depot_ws_reap(umem_cache_t *cp) 1608 { 1609 long reap; 1610 umem_magazine_t *mp; 1611 1612 ASSERT(cp->cache_next == NULL || IN_REAP()); 1613 1614 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 1615 while (reap-- && (mp = umem_depot_alloc(cp, &cp->cache_full)) != NULL) 1616 umem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize); 1617 1618 reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min); 1619 while (reap-- && (mp = umem_depot_alloc(cp, &cp->cache_empty)) != NULL) 1620 umem_magazine_destroy(cp, mp, 0); 1621 } 1622 1623 static void 1624 umem_cpu_reload(umem_cpu_cache_t *ccp, umem_magazine_t *mp, int rounds) 1625 { 1626 ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) || 1627 (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize)); 1628 ASSERT(ccp->cc_magsize > 0); 1629 1630 ccp->cc_ploaded = ccp->cc_loaded; 1631 ccp->cc_prounds = ccp->cc_rounds; 1632 ccp->cc_loaded = mp; 1633 ccp->cc_rounds = rounds; 1634 } 1635 1636 /* 1637 * Allocate a constructed object from cache cp. 1638 */ 1639 #pragma weak umem_cache_alloc = _umem_cache_alloc 1640 void * 1641 _umem_cache_alloc(umem_cache_t *cp, int umflag) 1642 { 1643 umem_cpu_cache_t *ccp; 1644 umem_magazine_t *fmp; 1645 void *buf; 1646 int flags_nfatal; 1647 1648 retry: 1649 ccp = UMEM_CPU_CACHE(cp, CPU(cp->cache_cpu_mask)); 1650 (void) mutex_lock(&ccp->cc_lock); 1651 for (;;) { 1652 /* 1653 * If there's an object available in the current CPU's 1654 * loaded magazine, just take it and return. 1655 */ 1656 if (ccp->cc_rounds > 0) { 1657 buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds]; 1658 ccp->cc_alloc++; 1659 (void) mutex_unlock(&ccp->cc_lock); 1660 if ((ccp->cc_flags & UMF_BUFTAG) && 1661 umem_cache_alloc_debug(cp, buf, umflag) == -1) { 1662 if (umem_alloc_retry(cp, umflag)) { 1663 goto retry; 1664 } 1665 1666 return (NULL); 1667 } 1668 return (buf); 1669 } 1670 1671 /* 1672 * The loaded magazine is empty. If the previously loaded 1673 * magazine was full, exchange them and try again. 1674 */ 1675 if (ccp->cc_prounds > 0) { 1676 umem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 1677 continue; 1678 } 1679 1680 /* 1681 * If the magazine layer is disabled, break out now. 1682 */ 1683 if (ccp->cc_magsize == 0) 1684 break; 1685 1686 /* 1687 * Try to get a full magazine from the depot. 1688 */ 1689 fmp = umem_depot_alloc(cp, &cp->cache_full); 1690 if (fmp != NULL) { 1691 if (ccp->cc_ploaded != NULL) 1692 umem_depot_free(cp, &cp->cache_empty, 1693 ccp->cc_ploaded); 1694 umem_cpu_reload(ccp, fmp, ccp->cc_magsize); 1695 continue; 1696 } 1697 1698 /* 1699 * There are no full magazines in the depot, 1700 * so fall through to the slab layer. 1701 */ 1702 break; 1703 } 1704 (void) mutex_unlock(&ccp->cc_lock); 1705 1706 /* 1707 * We couldn't allocate a constructed object from the magazine layer, 1708 * so get a raw buffer from the slab layer and apply its constructor. 1709 */ 1710 buf = umem_slab_alloc(cp, umflag); 1711 1712 if (buf == NULL) { 1713 if (cp == &umem_null_cache) 1714 return (NULL); 1715 if (umem_alloc_retry(cp, umflag)) { 1716 goto retry; 1717 } 1718 1719 return (NULL); 1720 } 1721 1722 if (cp->cache_flags & UMF_BUFTAG) { 1723 /* 1724 * Let umem_cache_alloc_debug() apply the constructor for us. 1725 */ 1726 if (umem_cache_alloc_debug(cp, buf, umflag) == -1) { 1727 if (umem_alloc_retry(cp, umflag)) { 1728 goto retry; 1729 } 1730 return (NULL); 1731 } 1732 return (buf); 1733 } 1734 1735 /* 1736 * We do not pass fatal flags on to the constructor. This prevents 1737 * leaking buffers in the event of a subordinate constructor failing. 1738 */ 1739 flags_nfatal = UMEM_DEFAULT; 1740 if (cp->cache_constructor != NULL && 1741 cp->cache_constructor(buf, cp->cache_private, flags_nfatal) != 0) { 1742 atomic_add_64(&cp->cache_alloc_fail, 1); 1743 umem_slab_free(cp, buf); 1744 1745 if (umem_alloc_retry(cp, umflag)) { 1746 goto retry; 1747 } 1748 return (NULL); 1749 } 1750 1751 return (buf); 1752 } 1753 1754 /* 1755 * Free a constructed object to cache cp. 1756 */ 1757 #pragma weak umem_cache_free = _umem_cache_free 1758 void 1759 _umem_cache_free(umem_cache_t *cp, void *buf) 1760 { 1761 umem_cpu_cache_t *ccp = UMEM_CPU_CACHE(cp, CPU(cp->cache_cpu_mask)); 1762 umem_magazine_t *emp; 1763 umem_magtype_t *mtp; 1764 1765 if (ccp->cc_flags & UMF_BUFTAG) 1766 if (umem_cache_free_debug(cp, buf) == -1) 1767 return; 1768 1769 (void) mutex_lock(&ccp->cc_lock); 1770 for (;;) { 1771 /* 1772 * If there's a slot available in the current CPU's 1773 * loaded magazine, just put the object there and return. 1774 */ 1775 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) { 1776 ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf; 1777 ccp->cc_free++; 1778 (void) mutex_unlock(&ccp->cc_lock); 1779 return; 1780 } 1781 1782 /* 1783 * The loaded magazine is full. If the previously loaded 1784 * magazine was empty, exchange them and try again. 1785 */ 1786 if (ccp->cc_prounds == 0) { 1787 umem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 1788 continue; 1789 } 1790 1791 /* 1792 * If the magazine layer is disabled, break out now. 1793 */ 1794 if (ccp->cc_magsize == 0) 1795 break; 1796 1797 /* 1798 * Try to get an empty magazine from the depot. 1799 */ 1800 emp = umem_depot_alloc(cp, &cp->cache_empty); 1801 if (emp != NULL) { 1802 if (ccp->cc_ploaded != NULL) 1803 umem_depot_free(cp, &cp->cache_full, 1804 ccp->cc_ploaded); 1805 umem_cpu_reload(ccp, emp, 0); 1806 continue; 1807 } 1808 1809 /* 1810 * There are no empty magazines in the depot, 1811 * so try to allocate a new one. We must drop all locks 1812 * across umem_cache_alloc() because lower layers may 1813 * attempt to allocate from this cache. 1814 */ 1815 mtp = cp->cache_magtype; 1816 (void) mutex_unlock(&ccp->cc_lock); 1817 emp = _umem_cache_alloc(mtp->mt_cache, UMEM_DEFAULT); 1818 (void) mutex_lock(&ccp->cc_lock); 1819 1820 if (emp != NULL) { 1821 /* 1822 * We successfully allocated an empty magazine. 1823 * However, we had to drop ccp->cc_lock to do it, 1824 * so the cache's magazine size may have changed. 1825 * If so, free the magazine and try again. 1826 */ 1827 if (ccp->cc_magsize != mtp->mt_magsize) { 1828 (void) mutex_unlock(&ccp->cc_lock); 1829 _umem_cache_free(mtp->mt_cache, emp); 1830 (void) mutex_lock(&ccp->cc_lock); 1831 continue; 1832 } 1833 1834 /* 1835 * We got a magazine of the right size. Add it to 1836 * the depot and try the whole dance again. 1837 */ 1838 umem_depot_free(cp, &cp->cache_empty, emp); 1839 continue; 1840 } 1841 1842 /* 1843 * We couldn't allocate an empty magazine, 1844 * so fall through to the slab layer. 1845 */ 1846 break; 1847 } 1848 (void) mutex_unlock(&ccp->cc_lock); 1849 1850 /* 1851 * We couldn't free our constructed object to the magazine layer, 1852 * so apply its destructor and free it to the slab layer. 1853 * Note that if UMF_BUFTAG is in effect, umem_cache_free_debug() 1854 * will have already applied the destructor. 1855 */ 1856 if (!(cp->cache_flags & UMF_BUFTAG) && cp->cache_destructor != NULL) 1857 cp->cache_destructor(buf, cp->cache_private); 1858 1859 umem_slab_free(cp, buf); 1860 } 1861 1862 #pragma weak umem_zalloc = _umem_zalloc 1863 void * 1864 _umem_zalloc(size_t size, int umflag) 1865 { 1866 size_t index = (size - 1) >> UMEM_ALIGN_SHIFT; 1867 void *buf; 1868 1869 retry: 1870 if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) { 1871 umem_cache_t *cp = umem_alloc_table[index]; 1872 buf = _umem_cache_alloc(cp, umflag); 1873 if (buf != NULL) { 1874 if (cp->cache_flags & UMF_BUFTAG) { 1875 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); 1876 ((uint8_t *)buf)[size] = UMEM_REDZONE_BYTE; 1877 ((uint32_t *)btp)[1] = UMEM_SIZE_ENCODE(size); 1878 } 1879 bzero(buf, size); 1880 } else if (umem_alloc_retry(cp, umflag)) 1881 goto retry; 1882 } else { 1883 buf = _umem_alloc(size, umflag); /* handles failure */ 1884 if (buf != NULL) 1885 bzero(buf, size); 1886 } 1887 return (buf); 1888 } 1889 1890 #pragma weak umem_alloc = _umem_alloc 1891 void * 1892 _umem_alloc(size_t size, int umflag) 1893 { 1894 size_t index = (size - 1) >> UMEM_ALIGN_SHIFT; 1895 void *buf; 1896 umem_alloc_retry: 1897 if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) { 1898 umem_cache_t *cp = umem_alloc_table[index]; 1899 buf = _umem_cache_alloc(cp, umflag); 1900 if ((cp->cache_flags & UMF_BUFTAG) && buf != NULL) { 1901 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); 1902 ((uint8_t *)buf)[size] = UMEM_REDZONE_BYTE; 1903 ((uint32_t *)btp)[1] = UMEM_SIZE_ENCODE(size); 1904 } 1905 if (buf == NULL && umem_alloc_retry(cp, umflag)) 1906 goto umem_alloc_retry; 1907 return (buf); 1908 } 1909 if (size == 0) 1910 return (NULL); 1911 if (umem_oversize_arena == NULL) { 1912 if (umem_init()) 1913 ASSERT(umem_oversize_arena != NULL); 1914 else 1915 return (NULL); 1916 } 1917 buf = vmem_alloc(umem_oversize_arena, size, UMEM_VMFLAGS(umflag)); 1918 if (buf == NULL) { 1919 umem_log_event(umem_failure_log, NULL, NULL, (void *)size); 1920 if (umem_alloc_retry(NULL, umflag)) 1921 goto umem_alloc_retry; 1922 } 1923 return (buf); 1924 } 1925 1926 #pragma weak umem_alloc_align = _umem_alloc_align 1927 void * 1928 _umem_alloc_align(size_t size, size_t align, int umflag) 1929 { 1930 void *buf; 1931 1932 if (size == 0) 1933 return (NULL); 1934 if ((align & (align - 1)) != 0) 1935 return (NULL); 1936 if (align < UMEM_ALIGN) 1937 align = UMEM_ALIGN; 1938 1939 umem_alloc_align_retry: 1940 if (umem_memalign_arena == NULL) { 1941 if (umem_init()) 1942 ASSERT(umem_oversize_arena != NULL); 1943 else 1944 return (NULL); 1945 } 1946 buf = vmem_xalloc(umem_memalign_arena, size, align, 0, 0, NULL, NULL, 1947 UMEM_VMFLAGS(umflag)); 1948 if (buf == NULL) { 1949 umem_log_event(umem_failure_log, NULL, NULL, (void *)size); 1950 if (umem_alloc_retry(NULL, umflag)) 1951 goto umem_alloc_align_retry; 1952 } 1953 return (buf); 1954 } 1955 1956 #pragma weak umem_free = _umem_free 1957 void 1958 _umem_free(void *buf, size_t size) 1959 { 1960 size_t index = (size - 1) >> UMEM_ALIGN_SHIFT; 1961 1962 if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) { 1963 umem_cache_t *cp = umem_alloc_table[index]; 1964 if (cp->cache_flags & UMF_BUFTAG) { 1965 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); 1966 uint32_t *ip = (uint32_t *)btp; 1967 if (ip[1] != UMEM_SIZE_ENCODE(size)) { 1968 if (*(uint64_t *)buf == UMEM_FREE_PATTERN) { 1969 umem_error(UMERR_DUPFREE, cp, buf); 1970 return; 1971 } 1972 if (UMEM_SIZE_VALID(ip[1])) { 1973 ip[0] = UMEM_SIZE_ENCODE(size); 1974 umem_error(UMERR_BADSIZE, cp, buf); 1975 } else { 1976 umem_error(UMERR_REDZONE, cp, buf); 1977 } 1978 return; 1979 } 1980 if (((uint8_t *)buf)[size] != UMEM_REDZONE_BYTE) { 1981 umem_error(UMERR_REDZONE, cp, buf); 1982 return; 1983 } 1984 btp->bt_redzone = UMEM_REDZONE_PATTERN; 1985 } 1986 _umem_cache_free(cp, buf); 1987 } else { 1988 if (buf == NULL && size == 0) 1989 return; 1990 vmem_free(umem_oversize_arena, buf, size); 1991 } 1992 } 1993 1994 #pragma weak umem_free_align = _umem_free_align 1995 void 1996 _umem_free_align(void *buf, size_t size) 1997 { 1998 if (buf == NULL && size == 0) 1999 return; 2000 vmem_xfree(umem_memalign_arena, buf, size); 2001 } 2002 2003 static void * 2004 umem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag) 2005 { 2006 size_t realsize = size + vmp->vm_quantum; 2007 2008 /* 2009 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding 2010 * vm_quantum will cause integer wraparound. Check for this, and 2011 * blow off the firewall page in this case. Note that such a 2012 * giant allocation (the entire address space) can never be 2013 * satisfied, so it will either fail immediately (VM_NOSLEEP) 2014 * or sleep forever (VM_SLEEP). Thus, there is no need for a 2015 * corresponding check in umem_firewall_va_free(). 2016 */ 2017 if (realsize < size) 2018 realsize = size; 2019 2020 return (vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT)); 2021 } 2022 2023 static void 2024 umem_firewall_va_free(vmem_t *vmp, void *addr, size_t size) 2025 { 2026 vmem_free(vmp, addr, size + vmp->vm_quantum); 2027 } 2028 2029 /* 2030 * Reclaim all unused memory from a cache. 2031 */ 2032 static void 2033 umem_cache_reap(umem_cache_t *cp) 2034 { 2035 /* 2036 * Ask the cache's owner to free some memory if possible. 2037 * The idea is to handle things like the inode cache, which 2038 * typically sits on a bunch of memory that it doesn't truly 2039 * *need*. Reclaim policy is entirely up to the owner; this 2040 * callback is just an advisory plea for help. 2041 */ 2042 if (cp->cache_reclaim != NULL) 2043 cp->cache_reclaim(cp->cache_private); 2044 2045 umem_depot_ws_reap(cp); 2046 } 2047 2048 /* 2049 * Purge all magazines from a cache and set its magazine limit to zero. 2050 * All calls are serialized by being done by the update thread, except for 2051 * the final call from umem_cache_destroy(). 2052 */ 2053 static void 2054 umem_cache_magazine_purge(umem_cache_t *cp) 2055 { 2056 umem_cpu_cache_t *ccp; 2057 umem_magazine_t *mp, *pmp; 2058 int rounds, prounds, cpu_seqid; 2059 2060 ASSERT(cp->cache_next == NULL || IN_UPDATE()); 2061 2062 for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) { 2063 ccp = &cp->cache_cpu[cpu_seqid]; 2064 2065 (void) mutex_lock(&ccp->cc_lock); 2066 mp = ccp->cc_loaded; 2067 pmp = ccp->cc_ploaded; 2068 rounds = ccp->cc_rounds; 2069 prounds = ccp->cc_prounds; 2070 ccp->cc_loaded = NULL; 2071 ccp->cc_ploaded = NULL; 2072 ccp->cc_rounds = -1; 2073 ccp->cc_prounds = -1; 2074 ccp->cc_magsize = 0; 2075 (void) mutex_unlock(&ccp->cc_lock); 2076 2077 if (mp) 2078 umem_magazine_destroy(cp, mp, rounds); 2079 if (pmp) 2080 umem_magazine_destroy(cp, pmp, prounds); 2081 } 2082 2083 /* 2084 * Updating the working set statistics twice in a row has the 2085 * effect of setting the working set size to zero, so everything 2086 * is eligible for reaping. 2087 */ 2088 umem_depot_ws_update(cp); 2089 umem_depot_ws_update(cp); 2090 2091 umem_depot_ws_reap(cp); 2092 } 2093 2094 /* 2095 * Enable per-cpu magazines on a cache. 2096 */ 2097 static void 2098 umem_cache_magazine_enable(umem_cache_t *cp) 2099 { 2100 int cpu_seqid; 2101 2102 if (cp->cache_flags & UMF_NOMAGAZINE) 2103 return; 2104 2105 for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) { 2106 umem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 2107 (void) mutex_lock(&ccp->cc_lock); 2108 ccp->cc_magsize = cp->cache_magtype->mt_magsize; 2109 (void) mutex_unlock(&ccp->cc_lock); 2110 } 2111 2112 } 2113 2114 /* 2115 * Recompute a cache's magazine size. The trade-off is that larger magazines 2116 * provide a higher transfer rate with the depot, while smaller magazines 2117 * reduce memory consumption. Magazine resizing is an expensive operation; 2118 * it should not be done frequently. 2119 * 2120 * Changes to the magazine size are serialized by only having one thread 2121 * doing updates. (the update thread) 2122 * 2123 * Note: at present this only grows the magazine size. It might be useful 2124 * to allow shrinkage too. 2125 */ 2126 static void 2127 umem_cache_magazine_resize(umem_cache_t *cp) 2128 { 2129 umem_magtype_t *mtp = cp->cache_magtype; 2130 2131 ASSERT(IN_UPDATE()); 2132 2133 if (cp->cache_chunksize < mtp->mt_maxbuf) { 2134 umem_cache_magazine_purge(cp); 2135 (void) mutex_lock(&cp->cache_depot_lock); 2136 cp->cache_magtype = ++mtp; 2137 cp->cache_depot_contention_prev = 2138 cp->cache_depot_contention + INT_MAX; 2139 (void) mutex_unlock(&cp->cache_depot_lock); 2140 umem_cache_magazine_enable(cp); 2141 } 2142 } 2143 2144 /* 2145 * Rescale a cache's hash table, so that the table size is roughly the 2146 * cache size. We want the average lookup time to be extremely small. 2147 */ 2148 static void 2149 umem_hash_rescale(umem_cache_t *cp) 2150 { 2151 umem_bufctl_t **old_table, **new_table, *bcp; 2152 size_t old_size, new_size, h; 2153 2154 ASSERT(IN_UPDATE()); 2155 2156 new_size = MAX(UMEM_HASH_INITIAL, 2157 1 << (highbit(3 * cp->cache_buftotal + 4) - 2)); 2158 old_size = cp->cache_hash_mask + 1; 2159 2160 if ((old_size >> 1) <= new_size && new_size <= (old_size << 1)) 2161 return; 2162 2163 new_table = vmem_alloc(umem_hash_arena, new_size * sizeof (void *), 2164 VM_NOSLEEP); 2165 if (new_table == NULL) 2166 return; 2167 bzero(new_table, new_size * sizeof (void *)); 2168 2169 (void) mutex_lock(&cp->cache_lock); 2170 2171 old_size = cp->cache_hash_mask + 1; 2172 old_table = cp->cache_hash_table; 2173 2174 cp->cache_hash_mask = new_size - 1; 2175 cp->cache_hash_table = new_table; 2176 cp->cache_rescale++; 2177 2178 for (h = 0; h < old_size; h++) { 2179 bcp = old_table[h]; 2180 while (bcp != NULL) { 2181 void *addr = bcp->bc_addr; 2182 umem_bufctl_t *next_bcp = bcp->bc_next; 2183 umem_bufctl_t **hash_bucket = UMEM_HASH(cp, addr); 2184 bcp->bc_next = *hash_bucket; 2185 *hash_bucket = bcp; 2186 bcp = next_bcp; 2187 } 2188 } 2189 2190 (void) mutex_unlock(&cp->cache_lock); 2191 2192 vmem_free(umem_hash_arena, old_table, old_size * sizeof (void *)); 2193 } 2194 2195 /* 2196 * Perform periodic maintenance on a cache: hash rescaling, 2197 * depot working-set update, and magazine resizing. 2198 */ 2199 void 2200 umem_cache_update(umem_cache_t *cp) 2201 { 2202 int update_flags = 0; 2203 2204 ASSERT(MUTEX_HELD(&umem_cache_lock)); 2205 2206 /* 2207 * If the cache has become much larger or smaller than its hash table, 2208 * fire off a request to rescale the hash table. 2209 */ 2210 (void) mutex_lock(&cp->cache_lock); 2211 2212 if ((cp->cache_flags & UMF_HASH) && 2213 (cp->cache_buftotal > (cp->cache_hash_mask << 1) || 2214 (cp->cache_buftotal < (cp->cache_hash_mask >> 1) && 2215 cp->cache_hash_mask > UMEM_HASH_INITIAL))) 2216 update_flags |= UMU_HASH_RESCALE; 2217 2218 (void) mutex_unlock(&cp->cache_lock); 2219 2220 /* 2221 * Update the depot working set statistics. 2222 */ 2223 umem_depot_ws_update(cp); 2224 2225 /* 2226 * If there's a lot of contention in the depot, 2227 * increase the magazine size. 2228 */ 2229 (void) mutex_lock(&cp->cache_depot_lock); 2230 2231 if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf && 2232 (int)(cp->cache_depot_contention - 2233 cp->cache_depot_contention_prev) > umem_depot_contention) 2234 update_flags |= UMU_MAGAZINE_RESIZE; 2235 2236 cp->cache_depot_contention_prev = cp->cache_depot_contention; 2237 2238 (void) mutex_unlock(&cp->cache_depot_lock); 2239 2240 if (update_flags) 2241 umem_add_update(cp, update_flags); 2242 } 2243 2244 /* 2245 * Runs all pending updates. 2246 * 2247 * The update lock must be held on entrance, and will be held on exit. 2248 */ 2249 void 2250 umem_process_updates(void) 2251 { 2252 ASSERT(MUTEX_HELD(&umem_update_lock)); 2253 2254 while (umem_null_cache.cache_unext != &umem_null_cache) { 2255 int notify = 0; 2256 umem_cache_t *cp = umem_null_cache.cache_unext; 2257 2258 cp->cache_uprev->cache_unext = cp->cache_unext; 2259 cp->cache_unext->cache_uprev = cp->cache_uprev; 2260 cp->cache_uprev = cp->cache_unext = NULL; 2261 2262 ASSERT(!(cp->cache_uflags & UMU_ACTIVE)); 2263 2264 while (cp->cache_uflags) { 2265 int uflags = (cp->cache_uflags |= UMU_ACTIVE); 2266 (void) mutex_unlock(&umem_update_lock); 2267 2268 /* 2269 * The order here is important. Each step can speed up 2270 * later steps. 2271 */ 2272 2273 if (uflags & UMU_HASH_RESCALE) 2274 umem_hash_rescale(cp); 2275 2276 if (uflags & UMU_MAGAZINE_RESIZE) 2277 umem_cache_magazine_resize(cp); 2278 2279 if (uflags & UMU_REAP) 2280 umem_cache_reap(cp); 2281 2282 (void) mutex_lock(&umem_update_lock); 2283 2284 /* 2285 * check if anyone has requested notification 2286 */ 2287 if (cp->cache_uflags & UMU_NOTIFY) { 2288 uflags |= UMU_NOTIFY; 2289 notify = 1; 2290 } 2291 cp->cache_uflags &= ~uflags; 2292 } 2293 if (notify) 2294 (void) cond_broadcast(&umem_update_cv); 2295 } 2296 } 2297 2298 #ifndef UMEM_STANDALONE 2299 static void 2300 umem_st_update(void) 2301 { 2302 ASSERT(MUTEX_HELD(&umem_update_lock)); 2303 ASSERT(umem_update_thr == 0 && umem_st_update_thr == 0); 2304 2305 umem_st_update_thr = thr_self(); 2306 2307 (void) mutex_unlock(&umem_update_lock); 2308 2309 vmem_update(NULL); 2310 umem_cache_applyall(umem_cache_update); 2311 2312 (void) mutex_lock(&umem_update_lock); 2313 2314 umem_process_updates(); /* does all of the requested work */ 2315 2316 umem_reap_next = gethrtime() + 2317 (hrtime_t)umem_reap_interval * NANOSEC; 2318 2319 umem_reaping = UMEM_REAP_DONE; 2320 2321 umem_st_update_thr = 0; 2322 } 2323 #endif 2324 2325 /* 2326 * Reclaim all unused memory from all caches. Called from vmem when memory 2327 * gets tight. Must be called with no locks held. 2328 * 2329 * This just requests a reap on all caches, and notifies the update thread. 2330 */ 2331 void 2332 umem_reap(void) 2333 { 2334 #ifndef UMEM_STANDALONE 2335 extern int __nthreads(void); 2336 #endif 2337 2338 if (umem_ready != UMEM_READY || umem_reaping != UMEM_REAP_DONE || 2339 gethrtime() < umem_reap_next) 2340 return; 2341 2342 (void) mutex_lock(&umem_update_lock); 2343 2344 if (umem_reaping != UMEM_REAP_DONE || gethrtime() < umem_reap_next) { 2345 (void) mutex_unlock(&umem_update_lock); 2346 return; 2347 } 2348 umem_reaping = UMEM_REAP_ADDING; /* lock out other reaps */ 2349 2350 (void) mutex_unlock(&umem_update_lock); 2351 2352 umem_updateall(UMU_REAP); 2353 2354 (void) mutex_lock(&umem_update_lock); 2355 2356 umem_reaping = UMEM_REAP_ACTIVE; 2357 2358 /* Standalone is single-threaded */ 2359 #ifndef UMEM_STANDALONE 2360 if (umem_update_thr == 0) { 2361 /* 2362 * The update thread does not exist. If the process is 2363 * multi-threaded, create it. If not, or the creation fails, 2364 * do the update processing inline. 2365 */ 2366 ASSERT(umem_st_update_thr == 0); 2367 2368 if (__nthreads() <= 1 || umem_create_update_thread() == 0) 2369 umem_st_update(); 2370 } 2371 2372 (void) cond_broadcast(&umem_update_cv); /* wake up the update thread */ 2373 #endif 2374 2375 (void) mutex_unlock(&umem_update_lock); 2376 } 2377 2378 umem_cache_t * 2379 umem_cache_create( 2380 char *name, /* descriptive name for this cache */ 2381 size_t bufsize, /* size of the objects it manages */ 2382 size_t align, /* required object alignment */ 2383 umem_constructor_t *constructor, /* object constructor */ 2384 umem_destructor_t *destructor, /* object destructor */ 2385 umem_reclaim_t *reclaim, /* memory reclaim callback */ 2386 void *private, /* pass-thru arg for constr/destr/reclaim */ 2387 vmem_t *vmp, /* vmem source for slab allocation */ 2388 int cflags) /* cache creation flags */ 2389 { 2390 int cpu_seqid; 2391 size_t chunksize; 2392 umem_cache_t *cp, *cnext, *cprev; 2393 umem_magtype_t *mtp; 2394 size_t csize; 2395 size_t phase; 2396 2397 /* 2398 * The init thread is allowed to create internal and quantum caches. 2399 * 2400 * Other threads must wait until until initialization is complete. 2401 */ 2402 if (umem_init_thr == thr_self()) 2403 ASSERT((cflags & (UMC_INTERNAL | UMC_QCACHE)) != 0); 2404 else { 2405 ASSERT(!(cflags & UMC_INTERNAL)); 2406 if (umem_ready != UMEM_READY && umem_init() == 0) { 2407 errno = EAGAIN; 2408 return (NULL); 2409 } 2410 } 2411 2412 csize = UMEM_CACHE_SIZE(umem_max_ncpus); 2413 phase = P2NPHASE(csize, UMEM_CPU_CACHE_SIZE); 2414 2415 if (vmp == NULL) 2416 vmp = umem_default_arena; 2417 2418 ASSERT(P2PHASE(phase, UMEM_ALIGN) == 0); 2419 2420 /* 2421 * Check that the arguments are reasonable 2422 */ 2423 if ((align & (align - 1)) != 0 || align > vmp->vm_quantum || 2424 ((cflags & UMC_NOHASH) && (cflags & UMC_NOTOUCH)) || 2425 name == NULL || bufsize == 0) { 2426 errno = EINVAL; 2427 return (NULL); 2428 } 2429 2430 /* 2431 * If align == 0, we set it to the minimum required alignment. 2432 * 2433 * If align < UMEM_ALIGN, we round it up to UMEM_ALIGN, unless 2434 * UMC_NOTOUCH was passed. 2435 */ 2436 if (align == 0) { 2437 if (P2ROUNDUP(bufsize, UMEM_ALIGN) >= UMEM_SECOND_ALIGN) 2438 align = UMEM_SECOND_ALIGN; 2439 else 2440 align = UMEM_ALIGN; 2441 } else if (align < UMEM_ALIGN && (cflags & UMC_NOTOUCH) == 0) 2442 align = UMEM_ALIGN; 2443 2444 2445 /* 2446 * Get a umem_cache structure. We arrange that cp->cache_cpu[] 2447 * is aligned on a UMEM_CPU_CACHE_SIZE boundary to prevent 2448 * false sharing of per-CPU data. 2449 */ 2450 cp = vmem_xalloc(umem_cache_arena, csize, UMEM_CPU_CACHE_SIZE, phase, 2451 0, NULL, NULL, VM_NOSLEEP); 2452 2453 if (cp == NULL) { 2454 errno = EAGAIN; 2455 return (NULL); 2456 } 2457 2458 bzero(cp, csize); 2459 2460 (void) mutex_lock(&umem_flags_lock); 2461 if (umem_flags & UMF_RANDOMIZE) 2462 umem_flags = (((umem_flags | ~UMF_RANDOM) + 1) & UMF_RANDOM) | 2463 UMF_RANDOMIZE; 2464 cp->cache_flags = umem_flags | (cflags & UMF_DEBUG); 2465 (void) mutex_unlock(&umem_flags_lock); 2466 2467 /* 2468 * Make sure all the various flags are reasonable. 2469 */ 2470 if (cp->cache_flags & UMF_LITE) { 2471 if (bufsize >= umem_lite_minsize && 2472 align <= umem_lite_maxalign && 2473 P2PHASE(bufsize, umem_lite_maxalign) != 0) { 2474 cp->cache_flags |= UMF_BUFTAG; 2475 cp->cache_flags &= ~(UMF_AUDIT | UMF_FIREWALL); 2476 } else { 2477 cp->cache_flags &= ~UMF_DEBUG; 2478 } 2479 } 2480 2481 if ((cflags & UMC_QCACHE) && (cp->cache_flags & UMF_AUDIT)) 2482 cp->cache_flags |= UMF_NOMAGAZINE; 2483 2484 if (cflags & UMC_NODEBUG) 2485 cp->cache_flags &= ~UMF_DEBUG; 2486 2487 if (cflags & UMC_NOTOUCH) 2488 cp->cache_flags &= ~UMF_TOUCH; 2489 2490 if (cflags & UMC_NOHASH) 2491 cp->cache_flags &= ~(UMF_AUDIT | UMF_FIREWALL); 2492 2493 if (cflags & UMC_NOMAGAZINE) 2494 cp->cache_flags |= UMF_NOMAGAZINE; 2495 2496 if ((cp->cache_flags & UMF_AUDIT) && !(cflags & UMC_NOTOUCH)) 2497 cp->cache_flags |= UMF_REDZONE; 2498 2499 if ((cp->cache_flags & UMF_BUFTAG) && bufsize >= umem_minfirewall && 2500 !(cp->cache_flags & UMF_LITE) && !(cflags & UMC_NOHASH)) 2501 cp->cache_flags |= UMF_FIREWALL; 2502 2503 if (vmp != umem_default_arena || umem_firewall_arena == NULL) 2504 cp->cache_flags &= ~UMF_FIREWALL; 2505 2506 if (cp->cache_flags & UMF_FIREWALL) { 2507 cp->cache_flags &= ~UMF_BUFTAG; 2508 cp->cache_flags |= UMF_NOMAGAZINE; 2509 ASSERT(vmp == umem_default_arena); 2510 vmp = umem_firewall_arena; 2511 } 2512 2513 /* 2514 * Set cache properties. 2515 */ 2516 (void) strncpy(cp->cache_name, name, sizeof (cp->cache_name) - 1); 2517 cp->cache_bufsize = bufsize; 2518 cp->cache_align = align; 2519 cp->cache_constructor = constructor; 2520 cp->cache_destructor = destructor; 2521 cp->cache_reclaim = reclaim; 2522 cp->cache_private = private; 2523 cp->cache_arena = vmp; 2524 cp->cache_cflags = cflags; 2525 cp->cache_cpu_mask = umem_cpu_mask; 2526 2527 /* 2528 * Determine the chunk size. 2529 */ 2530 chunksize = bufsize; 2531 2532 if (align >= UMEM_ALIGN) { 2533 chunksize = P2ROUNDUP(chunksize, UMEM_ALIGN); 2534 cp->cache_bufctl = chunksize - UMEM_ALIGN; 2535 } 2536 2537 if (cp->cache_flags & UMF_BUFTAG) { 2538 cp->cache_bufctl = chunksize; 2539 cp->cache_buftag = chunksize; 2540 chunksize += sizeof (umem_buftag_t); 2541 } 2542 2543 if (cp->cache_flags & UMF_DEADBEEF) { 2544 cp->cache_verify = MIN(cp->cache_buftag, umem_maxverify); 2545 if (cp->cache_flags & UMF_LITE) 2546 cp->cache_verify = MIN(cp->cache_verify, UMEM_ALIGN); 2547 } 2548 2549 cp->cache_contents = MIN(cp->cache_bufctl, umem_content_maxsave); 2550 2551 cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align); 2552 2553 if (chunksize < bufsize) { 2554 errno = ENOMEM; 2555 goto fail; 2556 } 2557 2558 /* 2559 * Now that we know the chunk size, determine the optimal slab size. 2560 */ 2561 if (vmp == umem_firewall_arena) { 2562 cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum); 2563 cp->cache_mincolor = cp->cache_slabsize - chunksize; 2564 cp->cache_maxcolor = cp->cache_mincolor; 2565 cp->cache_flags |= UMF_HASH; 2566 ASSERT(!(cp->cache_flags & UMF_BUFTAG)); 2567 } else if ((cflags & UMC_NOHASH) || (!(cflags & UMC_NOTOUCH) && 2568 !(cp->cache_flags & UMF_AUDIT) && 2569 chunksize < vmp->vm_quantum / UMEM_VOID_FRACTION)) { 2570 cp->cache_slabsize = vmp->vm_quantum; 2571 cp->cache_mincolor = 0; 2572 cp->cache_maxcolor = 2573 (cp->cache_slabsize - sizeof (umem_slab_t)) % chunksize; 2574 2575 if (chunksize + sizeof (umem_slab_t) > cp->cache_slabsize) { 2576 errno = EINVAL; 2577 goto fail; 2578 } 2579 ASSERT(!(cp->cache_flags & UMF_AUDIT)); 2580 } else { 2581 size_t chunks, bestfit, waste, slabsize; 2582 size_t minwaste = LONG_MAX; 2583 2584 for (chunks = 1; chunks <= UMEM_VOID_FRACTION; chunks++) { 2585 slabsize = P2ROUNDUP(chunksize * chunks, 2586 vmp->vm_quantum); 2587 /* 2588 * check for overflow 2589 */ 2590 if ((slabsize / chunks) < chunksize) { 2591 errno = ENOMEM; 2592 goto fail; 2593 } 2594 chunks = slabsize / chunksize; 2595 waste = (slabsize % chunksize) / chunks; 2596 if (waste < minwaste) { 2597 minwaste = waste; 2598 bestfit = slabsize; 2599 } 2600 } 2601 if (cflags & UMC_QCACHE) 2602 bestfit = MAX(1 << highbit(3 * vmp->vm_qcache_max), 64); 2603 cp->cache_slabsize = bestfit; 2604 cp->cache_mincolor = 0; 2605 cp->cache_maxcolor = bestfit % chunksize; 2606 cp->cache_flags |= UMF_HASH; 2607 } 2608 2609 if (cp->cache_flags & UMF_HASH) { 2610 ASSERT(!(cflags & UMC_NOHASH)); 2611 cp->cache_bufctl_cache = (cp->cache_flags & UMF_AUDIT) ? 2612 umem_bufctl_audit_cache : umem_bufctl_cache; 2613 } 2614 2615 if (cp->cache_maxcolor >= vmp->vm_quantum) 2616 cp->cache_maxcolor = vmp->vm_quantum - 1; 2617 2618 cp->cache_color = cp->cache_mincolor; 2619 2620 /* 2621 * Initialize the rest of the slab layer. 2622 */ 2623 (void) mutex_init(&cp->cache_lock, USYNC_THREAD, NULL); 2624 2625 cp->cache_freelist = &cp->cache_nullslab; 2626 cp->cache_nullslab.slab_cache = cp; 2627 cp->cache_nullslab.slab_refcnt = -1; 2628 cp->cache_nullslab.slab_next = &cp->cache_nullslab; 2629 cp->cache_nullslab.slab_prev = &cp->cache_nullslab; 2630 2631 if (cp->cache_flags & UMF_HASH) { 2632 cp->cache_hash_table = vmem_alloc(umem_hash_arena, 2633 UMEM_HASH_INITIAL * sizeof (void *), VM_NOSLEEP); 2634 if (cp->cache_hash_table == NULL) { 2635 errno = EAGAIN; 2636 goto fail_lock; 2637 } 2638 bzero(cp->cache_hash_table, 2639 UMEM_HASH_INITIAL * sizeof (void *)); 2640 cp->cache_hash_mask = UMEM_HASH_INITIAL - 1; 2641 cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1; 2642 } 2643 2644 /* 2645 * Initialize the depot. 2646 */ 2647 (void) mutex_init(&cp->cache_depot_lock, USYNC_THREAD, NULL); 2648 2649 for (mtp = umem_magtype; chunksize <= mtp->mt_minbuf; mtp++) 2650 continue; 2651 2652 cp->cache_magtype = mtp; 2653 2654 /* 2655 * Initialize the CPU layer. 2656 */ 2657 for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) { 2658 umem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 2659 (void) mutex_init(&ccp->cc_lock, USYNC_THREAD, NULL); 2660 ccp->cc_flags = cp->cache_flags; 2661 ccp->cc_rounds = -1; 2662 ccp->cc_prounds = -1; 2663 } 2664 2665 /* 2666 * Add the cache to the global list. This makes it visible 2667 * to umem_update(), so the cache must be ready for business. 2668 */ 2669 (void) mutex_lock(&umem_cache_lock); 2670 cp->cache_next = cnext = &umem_null_cache; 2671 cp->cache_prev = cprev = umem_null_cache.cache_prev; 2672 cnext->cache_prev = cp; 2673 cprev->cache_next = cp; 2674 (void) mutex_unlock(&umem_cache_lock); 2675 2676 if (umem_ready == UMEM_READY) 2677 umem_cache_magazine_enable(cp); 2678 2679 return (cp); 2680 2681 fail_lock: 2682 (void) mutex_destroy(&cp->cache_lock); 2683 fail: 2684 vmem_xfree(umem_cache_arena, cp, csize); 2685 return (NULL); 2686 } 2687 2688 void 2689 umem_cache_destroy(umem_cache_t *cp) 2690 { 2691 int cpu_seqid; 2692 2693 /* 2694 * Remove the cache from the global cache list so that no new updates 2695 * will be scheduled on its behalf, wait for any pending tasks to 2696 * complete, purge the cache, and then destroy it. 2697 */ 2698 (void) mutex_lock(&umem_cache_lock); 2699 cp->cache_prev->cache_next = cp->cache_next; 2700 cp->cache_next->cache_prev = cp->cache_prev; 2701 cp->cache_prev = cp->cache_next = NULL; 2702 (void) mutex_unlock(&umem_cache_lock); 2703 2704 umem_remove_updates(cp); 2705 2706 umem_cache_magazine_purge(cp); 2707 2708 (void) mutex_lock(&cp->cache_lock); 2709 if (cp->cache_buftotal != 0) 2710 log_message("umem_cache_destroy: '%s' (%p) not empty\n", 2711 cp->cache_name, (void *)cp); 2712 cp->cache_reclaim = NULL; 2713 /* 2714 * The cache is now dead. There should be no further activity. 2715 * We enforce this by setting land mines in the constructor and 2716 * destructor routines that induce a segmentation fault if invoked. 2717 */ 2718 cp->cache_constructor = (umem_constructor_t *)1; 2719 cp->cache_destructor = (umem_destructor_t *)2; 2720 (void) mutex_unlock(&cp->cache_lock); 2721 2722 if (cp->cache_hash_table != NULL) 2723 vmem_free(umem_hash_arena, cp->cache_hash_table, 2724 (cp->cache_hash_mask + 1) * sizeof (void *)); 2725 2726 for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) 2727 (void) mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock); 2728 2729 (void) mutex_destroy(&cp->cache_depot_lock); 2730 (void) mutex_destroy(&cp->cache_lock); 2731 2732 vmem_free(umem_cache_arena, cp, UMEM_CACHE_SIZE(umem_max_ncpus)); 2733 } 2734 2735 void 2736 umem_alloc_sizes_clear(void) 2737 { 2738 int i; 2739 2740 umem_alloc_sizes[0] = UMEM_MAXBUF; 2741 for (i = 1; i < NUM_ALLOC_SIZES; i++) 2742 umem_alloc_sizes[i] = 0; 2743 } 2744 2745 void 2746 umem_alloc_sizes_add(size_t size_arg) 2747 { 2748 int i, j; 2749 size_t size = size_arg; 2750 2751 if (size == 0) { 2752 log_message("size_add: cannot add zero-sized cache\n", 2753 size, UMEM_MAXBUF); 2754 return; 2755 } 2756 2757 if (size > UMEM_MAXBUF) { 2758 log_message("size_add: %ld > %d, cannot add\n", size, 2759 UMEM_MAXBUF); 2760 return; 2761 } 2762 2763 if (umem_alloc_sizes[NUM_ALLOC_SIZES - 1] != 0) { 2764 log_message("size_add: no space in alloc_table for %d\n", 2765 size); 2766 return; 2767 } 2768 2769 if (P2PHASE(size, UMEM_ALIGN) != 0) { 2770 size = P2ROUNDUP(size, UMEM_ALIGN); 2771 log_message("size_add: rounding %d up to %d\n", size_arg, 2772 size); 2773 } 2774 2775 for (i = 0; i < NUM_ALLOC_SIZES; i++) { 2776 int cur = umem_alloc_sizes[i]; 2777 if (cur == size) { 2778 log_message("size_add: %ld already in table\n", 2779 size); 2780 return; 2781 } 2782 if (cur > size) 2783 break; 2784 } 2785 2786 for (j = NUM_ALLOC_SIZES - 1; j > i; j--) 2787 umem_alloc_sizes[j] = umem_alloc_sizes[j-1]; 2788 umem_alloc_sizes[i] = size; 2789 } 2790 2791 void 2792 umem_alloc_sizes_remove(size_t size) 2793 { 2794 int i; 2795 2796 if (size == UMEM_MAXBUF) { 2797 log_message("size_remove: cannot remove %ld\n", size); 2798 return; 2799 } 2800 2801 for (i = 0; i < NUM_ALLOC_SIZES; i++) { 2802 int cur = umem_alloc_sizes[i]; 2803 if (cur == size) 2804 break; 2805 else if (cur > size || cur == 0) { 2806 log_message("size_remove: %ld not found in table\n", 2807 size); 2808 return; 2809 } 2810 } 2811 2812 for (; i + 1 < NUM_ALLOC_SIZES; i++) 2813 umem_alloc_sizes[i] = umem_alloc_sizes[i+1]; 2814 umem_alloc_sizes[i] = 0; 2815 } 2816 2817 static int 2818 umem_cache_init(void) 2819 { 2820 int i; 2821 size_t size, max_size; 2822 umem_cache_t *cp; 2823 umem_magtype_t *mtp; 2824 char name[UMEM_CACHE_NAMELEN + 1]; 2825 umem_cache_t *umem_alloc_caches[NUM_ALLOC_SIZES]; 2826 2827 for (i = 0; i < sizeof (umem_magtype) / sizeof (*mtp); i++) { 2828 mtp = &umem_magtype[i]; 2829 (void) snprintf(name, sizeof (name), "umem_magazine_%d", 2830 mtp->mt_magsize); 2831 mtp->mt_cache = umem_cache_create(name, 2832 (mtp->mt_magsize + 1) * sizeof (void *), 2833 mtp->mt_align, NULL, NULL, NULL, NULL, 2834 umem_internal_arena, UMC_NOHASH | UMC_INTERNAL); 2835 if (mtp->mt_cache == NULL) 2836 return (0); 2837 } 2838 2839 umem_slab_cache = umem_cache_create("umem_slab_cache", 2840 sizeof (umem_slab_t), 0, NULL, NULL, NULL, NULL, 2841 umem_internal_arena, UMC_NOHASH | UMC_INTERNAL); 2842 2843 if (umem_slab_cache == NULL) 2844 return (0); 2845 2846 umem_bufctl_cache = umem_cache_create("umem_bufctl_cache", 2847 sizeof (umem_bufctl_t), 0, NULL, NULL, NULL, NULL, 2848 umem_internal_arena, UMC_NOHASH | UMC_INTERNAL); 2849 2850 if (umem_bufctl_cache == NULL) 2851 return (0); 2852 2853 /* 2854 * The size of the umem_bufctl_audit structure depends upon 2855 * umem_stack_depth. See umem_impl.h for details on the size 2856 * restrictions. 2857 */ 2858 2859 size = UMEM_BUFCTL_AUDIT_SIZE_DEPTH(umem_stack_depth); 2860 max_size = UMEM_BUFCTL_AUDIT_MAX_SIZE; 2861 2862 if (size > max_size) { /* too large -- truncate */ 2863 int max_frames = UMEM_MAX_STACK_DEPTH; 2864 2865 ASSERT(UMEM_BUFCTL_AUDIT_SIZE_DEPTH(max_frames) <= max_size); 2866 2867 umem_stack_depth = max_frames; 2868 size = UMEM_BUFCTL_AUDIT_SIZE_DEPTH(umem_stack_depth); 2869 } 2870 2871 umem_bufctl_audit_cache = umem_cache_create("umem_bufctl_audit_cache", 2872 size, 0, NULL, NULL, NULL, NULL, umem_internal_arena, 2873 UMC_NOHASH | UMC_INTERNAL); 2874 2875 if (umem_bufctl_audit_cache == NULL) 2876 return (0); 2877 2878 if (vmem_backend & VMEM_BACKEND_MMAP) 2879 umem_va_arena = vmem_create("umem_va", 2880 NULL, 0, pagesize, 2881 vmem_alloc, vmem_free, heap_arena, 2882 8 * pagesize, VM_NOSLEEP); 2883 else 2884 umem_va_arena = heap_arena; 2885 2886 if (umem_va_arena == NULL) 2887 return (0); 2888 2889 umem_default_arena = vmem_create("umem_default", 2890 NULL, 0, pagesize, 2891 heap_alloc, heap_free, umem_va_arena, 2892 0, VM_NOSLEEP); 2893 2894 if (umem_default_arena == NULL) 2895 return (0); 2896 2897 /* 2898 * make sure the umem_alloc table initializer is correct 2899 */ 2900 i = sizeof (umem_alloc_table) / sizeof (*umem_alloc_table); 2901 ASSERT(umem_alloc_table[i - 1] == &umem_null_cache); 2902 2903 /* 2904 * Create the default caches to back umem_alloc() 2905 */ 2906 for (i = 0; i < NUM_ALLOC_SIZES; i++) { 2907 size_t cache_size = umem_alloc_sizes[i]; 2908 size_t align = 0; 2909 2910 if (cache_size == 0) 2911 break; /* 0 terminates the list */ 2912 2913 /* 2914 * If they allocate a multiple of the coherency granularity, 2915 * they get a coherency-granularity-aligned address. 2916 */ 2917 if (IS_P2ALIGNED(cache_size, 64)) 2918 align = 64; 2919 if (IS_P2ALIGNED(cache_size, pagesize)) 2920 align = pagesize; 2921 (void) snprintf(name, sizeof (name), "umem_alloc_%lu", 2922 (long)cache_size); 2923 2924 cp = umem_cache_create(name, cache_size, align, 2925 NULL, NULL, NULL, NULL, NULL, UMC_INTERNAL); 2926 if (cp == NULL) 2927 return (0); 2928 2929 umem_alloc_caches[i] = cp; 2930 } 2931 2932 /* 2933 * Initialization cannot fail at this point. Make the caches 2934 * visible to umem_alloc() and friends. 2935 */ 2936 size = UMEM_ALIGN; 2937 for (i = 0; i < NUM_ALLOC_SIZES; i++) { 2938 size_t cache_size = umem_alloc_sizes[i]; 2939 2940 if (cache_size == 0) 2941 break; /* 0 terminates the list */ 2942 2943 cp = umem_alloc_caches[i]; 2944 2945 while (size <= cache_size) { 2946 umem_alloc_table[(size - 1) >> UMEM_ALIGN_SHIFT] = cp; 2947 size += UMEM_ALIGN; 2948 } 2949 } 2950 ASSERT(size - UMEM_ALIGN == UMEM_MAXBUF); 2951 return (1); 2952 } 2953 2954 /* 2955 * umem_startup() is called early on, and must be called explicitly if we're 2956 * the standalone version. 2957 */ 2958 #ifdef UMEM_STANDALONE 2959 void 2960 #else 2961 #pragma init(umem_startup) 2962 static void 2963 #endif 2964 umem_startup(caddr_t start, size_t len, size_t pagesize, caddr_t minstack, 2965 caddr_t maxstack) 2966 { 2967 #ifdef UMEM_STANDALONE 2968 int idx; 2969 /* Standalone doesn't fork */ 2970 #else 2971 umem_forkhandler_init(); /* register the fork handler */ 2972 #endif 2973 2974 #ifdef __lint 2975 /* make lint happy */ 2976 minstack = maxstack; 2977 #endif 2978 2979 #ifdef UMEM_STANDALONE 2980 umem_ready = UMEM_READY_STARTUP; 2981 umem_init_env_ready = 0; 2982 2983 umem_min_stack = minstack; 2984 umem_max_stack = maxstack; 2985 2986 nofail_callback = NULL; 2987 umem_slab_cache = NULL; 2988 umem_bufctl_cache = NULL; 2989 umem_bufctl_audit_cache = NULL; 2990 heap_arena = NULL; 2991 heap_alloc = NULL; 2992 heap_free = NULL; 2993 umem_internal_arena = NULL; 2994 umem_cache_arena = NULL; 2995 umem_hash_arena = NULL; 2996 umem_log_arena = NULL; 2997 umem_oversize_arena = NULL; 2998 umem_va_arena = NULL; 2999 umem_default_arena = NULL; 3000 umem_firewall_va_arena = NULL; 3001 umem_firewall_arena = NULL; 3002 umem_memalign_arena = NULL; 3003 umem_transaction_log = NULL; 3004 umem_content_log = NULL; 3005 umem_failure_log = NULL; 3006 umem_slab_log = NULL; 3007 umem_cpu_mask = 0; 3008 3009 umem_cpus = &umem_startup_cpu; 3010 umem_startup_cpu.cpu_cache_offset = UMEM_CACHE_SIZE(0); 3011 umem_startup_cpu.cpu_number = 0; 3012 3013 bcopy(&umem_null_cache_template, &umem_null_cache, 3014 sizeof (umem_cache_t)); 3015 3016 for (idx = 0; idx < (UMEM_MAXBUF >> UMEM_ALIGN_SHIFT); idx++) 3017 umem_alloc_table[idx] = &umem_null_cache; 3018 #endif 3019 3020 /* 3021 * Perform initialization specific to the way we've been compiled 3022 * (library or standalone) 3023 */ 3024 umem_type_init(start, len, pagesize); 3025 3026 vmem_startup(); 3027 } 3028 3029 int 3030 umem_init(void) 3031 { 3032 size_t maxverify, minfirewall; 3033 size_t size; 3034 int idx; 3035 umem_cpu_t *new_cpus; 3036 3037 vmem_t *memalign_arena, *oversize_arena; 3038 3039 if (thr_self() != umem_init_thr) { 3040 /* 3041 * The usual case -- non-recursive invocation of umem_init(). 3042 */ 3043 (void) mutex_lock(&umem_init_lock); 3044 if (umem_ready != UMEM_READY_STARTUP) { 3045 /* 3046 * someone else beat us to initializing umem. Wait 3047 * for them to complete, then return. 3048 */ 3049 while (umem_ready == UMEM_READY_INITING) { 3050 int cancel_state; 3051 3052 (void) pthread_setcancelstate( 3053 PTHREAD_CANCEL_DISABLE, &cancel_state); 3054 (void) cond_wait(&umem_init_cv, 3055 &umem_init_lock); 3056 (void) pthread_setcancelstate( 3057 cancel_state, NULL); 3058 } 3059 ASSERT(umem_ready == UMEM_READY || 3060 umem_ready == UMEM_READY_INIT_FAILED); 3061 (void) mutex_unlock(&umem_init_lock); 3062 return (umem_ready == UMEM_READY); 3063 } 3064 3065 ASSERT(umem_ready == UMEM_READY_STARTUP); 3066 ASSERT(umem_init_env_ready == 0); 3067 3068 umem_ready = UMEM_READY_INITING; 3069 umem_init_thr = thr_self(); 3070 3071 (void) mutex_unlock(&umem_init_lock); 3072 umem_setup_envvars(0); /* can recurse -- see below */ 3073 if (umem_init_env_ready) { 3074 /* 3075 * initialization was completed already 3076 */ 3077 ASSERT(umem_ready == UMEM_READY || 3078 umem_ready == UMEM_READY_INIT_FAILED); 3079 ASSERT(umem_init_thr == 0); 3080 return (umem_ready == UMEM_READY); 3081 } 3082 } else if (!umem_init_env_ready) { 3083 /* 3084 * The umem_setup_envvars() call (above) makes calls into 3085 * the dynamic linker and directly into user-supplied code. 3086 * Since we cannot know what that code will do, we could be 3087 * recursively invoked (by, say, a malloc() call in the code 3088 * itself, or in a (C++) _init section it causes to be fired). 3089 * 3090 * This code is where we end up if such recursion occurs. We 3091 * first clean up any partial results in the envvar code, then 3092 * proceed to finish initialization processing in the recursive 3093 * call. The original call will notice this, and return 3094 * immediately. 3095 */ 3096 umem_setup_envvars(1); /* clean up any partial state */ 3097 } else { 3098 umem_panic( 3099 "recursive allocation while initializing umem\n"); 3100 } 3101 umem_init_env_ready = 1; 3102 3103 /* 3104 * From this point until we finish, recursion into umem_init() will 3105 * cause a umem_panic(). 3106 */ 3107 maxverify = minfirewall = ULONG_MAX; 3108 3109 /* LINTED constant condition */ 3110 if (sizeof (umem_cpu_cache_t) != UMEM_CPU_CACHE_SIZE) { 3111 umem_panic("sizeof (umem_cpu_cache_t) = %d, should be %d\n", 3112 sizeof (umem_cpu_cache_t), UMEM_CPU_CACHE_SIZE); 3113 } 3114 3115 umem_max_ncpus = umem_get_max_ncpus(); 3116 3117 /* 3118 * load tunables from environment 3119 */ 3120 umem_process_envvars(); 3121 3122 if (issetugid()) 3123 umem_mtbf = 0; 3124 3125 /* 3126 * set up vmem 3127 */ 3128 if (!(umem_flags & UMF_AUDIT)) 3129 vmem_no_debug(); 3130 3131 heap_arena = vmem_heap_arena(&heap_alloc, &heap_free); 3132 3133 pagesize = heap_arena->vm_quantum; 3134 3135 umem_internal_arena = vmem_create("umem_internal", NULL, 0, pagesize, 3136 heap_alloc, heap_free, heap_arena, 0, VM_NOSLEEP); 3137 3138 umem_default_arena = umem_internal_arena; 3139 3140 if (umem_internal_arena == NULL) 3141 goto fail; 3142 3143 umem_cache_arena = vmem_create("umem_cache", NULL, 0, UMEM_ALIGN, 3144 vmem_alloc, vmem_free, umem_internal_arena, 0, VM_NOSLEEP); 3145 3146 umem_hash_arena = vmem_create("umem_hash", NULL, 0, UMEM_ALIGN, 3147 vmem_alloc, vmem_free, umem_internal_arena, 0, VM_NOSLEEP); 3148 3149 umem_log_arena = vmem_create("umem_log", NULL, 0, UMEM_ALIGN, 3150 heap_alloc, heap_free, heap_arena, 0, VM_NOSLEEP); 3151 3152 umem_firewall_va_arena = vmem_create("umem_firewall_va", 3153 NULL, 0, pagesize, 3154 umem_firewall_va_alloc, umem_firewall_va_free, heap_arena, 3155 0, VM_NOSLEEP); 3156 3157 if (umem_cache_arena == NULL || umem_hash_arena == NULL || 3158 umem_log_arena == NULL || umem_firewall_va_arena == NULL) 3159 goto fail; 3160 3161 umem_firewall_arena = vmem_create("umem_firewall", NULL, 0, pagesize, 3162 heap_alloc, heap_free, umem_firewall_va_arena, 0, 3163 VM_NOSLEEP); 3164 3165 if (umem_firewall_arena == NULL) 3166 goto fail; 3167 3168 oversize_arena = vmem_create("umem_oversize", NULL, 0, pagesize, 3169 heap_alloc, heap_free, minfirewall < ULONG_MAX ? 3170 umem_firewall_va_arena : heap_arena, 0, VM_NOSLEEP); 3171 3172 memalign_arena = vmem_create("umem_memalign", NULL, 0, UMEM_ALIGN, 3173 heap_alloc, heap_free, minfirewall < ULONG_MAX ? 3174 umem_firewall_va_arena : heap_arena, 0, VM_NOSLEEP); 3175 3176 if (oversize_arena == NULL || memalign_arena == NULL) 3177 goto fail; 3178 3179 if (umem_max_ncpus > CPUHINT_MAX()) 3180 umem_max_ncpus = CPUHINT_MAX(); 3181 3182 while ((umem_max_ncpus & (umem_max_ncpus - 1)) != 0) 3183 umem_max_ncpus++; 3184 3185 if (umem_max_ncpus == 0) 3186 umem_max_ncpus = 1; 3187 3188 size = umem_max_ncpus * sizeof (umem_cpu_t); 3189 new_cpus = vmem_alloc(umem_internal_arena, size, VM_NOSLEEP); 3190 if (new_cpus == NULL) 3191 goto fail; 3192 3193 bzero(new_cpus, size); 3194 for (idx = 0; idx < umem_max_ncpus; idx++) { 3195 new_cpus[idx].cpu_number = idx; 3196 new_cpus[idx].cpu_cache_offset = UMEM_CACHE_SIZE(idx); 3197 } 3198 umem_cpus = new_cpus; 3199 umem_cpu_mask = (umem_max_ncpus - 1); 3200 3201 if (umem_maxverify == 0) 3202 umem_maxverify = maxverify; 3203 3204 if (umem_minfirewall == 0) 3205 umem_minfirewall = minfirewall; 3206 3207 /* 3208 * Set up updating and reaping 3209 */ 3210 umem_reap_next = gethrtime() + NANOSEC; 3211 3212 #ifndef UMEM_STANDALONE 3213 (void) gettimeofday(&umem_update_next, NULL); 3214 #endif 3215 3216 /* 3217 * Set up logging -- failure here is okay, since it will just disable 3218 * the logs 3219 */ 3220 if (umem_logging) { 3221 umem_transaction_log = umem_log_init(umem_transaction_log_size); 3222 umem_content_log = umem_log_init(umem_content_log_size); 3223 umem_failure_log = umem_log_init(umem_failure_log_size); 3224 umem_slab_log = umem_log_init(umem_slab_log_size); 3225 } 3226 3227 /* 3228 * Set up caches -- if successful, initialization cannot fail, since 3229 * allocations from other threads can now succeed. 3230 */ 3231 if (umem_cache_init() == 0) { 3232 log_message("unable to create initial caches\n"); 3233 goto fail; 3234 } 3235 umem_oversize_arena = oversize_arena; 3236 umem_memalign_arena = memalign_arena; 3237 3238 umem_cache_applyall(umem_cache_magazine_enable); 3239 3240 /* 3241 * initialization done, ready to go 3242 */ 3243 (void) mutex_lock(&umem_init_lock); 3244 umem_ready = UMEM_READY; 3245 umem_init_thr = 0; 3246 (void) cond_broadcast(&umem_init_cv); 3247 (void) mutex_unlock(&umem_init_lock); 3248 return (1); 3249 3250 fail: 3251 log_message("umem initialization failed\n"); 3252 3253 (void) mutex_lock(&umem_init_lock); 3254 umem_ready = UMEM_READY_INIT_FAILED; 3255 umem_init_thr = 0; 3256 (void) cond_broadcast(&umem_init_cv); 3257 (void) mutex_unlock(&umem_init_lock); 3258 return (0); 3259 } 3260