xref: /titanic_41/usr/src/lib/libscf/common/lowlevel.c (revision 3fb517f786391b507780c78aabb8d98bfea9efe9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * This is the main implementation file for the low-level repository
29  * interface.
30  */
31 
32 #include "lowlevel_impl.h"
33 
34 #include "repcache_protocol.h"
35 #include "scf_type.h"
36 
37 #include <assert.h>
38 #include <alloca.h>
39 #include <door.h>
40 #include <errno.h>
41 #include <fcntl.h>
42 #include <fnmatch.h>
43 #include <libuutil.h>
44 #include <poll.h>
45 #include <pthread.h>
46 #include <synch.h>
47 #include <stddef.h>
48 #include <stdio.h>
49 #include <stdlib.h>
50 #include <string.h>
51 #include <sys/mman.h>
52 #include <sys/sysmacros.h>
53 #include <unistd.h>
54 
55 #define	ENV_SCF_DEBUG		"LIBSCF_DEBUG"
56 #define	ENV_SCF_DOORPATH	"LIBSCF_DOORPATH"
57 
58 static uint32_t default_debug = 0;
59 static const char *default_door_path = REPOSITORY_DOOR_NAME;
60 
61 #define	CALL_FAILED		-1
62 #define	RESULT_TOO_BIG		-2
63 #define	NOT_BOUND		-3
64 
65 static pthread_mutex_t	lowlevel_init_lock;
66 static int32_t		lowlevel_inited;
67 
68 static uu_list_pool_t	*tran_entry_pool;
69 static uu_list_pool_t	*datael_pool;
70 static uu_list_pool_t	*iter_pool;
71 
72 /*
73  * base32[] index32[] are used in base32 encoding and decoding.
74  */
75 static char base32[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ234567";
76 static char index32[128] = {
77 	-1, -1, -1, -1, -1, -1, -1, -1,	/* 0-7 */
78 	-1, -1, -1, -1, -1, -1, -1, -1,	/* 8-15 */
79 	-1, -1, -1, -1, -1, -1, -1, -1,	/* 16-23 */
80 	-1, -1, -1, -1, -1, -1, -1, -1,	/* 24-31 */
81 	-1, -1, -1, -1, -1, -1, -1, -1,	/* 32-39 */
82 	-1, -1, -1, -1, -1, -1, -1, -1,	/* 40-47 */
83 	-1, -1, 26, 27, 28, 29, 30, 31,	/* 48-55 */
84 	-1, -1, -1, -1, -1, -1, -1, -1,	/* 56-63 */
85 	-1, 0, 1, 2, 3, 4, 5, 6,	/* 64-71 */
86 	7, 8, 9, 10, 11, 12, 13, 14,	/* 72-79 */
87 	15, 16, 17, 18, 19, 20, 21, 22,	/* 80-87 */
88 	23, 24, 25, -1, -1, -1, -1, -1,	/* 88-95 */
89 	-1, -1, -1, -1, -1, -1, -1, -1,	/* 96-103 */
90 	-1, -1, -1, -1, -1, -1, -1, -1,	/* 104-111 */
91 	-1, -1, -1, -1, -1, -1, -1, -1,	/* 112-119 */
92 	-1, -1, -1, -1, -1, -1, -1, -1	/* 120-127 */
93 };
94 
95 #define	DECODE32_GS	(8)	/* scf_decode32 group size */
96 
97 #ifdef lint
98 #define	assert_nolint(x) (void)0
99 #else
100 #define	assert_nolint(x) assert(x)
101 #endif
102 
103 static void scf_iter_reset_locked(scf_iter_t *iter);
104 static void scf_value_reset_locked(scf_value_t *val, int and_destroy);
105 
106 #define	TYPE_VALUE	(-100)
107 
108 /*
109  * Hold and release subhandles.  We only allow one thread access to the
110  * subhandles at a time, and he can use any subset, grabbing and releasing
111  * them in any order.  The only restrictions are that you cannot hold an
112  * already-held subhandle, and all subhandles must be released before
113  * returning to the original caller.
114  */
115 static void
116 handle_hold_subhandles(scf_handle_t *h, int mask)
117 {
118 	assert(mask != 0 && (mask & ~RH_HOLD_ALL) == 0);
119 
120 	(void) pthread_mutex_lock(&h->rh_lock);
121 	while (h->rh_hold_flags != 0 && h->rh_holder != pthread_self()) {
122 		int cancel_state;
123 
124 		(void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE,
125 		    &cancel_state);
126 		(void) pthread_cond_wait(&h->rh_cv, &h->rh_lock);
127 		(void) pthread_setcancelstate(cancel_state, NULL);
128 	}
129 	if (h->rh_hold_flags == 0)
130 		h->rh_holder = pthread_self();
131 	assert(!(h->rh_hold_flags & mask));
132 	h->rh_hold_flags |= mask;
133 	(void) pthread_mutex_unlock(&h->rh_lock);
134 }
135 
136 static void
137 handle_rele_subhandles(scf_handle_t *h, int mask)
138 {
139 	assert(mask != 0 && (mask & ~RH_HOLD_ALL) == 0);
140 
141 	(void) pthread_mutex_lock(&h->rh_lock);
142 	assert(h->rh_holder == pthread_self());
143 	assert((h->rh_hold_flags & mask));
144 
145 	h->rh_hold_flags &= ~mask;
146 	if (h->rh_hold_flags == 0)
147 		(void) pthread_cond_signal(&h->rh_cv);
148 	(void) pthread_mutex_unlock(&h->rh_lock);
149 }
150 
151 #define	HOLD_HANDLE(h, flag, field) \
152 	(handle_hold_subhandles((h), (flag)), (h)->field)
153 
154 #define	RELE_HANDLE(h, flag) \
155 	(handle_rele_subhandles((h), (flag)))
156 
157 /*
158  * convenience macros, for functions that only need a one or two handles at
159  * any given time
160  */
161 #define	HANDLE_HOLD_ITER(h)	HOLD_HANDLE((h), RH_HOLD_ITER, rh_iter)
162 #define	HANDLE_HOLD_SCOPE(h)	HOLD_HANDLE((h), RH_HOLD_SCOPE, rh_scope)
163 #define	HANDLE_HOLD_SERVICE(h)	HOLD_HANDLE((h), RH_HOLD_SERVICE, rh_service)
164 #define	HANDLE_HOLD_INSTANCE(h)	HOLD_HANDLE((h), RH_HOLD_INSTANCE, rh_instance)
165 #define	HANDLE_HOLD_SNAPSHOT(h)	HOLD_HANDLE((h), RH_HOLD_SNAPSHOT, rh_snapshot)
166 #define	HANDLE_HOLD_SNAPLVL(h)	HOLD_HANDLE((h), RH_HOLD_SNAPLVL, rh_snaplvl)
167 #define	HANDLE_HOLD_PG(h)	HOLD_HANDLE((h), RH_HOLD_PG, rh_pg)
168 #define	HANDLE_HOLD_PROPERTY(h)	HOLD_HANDLE((h), RH_HOLD_PROPERTY, rh_property)
169 #define	HANDLE_HOLD_VALUE(h)	HOLD_HANDLE((h), RH_HOLD_VALUE, rh_value)
170 
171 #define	HANDLE_RELE_ITER(h)	RELE_HANDLE((h), RH_HOLD_ITER)
172 #define	HANDLE_RELE_SCOPE(h)	RELE_HANDLE((h), RH_HOLD_SCOPE)
173 #define	HANDLE_RELE_SERVICE(h)	RELE_HANDLE((h), RH_HOLD_SERVICE)
174 #define	HANDLE_RELE_INSTANCE(h)	RELE_HANDLE((h), RH_HOLD_INSTANCE)
175 #define	HANDLE_RELE_SNAPSHOT(h)	RELE_HANDLE((h), RH_HOLD_SNAPSHOT)
176 #define	HANDLE_RELE_SNAPLVL(h)	RELE_HANDLE((h), RH_HOLD_SNAPLVL)
177 #define	HANDLE_RELE_PG(h)	RELE_HANDLE((h), RH_HOLD_PG)
178 #define	HANDLE_RELE_PROPERTY(h)	RELE_HANDLE((h), RH_HOLD_PROPERTY)
179 #define	HANDLE_RELE_VALUE(h)	RELE_HANDLE((h), RH_HOLD_VALUE)
180 
181 /*ARGSUSED*/
182 static int
183 transaction_entry_compare(const void *l_arg, const void *r_arg, void *private)
184 {
185 	const char *l_prop =
186 	    ((scf_transaction_entry_t *)l_arg)->entry_property;
187 	const char *r_prop =
188 	    ((scf_transaction_entry_t *)r_arg)->entry_property;
189 
190 	int ret;
191 
192 	ret = strcmp(l_prop, r_prop);
193 	if (ret > 0)
194 		return (1);
195 	if (ret < 0)
196 		return (-1);
197 	return (0);
198 }
199 
200 static int
201 datael_compare(const void *l_arg, const void *r_arg, void *private)
202 {
203 	uint32_t l_id = ((scf_datael_t *)l_arg)->rd_entity;
204 	uint32_t r_id = (r_arg != NULL) ? ((scf_datael_t *)r_arg)->rd_entity :
205 	    *(uint32_t *)private;
206 
207 	if (l_id > r_id)
208 		return (1);
209 	if (l_id < r_id)
210 		return (-1);
211 	return (0);
212 }
213 
214 static int
215 iter_compare(const void *l_arg, const void *r_arg, void *private)
216 {
217 	uint32_t l_id = ((scf_iter_t *)l_arg)->iter_id;
218 	uint32_t r_id = (r_arg != NULL) ? ((scf_iter_t *)r_arg)->iter_id :
219 	    *(uint32_t *)private;
220 
221 	if (l_id > r_id)
222 		return (1);
223 	if (l_id < r_id)
224 		return (-1);
225 	return (0);
226 }
227 
228 static int
229 lowlevel_init(void)
230 {
231 	const char *debug;
232 	const char *door_path;
233 
234 	(void) pthread_mutex_lock(&lowlevel_init_lock);
235 	if (lowlevel_inited == 0) {
236 		if (!issetugid() &&
237 		    (debug = getenv(ENV_SCF_DEBUG)) != NULL && debug[0] != 0 &&
238 		    uu_strtoint(debug, &default_debug, sizeof (default_debug),
239 		    0, 0, 0) == -1) {
240 			(void) fprintf(stderr, "LIBSCF: $%s (%s): %s",
241 			    ENV_SCF_DEBUG, debug,
242 			    uu_strerror(uu_error()));
243 		}
244 
245 		if (!issetugid() &&
246 		    (door_path = getenv(ENV_SCF_DOORPATH)) != NULL &&
247 		    door_path[0] != 0) {
248 			default_door_path = strdup(door_path);
249 			if (default_door_path == NULL)
250 				default_door_path = door_path;
251 		}
252 
253 		datael_pool = uu_list_pool_create("SUNW,libscf_datael",
254 		    sizeof (scf_datael_t), offsetof(scf_datael_t, rd_node),
255 		    datael_compare, UU_LIST_POOL_DEBUG);
256 
257 		iter_pool = uu_list_pool_create("SUNW,libscf_iter",
258 		    sizeof (scf_iter_t), offsetof(scf_iter_t, iter_node),
259 		    iter_compare, UU_LIST_POOL_DEBUG);
260 
261 		assert_nolint(offsetof(scf_transaction_entry_t,
262 		    entry_property) == 0);
263 		tran_entry_pool = uu_list_pool_create(
264 		    "SUNW,libscf_transaction_entity",
265 		    sizeof (scf_transaction_entry_t),
266 		    offsetof(scf_transaction_entry_t, entry_link),
267 		    transaction_entry_compare, UU_LIST_POOL_DEBUG);
268 
269 		if (datael_pool == NULL || iter_pool == NULL ||
270 		    tran_entry_pool == NULL) {
271 			lowlevel_inited = -1;
272 			goto end;
273 		}
274 
275 		if (!scf_setup_error()) {
276 			lowlevel_inited = -1;
277 			goto end;
278 		}
279 		lowlevel_inited = 1;
280 	}
281 end:
282 	(void) pthread_mutex_unlock(&lowlevel_init_lock);
283 	if (lowlevel_inited > 0)
284 		return (1);
285 	return (0);
286 }
287 
288 static const struct {
289 	scf_type_t ti_type;
290 	rep_protocol_value_type_t ti_proto_type;
291 	const char *ti_name;
292 } scf_type_info[] = {
293 	{SCF_TYPE_BOOLEAN,	REP_PROTOCOL_TYPE_BOOLEAN,	"boolean"},
294 	{SCF_TYPE_COUNT,	REP_PROTOCOL_TYPE_COUNT,	"count"},
295 	{SCF_TYPE_INTEGER,	REP_PROTOCOL_TYPE_INTEGER,	"integer"},
296 	{SCF_TYPE_TIME,		REP_PROTOCOL_TYPE_TIME,		"time"},
297 	{SCF_TYPE_ASTRING,	REP_PROTOCOL_TYPE_STRING,	"astring"},
298 	{SCF_TYPE_OPAQUE,	REP_PROTOCOL_TYPE_OPAQUE,	"opaque"},
299 	{SCF_TYPE_USTRING,	REP_PROTOCOL_SUBTYPE_USTRING,	"ustring"},
300 	{SCF_TYPE_URI,		REP_PROTOCOL_SUBTYPE_URI,	"uri"},
301 	{SCF_TYPE_FMRI,		REP_PROTOCOL_SUBTYPE_FMRI,	"fmri"},
302 	{SCF_TYPE_HOST,		REP_PROTOCOL_SUBTYPE_HOST,	"host"},
303 	{SCF_TYPE_HOSTNAME,	REP_PROTOCOL_SUBTYPE_HOSTNAME,	"hostname"},
304 	{SCF_TYPE_NET_ADDR_V4,	REP_PROTOCOL_SUBTYPE_NETADDR_V4,
305 	    "net_address_v4"},
306 	{SCF_TYPE_NET_ADDR_V6,	REP_PROTOCOL_SUBTYPE_NETADDR_V6,
307 	    "net_address_v6"}
308 };
309 
310 #define	SCF_TYPE_INFO_COUNT (sizeof (scf_type_info) / sizeof (*scf_type_info))
311 static rep_protocol_value_type_t
312 scf_type_to_protocol_type(scf_type_t t)
313 {
314 	int i;
315 
316 	for (i = 0; i < SCF_TYPE_INFO_COUNT; i++)
317 		if (scf_type_info[i].ti_type == t)
318 			return (scf_type_info[i].ti_proto_type);
319 
320 	return (REP_PROTOCOL_TYPE_INVALID);
321 }
322 
323 static scf_type_t
324 scf_protocol_type_to_type(rep_protocol_value_type_t t)
325 {
326 	int i;
327 
328 	for (i = 0; i < SCF_TYPE_INFO_COUNT; i++)
329 		if (scf_type_info[i].ti_proto_type == t)
330 			return (scf_type_info[i].ti_type);
331 
332 	return (SCF_TYPE_INVALID);
333 }
334 
335 const char *
336 scf_type_to_string(scf_type_t ty)
337 {
338 	int i;
339 
340 	for (i = 0; i < SCF_TYPE_INFO_COUNT; i++)
341 		if (scf_type_info[i].ti_type == ty)
342 			return (scf_type_info[i].ti_name);
343 
344 	return ("unknown");
345 }
346 
347 scf_type_t
348 scf_string_to_type(const char *name)
349 {
350 	int i;
351 
352 	for (i = 0; i < sizeof (scf_type_info) / sizeof (*scf_type_info); i++)
353 		if (strcmp(scf_type_info[i].ti_name, name) == 0)
354 			return (scf_type_info[i].ti_type);
355 
356 	return (SCF_TYPE_INVALID);
357 }
358 
359 int
360 scf_type_base_type(scf_type_t type, scf_type_t *out)
361 {
362 	rep_protocol_value_type_t t = scf_type_to_protocol_type(type);
363 	if (t == REP_PROTOCOL_TYPE_INVALID)
364 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
365 
366 	*out = scf_protocol_type_to_type(scf_proto_underlying_type(t));
367 	return (SCF_SUCCESS);
368 }
369 
370 /*
371  * Convert a protocol error code into an SCF_ERROR_* code.
372  */
373 static scf_error_t
374 proto_error(rep_protocol_responseid_t e)
375 {
376 	switch (e) {
377 	case REP_PROTOCOL_FAIL_MISORDERED:
378 	case REP_PROTOCOL_FAIL_UNKNOWN_ID:
379 	case REP_PROTOCOL_FAIL_INVALID_TYPE:
380 	case REP_PROTOCOL_FAIL_TRUNCATED:
381 	case REP_PROTOCOL_FAIL_TYPE_MISMATCH:
382 	case REP_PROTOCOL_FAIL_NOT_APPLICABLE:
383 	case REP_PROTOCOL_FAIL_UNKNOWN:
384 		return (SCF_ERROR_INTERNAL);
385 
386 	case REP_PROTOCOL_FAIL_BAD_TX:
387 		return (SCF_ERROR_INVALID_ARGUMENT);
388 	case REP_PROTOCOL_FAIL_BAD_REQUEST:
389 		return (SCF_ERROR_INVALID_ARGUMENT);
390 	case REP_PROTOCOL_FAIL_NO_RESOURCES:
391 		return (SCF_ERROR_NO_RESOURCES);
392 	case REP_PROTOCOL_FAIL_NOT_FOUND:
393 		return (SCF_ERROR_NOT_FOUND);
394 	case REP_PROTOCOL_FAIL_DELETED:
395 		return (SCF_ERROR_DELETED);
396 	case REP_PROTOCOL_FAIL_NOT_SET:
397 		return (SCF_ERROR_NOT_SET);
398 	case REP_PROTOCOL_FAIL_EXISTS:
399 		return (SCF_ERROR_EXISTS);
400 	case REP_PROTOCOL_FAIL_DUPLICATE_ID:
401 		return (SCF_ERROR_EXISTS);
402 	case REP_PROTOCOL_FAIL_PERMISSION_DENIED:
403 		return (SCF_ERROR_PERMISSION_DENIED);
404 	case REP_PROTOCOL_FAIL_BACKEND_ACCESS:
405 		return (SCF_ERROR_BACKEND_ACCESS);
406 	case REP_PROTOCOL_FAIL_BACKEND_READONLY:
407 		return (SCF_ERROR_BACKEND_READONLY);
408 
409 	case REP_PROTOCOL_SUCCESS:
410 	case REP_PROTOCOL_DONE:
411 	case REP_PROTOCOL_FAIL_NOT_LATEST:	/* TX code should handle this */
412 	default:
413 #ifndef NDEBUG
414 		uu_warn("%s:%d: Bad error code %d passed to proto_error().\n",
415 		    __FILE__, __LINE__, e);
416 #endif
417 		abort();
418 		/*NOTREACHED*/
419 	}
420 }
421 
422 ssize_t
423 scf_limit(uint32_t limit)
424 {
425 	switch (limit) {
426 	case SCF_LIMIT_MAX_NAME_LENGTH:
427 	case SCF_LIMIT_MAX_PG_TYPE_LENGTH:
428 		return (REP_PROTOCOL_NAME_LEN - 1);
429 	case SCF_LIMIT_MAX_VALUE_LENGTH:
430 		return (REP_PROTOCOL_VALUE_LEN - 1);
431 	case SCF_LIMIT_MAX_FMRI_LENGTH:
432 		return (SCF_FMRI_PREFIX_MAX_LEN +
433 		    sizeof (SCF_FMRI_SCOPE_PREFIX) - 1 +
434 		    sizeof (SCF_FMRI_SCOPE_SUFFIX) - 1 +
435 		    sizeof (SCF_FMRI_SERVICE_PREFIX) - 1 +
436 		    sizeof (SCF_FMRI_INSTANCE_PREFIX) - 1 +
437 		    sizeof (SCF_FMRI_PROPERTYGRP_PREFIX) - 1 +
438 		    sizeof (SCF_FMRI_PROPERTY_PREFIX) - 1 +
439 		    5 * (REP_PROTOCOL_NAME_LEN - 1));
440 	default:
441 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
442 	}
443 }
444 
445 static size_t
446 scf_opaque_decode(char *out_arg, const char *in, size_t max_out)
447 {
448 	char a, b;
449 	char *out = out_arg;
450 
451 	while (max_out > 0 && (a = in[0]) != 0 && (b = in[1]) != 0) {
452 		in += 2;
453 
454 		if (a >= '0' && a <= '9')
455 			a -= '0';
456 		else if (a >= 'a' && a <= 'f')
457 			a = a - 'a' + 10;
458 		else if (a >= 'A' && a <= 'F')
459 			a = a - 'A' + 10;
460 		else
461 			break;
462 
463 		if (b >= '0' && b <= '9')
464 			b -= '0';
465 		else if (b >= 'a' && b <= 'f')
466 			b = b - 'a' + 10;
467 		else if (b >= 'A' && b <= 'F')
468 			b = b - 'A' + 10;
469 		else
470 			break;
471 
472 		*out++ = (a << 4) | b;
473 		max_out--;
474 	}
475 
476 	return (out - out_arg);
477 }
478 
479 static size_t
480 scf_opaque_encode(char *out_arg, const char *in_arg, size_t in_sz)
481 {
482 	uint8_t *in = (uint8_t *)in_arg;
483 	uint8_t *end = in + in_sz;
484 	char *out = out_arg;
485 
486 	if (out == NULL)
487 		return (2 * in_sz);
488 
489 	while (in < end) {
490 		uint8_t c = *in++;
491 
492 		uint8_t a = (c & 0xf0) >> 4;
493 		uint8_t b = (c & 0x0f);
494 
495 		if (a <= 9)
496 			*out++ = a + '0';
497 		else
498 			*out++ = a + 'a' - 10;
499 
500 		if (b <= 9)
501 			*out++ = b + '0';
502 		else
503 			*out++ = b + 'a' - 10;
504 	}
505 
506 	*out = 0;
507 
508 	return (out - out_arg);
509 }
510 
511 static void
512 handle_do_close(scf_handle_t *h)
513 {
514 	assert(MUTEX_HELD(&h->rh_lock));
515 	assert(h->rh_doorfd != -1);
516 
517 	/*
518 	 * if there are any active FD users, we just move the FD over
519 	 * to rh_doorfd_old -- they'll close it when they finish.
520 	 */
521 	if (h->rh_fd_users > 0) {
522 		h->rh_doorfd_old = h->rh_doorfd;
523 		h->rh_doorfd = -1;
524 	} else {
525 		assert(h->rh_doorfd_old == -1);
526 		(void) close(h->rh_doorfd);
527 		h->rh_doorfd = -1;
528 	}
529 }
530 
531 /*
532  * Check if a handle is currently bound.  fork()ing implicitly unbinds
533  * the handle in the child.
534  */
535 static int
536 handle_is_bound(scf_handle_t *h)
537 {
538 	assert(MUTEX_HELD(&h->rh_lock));
539 
540 	if (h->rh_doorfd == -1)
541 		return (0);
542 
543 	if (getpid() == h->rh_doorpid)
544 		return (1);
545 
546 	/* forked since our last bind -- initiate handle close */
547 	handle_do_close(h);
548 	return (0);
549 }
550 
551 static int
552 handle_has_server_locked(scf_handle_t *h)
553 {
554 	door_info_t i;
555 	assert(MUTEX_HELD(&h->rh_lock));
556 
557 	return (handle_is_bound(h) && door_info(h->rh_doorfd, &i) != -1 &&
558 	    i.di_target != -1);
559 }
560 
561 static int
562 handle_has_server(scf_handle_t *h)
563 {
564 	int ret;
565 
566 	(void) pthread_mutex_lock(&h->rh_lock);
567 	ret = handle_has_server_locked(h);
568 	(void) pthread_mutex_unlock(&h->rh_lock);
569 
570 	return (ret);
571 }
572 
573 /*
574  * This makes a door request on the client door associated with handle h.
575  * It will automatically retry calls which fail on EINTR.  If h is not bound,
576  * returns NOT_BOUND.  If the door call fails or the server response is too
577  * small, returns CALL_FAILED.  If the server response is too big, truncates the
578  * response and returns RESULT_TOO_BIG.  Otherwise, the size of the result is
579  * returned.
580  */
581 static ssize_t
582 make_door_call(scf_handle_t *h, const void *req, size_t req_sz,
583     void *res, size_t res_sz)
584 {
585 	door_arg_t arg;
586 	int r;
587 
588 	assert(MUTEX_HELD(&h->rh_lock));
589 
590 	if (!handle_is_bound(h)) {
591 		return (NOT_BOUND);
592 	}
593 
594 	arg.data_ptr = (void *)req;
595 	arg.data_size = req_sz;
596 	arg.desc_ptr = NULL;
597 	arg.desc_num = 0;
598 	arg.rbuf = res;
599 	arg.rsize = res_sz;
600 
601 	while ((r = door_call(h->rh_doorfd, &arg)) < 0) {
602 		if (errno != EINTR)
603 			break;
604 	}
605 
606 	if (r < 0) {
607 		return (CALL_FAILED);
608 	}
609 
610 	if (arg.desc_num > 0) {
611 		while (arg.desc_num > 0) {
612 			if (arg.desc_ptr->d_attributes & DOOR_DESCRIPTOR) {
613 				int cfd = arg.desc_ptr->d_data.d_desc.d_id;
614 				(void) close(cfd);
615 			}
616 			arg.desc_ptr++;
617 			arg.desc_num--;
618 		}
619 	}
620 	if (arg.data_ptr != res && arg.data_size > 0)
621 		(void) memmove(res, arg.data_ptr, MIN(arg.data_size, res_sz));
622 
623 	if (arg.rbuf != res)
624 		(void) munmap(arg.rbuf, arg.rsize);
625 
626 	if (arg.data_size > res_sz)
627 		return (RESULT_TOO_BIG);
628 
629 	if (arg.data_size < sizeof (uint32_t))
630 		return (CALL_FAILED);
631 
632 	return (arg.data_size);
633 }
634 
635 /*
636  * Should only be used when r < 0.
637  */
638 #define	DOOR_ERRORS_BLOCK(r)	{					\
639 	switch (r) {							\
640 	case NOT_BOUND:							\
641 		return (scf_set_error(SCF_ERROR_NOT_BOUND));		\
642 									\
643 	case CALL_FAILED:						\
644 		return (scf_set_error(SCF_ERROR_CONNECTION_BROKEN));	\
645 									\
646 	case RESULT_TOO_BIG:						\
647 		return (scf_set_error(SCF_ERROR_INTERNAL));		\
648 									\
649 	default:							\
650 		assert(r == NOT_BOUND || r == CALL_FAILED ||		\
651 		    r == RESULT_TOO_BIG);				\
652 		abort();						\
653 	}								\
654 }
655 
656 /*
657  * Like make_door_call(), but takes an fd instead of a handle, and expects
658  * a single file descriptor, returned via res_fd.
659  *
660  * If no file descriptor is returned, *res_fd == -1.
661  */
662 static int
663 make_door_call_retfd(int fd, const void *req, size_t req_sz, void *res,
664     size_t res_sz, int *res_fd)
665 {
666 	door_arg_t arg;
667 	int r;
668 	char rbuf[256];
669 
670 	*res_fd = -1;
671 
672 	if (fd == -1)
673 		return (NOT_BOUND);
674 
675 	arg.data_ptr = (void *)req;
676 	arg.data_size = req_sz;
677 	arg.desc_ptr = NULL;
678 	arg.desc_num = 0;
679 	arg.rbuf = rbuf;
680 	arg.rsize = sizeof (rbuf);
681 
682 	while ((r = door_call(fd, &arg)) < 0) {
683 		if (errno != EINTR)
684 			break;
685 	}
686 
687 	if (r < 0)
688 		return (CALL_FAILED);
689 
690 	if (arg.desc_num > 1) {
691 		while (arg.desc_num > 0) {
692 			if (arg.desc_ptr->d_attributes & DOOR_DESCRIPTOR) {
693 				int cfd =
694 				    arg.desc_ptr->d_data.d_desc.d_descriptor;
695 				(void) close(cfd);
696 			}
697 			arg.desc_ptr++;
698 			arg.desc_num--;
699 		}
700 	}
701 	if (arg.desc_num == 1 && arg.desc_ptr->d_attributes & DOOR_DESCRIPTOR)
702 		*res_fd = arg.desc_ptr->d_data.d_desc.d_descriptor;
703 
704 	if (arg.data_size > 0)
705 		(void) memmove(res, arg.data_ptr, MIN(arg.data_size, res_sz));
706 
707 	if (arg.rbuf != rbuf)
708 		(void) munmap(arg.rbuf, arg.rsize);
709 
710 	if (arg.data_size > res_sz)
711 		return (RESULT_TOO_BIG);
712 
713 	if (arg.data_size < sizeof (uint32_t))
714 		return (CALL_FAILED);
715 
716 	return (arg.data_size);
717 }
718 
719 /*
720  * Fails with
721  *   _VERSION_MISMATCH
722  *   _NO_MEMORY
723  */
724 scf_handle_t *
725 scf_handle_create(scf_version_t v)
726 {
727 	scf_handle_t *ret;
728 	int failed;
729 
730 	/*
731 	 * This will need to be revisited when we bump SCF_VERSION
732 	 */
733 	if (v != SCF_VERSION) {
734 		(void) scf_set_error(SCF_ERROR_VERSION_MISMATCH);
735 		return (NULL);
736 	}
737 
738 	if (!lowlevel_init()) {
739 		(void) scf_set_error(SCF_ERROR_NO_MEMORY);
740 		return (NULL);
741 	}
742 
743 	ret = uu_zalloc(sizeof (*ret));
744 	if (ret == NULL) {
745 		(void) scf_set_error(SCF_ERROR_NO_MEMORY);
746 		return (NULL);
747 	}
748 
749 	ret->rh_dataels = uu_list_create(datael_pool, ret, 0);
750 	ret->rh_iters = uu_list_create(iter_pool, ret, 0);
751 	if (ret->rh_dataels == NULL || ret->rh_iters == NULL) {
752 		if (ret->rh_dataels != NULL)
753 			uu_list_destroy(ret->rh_dataels);
754 		if (ret->rh_iters != NULL)
755 			uu_list_destroy(ret->rh_iters);
756 		uu_free(ret);
757 		(void) scf_set_error(SCF_ERROR_NO_MEMORY);
758 		return (NULL);
759 	}
760 
761 	ret->rh_doorfd = -1;
762 	ret->rh_doorfd_old = -1;
763 	(void) pthread_mutex_init(&ret->rh_lock, NULL);
764 
765 	handle_hold_subhandles(ret, RH_HOLD_ALL);
766 
767 	failed = ((ret->rh_iter = scf_iter_create(ret)) == NULL ||
768 	    (ret->rh_scope = scf_scope_create(ret)) == NULL ||
769 	    (ret->rh_service = scf_service_create(ret)) == NULL ||
770 	    (ret->rh_instance = scf_instance_create(ret)) == NULL ||
771 	    (ret->rh_snapshot = scf_snapshot_create(ret)) == NULL ||
772 	    (ret->rh_snaplvl = scf_snaplevel_create(ret)) == NULL ||
773 	    (ret->rh_pg = scf_pg_create(ret)) == NULL ||
774 	    (ret->rh_property = scf_property_create(ret)) == NULL ||
775 	    (ret->rh_value = scf_value_create(ret)) == NULL);
776 
777 	/*
778 	 * these subhandles count as internal references, not external ones.
779 	 */
780 	ret->rh_intrefs = ret->rh_extrefs;
781 	ret->rh_extrefs = 0;
782 	handle_rele_subhandles(ret, RH_HOLD_ALL);
783 
784 	if (failed) {
785 		scf_handle_destroy(ret);
786 		(void) scf_set_error(SCF_ERROR_NO_MEMORY);
787 		return (NULL);
788 	}
789 
790 	scf_value_set_count(ret->rh_value, default_debug);
791 	(void) scf_handle_decorate(ret, "debug", ret->rh_value);
792 
793 	return (ret);
794 }
795 
796 int
797 scf_handle_decorate(scf_handle_t *handle, const char *name, scf_value_t *v)
798 {
799 	if (v != SCF_DECORATE_CLEAR && handle != v->value_handle)
800 		return (scf_set_error(SCF_ERROR_HANDLE_MISMATCH));
801 
802 	(void) pthread_mutex_lock(&handle->rh_lock);
803 	if (handle_is_bound(handle)) {
804 		(void) pthread_mutex_unlock(&handle->rh_lock);
805 		return (scf_set_error(SCF_ERROR_IN_USE));
806 	}
807 	(void) pthread_mutex_unlock(&handle->rh_lock);
808 
809 	if (strcmp(name, "debug") == 0) {
810 		if (v == SCF_DECORATE_CLEAR) {
811 			(void) pthread_mutex_lock(&handle->rh_lock);
812 			handle->rh_debug = 0;
813 			(void) pthread_mutex_unlock(&handle->rh_lock);
814 		} else {
815 			uint64_t val;
816 			if (scf_value_get_count(v, &val) < 0)
817 				return (-1);		/* error already set */
818 
819 			(void) pthread_mutex_lock(&handle->rh_lock);
820 			handle->rh_debug = (uid_t)val;
821 			(void) pthread_mutex_unlock(&handle->rh_lock);
822 		}
823 		return (0);
824 	}
825 	if (strcmp(name, "door_path") == 0) {
826 		char name[sizeof (handle->rh_doorpath)];
827 
828 		if (v == SCF_DECORATE_CLEAR) {
829 			(void) pthread_mutex_lock(&handle->rh_lock);
830 			handle->rh_doorpath[0] = 0;
831 			(void) pthread_mutex_unlock(&handle->rh_lock);
832 		} else {
833 			ssize_t len;
834 
835 			if ((len = scf_value_get_astring(v, name,
836 			    sizeof (name))) < 0) {
837 				return (-1);		/* error already set */
838 			}
839 			if (len == 0 || len >= sizeof (name)) {
840 				return (scf_set_error(
841 				    SCF_ERROR_INVALID_ARGUMENT));
842 			}
843 			(void) pthread_mutex_lock(&handle->rh_lock);
844 			(void) strlcpy(handle->rh_doorpath, name,
845 			    sizeof (handle->rh_doorpath));
846 			(void) pthread_mutex_unlock(&handle->rh_lock);
847 		}
848 		return (0);
849 	}
850 	return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
851 }
852 
853 /*
854  * fails with INVALID_ARGUMENT and HANDLE_MISMATCH.
855  */
856 int
857 _scf_handle_decorations(scf_handle_t *handle, scf_decoration_func *f,
858     scf_value_t *v, void *data)
859 {
860 	scf_decoration_info_t i;
861 	char name[sizeof (handle->rh_doorpath)];
862 	uint64_t debug;
863 
864 	if (f == NULL || v == NULL)
865 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
866 
867 	if (v->value_handle != handle)
868 		return (scf_set_error(SCF_ERROR_HANDLE_MISMATCH));
869 
870 	i.sdi_name = (const char *)"debug";
871 	i.sdi_type = SCF_TYPE_COUNT;
872 	(void) pthread_mutex_lock(&handle->rh_lock);
873 	debug = handle->rh_debug;
874 	(void) pthread_mutex_unlock(&handle->rh_lock);
875 	if (debug != 0) {
876 		scf_value_set_count(v, debug);
877 		i.sdi_value = v;
878 	} else {
879 		i.sdi_value = SCF_DECORATE_CLEAR;
880 	}
881 
882 	if ((*f)(&i, data) == 0)
883 		return (0);
884 
885 	i.sdi_name = (const char *)"door_path";
886 	i.sdi_type = SCF_TYPE_ASTRING;
887 	(void) pthread_mutex_lock(&handle->rh_lock);
888 	(void) strlcpy(name, handle->rh_doorpath, sizeof (name));
889 	(void) pthread_mutex_unlock(&handle->rh_lock);
890 	if (name[0] != 0) {
891 		(void) scf_value_set_astring(v, name);
892 		i.sdi_value = v;
893 	} else {
894 		i.sdi_value = SCF_DECORATE_CLEAR;
895 	}
896 
897 	if ((*f)(&i, data) == 0)
898 		return (0);
899 
900 	return (1);
901 }
902 
903 /*
904  * Fails if handle is not bound.
905  */
906 static int
907 handle_unbind_unlocked(scf_handle_t *handle)
908 {
909 	rep_protocol_request_t request;
910 	rep_protocol_response_t response;
911 
912 	if (!handle_is_bound(handle))
913 		return (-1);
914 
915 	request.rpr_request = REP_PROTOCOL_CLOSE;
916 
917 	(void) make_door_call(handle, &request, sizeof (request),
918 	    &response, sizeof (response));
919 
920 	handle_do_close(handle);
921 
922 	return (SCF_SUCCESS);
923 }
924 
925 /*
926  * Fails with
927  *   _HANDLE_DESTROYED - dp's handle has been destroyed
928  *   _INTERNAL - server response too big
929  *		 entity already set up with different type
930  *   _NO_RESOURCES - server out of memory
931  */
932 static int
933 datael_attach(scf_datael_t *dp)
934 {
935 	scf_handle_t *h = dp->rd_handle;
936 
937 	struct rep_protocol_entity_setup request;
938 	rep_protocol_response_t response;
939 	ssize_t r;
940 
941 	assert(MUTEX_HELD(&h->rh_lock));
942 
943 	dp->rd_reset = 0;		/* setup implicitly resets */
944 
945 	if (h->rh_flags & HANDLE_DEAD)
946 		return (scf_set_error(SCF_ERROR_HANDLE_DESTROYED));
947 
948 	if (!handle_is_bound(h))
949 		return (SCF_SUCCESS);		/* nothing to do */
950 
951 	request.rpr_request = REP_PROTOCOL_ENTITY_SETUP;
952 	request.rpr_entityid = dp->rd_entity;
953 	request.rpr_entitytype = dp->rd_type;
954 
955 	r = make_door_call(h, &request, sizeof (request),
956 	    &response, sizeof (response));
957 
958 	if (r == NOT_BOUND || r == CALL_FAILED)
959 		return (SCF_SUCCESS);
960 	if (r == RESULT_TOO_BIG)
961 		return (scf_set_error(SCF_ERROR_INTERNAL));
962 
963 	if (response.rpr_response != REP_PROTOCOL_SUCCESS)
964 		return (scf_set_error(proto_error(response.rpr_response)));
965 
966 	return (SCF_SUCCESS);
967 }
968 
969 /*
970  * Fails with
971  *   _HANDLE_DESTROYED - iter's handle has been destroyed
972  *   _INTERNAL - server response too big
973  *		 iter already existed
974  *   _NO_RESOURCES
975  */
976 static int
977 iter_attach(scf_iter_t *iter)
978 {
979 	scf_handle_t *h = iter->iter_handle;
980 	struct rep_protocol_iter_request request;
981 	struct rep_protocol_response response;
982 	int r;
983 
984 	assert(MUTEX_HELD(&h->rh_lock));
985 
986 	if (h->rh_flags & HANDLE_DEAD)
987 		return (scf_set_error(SCF_ERROR_HANDLE_DESTROYED));
988 
989 	if (!handle_is_bound(h))
990 		return (SCF_SUCCESS);		/* nothing to do */
991 
992 	request.rpr_request = REP_PROTOCOL_ITER_SETUP;
993 	request.rpr_iterid = iter->iter_id;
994 
995 	r = make_door_call(h, &request, sizeof (request),
996 	    &response, sizeof (response));
997 
998 	if (r == NOT_BOUND || r == CALL_FAILED)
999 		return (SCF_SUCCESS);
1000 	if (r == RESULT_TOO_BIG)
1001 		return (scf_set_error(SCF_ERROR_INTERNAL));
1002 
1003 	if (response.rpr_response != REP_PROTOCOL_SUCCESS)
1004 		return (scf_set_error(proto_error(response.rpr_response)));
1005 
1006 	return (SCF_SUCCESS);
1007 }
1008 
1009 /*
1010  * Fails with
1011  *   _IN_USE - handle already bound
1012  *   _NO_SERVER - server door could not be open()ed
1013  *		  door call failed
1014  *		  door_info() failed
1015  *   _VERSION_MISMATCH - server returned bad file descriptor
1016  *			 server claimed bad request
1017  *			 server reported version mismatch
1018  *			 server refused with unknown reason
1019  *   _INVALID_ARGUMENT
1020  *   _NO_RESOURCES - server is out of memory
1021  *   _PERMISSION_DENIED
1022  *   _INTERNAL - could not set up entities or iters
1023  *		 server response too big
1024  *
1025  * perhaps this should try multiple times.
1026  */
1027 int
1028 scf_handle_bind(scf_handle_t *handle)
1029 {
1030 	scf_datael_t *el;
1031 	scf_iter_t *iter;
1032 
1033 	pid_t pid;
1034 	int fd;
1035 	int res;
1036 	door_info_t info;
1037 	repository_door_request_t request;
1038 	repository_door_response_t response;
1039 	const char *door_name = default_door_path;
1040 
1041 	(void) pthread_mutex_lock(&handle->rh_lock);
1042 	if (handle_is_bound(handle)) {
1043 		(void) pthread_mutex_unlock(&handle->rh_lock);
1044 		return (scf_set_error(SCF_ERROR_IN_USE));
1045 	}
1046 
1047 	/* wait until any active fd users have cleared out */
1048 	while (handle->rh_fd_users > 0) {
1049 		int cancel_state;
1050 
1051 		(void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE,
1052 		    &cancel_state);
1053 		(void) pthread_cond_wait(&handle->rh_cv, &handle->rh_lock);
1054 		(void) pthread_setcancelstate(cancel_state, NULL);
1055 	}
1056 
1057 	/* check again, since we had to drop the lock */
1058 	if (handle_is_bound(handle)) {
1059 		(void) pthread_mutex_unlock(&handle->rh_lock);
1060 		return (scf_set_error(SCF_ERROR_IN_USE));
1061 	}
1062 
1063 	assert(handle->rh_doorfd == -1 && handle->rh_doorfd_old == -1);
1064 
1065 	if (handle->rh_doorpath[0] != 0)
1066 		door_name = handle->rh_doorpath;
1067 
1068 	fd = open(door_name, O_RDONLY, 0);
1069 	if (fd == -1) {
1070 		(void) pthread_mutex_unlock(&handle->rh_lock);
1071 		return (scf_set_error(SCF_ERROR_NO_SERVER));
1072 	}
1073 
1074 	request.rdr_version = REPOSITORY_DOOR_VERSION;
1075 	request.rdr_request = REPOSITORY_DOOR_REQUEST_CONNECT;
1076 	request.rdr_flags = handle->rh_flags;
1077 	request.rdr_debug = handle->rh_debug;
1078 
1079 	pid = getpid();
1080 
1081 	res = make_door_call_retfd(fd, &request, sizeof (request),
1082 	    &response, sizeof (response), &handle->rh_doorfd);
1083 
1084 	(void) close(fd);
1085 
1086 	if (res < 0) {
1087 		(void) pthread_mutex_unlock(&handle->rh_lock);
1088 
1089 		assert(res != NOT_BOUND);
1090 		if (res == CALL_FAILED)
1091 			return (scf_set_error(SCF_ERROR_NO_SERVER));
1092 		assert(res == RESULT_TOO_BIG);
1093 		return (scf_set_error(SCF_ERROR_INTERNAL));
1094 	}
1095 
1096 	if (handle->rh_doorfd < 0) {
1097 		(void) pthread_mutex_unlock(&handle->rh_lock);
1098 
1099 		switch (response.rdr_status) {
1100 		case REPOSITORY_DOOR_SUCCESS:
1101 			return (scf_set_error(SCF_ERROR_VERSION_MISMATCH));
1102 
1103 		case REPOSITORY_DOOR_FAIL_BAD_REQUEST:
1104 			return (scf_set_error(SCF_ERROR_VERSION_MISMATCH));
1105 
1106 		case REPOSITORY_DOOR_FAIL_VERSION_MISMATCH:
1107 			return (scf_set_error(SCF_ERROR_VERSION_MISMATCH));
1108 
1109 		case REPOSITORY_DOOR_FAIL_BAD_FLAG:
1110 			return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
1111 
1112 		case REPOSITORY_DOOR_FAIL_NO_RESOURCES:
1113 			return (scf_set_error(SCF_ERROR_NO_RESOURCES));
1114 
1115 		case REPOSITORY_DOOR_FAIL_PERMISSION_DENIED:
1116 			return (scf_set_error(SCF_ERROR_PERMISSION_DENIED));
1117 
1118 		default:
1119 			return (scf_set_error(SCF_ERROR_VERSION_MISMATCH));
1120 		}
1121 	}
1122 
1123 	(void) fcntl(handle->rh_doorfd, F_SETFD, FD_CLOEXEC);
1124 
1125 	if (door_info(handle->rh_doorfd, &info) < 0) {
1126 		(void) close(handle->rh_doorfd);
1127 		handle->rh_doorfd = -1;
1128 
1129 		(void) pthread_mutex_unlock(&handle->rh_lock);
1130 		return (scf_set_error(SCF_ERROR_NO_SERVER));
1131 	}
1132 
1133 	handle->rh_doorpid = pid;
1134 	handle->rh_doorid = info.di_uniquifier;
1135 
1136 	/*
1137 	 * Now, re-attach everything
1138 	 */
1139 	for (el = uu_list_first(handle->rh_dataels); el != NULL;
1140 	    el = uu_list_next(handle->rh_dataels, el)) {
1141 		if (datael_attach(el) == -1) {
1142 			assert(scf_error() != SCF_ERROR_HANDLE_DESTROYED);
1143 			(void) handle_unbind_unlocked(handle);
1144 			(void) pthread_mutex_unlock(&handle->rh_lock);
1145 			return (-1);
1146 		}
1147 	}
1148 
1149 	for (iter = uu_list_first(handle->rh_iters); iter != NULL;
1150 	    iter = uu_list_next(handle->rh_iters, iter)) {
1151 		if (iter_attach(iter) == -1) {
1152 			assert(scf_error() != SCF_ERROR_HANDLE_DESTROYED);
1153 			(void) handle_unbind_unlocked(handle);
1154 			(void) pthread_mutex_unlock(&handle->rh_lock);
1155 			return (-1);
1156 		}
1157 	}
1158 	(void) pthread_mutex_unlock(&handle->rh_lock);
1159 	return (SCF_SUCCESS);
1160 }
1161 
1162 int
1163 scf_handle_unbind(scf_handle_t *handle)
1164 {
1165 	int ret;
1166 	(void) pthread_mutex_lock(&handle->rh_lock);
1167 	ret = handle_unbind_unlocked(handle);
1168 	(void) pthread_mutex_unlock(&handle->rh_lock);
1169 	return (ret == SCF_SUCCESS ? ret : scf_set_error(SCF_ERROR_NOT_BOUND));
1170 }
1171 
1172 static scf_handle_t *
1173 handle_get(scf_handle_t *h)
1174 {
1175 	(void) pthread_mutex_lock(&h->rh_lock);
1176 	if (h->rh_flags & HANDLE_DEAD) {
1177 		(void) pthread_mutex_unlock(&h->rh_lock);
1178 		(void) scf_set_error(SCF_ERROR_HANDLE_DESTROYED);
1179 		return (NULL);
1180 	}
1181 	(void) pthread_mutex_unlock(&h->rh_lock);
1182 	return (h);
1183 }
1184 
1185 /*
1186  * Called when an object is removed from the handle.  On the last remove,
1187  * cleans up and frees the handle.
1188  */
1189 static void
1190 handle_unrefed(scf_handle_t *handle)
1191 {
1192 	scf_iter_t *iter;
1193 	scf_value_t *v;
1194 	scf_scope_t *sc;
1195 	scf_service_t *svc;
1196 	scf_instance_t *inst;
1197 	scf_snapshot_t *snap;
1198 	scf_snaplevel_t *snaplvl;
1199 	scf_propertygroup_t *pg;
1200 	scf_property_t *prop;
1201 
1202 	assert(MUTEX_HELD(&handle->rh_lock));
1203 
1204 	/*
1205 	 * Don't do anything if the handle has not yet been destroyed, there
1206 	 * are still external references, or we're already doing unrefed
1207 	 * handling.
1208 	 */
1209 	if (!(handle->rh_flags & HANDLE_DEAD) ||
1210 	    handle->rh_extrefs > 0 ||
1211 	    handle->rh_fd_users > 0 ||
1212 	    (handle->rh_flags & HANDLE_UNREFED)) {
1213 		(void) pthread_mutex_unlock(&handle->rh_lock);
1214 		return;
1215 	}
1216 
1217 	handle->rh_flags |= HANDLE_UNREFED;
1218 
1219 	/*
1220 	 * Now that we know that there are no external references, and the
1221 	 * HANDLE_DEAD flag keeps new ones from appearing, we can clean up
1222 	 * our subhandles and destroy the handle completely.
1223 	 */
1224 	assert(handle->rh_intrefs >= 0);
1225 	handle->rh_extrefs = handle->rh_intrefs;
1226 	handle->rh_intrefs = 0;
1227 	(void) pthread_mutex_unlock(&handle->rh_lock);
1228 
1229 	handle_hold_subhandles(handle, RH_HOLD_ALL);
1230 
1231 	iter = handle->rh_iter;
1232 	sc = handle->rh_scope;
1233 	svc = handle->rh_service;
1234 	inst = handle->rh_instance;
1235 	snap = handle->rh_snapshot;
1236 	snaplvl = handle->rh_snaplvl;
1237 	pg = handle->rh_pg;
1238 	prop = handle->rh_property;
1239 	v = handle->rh_value;
1240 
1241 	handle->rh_iter = NULL;
1242 	handle->rh_scope = NULL;
1243 	handle->rh_service = NULL;
1244 	handle->rh_instance = NULL;
1245 	handle->rh_snapshot = NULL;
1246 	handle->rh_snaplvl = NULL;
1247 	handle->rh_pg = NULL;
1248 	handle->rh_property = NULL;
1249 	handle->rh_value = NULL;
1250 
1251 	if (iter != NULL)
1252 		scf_iter_destroy(iter);
1253 	if (sc != NULL)
1254 		scf_scope_destroy(sc);
1255 	if (svc != NULL)
1256 		scf_service_destroy(svc);
1257 	if (inst != NULL)
1258 		scf_instance_destroy(inst);
1259 	if (snap != NULL)
1260 		scf_snapshot_destroy(snap);
1261 	if (snaplvl != NULL)
1262 		scf_snaplevel_destroy(snaplvl);
1263 	if (pg != NULL)
1264 		scf_pg_destroy(pg);
1265 	if (prop != NULL)
1266 		scf_property_destroy(prop);
1267 	if (v != NULL)
1268 		scf_value_destroy(v);
1269 
1270 	(void) pthread_mutex_lock(&handle->rh_lock);
1271 
1272 	/* there should be no outstanding children at this point */
1273 	assert(handle->rh_extrefs == 0);
1274 	assert(handle->rh_intrefs == 0);
1275 	assert(handle->rh_values == 0);
1276 	assert(handle->rh_entries == 0);
1277 	assert(uu_list_numnodes(handle->rh_dataels) == 0);
1278 	assert(uu_list_numnodes(handle->rh_iters) == 0);
1279 
1280 	uu_list_destroy(handle->rh_dataels);
1281 	uu_list_destroy(handle->rh_iters);
1282 	handle->rh_dataels = NULL;
1283 	handle->rh_iters = NULL;
1284 	(void) pthread_mutex_unlock(&handle->rh_lock);
1285 
1286 	(void) pthread_mutex_destroy(&handle->rh_lock);
1287 
1288 	uu_free(handle);
1289 }
1290 
1291 void
1292 scf_handle_destroy(scf_handle_t *handle)
1293 {
1294 	if (handle == NULL)
1295 		return;
1296 
1297 	(void) pthread_mutex_lock(&handle->rh_lock);
1298 	if (handle->rh_flags & HANDLE_DEAD) {
1299 		/*
1300 		 * This is an error (you are not allowed to reference the
1301 		 * handle after it is destroyed), but we can't report it.
1302 		 */
1303 		(void) pthread_mutex_unlock(&handle->rh_lock);
1304 		return;
1305 	}
1306 	handle->rh_flags |= HANDLE_DEAD;
1307 	(void) handle_unbind_unlocked(handle);
1308 	handle_unrefed(handle);
1309 }
1310 
1311 ssize_t
1312 scf_myname(scf_handle_t *h, char *out, size_t len)
1313 {
1314 	char *cp;
1315 
1316 	if (!handle_has_server(h))
1317 		return (scf_set_error(SCF_ERROR_CONNECTION_BROKEN));
1318 
1319 	cp = getenv("SMF_FMRI");
1320 	if (cp == NULL)
1321 		return (scf_set_error(SCF_ERROR_NOT_SET));
1322 
1323 	return (strlcpy(out, cp, len));
1324 }
1325 
1326 static uint32_t
1327 handle_alloc_entityid(scf_handle_t *h)
1328 {
1329 	uint32_t nextid;
1330 
1331 	assert(MUTEX_HELD(&h->rh_lock));
1332 
1333 	if (uu_list_numnodes(h->rh_dataels) == UINT32_MAX)
1334 		return (0);		/* no ids available */
1335 
1336 	/*
1337 	 * The following loop assumes that there are not a huge number of
1338 	 * outstanding entities when we've wrapped.  If that ends up not
1339 	 * being the case, the O(N^2) nature of this search will hurt a lot,
1340 	 * and the data structure should be switched to an AVL tree.
1341 	 */
1342 	nextid = h->rh_nextentity + 1;
1343 	for (;;) {
1344 		scf_datael_t *cur;
1345 
1346 		if (nextid == 0) {
1347 			nextid++;
1348 			h->rh_flags |= HANDLE_WRAPPED_ENTITY;
1349 		}
1350 		if (!(h->rh_flags & HANDLE_WRAPPED_ENTITY))
1351 			break;
1352 
1353 		cur = uu_list_find(h->rh_dataels, NULL, &nextid, NULL);
1354 		if (cur == NULL)
1355 			break;		/* not in use */
1356 
1357 		if (nextid == h->rh_nextentity)
1358 			return (0);	/* wrapped around; no ids available */
1359 		nextid++;
1360 	}
1361 
1362 	h->rh_nextentity = nextid;
1363 	return (nextid);
1364 }
1365 
1366 static uint32_t
1367 handle_alloc_iterid(scf_handle_t *h)
1368 {
1369 	uint32_t nextid;
1370 
1371 	assert(MUTEX_HELD(&h->rh_lock));
1372 
1373 	if (uu_list_numnodes(h->rh_iters) == UINT32_MAX)
1374 		return (0);		/* no ids available */
1375 
1376 	/* see the comment in handle_alloc_entityid */
1377 	nextid = h->rh_nextiter + 1;
1378 	for (;;) {
1379 		scf_iter_t *cur;
1380 
1381 		if (nextid == 0) {
1382 			nextid++;
1383 			h->rh_flags |= HANDLE_WRAPPED_ITER;
1384 		}
1385 		if (!(h->rh_flags & HANDLE_WRAPPED_ITER))
1386 			break;			/* not yet wrapped */
1387 
1388 		cur = uu_list_find(h->rh_iters, NULL, &nextid, NULL);
1389 		if (cur == NULL)
1390 			break;		/* not in use */
1391 
1392 		if (nextid == h->rh_nextiter)
1393 			return (0);	/* wrapped around; no ids available */
1394 		nextid++;
1395 	}
1396 
1397 	h->rh_nextiter = nextid;
1398 	return (nextid);
1399 }
1400 
1401 static uint32_t
1402 handle_next_changeid(scf_handle_t *handle)
1403 {
1404 	uint32_t nextid;
1405 
1406 	assert(MUTEX_HELD(&handle->rh_lock));
1407 
1408 	nextid = ++handle->rh_nextchangeid;
1409 	if (nextid == 0)
1410 		nextid = ++handle->rh_nextchangeid;
1411 	return (nextid);
1412 }
1413 
1414 /*
1415  * Fails with
1416  *   _INVALID_ARGUMENT - h is NULL
1417  *   _HANDLE_DESTROYED
1418  *   _INTERNAL - server response too big
1419  *		 entity already set up with different type
1420  *   _NO_RESOURCES
1421  */
1422 static int
1423 datael_init(scf_datael_t *dp, scf_handle_t *h, uint32_t type)
1424 {
1425 	int ret;
1426 
1427 	if (h == NULL)
1428 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
1429 
1430 	uu_list_node_init(dp, &dp->rd_node, datael_pool);
1431 
1432 	dp->rd_handle = h;
1433 	dp->rd_type = type;
1434 	dp->rd_reset = 0;
1435 
1436 	(void) pthread_mutex_lock(&h->rh_lock);
1437 	if (h->rh_flags & HANDLE_DEAD) {
1438 		/*
1439 		 * we're in undefined territory (the user cannot use a handle
1440 		 * directly after it has been destroyed), but we don't want
1441 		 * to allow any new references to happen, so we fail here.
1442 		 */
1443 		(void) pthread_mutex_unlock(&h->rh_lock);
1444 		return (scf_set_error(SCF_ERROR_HANDLE_DESTROYED));
1445 	}
1446 	dp->rd_entity = handle_alloc_entityid(h);
1447 	if (dp->rd_entity == 0) {
1448 		(void) pthread_mutex_unlock(&h->rh_lock);
1449 		uu_list_node_fini(dp, &dp->rd_node, datael_pool);
1450 		return (scf_set_error(SCF_ERROR_NO_MEMORY));
1451 	}
1452 
1453 	ret = datael_attach(dp);
1454 	if (ret == 0) {
1455 		(void) uu_list_insert_before(h->rh_dataels, NULL, dp);
1456 		h->rh_extrefs++;
1457 	} else {
1458 		uu_list_node_fini(dp, &dp->rd_node, datael_pool);
1459 	}
1460 	(void) pthread_mutex_unlock(&h->rh_lock);
1461 
1462 	return (ret);
1463 }
1464 
1465 static void
1466 datael_destroy(scf_datael_t *dp)
1467 {
1468 	scf_handle_t *h = dp->rd_handle;
1469 
1470 	struct rep_protocol_entity_teardown request;
1471 	rep_protocol_response_t response;
1472 
1473 	(void) pthread_mutex_lock(&h->rh_lock);
1474 	uu_list_remove(h->rh_dataels, dp);
1475 	--h->rh_extrefs;
1476 
1477 	if (handle_is_bound(h)) {
1478 		request.rpr_request = REP_PROTOCOL_ENTITY_TEARDOWN;
1479 		request.rpr_entityid = dp->rd_entity;
1480 
1481 		(void) make_door_call(h, &request, sizeof (request),
1482 		    &response, sizeof (response));
1483 	}
1484 	handle_unrefed(h);			/* drops h->rh_lock */
1485 
1486 	dp->rd_handle = NULL;
1487 }
1488 
1489 static scf_handle_t *
1490 datael_handle(const scf_datael_t *dp)
1491 {
1492 	return (handle_get(dp->rd_handle));
1493 }
1494 
1495 /*
1496  * We delay ENTITY_RESETs until right before the entity is used.  By doing
1497  * them lazily, we remove quite a few unnecessary calls.
1498  */
1499 static void
1500 datael_do_reset_locked(scf_datael_t *dp)
1501 {
1502 	scf_handle_t *h = dp->rd_handle;
1503 
1504 	struct rep_protocol_entity_reset request;
1505 	rep_protocol_response_t response;
1506 
1507 	assert(MUTEX_HELD(&h->rh_lock));
1508 
1509 	request.rpr_request = REP_PROTOCOL_ENTITY_RESET;
1510 	request.rpr_entityid = dp->rd_entity;
1511 
1512 	(void) make_door_call(h, &request, sizeof (request),
1513 	    &response, sizeof (response));
1514 
1515 	dp->rd_reset = 0;
1516 }
1517 
1518 static void
1519 datael_reset_locked(scf_datael_t *dp)
1520 {
1521 	assert(MUTEX_HELD(&dp->rd_handle->rh_lock));
1522 	dp->rd_reset = 1;
1523 }
1524 
1525 static void
1526 datael_reset(scf_datael_t *dp)
1527 {
1528 	scf_handle_t *h = dp->rd_handle;
1529 
1530 	(void) pthread_mutex_lock(&h->rh_lock);
1531 	dp->rd_reset = 1;
1532 	(void) pthread_mutex_unlock(&h->rh_lock);
1533 }
1534 
1535 static void
1536 datael_finish_reset(const scf_datael_t *dp_arg)
1537 {
1538 	scf_datael_t *dp = (scf_datael_t *)dp_arg;
1539 
1540 	if (dp->rd_reset)
1541 		datael_do_reset_locked(dp);
1542 }
1543 
1544 /*
1545  * Fails with _NOT_BOUND, _CONNECTION_BROKEN, _INTERNAL (server response too
1546  * big, bad entity id, request not applicable to entity, name too long for
1547  * buffer), _NOT_SET, _DELETED, or _CONSTRAINT_VIOLATED (snaplevel is not of an
1548  * instance).
1549  */
1550 static ssize_t
1551 datael_get_name(const scf_datael_t *dp, char *buf, size_t size, uint32_t type)
1552 {
1553 	scf_handle_t *h = dp->rd_handle;
1554 
1555 	struct rep_protocol_entity_name request;
1556 	struct rep_protocol_name_response response;
1557 	ssize_t r;
1558 
1559 	(void) pthread_mutex_lock(&h->rh_lock);
1560 	request.rpr_request = REP_PROTOCOL_ENTITY_NAME;
1561 	request.rpr_entityid = dp->rd_entity;
1562 	request.rpr_answertype = type;
1563 
1564 	datael_finish_reset(dp);
1565 	r = make_door_call(h, &request, sizeof (request),
1566 	    &response, sizeof (response));
1567 	(void) pthread_mutex_unlock(&h->rh_lock);
1568 
1569 	if (r < 0)
1570 		DOOR_ERRORS_BLOCK(r);
1571 
1572 	if (response.rpr_response != REP_PROTOCOL_SUCCESS) {
1573 		assert(response.rpr_response != REP_PROTOCOL_FAIL_BAD_REQUEST);
1574 		if (response.rpr_response == REP_PROTOCOL_FAIL_NOT_FOUND)
1575 			return (scf_set_error(SCF_ERROR_CONSTRAINT_VIOLATED));
1576 		return (scf_set_error(proto_error(response.rpr_response)));
1577 	}
1578 	return (strlcpy(buf, response.rpr_name, size));
1579 }
1580 
1581 /*
1582  * Fails with _HANDLE_MISMATCH, _NOT_BOUND, _CONNECTION_BROKEN, _INTERNAL
1583  * (server response too big, bad element id), _EXISTS (elements have same id),
1584  * _NOT_SET, _DELETED, _CONSTRAINT_VIOLATED, _NOT_FOUND (scope has no parent),
1585  * or _SUCCESS.
1586  */
1587 static int
1588 datael_get_parent(const scf_datael_t *dp, scf_datael_t *pp)
1589 {
1590 	scf_handle_t *h = dp->rd_handle;
1591 
1592 	struct rep_protocol_entity_parent request;
1593 	struct rep_protocol_response response;
1594 
1595 	ssize_t r;
1596 
1597 	if (h != pp->rd_handle)
1598 		return (scf_set_error(SCF_ERROR_HANDLE_MISMATCH));
1599 
1600 	(void) pthread_mutex_lock(&h->rh_lock);
1601 	request.rpr_request = REP_PROTOCOL_ENTITY_GET_PARENT;
1602 	request.rpr_entityid = dp->rd_entity;
1603 	request.rpr_outid = pp->rd_entity;
1604 
1605 	datael_finish_reset(dp);
1606 	datael_finish_reset(pp);
1607 	r = make_door_call(h, &request, sizeof (request),
1608 	    &response, sizeof (response));
1609 	(void) pthread_mutex_unlock(&h->rh_lock);
1610 
1611 	if (r < 0)
1612 		DOOR_ERRORS_BLOCK(r);
1613 
1614 	if (response.rpr_response != REP_PROTOCOL_SUCCESS) {
1615 		if (response.rpr_response == REP_PROTOCOL_FAIL_TYPE_MISMATCH)
1616 			return (scf_set_error(SCF_ERROR_CONSTRAINT_VIOLATED));
1617 		return (scf_set_error(proto_error(response.rpr_response)));
1618 	}
1619 
1620 	return (SCF_SUCCESS);
1621 }
1622 
1623 /*
1624  * Fails with _HANDLE_MISMATCH, _INVALID_ARGUMENT (out does not have type type,
1625  * name is invalid), _NOT_BOUND, _CONNECTION_BROKEN, _INTERNAL (server response
1626  * too big, bad id, iter already exists, element cannot have children of type,
1627  * type is invalid, iter was reset, sequence was bad, iter walks values, iter
1628  * does not walk type entities), _NOT_SET, _DELETED, _NO_RESOURCES,
1629  * _BACKEND_ACCESS, _NOT_FOUND.
1630  */
1631 static int
1632 datael_get_child_composed_locked(const scf_datael_t *dp, const char *name,
1633     uint32_t type, scf_datael_t *out, scf_iter_t *iter)
1634 {
1635 	struct rep_protocol_iter_start request;
1636 	struct rep_protocol_iter_read read_request;
1637 	struct rep_protocol_response response;
1638 
1639 	scf_handle_t *h = dp->rd_handle;
1640 	ssize_t r;
1641 
1642 	if (h != out->rd_handle)
1643 		return (scf_set_error(SCF_ERROR_HANDLE_MISMATCH));
1644 
1645 	if (out->rd_type != type)
1646 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
1647 
1648 	assert(MUTEX_HELD(&h->rh_lock));
1649 	assert(iter != NULL);
1650 
1651 	scf_iter_reset_locked(iter);
1652 	iter->iter_type = type;
1653 
1654 	request.rpr_request = REP_PROTOCOL_ITER_START;
1655 	request.rpr_iterid = iter->iter_id;
1656 	request.rpr_entity = dp->rd_entity;
1657 	request.rpr_itertype = type;
1658 	request.rpr_flags = RP_ITER_START_EXACT | RP_ITER_START_COMPOSED;
1659 
1660 	if (name == NULL || strlcpy(request.rpr_pattern, name,
1661 	    sizeof (request.rpr_pattern)) >= sizeof (request.rpr_pattern)) {
1662 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
1663 	}
1664 
1665 	datael_finish_reset(dp);
1666 	datael_finish_reset(out);
1667 
1668 	/*
1669 	 * We hold the handle lock across both door calls, so that they
1670 	 * appear atomic.
1671 	 */
1672 	r = make_door_call(h, &request, sizeof (request),
1673 	    &response, sizeof (response));
1674 
1675 	if (r < 0)
1676 		DOOR_ERRORS_BLOCK(r);
1677 
1678 	if (response.rpr_response != REP_PROTOCOL_SUCCESS)
1679 		return (scf_set_error(proto_error(response.rpr_response)));
1680 
1681 	iter->iter_sequence++;
1682 
1683 	read_request.rpr_request = REP_PROTOCOL_ITER_READ;
1684 	read_request.rpr_iterid = iter->iter_id;
1685 	read_request.rpr_sequence = iter->iter_sequence;
1686 	read_request.rpr_entityid = out->rd_entity;
1687 
1688 	r = make_door_call(h, &read_request, sizeof (read_request),
1689 	    &response, sizeof (response));
1690 
1691 	scf_iter_reset_locked(iter);
1692 
1693 	if (r < 0)
1694 		DOOR_ERRORS_BLOCK(r);
1695 
1696 	if (response.rpr_response == REP_PROTOCOL_DONE) {
1697 		return (scf_set_error(SCF_ERROR_NOT_FOUND));
1698 	}
1699 
1700 	if (response.rpr_response != REP_PROTOCOL_SUCCESS) {
1701 		if (response.rpr_response == REP_PROTOCOL_FAIL_NOT_SET ||
1702 		    response.rpr_response == REP_PROTOCOL_FAIL_BAD_REQUEST)
1703 			return (scf_set_error(SCF_ERROR_INTERNAL));
1704 		return (scf_set_error(proto_error(response.rpr_response)));
1705 	}
1706 
1707 	return (0);
1708 }
1709 
1710 /*
1711  * Fails with _HANDLE_MISMATCH, _INVALID_ARGUMENT (out does not have type type,
1712  * name is invalid), _NOT_BOUND, _CONNECTION_BROKEN, _INTERNAL (server response
1713  * too big, bad id, element cannot have children of type, type is invalid),
1714  * _NOT_SET, _DELETED, _NO_RESOURCES, _BACKEND_ACCESS.
1715  */
1716 static int
1717 datael_get_child_locked(const scf_datael_t *dp, const char *name,
1718     uint32_t type, scf_datael_t *out)
1719 {
1720 	struct rep_protocol_entity_get_child request;
1721 	struct rep_protocol_response response;
1722 
1723 	scf_handle_t *h = dp->rd_handle;
1724 	ssize_t r;
1725 
1726 	if (h != out->rd_handle)
1727 		return (scf_set_error(SCF_ERROR_HANDLE_MISMATCH));
1728 
1729 	if (out->rd_type != type)
1730 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
1731 
1732 	assert(MUTEX_HELD(&h->rh_lock));
1733 
1734 	request.rpr_request = REP_PROTOCOL_ENTITY_GET_CHILD;
1735 	request.rpr_entityid = dp->rd_entity;
1736 	request.rpr_childid = out->rd_entity;
1737 
1738 	if (name == NULL || strlcpy(request.rpr_name, name,
1739 	    sizeof (request.rpr_name)) >= sizeof (request.rpr_name)) {
1740 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
1741 	}
1742 
1743 	datael_finish_reset(dp);
1744 	datael_finish_reset(out);
1745 
1746 	r = make_door_call(h, &request, sizeof (request),
1747 	    &response, sizeof (response));
1748 
1749 	if (r < 0)
1750 		DOOR_ERRORS_BLOCK(r);
1751 
1752 	if (response.rpr_response != REP_PROTOCOL_SUCCESS)
1753 		return (scf_set_error(proto_error(response.rpr_response)));
1754 	return (0);
1755 }
1756 
1757 /*
1758  * Fails with _HANDLE_MISMATCH, _INVALID_ARGUMENT (out does not have type type,
1759  * name is invalid), _NOT_BOUND, _CONNECTION_BROKEN, _INTERNAL (server response
1760  * too big, bad id, iter already exists, element cannot have children of type,
1761  * type is invalid, iter was reset, sequence was bad, iter walks values, iter
1762  * does not walk type entities), _NOT_SET, _DELETED, _NO_RESOURCES,
1763  * _BACKEND_ACCESS, _NOT_FOUND.
1764  */
1765 static int
1766 datael_get_child(const scf_datael_t *dp, const char *name, uint32_t type,
1767     scf_datael_t *out, boolean_t composed)
1768 {
1769 	scf_handle_t *h = dp->rd_handle;
1770 	uint32_t held = 0;
1771 	int ret;
1772 
1773 	scf_iter_t *iter = NULL;
1774 
1775 	if (composed)
1776 		iter = HANDLE_HOLD_ITER(h);
1777 
1778 	if (out == NULL) {
1779 		switch (type) {
1780 		case REP_PROTOCOL_ENTITY_SERVICE:
1781 			out = &HANDLE_HOLD_SERVICE(h)->rd_d;
1782 			held = RH_HOLD_SERVICE;
1783 			break;
1784 
1785 		case REP_PROTOCOL_ENTITY_INSTANCE:
1786 			out = &HANDLE_HOLD_INSTANCE(h)->rd_d;
1787 			held = RH_HOLD_INSTANCE;
1788 			break;
1789 
1790 		case REP_PROTOCOL_ENTITY_SNAPSHOT:
1791 			out = &HANDLE_HOLD_SNAPSHOT(h)->rd_d;
1792 			held = RH_HOLD_SNAPSHOT;
1793 			break;
1794 
1795 		case REP_PROTOCOL_ENTITY_SNAPLEVEL:
1796 			out = &HANDLE_HOLD_SNAPLVL(h)->rd_d;
1797 			held = RH_HOLD_SNAPLVL;
1798 			break;
1799 
1800 		case REP_PROTOCOL_ENTITY_PROPERTYGRP:
1801 			out = &HANDLE_HOLD_PG(h)->rd_d;
1802 			held = RH_HOLD_PG;
1803 			break;
1804 
1805 		case REP_PROTOCOL_ENTITY_PROPERTY:
1806 			out = &HANDLE_HOLD_PROPERTY(h)->rd_d;
1807 			held = RH_HOLD_PROPERTY;
1808 			break;
1809 
1810 		default:
1811 			assert(0);
1812 			abort();
1813 		}
1814 	}
1815 
1816 	(void) pthread_mutex_lock(&h->rh_lock);
1817 	if (composed)
1818 		ret = datael_get_child_composed_locked(dp, name, type, out,
1819 		    iter);
1820 	else
1821 		ret = datael_get_child_locked(dp, name, type, out);
1822 	(void) pthread_mutex_unlock(&h->rh_lock);
1823 
1824 	if (composed)
1825 		HANDLE_RELE_ITER(h);
1826 
1827 	if (held)
1828 		handle_rele_subhandles(h, held);
1829 
1830 	return (ret);
1831 }
1832 
1833 /*
1834  * Fails with
1835  *   _HANDLE_MISMATCH
1836  *   _INVALID_ARGUMENT - name is too long
1837  *			 invalid changeid
1838  *			 name is invalid
1839  *			 cannot create children for dp's type of node
1840  *   _NOT_BOUND - handle is not bound
1841  *   _CONNECTION_BROKEN - server is not reachable
1842  *   _INTERNAL - server response too big
1843  *		 dp or cp has unknown id
1844  *		 type is _PROPERTYGRP
1845  *		 type is invalid
1846  *		 dp cannot have children of type type
1847  *		 database is corrupt
1848  *   _EXISTS - dp & cp have the same id
1849  *   _EXISTS - child already exists
1850  *   _DELETED - dp has been deleted
1851  *   _NOT_SET - dp is reset
1852  *   _NO_RESOURCES
1853  *   _PERMISSION_DENIED
1854  *   _BACKEND_ACCESS
1855  *   _BACKEND_READONLY
1856  */
1857 static int
1858 datael_add_child(const scf_datael_t *dp, const char *name, uint32_t type,
1859     scf_datael_t *cp)
1860 {
1861 	scf_handle_t *h = dp->rd_handle;
1862 
1863 	struct rep_protocol_entity_create_child request;
1864 	struct rep_protocol_response response;
1865 	ssize_t r;
1866 	uint32_t held = 0;
1867 
1868 	if (cp == NULL) {
1869 		switch (type) {
1870 		case REP_PROTOCOL_ENTITY_SCOPE:
1871 			cp = &HANDLE_HOLD_SCOPE(h)->rd_d;
1872 			held = RH_HOLD_SCOPE;
1873 			break;
1874 		case REP_PROTOCOL_ENTITY_SERVICE:
1875 			cp = &HANDLE_HOLD_SERVICE(h)->rd_d;
1876 			held = RH_HOLD_SERVICE;
1877 			break;
1878 		case REP_PROTOCOL_ENTITY_INSTANCE:
1879 			cp = &HANDLE_HOLD_INSTANCE(h)->rd_d;
1880 			held = RH_HOLD_INSTANCE;
1881 			break;
1882 		case REP_PROTOCOL_ENTITY_SNAPSHOT:
1883 		default:
1884 			assert(0);
1885 			abort();
1886 		}
1887 		assert(h == cp->rd_handle);
1888 
1889 	} else if (h != cp->rd_handle) {
1890 		return (scf_set_error(SCF_ERROR_HANDLE_MISMATCH));
1891 	}
1892 
1893 	if (strlcpy(request.rpr_name, name, sizeof (request.rpr_name)) >=
1894 	    sizeof (request.rpr_name)) {
1895 		r = scf_set_error(SCF_ERROR_INVALID_ARGUMENT);
1896 		goto err;
1897 	}
1898 
1899 	(void) pthread_mutex_lock(&h->rh_lock);
1900 	request.rpr_request = REP_PROTOCOL_ENTITY_CREATE_CHILD;
1901 	request.rpr_entityid = dp->rd_entity;
1902 	request.rpr_childtype = type;
1903 	request.rpr_childid = cp->rd_entity;
1904 
1905 	datael_finish_reset(dp);
1906 	request.rpr_changeid = handle_next_changeid(h);
1907 	r = make_door_call(h, &request, sizeof (request),
1908 	    &response, sizeof (response));
1909 	(void) pthread_mutex_unlock(&h->rh_lock);
1910 
1911 	if (held)
1912 		handle_rele_subhandles(h, held);
1913 
1914 	if (r < 0)
1915 		DOOR_ERRORS_BLOCK(r);
1916 
1917 	if (response.rpr_response != REP_PROTOCOL_SUCCESS)
1918 		return (scf_set_error(proto_error(response.rpr_response)));
1919 
1920 	return (SCF_SUCCESS);
1921 
1922 err:
1923 	if (held)
1924 		handle_rele_subhandles(h, held);
1925 	return (r);
1926 }
1927 
1928 static int
1929 datael_add_pg(const scf_datael_t *dp, const char *name, const char *type,
1930     uint32_t flags, scf_datael_t *cp)
1931 {
1932 	scf_handle_t *h = dp->rd_handle;
1933 
1934 	struct rep_protocol_entity_create_pg request;
1935 	struct rep_protocol_response response;
1936 	ssize_t r;
1937 
1938 	int holding_els = 0;
1939 
1940 	if (cp == NULL) {
1941 		holding_els = 1;
1942 		cp = &HANDLE_HOLD_PG(h)->rd_d;
1943 		assert(h == cp->rd_handle);
1944 
1945 	} else if (h != cp->rd_handle) {
1946 		return (scf_set_error(SCF_ERROR_HANDLE_MISMATCH));
1947 	}
1948 
1949 	request.rpr_request = REP_PROTOCOL_ENTITY_CREATE_PG;
1950 
1951 	if (name == NULL || strlcpy(request.rpr_name, name,
1952 	    sizeof (request.rpr_name)) > sizeof (request.rpr_name)) {
1953 		r = scf_set_error(SCF_ERROR_INVALID_ARGUMENT);
1954 		goto err;
1955 	}
1956 
1957 	if (type == NULL || strlcpy(request.rpr_type, type,
1958 	    sizeof (request.rpr_type)) > sizeof (request.rpr_type)) {
1959 		r = scf_set_error(SCF_ERROR_INVALID_ARGUMENT);
1960 		goto err;
1961 	}
1962 
1963 	(void) pthread_mutex_lock(&h->rh_lock);
1964 	request.rpr_entityid = dp->rd_entity;
1965 	request.rpr_childid = cp->rd_entity;
1966 	request.rpr_flags = flags;
1967 
1968 	datael_finish_reset(dp);
1969 	datael_finish_reset(cp);
1970 	request.rpr_changeid = handle_next_changeid(h);
1971 	r = make_door_call(h, &request, sizeof (request),
1972 	    &response, sizeof (response));
1973 	(void) pthread_mutex_unlock(&h->rh_lock);
1974 
1975 	if (holding_els)
1976 		HANDLE_RELE_PG(h);
1977 
1978 	if (r < 0)
1979 		DOOR_ERRORS_BLOCK(r);
1980 
1981 	if (response.rpr_response != REP_PROTOCOL_SUCCESS)
1982 		return (scf_set_error(proto_error(response.rpr_response)));
1983 
1984 	return (SCF_SUCCESS);
1985 
1986 err:
1987 	if (holding_els)
1988 		HANDLE_RELE_PG(h);
1989 	return (r);
1990 }
1991 
1992 static int
1993 datael_delete(const scf_datael_t *dp)
1994 {
1995 	scf_handle_t *h = dp->rd_handle;
1996 
1997 	struct rep_protocol_entity_delete request;
1998 	struct rep_protocol_response response;
1999 	ssize_t r;
2000 
2001 	(void) pthread_mutex_lock(&h->rh_lock);
2002 	request.rpr_request = REP_PROTOCOL_ENTITY_DELETE;
2003 	request.rpr_entityid = dp->rd_entity;
2004 
2005 	datael_finish_reset(dp);
2006 	request.rpr_changeid = handle_next_changeid(h);
2007 	r = make_door_call(h, &request, sizeof (request),
2008 	    &response, sizeof (response));
2009 	(void) pthread_mutex_unlock(&h->rh_lock);
2010 
2011 	if (r < 0)
2012 		DOOR_ERRORS_BLOCK(r);
2013 
2014 	if (response.rpr_response != REP_PROTOCOL_SUCCESS)
2015 		return (scf_set_error(proto_error(response.rpr_response)));
2016 
2017 	return (SCF_SUCCESS);
2018 }
2019 
2020 /*
2021  * Fails with
2022  *   _INVALID_ARGUMENT - h is NULL
2023  *   _NO_MEMORY
2024  *   _HANDLE_DESTROYED - h has been destroyed
2025  *   _INTERNAL - server response too big
2026  *		 iter already exists
2027  *   _NO_RESOURCES
2028  */
2029 scf_iter_t *
2030 scf_iter_create(scf_handle_t *h)
2031 {
2032 	scf_iter_t *iter;
2033 
2034 	if (h == NULL) {
2035 		(void) scf_set_error(SCF_ERROR_INVALID_ARGUMENT);
2036 		return (NULL);
2037 	}
2038 
2039 	iter = uu_zalloc(sizeof (*iter));
2040 	if (iter == NULL) {
2041 		(void) scf_set_error(SCF_ERROR_NO_MEMORY);
2042 		return (NULL);
2043 	}
2044 
2045 	uu_list_node_init(iter, &iter->iter_node, iter_pool);
2046 	iter->iter_handle = h;
2047 	iter->iter_sequence = 1;
2048 	iter->iter_type = REP_PROTOCOL_ENTITY_NONE;
2049 
2050 	(void) pthread_mutex_lock(&h->rh_lock);
2051 	iter->iter_id = handle_alloc_iterid(h);
2052 	if (iter->iter_id == 0) {
2053 		(void) pthread_mutex_unlock(&h->rh_lock);
2054 		uu_list_node_fini(iter, &iter->iter_node, iter_pool);
2055 		(void) scf_set_error(SCF_ERROR_NO_MEMORY);
2056 		uu_free(iter);
2057 		return (NULL);
2058 	}
2059 	if (iter_attach(iter) == -1) {
2060 		uu_list_node_fini(iter, &iter->iter_node, iter_pool);
2061 		(void) pthread_mutex_unlock(&h->rh_lock);
2062 		uu_free(iter);
2063 		return (NULL);
2064 	}
2065 	(void) uu_list_insert_before(h->rh_iters, NULL, iter);
2066 	h->rh_extrefs++;
2067 	(void) pthread_mutex_unlock(&h->rh_lock);
2068 	return (iter);
2069 }
2070 
2071 scf_handle_t *
2072 scf_iter_handle(const scf_iter_t *iter)
2073 {
2074 	return (handle_get(iter->iter_handle));
2075 }
2076 
2077 static void
2078 scf_iter_reset_locked(scf_iter_t *iter)
2079 {
2080 	struct rep_protocol_iter_request request;
2081 	struct rep_protocol_response response;
2082 
2083 	request.rpr_request = REP_PROTOCOL_ITER_RESET;
2084 	request.rpr_iterid = iter->iter_id;
2085 
2086 	assert(MUTEX_HELD(&iter->iter_handle->rh_lock));
2087 
2088 	(void) make_door_call(iter->iter_handle,
2089 	    &request, sizeof (request), &response, sizeof (response));
2090 
2091 	iter->iter_type = REP_PROTOCOL_ENTITY_NONE;
2092 	iter->iter_sequence = 1;
2093 }
2094 
2095 void
2096 scf_iter_reset(scf_iter_t *iter)
2097 {
2098 	(void) pthread_mutex_lock(&iter->iter_handle->rh_lock);
2099 	scf_iter_reset_locked(iter);
2100 	(void) pthread_mutex_unlock(&iter->iter_handle->rh_lock);
2101 }
2102 
2103 void
2104 scf_iter_destroy(scf_iter_t *iter)
2105 {
2106 	scf_handle_t *handle;
2107 
2108 	struct rep_protocol_iter_request request;
2109 	struct rep_protocol_response response;
2110 
2111 	if (iter == NULL)
2112 		return;
2113 
2114 	handle = iter->iter_handle;
2115 
2116 	(void) pthread_mutex_lock(&handle->rh_lock);
2117 	request.rpr_request = REP_PROTOCOL_ITER_TEARDOWN;
2118 	request.rpr_iterid = iter->iter_id;
2119 
2120 	(void) make_door_call(handle, &request, sizeof (request),
2121 	    &response, sizeof (response));
2122 
2123 	uu_list_remove(handle->rh_iters, iter);
2124 	--handle->rh_extrefs;
2125 	handle_unrefed(handle);			/* drops h->rh_lock */
2126 	iter->iter_handle = NULL;
2127 
2128 	uu_list_node_fini(iter, &iter->iter_node, iter_pool);
2129 	uu_free(iter);
2130 }
2131 
2132 static int
2133 handle_get_local_scope_locked(scf_handle_t *handle, scf_scope_t *out)
2134 {
2135 	struct rep_protocol_entity_get request;
2136 	struct rep_protocol_name_response response;
2137 	ssize_t r;
2138 
2139 	assert(MUTEX_HELD(&handle->rh_lock));
2140 
2141 	if (handle != out->rd_d.rd_handle)
2142 		return (scf_set_error(SCF_ERROR_HANDLE_MISMATCH));
2143 
2144 	request.rpr_request = REP_PROTOCOL_ENTITY_GET;
2145 	request.rpr_entityid = out->rd_d.rd_entity;
2146 	request.rpr_object = RP_ENTITY_GET_MOST_LOCAL_SCOPE;
2147 
2148 	datael_finish_reset(&out->rd_d);
2149 	r = make_door_call(handle, &request, sizeof (request),
2150 	    &response, sizeof (response));
2151 
2152 	if (r < 0)
2153 		DOOR_ERRORS_BLOCK(r);
2154 
2155 	if (response.rpr_response != REP_PROTOCOL_SUCCESS)
2156 		return (scf_set_error(proto_error(response.rpr_response)));
2157 
2158 	return (SCF_SUCCESS);
2159 }
2160 
2161 int
2162 scf_iter_handle_scopes(scf_iter_t *iter, const scf_handle_t *handle)
2163 {
2164 	scf_handle_t *h = iter->iter_handle;
2165 	if (h != handle)
2166 		return (scf_set_error(SCF_ERROR_HANDLE_MISMATCH));
2167 
2168 	(void) pthread_mutex_lock(&h->rh_lock);
2169 	scf_iter_reset_locked(iter);
2170 
2171 	if (!handle_is_bound(h)) {
2172 		(void) pthread_mutex_unlock(&h->rh_lock);
2173 		return (scf_set_error(SCF_ERROR_NOT_BOUND));
2174 	}
2175 
2176 	if (!handle_has_server_locked(h)) {
2177 		(void) pthread_mutex_unlock(&h->rh_lock);
2178 		return (scf_set_error(SCF_ERROR_CONNECTION_BROKEN));
2179 	}
2180 
2181 	iter->iter_type = REP_PROTOCOL_ENTITY_SCOPE;
2182 	iter->iter_sequence = 1;
2183 	(void) pthread_mutex_unlock(&h->rh_lock);
2184 	return (0);
2185 }
2186 
2187 int
2188 scf_iter_next_scope(scf_iter_t *iter, scf_scope_t *out)
2189 {
2190 	int ret;
2191 	scf_handle_t *h = iter->iter_handle;
2192 
2193 	if (h != out->rd_d.rd_handle)
2194 		return (scf_set_error(SCF_ERROR_HANDLE_MISMATCH));
2195 
2196 	(void) pthread_mutex_lock(&h->rh_lock);
2197 	if (iter->iter_type == REP_PROTOCOL_ENTITY_NONE) {
2198 		(void) pthread_mutex_unlock(&h->rh_lock);
2199 		return (scf_set_error(SCF_ERROR_NOT_SET));
2200 	}
2201 	if (iter->iter_type != REP_PROTOCOL_ENTITY_SCOPE) {
2202 		(void) pthread_mutex_unlock(&h->rh_lock);
2203 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
2204 	}
2205 	if (iter->iter_sequence == 1) {
2206 		if ((ret = handle_get_local_scope_locked(h, out)) ==
2207 		    SCF_SUCCESS) {
2208 			iter->iter_sequence++;
2209 			ret = 1;
2210 		}
2211 	} else {
2212 		datael_reset_locked(&out->rd_d);
2213 		ret = 0;
2214 	}
2215 	(void) pthread_mutex_unlock(&h->rh_lock);
2216 	return (ret);
2217 }
2218 
2219 int
2220 scf_handle_get_scope(scf_handle_t *h, const char *name, scf_scope_t *out)
2221 {
2222 	int ret;
2223 
2224 	if (h != out->rd_d.rd_handle)
2225 		return (scf_set_error(SCF_ERROR_HANDLE_MISMATCH));
2226 
2227 	(void) pthread_mutex_lock(&h->rh_lock);
2228 	if (strcmp(name, SCF_SCOPE_LOCAL) == 0) {
2229 		ret = handle_get_local_scope_locked(h, out);
2230 	} else {
2231 		datael_reset_locked(&out->rd_d);
2232 		if (uu_check_name(name, 0) == -1)
2233 			ret = scf_set_error(SCF_ERROR_INVALID_ARGUMENT);
2234 		else
2235 			ret = scf_set_error(SCF_ERROR_NOT_FOUND);
2236 	}
2237 	(void) pthread_mutex_unlock(&h->rh_lock);
2238 	return (ret);
2239 }
2240 
2241 static int
2242 datael_setup_iter(scf_iter_t *iter, const scf_datael_t *dp, uint32_t res_type,
2243     boolean_t composed)
2244 {
2245 	scf_handle_t *h = dp->rd_handle;
2246 
2247 	struct rep_protocol_iter_start request;
2248 	struct rep_protocol_response response;
2249 
2250 	ssize_t r;
2251 
2252 	if (h != iter->iter_handle)
2253 		return (scf_set_error(SCF_ERROR_HANDLE_MISMATCH));
2254 
2255 	(void) pthread_mutex_lock(&h->rh_lock);
2256 	scf_iter_reset_locked(iter);
2257 	iter->iter_type = res_type;
2258 
2259 	request.rpr_request = REP_PROTOCOL_ITER_START;
2260 	request.rpr_iterid = iter->iter_id;
2261 	request.rpr_entity = dp->rd_entity;
2262 	request.rpr_itertype = res_type;
2263 	request.rpr_flags = RP_ITER_START_ALL |
2264 	    (composed ? RP_ITER_START_COMPOSED : 0);
2265 	request.rpr_pattern[0] = 0;
2266 
2267 	datael_finish_reset(dp);
2268 	r = make_door_call(h, &request, sizeof (request),
2269 	    &response, sizeof (response));
2270 
2271 	if (r < 0) {
2272 		(void) pthread_mutex_unlock(&h->rh_lock);
2273 		DOOR_ERRORS_BLOCK(r);
2274 	}
2275 	if (response.rpr_response != REP_PROTOCOL_SUCCESS) {
2276 		(void) pthread_mutex_unlock(&h->rh_lock);
2277 		return (scf_set_error(proto_error(response.rpr_response)));
2278 	}
2279 	iter->iter_sequence++;
2280 	(void) pthread_mutex_unlock(&h->rh_lock);
2281 	return (SCF_SUCCESS);
2282 }
2283 
2284 static int
2285 datael_setup_iter_pgtyped(scf_iter_t *iter, const scf_datael_t *dp,
2286     const char *pgtype, boolean_t composed)
2287 {
2288 	scf_handle_t *h = dp->rd_handle;
2289 
2290 	struct rep_protocol_iter_start request;
2291 	struct rep_protocol_response response;
2292 
2293 	ssize_t r;
2294 
2295 	if (h != iter->iter_handle)
2296 		return (scf_set_error(SCF_ERROR_HANDLE_MISMATCH));
2297 
2298 	if (pgtype == NULL || strlcpy(request.rpr_pattern, pgtype,
2299 	    sizeof (request.rpr_pattern)) >= sizeof (request.rpr_pattern)) {
2300 		scf_iter_reset(iter);
2301 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
2302 	}
2303 
2304 	(void) pthread_mutex_lock(&h->rh_lock);
2305 	request.rpr_request = REP_PROTOCOL_ITER_START;
2306 	request.rpr_iterid = iter->iter_id;
2307 	request.rpr_entity = dp->rd_entity;
2308 	request.rpr_itertype = REP_PROTOCOL_ENTITY_PROPERTYGRP;
2309 	request.rpr_flags = RP_ITER_START_PGTYPE |
2310 	    (composed ? RP_ITER_START_COMPOSED : 0);
2311 
2312 	datael_finish_reset(dp);
2313 	scf_iter_reset_locked(iter);
2314 	iter->iter_type = REP_PROTOCOL_ENTITY_PROPERTYGRP;
2315 
2316 	r = make_door_call(h, &request, sizeof (request),
2317 	    &response, sizeof (response));
2318 
2319 	if (r < 0) {
2320 		(void) pthread_mutex_unlock(&h->rh_lock);
2321 
2322 		DOOR_ERRORS_BLOCK(r);
2323 	}
2324 	if (response.rpr_response != REP_PROTOCOL_SUCCESS) {
2325 		(void) pthread_mutex_unlock(&h->rh_lock);
2326 		return (scf_set_error(proto_error(response.rpr_response)));
2327 	}
2328 	iter->iter_sequence++;
2329 	(void) pthread_mutex_unlock(&h->rh_lock);
2330 	return (SCF_SUCCESS);
2331 }
2332 
2333 static int
2334 datael_iter_next(scf_iter_t *iter, scf_datael_t *out)
2335 {
2336 	scf_handle_t *h = iter->iter_handle;
2337 
2338 	struct rep_protocol_iter_read request;
2339 	struct rep_protocol_response response;
2340 	ssize_t r;
2341 
2342 	if (h != out->rd_handle)
2343 		return (scf_set_error(SCF_ERROR_HANDLE_MISMATCH));
2344 
2345 	(void) pthread_mutex_lock(&h->rh_lock);
2346 	if (iter->iter_type == REP_PROTOCOL_ENTITY_NONE ||
2347 	    iter->iter_sequence == 1) {
2348 		(void) pthread_mutex_unlock(&h->rh_lock);
2349 		return (scf_set_error(SCF_ERROR_NOT_SET));
2350 	}
2351 
2352 	if (out->rd_type != iter->iter_type) {
2353 		(void) pthread_mutex_unlock(&h->rh_lock);
2354 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
2355 	}
2356 
2357 	request.rpr_request = REP_PROTOCOL_ITER_READ;
2358 	request.rpr_iterid = iter->iter_id;
2359 	request.rpr_sequence = iter->iter_sequence;
2360 	request.rpr_entityid = out->rd_entity;
2361 
2362 	datael_finish_reset(out);
2363 	r = make_door_call(h, &request, sizeof (request),
2364 	    &response, sizeof (response));
2365 
2366 	if (r < 0) {
2367 		(void) pthread_mutex_unlock(&h->rh_lock);
2368 		DOOR_ERRORS_BLOCK(r);
2369 	}
2370 
2371 	if (response.rpr_response == REP_PROTOCOL_DONE) {
2372 		(void) pthread_mutex_unlock(&h->rh_lock);
2373 		return (0);
2374 	}
2375 	if (response.rpr_response != REP_PROTOCOL_SUCCESS) {
2376 		(void) pthread_mutex_unlock(&h->rh_lock);
2377 		return (scf_set_error(proto_error(response.rpr_response)));
2378 	}
2379 	iter->iter_sequence++;
2380 	(void) pthread_mutex_unlock(&h->rh_lock);
2381 
2382 	return (1);
2383 }
2384 
2385 int
2386 scf_iter_scope_services(scf_iter_t *iter, const scf_scope_t *s)
2387 {
2388 	return (datael_setup_iter(iter, &s->rd_d,
2389 	    REP_PROTOCOL_ENTITY_SERVICE, 0));
2390 }
2391 
2392 int
2393 scf_iter_next_service(scf_iter_t *iter, scf_service_t *out)
2394 {
2395 	return (datael_iter_next(iter, &out->rd_d));
2396 }
2397 
2398 int
2399 scf_iter_service_instances(scf_iter_t *iter, const scf_service_t *svc)
2400 {
2401 	return (datael_setup_iter(iter, &svc->rd_d,
2402 	    REP_PROTOCOL_ENTITY_INSTANCE, 0));
2403 }
2404 
2405 int
2406 scf_iter_next_instance(scf_iter_t *iter, scf_instance_t *out)
2407 {
2408 	return (datael_iter_next(iter, &out->rd_d));
2409 }
2410 
2411 int
2412 scf_iter_service_pgs(scf_iter_t *iter, const scf_service_t *svc)
2413 {
2414 	return (datael_setup_iter(iter, &svc->rd_d,
2415 	    REP_PROTOCOL_ENTITY_PROPERTYGRP, 0));
2416 }
2417 
2418 int
2419 scf_iter_service_pgs_typed(scf_iter_t *iter, const scf_service_t *svc,
2420     const char *type)
2421 {
2422 	return (datael_setup_iter_pgtyped(iter, &svc->rd_d, type, 0));
2423 }
2424 
2425 int
2426 scf_iter_instance_snapshots(scf_iter_t *iter, const scf_instance_t *inst)
2427 {
2428 	return (datael_setup_iter(iter, &inst->rd_d,
2429 	    REP_PROTOCOL_ENTITY_SNAPSHOT, 0));
2430 }
2431 
2432 int
2433 scf_iter_next_snapshot(scf_iter_t *iter, scf_snapshot_t *out)
2434 {
2435 	return (datael_iter_next(iter, &out->rd_d));
2436 }
2437 
2438 int
2439 scf_iter_instance_pgs(scf_iter_t *iter, const scf_instance_t *inst)
2440 {
2441 	return (datael_setup_iter(iter, &inst->rd_d,
2442 	    REP_PROTOCOL_ENTITY_PROPERTYGRP, 0));
2443 }
2444 
2445 int
2446 scf_iter_instance_pgs_typed(scf_iter_t *iter, const scf_instance_t *inst,
2447     const char *type)
2448 {
2449 	return (datael_setup_iter_pgtyped(iter, &inst->rd_d, type, 0));
2450 }
2451 
2452 int
2453 scf_iter_instance_pgs_composed(scf_iter_t *iter, const scf_instance_t *inst,
2454     const scf_snapshot_t *snap)
2455 {
2456 	if (snap != NULL && inst->rd_d.rd_handle != snap->rd_d.rd_handle)
2457 		return (scf_set_error(SCF_ERROR_HANDLE_MISMATCH));
2458 
2459 	return (datael_setup_iter(iter, snap ? &snap->rd_d : &inst->rd_d,
2460 	    REP_PROTOCOL_ENTITY_PROPERTYGRP, 1));
2461 }
2462 
2463 int
2464 scf_iter_instance_pgs_typed_composed(scf_iter_t *iter,
2465     const scf_instance_t *inst, const scf_snapshot_t *snap, const char *type)
2466 {
2467 	if (snap != NULL && inst->rd_d.rd_handle != snap->rd_d.rd_handle)
2468 		return (scf_set_error(SCF_ERROR_HANDLE_MISMATCH));
2469 
2470 	return (datael_setup_iter_pgtyped(iter,
2471 	    snap ? &snap->rd_d : &inst->rd_d, type, 1));
2472 }
2473 
2474 int
2475 scf_iter_snaplevel_pgs(scf_iter_t *iter, const scf_snaplevel_t *inst)
2476 {
2477 	return (datael_setup_iter(iter, &inst->rd_d,
2478 	    REP_PROTOCOL_ENTITY_PROPERTYGRP, 0));
2479 }
2480 
2481 int
2482 scf_iter_snaplevel_pgs_typed(scf_iter_t *iter, const scf_snaplevel_t *inst,
2483     const char *type)
2484 {
2485 	return (datael_setup_iter_pgtyped(iter, &inst->rd_d, type, 0));
2486 }
2487 
2488 int
2489 scf_iter_next_pg(scf_iter_t *iter, scf_propertygroup_t *out)
2490 {
2491 	return (datael_iter_next(iter, &out->rd_d));
2492 }
2493 
2494 int
2495 scf_iter_pg_properties(scf_iter_t *iter, const scf_propertygroup_t *pg)
2496 {
2497 	return (datael_setup_iter(iter, &pg->rd_d,
2498 	    REP_PROTOCOL_ENTITY_PROPERTY, 0));
2499 }
2500 
2501 int
2502 scf_iter_next_property(scf_iter_t *iter, scf_property_t *out)
2503 {
2504 	return (datael_iter_next(iter, &out->rd_d));
2505 }
2506 
2507 /*
2508  * Fails with
2509  *   _INVALID_ARGUMENT - handle is NULL
2510  *   _INTERNAL - server response too big
2511  *		 entity already set up with different type
2512  *   _NO_RESOURCES
2513  *   _NO_MEMORY
2514  */
2515 scf_scope_t *
2516 scf_scope_create(scf_handle_t *handle)
2517 {
2518 	scf_scope_t *ret;
2519 
2520 	ret = uu_zalloc(sizeof (*ret));
2521 	if (ret != NULL) {
2522 		if (datael_init(&ret->rd_d, handle,
2523 		    REP_PROTOCOL_ENTITY_SCOPE) == -1) {
2524 			uu_free(ret);
2525 			return (NULL);
2526 		}
2527 	} else {
2528 		(void) scf_set_error(SCF_ERROR_NO_MEMORY);
2529 	}
2530 
2531 	return (ret);
2532 }
2533 
2534 scf_handle_t *
2535 scf_scope_handle(const scf_scope_t *val)
2536 {
2537 	return (datael_handle(&val->rd_d));
2538 }
2539 
2540 void
2541 scf_scope_destroy(scf_scope_t *val)
2542 {
2543 	if (val == NULL)
2544 		return;
2545 
2546 	datael_destroy(&val->rd_d);
2547 	uu_free(val);
2548 }
2549 
2550 ssize_t
2551 scf_scope_get_name(const scf_scope_t *rep, char *out, size_t len)
2552 {
2553 	return (datael_get_name(&rep->rd_d, out, len, RP_ENTITY_NAME_NAME));
2554 }
2555 
2556 /*ARGSUSED*/
2557 int
2558 scf_scope_get_parent(const scf_scope_t *child, scf_scope_t *parent)
2559 {
2560 	char name[1];
2561 
2562 	/* fake up the side-effects */
2563 	datael_reset(&parent->rd_d);
2564 	if (scf_scope_get_name(child, name, sizeof (name)) < 0)
2565 		return (-1);
2566 	return (scf_set_error(SCF_ERROR_NOT_FOUND));
2567 }
2568 
2569 /*
2570  * Fails with _INVALID_ARGUMENT (handle is NULL), _HANDLE_DESTROYED, _INTERNAL
2571  * (bad server response or id in use), _NO_RESOURCES, or _NO_MEMORY.
2572  */
2573 scf_service_t *
2574 scf_service_create(scf_handle_t *handle)
2575 {
2576 	scf_service_t *ret;
2577 	ret = uu_zalloc(sizeof (*ret));
2578 	if (ret != NULL) {
2579 		if (datael_init(&ret->rd_d, handle,
2580 		    REP_PROTOCOL_ENTITY_SERVICE) == -1) {
2581 			uu_free(ret);
2582 			return (NULL);
2583 		}
2584 	} else {
2585 		(void) scf_set_error(SCF_ERROR_NO_MEMORY);
2586 	}
2587 
2588 	return (ret);
2589 }
2590 
2591 
2592 /*
2593  * Fails with
2594  *   _HANDLE_MISMATCH
2595  *   _INVALID_ARGUMENT
2596  *   _NOT_BOUND
2597  *   _CONNECTION_BROKEN
2598  *   _INTERNAL
2599  *   _EXISTS
2600  *   _DELETED
2601  *   _NOT_SET
2602  *   _NO_RESOURCES
2603  *   _PERMISSION_DENIED
2604  *   _BACKEND_ACCESS
2605  *   _BACKEND_READONLY
2606  */
2607 int
2608 scf_scope_add_service(const scf_scope_t *scope, const char *name,
2609     scf_service_t *svc)
2610 {
2611 	return (datael_add_child(&scope->rd_d, name,
2612 	    REP_PROTOCOL_ENTITY_SERVICE, (svc != NULL)? &svc->rd_d : NULL));
2613 }
2614 
2615 /*
2616  * Fails with _HANDLE_MISMATCH, _INVALID_ARGUMENT, _NOT_BOUND,
2617  * _CONNECTION_BROKEN, _INTERNAL, _NOT_SET, _DELETED, _NO_RESOURCES,
2618  * _BACKEND_ACCESS, _NOT_FOUND.
2619  */
2620 int
2621 scf_scope_get_service(const scf_scope_t *s, const char *name,
2622     scf_service_t *svc)
2623 {
2624 	return (datael_get_child(&s->rd_d, name, REP_PROTOCOL_ENTITY_SERVICE,
2625 	    svc ? &svc->rd_d : NULL, 0));
2626 }
2627 
2628 scf_handle_t *
2629 scf_service_handle(const scf_service_t *val)
2630 {
2631 	return (datael_handle(&val->rd_d));
2632 }
2633 
2634 int
2635 scf_service_delete(scf_service_t *svc)
2636 {
2637 	return (datael_delete(&svc->rd_d));
2638 }
2639 
2640 int
2641 scf_instance_delete(scf_instance_t *inst)
2642 {
2643 	return (datael_delete(&inst->rd_d));
2644 }
2645 
2646 int
2647 scf_pg_delete(scf_propertygroup_t *pg)
2648 {
2649 	return (datael_delete(&pg->rd_d));
2650 }
2651 
2652 int
2653 _scf_snapshot_delete(scf_snapshot_t *snap)
2654 {
2655 	return (datael_delete(&snap->rd_d));
2656 }
2657 
2658 /*
2659  * Fails with
2660  *   _HANDLE_MISMATCH
2661  *   _INVALID_ARGUMENT
2662  *   _NOT_BOUND
2663  *   _CONNECTION_BROKEN
2664  *   _INTERNAL
2665  *   _EXISTS
2666  *   _DELETED
2667  *   _NOT_SET
2668  *   _NO_RESOURCES
2669  *   _PERMISSION_DENIED
2670  *   _BACKEND_ACCESS
2671  *   _BACKEND_READONLY
2672  */
2673 int
2674 scf_service_add_instance(const scf_service_t *svc, const char *name,
2675     scf_instance_t *instance)
2676 {
2677 	return (datael_add_child(&svc->rd_d, name,
2678 	    REP_PROTOCOL_ENTITY_INSTANCE,
2679 	    (instance != NULL)? &instance->rd_d : NULL));
2680 }
2681 
2682 
2683 /*
2684  * Fails with _HANDLE_MISMATCH, _INVALID_ARGUMENT, _NOT_BOUND,
2685  * _CONNECTION_BROKEN, _INTERNAL, _NOT_SET, _DELETED, _NO_RESOURCES,
2686  * _BACKEND_ACCESS, _NOT_FOUND.
2687  */
2688 int
2689 scf_service_get_instance(const scf_service_t *svc, const char *name,
2690     scf_instance_t *inst)
2691 {
2692 	return (datael_get_child(&svc->rd_d, name, REP_PROTOCOL_ENTITY_INSTANCE,
2693 	    inst ? &inst->rd_d : NULL, 0));
2694 }
2695 
2696 int
2697 scf_service_add_pg(const scf_service_t *svc, const char *name,
2698     const char *type, uint32_t flags, scf_propertygroup_t *pg)
2699 {
2700 	return (datael_add_pg(&svc->rd_d, name, type, flags,
2701 	    (pg != NULL)?&pg->rd_d : NULL));
2702 }
2703 
2704 /*
2705  * Fails with _HANDLE_MISMATCH, _INVALID_ARGUMENT, _NOT_BOUND,
2706  * _CONNECTION_BROKEN, _INTERNAL, _NOT_SET, _DELETED, _NO_RESOURCES,
2707  * _BACKEND_ACCESS, _NOT_FOUND.
2708  */
2709 int
2710 scf_service_get_pg(const scf_service_t *svc, const char *name,
2711     scf_propertygroup_t *pg)
2712 {
2713 	return (datael_get_child(&svc->rd_d, name,
2714 	    REP_PROTOCOL_ENTITY_PROPERTYGRP, pg ? &pg->rd_d : NULL, 0));
2715 }
2716 
2717 int
2718 scf_instance_add_pg(const scf_instance_t *inst, const char *name,
2719     const char *type, uint32_t flags, scf_propertygroup_t *pg)
2720 {
2721 	return (datael_add_pg(&inst->rd_d, name, type, flags,
2722 	    (pg != NULL)?&pg->rd_d : NULL));
2723 }
2724 
2725 /*
2726  * Fails with _HANDLE_MISMATCH, _INVALID_ARGUMENT, _NOT_BOUND,
2727  * _CONNECTION_BROKEN, _INTERNAL, _NOT_SET, _DELETED, _NO_RESOURCES,
2728  * _BACKEND_ACCESS, _NOT_FOUND.
2729  */
2730 int
2731 scf_instance_get_snapshot(const scf_instance_t *inst, const char *name,
2732     scf_snapshot_t *pg)
2733 {
2734 	return (datael_get_child(&inst->rd_d, name,
2735 	    REP_PROTOCOL_ENTITY_SNAPSHOT, pg ? &pg->rd_d : NULL, 0));
2736 }
2737 
2738 /*
2739  * Fails with _HANDLE_MISMATCH, _INVALID_ARGUMENT, _NOT_BOUND,
2740  * _CONNECTION_BROKEN, _INTERNAL, _NOT_SET, _DELETED, _NO_RESOURCES,
2741  * _BACKEND_ACCESS, _NOT_FOUND.
2742  */
2743 int
2744 scf_instance_get_pg(const scf_instance_t *inst, const char *name,
2745     scf_propertygroup_t *pg)
2746 {
2747 	return (datael_get_child(&inst->rd_d, name,
2748 	    REP_PROTOCOL_ENTITY_PROPERTYGRP, pg ? &pg->rd_d : NULL, 0));
2749 }
2750 
2751 /*
2752  * Fails with _HANDLE_MISMATCH, _INVALID_ARGUMENT, _NOT_BOUND,
2753  * _CONNECTION_BROKEN, _INTERNAL, _NOT_SET, _DELETED, _NO_RESOURCES,
2754  * _BACKEND_ACCESS, _NOT_FOUND.
2755  */
2756 int
2757 scf_instance_get_pg_composed(const scf_instance_t *inst,
2758     const scf_snapshot_t *snap, const char *name, scf_propertygroup_t *pg)
2759 {
2760 	if (snap != NULL && inst->rd_d.rd_handle != snap->rd_d.rd_handle)
2761 		return (scf_set_error(SCF_ERROR_HANDLE_MISMATCH));
2762 
2763 	return (datael_get_child(snap ? &snap->rd_d : &inst->rd_d, name,
2764 	    REP_PROTOCOL_ENTITY_PROPERTYGRP, pg ? &pg->rd_d : NULL, 1));
2765 }
2766 
2767 /*
2768  * Fails with _HANDLE_MISMATCH, _INVALID_ARGUMENT, _NOT_BOUND,
2769  * _CONNECTION_BROKEN, _INTERNAL, _NOT_SET, _DELETED, _NO_RESOURCES,
2770  * _BACKEND_ACCESS, _NOT_FOUND.
2771  */
2772 int
2773 scf_pg_get_property(const scf_propertygroup_t *pg, const char *name,
2774     scf_property_t *prop)
2775 {
2776 	return (datael_get_child(&pg->rd_d, name, REP_PROTOCOL_ENTITY_PROPERTY,
2777 	    prop ? &prop->rd_d : NULL, 0));
2778 }
2779 
2780 void
2781 scf_service_destroy(scf_service_t *val)
2782 {
2783 	if (val == NULL)
2784 		return;
2785 
2786 	datael_destroy(&val->rd_d);
2787 	uu_free(val);
2788 }
2789 
2790 ssize_t
2791 scf_service_get_name(const scf_service_t *rep, char *out, size_t len)
2792 {
2793 	return (datael_get_name(&rep->rd_d, out, len, RP_ENTITY_NAME_NAME));
2794 }
2795 
2796 /*
2797  * Fails with _INVALID_ARGUMENT (handle is NULL), _HANDLE_DESTROYED, _INTERNAL
2798  * (bad server response or id in use), _NO_RESOURCES, or _NO_MEMORY.
2799  */
2800 scf_instance_t *
2801 scf_instance_create(scf_handle_t *handle)
2802 {
2803 	scf_instance_t *ret;
2804 
2805 	ret = uu_zalloc(sizeof (*ret));
2806 	if (ret != NULL) {
2807 		if (datael_init(&ret->rd_d, handle,
2808 		    REP_PROTOCOL_ENTITY_INSTANCE) == -1) {
2809 			uu_free(ret);
2810 			return (NULL);
2811 		}
2812 	} else {
2813 		(void) scf_set_error(SCF_ERROR_NO_MEMORY);
2814 	}
2815 
2816 	return (ret);
2817 }
2818 
2819 scf_handle_t *
2820 scf_instance_handle(const scf_instance_t *val)
2821 {
2822 	return (datael_handle(&val->rd_d));
2823 }
2824 
2825 void
2826 scf_instance_destroy(scf_instance_t *val)
2827 {
2828 	if (val == NULL)
2829 		return;
2830 
2831 	datael_destroy(&val->rd_d);
2832 	uu_free(val);
2833 }
2834 
2835 ssize_t
2836 scf_instance_get_name(const scf_instance_t *rep, char *out, size_t len)
2837 {
2838 	return (datael_get_name(&rep->rd_d, out, len, RP_ENTITY_NAME_NAME));
2839 }
2840 
2841 /*
2842  * Fails with _INVALID_ARGUMENT (handle is NULL), _HANDLE_DESTROYED, _INTERNAL
2843  * (bad server response or id in use), _NO_RESOURCES, or _NO_MEMORY.
2844  */
2845 scf_snapshot_t *
2846 scf_snapshot_create(scf_handle_t *handle)
2847 {
2848 	scf_snapshot_t *ret;
2849 
2850 	ret = uu_zalloc(sizeof (*ret));
2851 	if (ret != NULL) {
2852 		if (datael_init(&ret->rd_d, handle,
2853 		    REP_PROTOCOL_ENTITY_SNAPSHOT) == -1) {
2854 			uu_free(ret);
2855 			return (NULL);
2856 		}
2857 	} else {
2858 		(void) scf_set_error(SCF_ERROR_NO_MEMORY);
2859 	}
2860 
2861 	return (ret);
2862 }
2863 
2864 scf_handle_t *
2865 scf_snapshot_handle(const scf_snapshot_t *val)
2866 {
2867 	return (datael_handle(&val->rd_d));
2868 }
2869 
2870 void
2871 scf_snapshot_destroy(scf_snapshot_t *val)
2872 {
2873 	if (val == NULL)
2874 		return;
2875 
2876 	datael_destroy(&val->rd_d);
2877 	uu_free(val);
2878 }
2879 
2880 ssize_t
2881 scf_snapshot_get_name(const scf_snapshot_t *rep, char *out, size_t len)
2882 {
2883 	return (datael_get_name(&rep->rd_d, out, len, RP_ENTITY_NAME_NAME));
2884 }
2885 
2886 /*
2887  * Fails with _INVALID_ARGUMENT (handle is NULL), _HANDLE_DESTROYED, _INTERNAL
2888  * (bad server response or id in use), _NO_RESOURCES, _NO_MEMORY.
2889  */
2890 scf_snaplevel_t *
2891 scf_snaplevel_create(scf_handle_t *handle)
2892 {
2893 	scf_snaplevel_t *ret;
2894 
2895 	ret = uu_zalloc(sizeof (*ret));
2896 	if (ret != NULL) {
2897 		if (datael_init(&ret->rd_d, handle,
2898 		    REP_PROTOCOL_ENTITY_SNAPLEVEL) == -1) {
2899 			uu_free(ret);
2900 			return (NULL);
2901 		}
2902 	} else {
2903 		(void) scf_set_error(SCF_ERROR_NO_MEMORY);
2904 	}
2905 
2906 	return (ret);
2907 }
2908 
2909 scf_handle_t *
2910 scf_snaplevel_handle(const scf_snaplevel_t *val)
2911 {
2912 	return (datael_handle(&val->rd_d));
2913 }
2914 
2915 void
2916 scf_snaplevel_destroy(scf_snaplevel_t *val)
2917 {
2918 	if (val == NULL)
2919 		return;
2920 
2921 	datael_destroy(&val->rd_d);
2922 	uu_free(val);
2923 }
2924 
2925 ssize_t
2926 scf_snaplevel_get_scope_name(const scf_snaplevel_t *rep, char *out, size_t len)
2927 {
2928 	return (datael_get_name(&rep->rd_d, out, len,
2929 	    RP_ENTITY_NAME_SNAPLEVEL_SCOPE));
2930 }
2931 
2932 ssize_t
2933 scf_snaplevel_get_service_name(const scf_snaplevel_t *rep, char *out,
2934     size_t len)
2935 {
2936 	return (datael_get_name(&rep->rd_d, out, len,
2937 	    RP_ENTITY_NAME_SNAPLEVEL_SERVICE));
2938 }
2939 
2940 ssize_t
2941 scf_snaplevel_get_instance_name(const scf_snaplevel_t *rep, char *out,
2942     size_t len)
2943 {
2944 	return (datael_get_name(&rep->rd_d, out, len,
2945 	    RP_ENTITY_NAME_SNAPLEVEL_INSTANCE));
2946 }
2947 
2948 /*
2949  * Fails with _HANDLE_MISMATCH, _INVALID_ARGUMENT, _NOT_BOUND,
2950  * _CONNECTION_BROKEN, _INTERNAL, _NOT_SET, _DELETED, _NO_RESOURCES,
2951  * _BACKEND_ACCESS, _NOT_FOUND.
2952  */
2953 int
2954 scf_snaplevel_get_pg(const scf_snaplevel_t *snap, const char *name,
2955     scf_propertygroup_t *pg)
2956 {
2957 	return (datael_get_child(&snap->rd_d, name,
2958 	    REP_PROTOCOL_ENTITY_PROPERTYGRP, pg ? &pg->rd_d : NULL, 0));
2959 }
2960 
2961 static int
2962 snaplevel_next(const scf_datael_t *src, scf_snaplevel_t *dst_arg)
2963 {
2964 	scf_handle_t *h = src->rd_handle;
2965 	scf_snaplevel_t *dst = dst_arg;
2966 	struct rep_protocol_entity_pair request;
2967 	struct rep_protocol_response response;
2968 	int r;
2969 	int dups = 0;
2970 
2971 	if (h != dst->rd_d.rd_handle)
2972 		return (scf_set_error(SCF_ERROR_HANDLE_MISMATCH));
2973 
2974 	if (src == &dst->rd_d) {
2975 		dups = 1;
2976 		dst = HANDLE_HOLD_SNAPLVL(h);
2977 	}
2978 	(void) pthread_mutex_lock(&h->rh_lock);
2979 	request.rpr_request = REP_PROTOCOL_NEXT_SNAPLEVEL;
2980 	request.rpr_entity_src = src->rd_entity;
2981 	request.rpr_entity_dst = dst->rd_d.rd_entity;
2982 
2983 	datael_finish_reset(src);
2984 	datael_finish_reset(&dst->rd_d);
2985 	r = make_door_call(h, &request, sizeof (request),
2986 	    &response, sizeof (response));
2987 	/*
2988 	 * if we succeeded, we need to swap dst and dst_arg's identity.  We
2989 	 * take advantage of the fact that the only in-library knowledge is
2990 	 * their entity ids.
2991 	 */
2992 	if (dups && r >= 0 &&
2993 	    (response.rpr_response == REP_PROTOCOL_SUCCESS ||
2994 	    response.rpr_response == REP_PROTOCOL_DONE)) {
2995 		int entity = dst->rd_d.rd_entity;
2996 
2997 		dst->rd_d.rd_entity = dst_arg->rd_d.rd_entity;
2998 		dst_arg->rd_d.rd_entity = entity;
2999 	}
3000 	(void) pthread_mutex_unlock(&h->rh_lock);
3001 
3002 	if (dups)
3003 		HANDLE_RELE_SNAPLVL(h);
3004 
3005 	if (r < 0)
3006 		DOOR_ERRORS_BLOCK(r);
3007 
3008 	if (response.rpr_response != REP_PROTOCOL_SUCCESS &&
3009 	    response.rpr_response != REP_PROTOCOL_DONE) {
3010 		return (scf_set_error(proto_error(response.rpr_response)));
3011 	}
3012 
3013 	return (response.rpr_response == REP_PROTOCOL_SUCCESS) ?
3014 	    SCF_SUCCESS : SCF_COMPLETE;
3015 }
3016 
3017 int scf_snapshot_get_base_snaplevel(const scf_snapshot_t *base,
3018     scf_snaplevel_t *out)
3019 {
3020 	return (snaplevel_next(&base->rd_d, out));
3021 }
3022 
3023 int scf_snaplevel_get_next_snaplevel(const scf_snaplevel_t *base,
3024     scf_snaplevel_t *out)
3025 {
3026 	return (snaplevel_next(&base->rd_d, out));
3027 }
3028 
3029 /*
3030  * Fails with _INVALID_ARGUMENT (handle is NULL), _HANDLE_DESTROYED, _INTERNAL
3031  * (bad server response or id in use), _NO_RESOURCES, or _NO_MEMORY.
3032  */
3033 scf_propertygroup_t *
3034 scf_pg_create(scf_handle_t *handle)
3035 {
3036 	scf_propertygroup_t *ret;
3037 	ret = uu_zalloc(sizeof (*ret));
3038 	if (ret != NULL) {
3039 		if (datael_init(&ret->rd_d, handle,
3040 		    REP_PROTOCOL_ENTITY_PROPERTYGRP) == -1) {
3041 			uu_free(ret);
3042 			return (NULL);
3043 		}
3044 	} else {
3045 		(void) scf_set_error(SCF_ERROR_NO_MEMORY);
3046 	}
3047 
3048 	return (ret);
3049 }
3050 
3051 scf_handle_t *
3052 scf_pg_handle(const scf_propertygroup_t *val)
3053 {
3054 	return (datael_handle(&val->rd_d));
3055 }
3056 
3057 void
3058 scf_pg_destroy(scf_propertygroup_t *val)
3059 {
3060 	if (val == NULL)
3061 		return;
3062 
3063 	datael_destroy(&val->rd_d);
3064 	uu_free(val);
3065 }
3066 
3067 ssize_t
3068 scf_pg_get_name(const scf_propertygroup_t *pg,  char *out, size_t len)
3069 {
3070 	return (datael_get_name(&pg->rd_d, out, len, RP_ENTITY_NAME_NAME));
3071 }
3072 
3073 ssize_t
3074 scf_pg_get_type(const scf_propertygroup_t *pg,  char *out, size_t len)
3075 {
3076 	return (datael_get_name(&pg->rd_d, out, len, RP_ENTITY_NAME_PGTYPE));
3077 }
3078 
3079 int
3080 scf_pg_get_flags(const scf_propertygroup_t *pg, uint32_t *out)
3081 {
3082 	char buf[REP_PROTOCOL_NAME_LEN];
3083 	ssize_t res;
3084 
3085 	res = datael_get_name(&pg->rd_d, buf, sizeof (buf),
3086 	    RP_ENTITY_NAME_PGFLAGS);
3087 
3088 	if (res == -1)
3089 		return (-1);
3090 
3091 	if (uu_strtouint(buf, out, sizeof (*out), 0, 0, UINT32_MAX) == -1)
3092 		return (scf_set_error(SCF_ERROR_INTERNAL));
3093 
3094 	return (0);
3095 }
3096 
3097 static int
3098 datael_update(scf_datael_t *dp)
3099 {
3100 	scf_handle_t *h = dp->rd_handle;
3101 
3102 	struct rep_protocol_entity_update request;
3103 	struct rep_protocol_response response;
3104 
3105 	int r;
3106 
3107 	(void) pthread_mutex_lock(&h->rh_lock);
3108 	request.rpr_request = REP_PROTOCOL_ENTITY_UPDATE;
3109 	request.rpr_entityid = dp->rd_entity;
3110 
3111 	datael_finish_reset(dp);
3112 	request.rpr_changeid = handle_next_changeid(h);
3113 
3114 	r = make_door_call(h, &request, sizeof (request),
3115 	    &response, sizeof (response));
3116 	(void) pthread_mutex_unlock(&h->rh_lock);
3117 
3118 	if (r < 0)
3119 		DOOR_ERRORS_BLOCK(r);
3120 
3121 	/*
3122 	 * This should never happen but if it does something has
3123 	 * gone terribly wrong and we should abort.
3124 	 */
3125 	if (response.rpr_response == REP_PROTOCOL_FAIL_BAD_REQUEST)
3126 		abort();
3127 
3128 	if (response.rpr_response != REP_PROTOCOL_SUCCESS &&
3129 	    response.rpr_response != REP_PROTOCOL_DONE) {
3130 		return (scf_set_error(proto_error(response.rpr_response)));
3131 	}
3132 
3133 	return (response.rpr_response == REP_PROTOCOL_SUCCESS) ?
3134 	    SCF_SUCCESS : SCF_COMPLETE;
3135 }
3136 
3137 int
3138 scf_pg_update(scf_propertygroup_t *pg)
3139 {
3140 	return (datael_update(&pg->rd_d));
3141 }
3142 
3143 int
3144 scf_snapshot_update(scf_snapshot_t *snap)
3145 {
3146 	return (datael_update(&snap->rd_d));
3147 }
3148 
3149 int
3150 _scf_pg_wait(scf_propertygroup_t *pg, int timeout)
3151 {
3152 	scf_handle_t *h = pg->rd_d.rd_handle;
3153 
3154 	struct rep_protocol_propertygrp_request request;
3155 	struct rep_protocol_response response;
3156 
3157 	struct pollfd pollfd;
3158 
3159 	int r;
3160 
3161 	(void) pthread_mutex_lock(&h->rh_lock);
3162 	request.rpr_request = REP_PROTOCOL_PROPERTYGRP_SETUP_WAIT;
3163 	request.rpr_entityid = pg->rd_d.rd_entity;
3164 
3165 	datael_finish_reset(&pg->rd_d);
3166 	if (!handle_is_bound(h)) {
3167 		(void) pthread_mutex_unlock(&h->rh_lock);
3168 		return (scf_set_error(SCF_ERROR_CONNECTION_BROKEN));
3169 	}
3170 	r = make_door_call_retfd(h->rh_doorfd, &request, sizeof (request),
3171 	    &response, sizeof (response), &pollfd.fd);
3172 	(void) pthread_mutex_unlock(&h->rh_lock);
3173 
3174 	if (r < 0)
3175 		DOOR_ERRORS_BLOCK(r);
3176 
3177 	assert((response.rpr_response == REP_PROTOCOL_SUCCESS) ==
3178 	    (pollfd.fd != -1));
3179 
3180 	if (response.rpr_response == REP_PROTOCOL_FAIL_NOT_LATEST)
3181 		return (SCF_SUCCESS);
3182 
3183 	if (response.rpr_response != REP_PROTOCOL_SUCCESS)
3184 		return (scf_set_error(proto_error(response.rpr_response)));
3185 
3186 	pollfd.events = 0;
3187 	pollfd.revents = 0;
3188 
3189 	r = poll(&pollfd, 1, timeout * MILLISEC);
3190 
3191 	(void) close(pollfd.fd);
3192 	return (pollfd.revents ? SCF_SUCCESS : SCF_COMPLETE);
3193 }
3194 
3195 static int
3196 scf_notify_add_pattern(scf_handle_t *h, int type, const char *name)
3197 {
3198 	struct rep_protocol_notify_request request;
3199 	struct rep_protocol_response response;
3200 	int r;
3201 
3202 	(void) pthread_mutex_lock(&h->rh_lock);
3203 	request.rpr_request = REP_PROTOCOL_CLIENT_ADD_NOTIFY;
3204 	request.rpr_type = type;
3205 	(void) strlcpy(request.rpr_pattern, name, sizeof (request.rpr_pattern));
3206 
3207 	r = make_door_call(h, &request, sizeof (request),
3208 	    &response, sizeof (response));
3209 	(void) pthread_mutex_unlock(&h->rh_lock);
3210 
3211 	if (r < 0)
3212 		DOOR_ERRORS_BLOCK(r);
3213 
3214 	if (response.rpr_response != REP_PROTOCOL_SUCCESS)
3215 		return (scf_set_error(proto_error(response.rpr_response)));
3216 
3217 	return (SCF_SUCCESS);
3218 }
3219 
3220 int
3221 _scf_notify_add_pgname(scf_handle_t *h, const char *name)
3222 {
3223 	return (scf_notify_add_pattern(h, REP_PROTOCOL_NOTIFY_PGNAME, name));
3224 }
3225 
3226 int
3227 _scf_notify_add_pgtype(scf_handle_t *h, const char *type)
3228 {
3229 	return (scf_notify_add_pattern(h, REP_PROTOCOL_NOTIFY_PGTYPE, type));
3230 }
3231 
3232 int
3233 _scf_notify_wait(scf_propertygroup_t *pg, char *out, size_t sz)
3234 {
3235 	struct rep_protocol_wait_request request;
3236 	struct rep_protocol_fmri_response response;
3237 
3238 	scf_handle_t *h = pg->rd_d.rd_handle;
3239 	int dummy;
3240 	int fd;
3241 	int r;
3242 
3243 	(void) pthread_mutex_lock(&h->rh_lock);
3244 	datael_finish_reset(&pg->rd_d);
3245 	if (!handle_is_bound(h)) {
3246 		(void) pthread_mutex_unlock(&h->rh_lock);
3247 		return (scf_set_error(SCF_ERROR_CONNECTION_BROKEN));
3248 	}
3249 	fd = h->rh_doorfd;
3250 	++h->rh_fd_users;
3251 	assert(h->rh_fd_users > 0);
3252 
3253 	request.rpr_request = REP_PROTOCOL_CLIENT_WAIT;
3254 	request.rpr_entityid = pg->rd_d.rd_entity;
3255 	(void) pthread_mutex_unlock(&h->rh_lock);
3256 
3257 	r = make_door_call_retfd(fd, &request, sizeof (request),
3258 	    &response, sizeof (response), &dummy);
3259 
3260 	(void) pthread_mutex_lock(&h->rh_lock);
3261 	assert(h->rh_fd_users > 0);
3262 	if (--h->rh_fd_users == 0) {
3263 		(void) pthread_cond_broadcast(&h->rh_cv);
3264 		/*
3265 		 * check for a delayed close, now that there are no other
3266 		 * users.
3267 		 */
3268 		if (h->rh_doorfd_old != -1) {
3269 			assert(h->rh_doorfd == -1);
3270 			assert(fd == h->rh_doorfd_old);
3271 			(void) close(h->rh_doorfd_old);
3272 			h->rh_doorfd_old = -1;
3273 		}
3274 	}
3275 	handle_unrefed(h);			/* drops h->rh_lock */
3276 
3277 	if (r < 0)
3278 		DOOR_ERRORS_BLOCK(r);
3279 
3280 	if (response.rpr_response == REP_PROTOCOL_DONE)
3281 		return (scf_set_error(SCF_ERROR_NOT_SET));
3282 
3283 	if (response.rpr_response != REP_PROTOCOL_SUCCESS)
3284 		return (scf_set_error(proto_error(response.rpr_response)));
3285 
3286 	/* the following will be non-zero for delete notifications */
3287 	return (strlcpy(out, response.rpr_fmri, sz));
3288 }
3289 
3290 static int
3291 _scf_snapshot_take(scf_instance_t *inst, const char *name,
3292     scf_snapshot_t *snap, int flags)
3293 {
3294 	scf_handle_t *h = inst->rd_d.rd_handle;
3295 
3296 	struct rep_protocol_snapshot_take request;
3297 	struct rep_protocol_response response;
3298 
3299 	int r;
3300 
3301 	if (h != snap->rd_d.rd_handle)
3302 		return (scf_set_error(SCF_ERROR_HANDLE_MISMATCH));
3303 
3304 	if (strlcpy(request.rpr_name, (name != NULL)? name : "",
3305 	    sizeof (request.rpr_name)) >= sizeof (request.rpr_name))
3306 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
3307 
3308 	(void) pthread_mutex_lock(&h->rh_lock);
3309 	request.rpr_request = REP_PROTOCOL_SNAPSHOT_TAKE;
3310 	request.rpr_entityid_src = inst->rd_d.rd_entity;
3311 	request.rpr_entityid_dest = snap->rd_d.rd_entity;
3312 	request.rpr_flags = flags;
3313 
3314 	datael_finish_reset(&inst->rd_d);
3315 	datael_finish_reset(&snap->rd_d);
3316 
3317 	r = make_door_call(h, &request, sizeof (request),
3318 	    &response, sizeof (response));
3319 	(void) pthread_mutex_unlock(&h->rh_lock);
3320 
3321 	if (r < 0)
3322 		DOOR_ERRORS_BLOCK(r);
3323 
3324 	if (response.rpr_response != REP_PROTOCOL_SUCCESS)
3325 		return (scf_set_error(proto_error(response.rpr_response)));
3326 
3327 	return (SCF_SUCCESS);
3328 }
3329 
3330 int
3331 _scf_snapshot_take_new_named(scf_instance_t *inst,
3332     const char *svcname, const char *instname, const char *snapname,
3333     scf_snapshot_t *snap)
3334 {
3335 	scf_handle_t *h = inst->rd_d.rd_handle;
3336 
3337 	struct rep_protocol_snapshot_take_named request;
3338 	struct rep_protocol_response response;
3339 
3340 	int r;
3341 
3342 	if (h != snap->rd_d.rd_handle)
3343 		return (scf_set_error(SCF_ERROR_HANDLE_MISMATCH));
3344 
3345 	if (strlcpy(request.rpr_svcname, svcname,
3346 	    sizeof (request.rpr_svcname)) >= sizeof (request.rpr_svcname))
3347 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
3348 
3349 	if (strlcpy(request.rpr_instname, instname,
3350 	    sizeof (request.rpr_instname)) >= sizeof (request.rpr_instname))
3351 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
3352 
3353 	if (strlcpy(request.rpr_name, snapname,
3354 	    sizeof (request.rpr_name)) >= sizeof (request.rpr_name))
3355 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
3356 
3357 	(void) pthread_mutex_lock(&h->rh_lock);
3358 	request.rpr_request = REP_PROTOCOL_SNAPSHOT_TAKE_NAMED;
3359 	request.rpr_entityid_src = inst->rd_d.rd_entity;
3360 	request.rpr_entityid_dest = snap->rd_d.rd_entity;
3361 
3362 	datael_finish_reset(&inst->rd_d);
3363 	datael_finish_reset(&snap->rd_d);
3364 
3365 	r = make_door_call(h, &request, sizeof (request),
3366 	    &response, sizeof (response));
3367 	(void) pthread_mutex_unlock(&h->rh_lock);
3368 
3369 	if (r < 0)
3370 		DOOR_ERRORS_BLOCK(r);
3371 
3372 	if (response.rpr_response != REP_PROTOCOL_SUCCESS) {
3373 		assert(response.rpr_response !=
3374 		    REP_PROTOCOL_FAIL_TYPE_MISMATCH);
3375 		return (scf_set_error(proto_error(response.rpr_response)));
3376 	}
3377 
3378 	return (SCF_SUCCESS);
3379 }
3380 
3381 int
3382 _scf_snapshot_take_new(scf_instance_t *inst, const char *name,
3383     scf_snapshot_t *snap)
3384 {
3385 	return (_scf_snapshot_take(inst, name, snap, REP_SNAPSHOT_NEW));
3386 }
3387 
3388 int
3389 _scf_snapshot_take_attach(scf_instance_t *inst, scf_snapshot_t *snap)
3390 {
3391 	return (_scf_snapshot_take(inst, NULL, snap, REP_SNAPSHOT_ATTACH));
3392 }
3393 
3394 int
3395 _scf_snapshot_attach(scf_snapshot_t *src, scf_snapshot_t *dest)
3396 {
3397 	scf_handle_t *h = dest->rd_d.rd_handle;
3398 
3399 	struct rep_protocol_snapshot_attach request;
3400 	struct rep_protocol_response response;
3401 
3402 	int r;
3403 
3404 	if (h != src->rd_d.rd_handle)
3405 		return (scf_set_error(SCF_ERROR_HANDLE_MISMATCH));
3406 
3407 	(void) pthread_mutex_lock(&h->rh_lock);
3408 	request.rpr_request = REP_PROTOCOL_SNAPSHOT_ATTACH;
3409 	request.rpr_entityid_src = src->rd_d.rd_entity;
3410 	request.rpr_entityid_dest = dest->rd_d.rd_entity;
3411 
3412 	datael_finish_reset(&src->rd_d);
3413 	datael_finish_reset(&dest->rd_d);
3414 
3415 	r = make_door_call(h, &request, sizeof (request),
3416 	    &response, sizeof (response));
3417 	(void) pthread_mutex_unlock(&h->rh_lock);
3418 
3419 	if (r < 0)
3420 		DOOR_ERRORS_BLOCK(r);
3421 
3422 	if (response.rpr_response != REP_PROTOCOL_SUCCESS)
3423 		return (scf_set_error(proto_error(response.rpr_response)));
3424 
3425 	return (SCF_SUCCESS);
3426 }
3427 
3428 /*
3429  * Fails with _INVALID_ARGUMENT (handle is NULL), _HANDLE_DESTROYED, _INTERNAL
3430  * (bad server response or id in use), _NO_RESOURCES, or _NO_MEMORY.
3431  */
3432 scf_property_t *
3433 scf_property_create(scf_handle_t *handle)
3434 {
3435 	scf_property_t *ret;
3436 	ret = uu_zalloc(sizeof (*ret));
3437 	if (ret != NULL) {
3438 		if (datael_init(&ret->rd_d, handle,
3439 		    REP_PROTOCOL_ENTITY_PROPERTY) == -1) {
3440 			uu_free(ret);
3441 			return (NULL);
3442 		}
3443 	} else {
3444 		(void) scf_set_error(SCF_ERROR_NO_MEMORY);
3445 	}
3446 
3447 	return (ret);
3448 }
3449 
3450 scf_handle_t *
3451 scf_property_handle(const scf_property_t *val)
3452 {
3453 	return (datael_handle(&val->rd_d));
3454 }
3455 
3456 void
3457 scf_property_destroy(scf_property_t *val)
3458 {
3459 	if (val == NULL)
3460 		return;
3461 
3462 	datael_destroy(&val->rd_d);
3463 	uu_free(val);
3464 }
3465 
3466 static int
3467 property_type_locked(const scf_property_t *prop,
3468     rep_protocol_value_type_t *out)
3469 {
3470 	scf_handle_t *h = prop->rd_d.rd_handle;
3471 
3472 	struct rep_protocol_property_request request;
3473 	struct rep_protocol_integer_response response;
3474 
3475 	int r;
3476 
3477 	assert(MUTEX_HELD(&h->rh_lock));
3478 
3479 	request.rpr_request = REP_PROTOCOL_PROPERTY_GET_TYPE;
3480 	request.rpr_entityid = prop->rd_d.rd_entity;
3481 
3482 	datael_finish_reset(&prop->rd_d);
3483 	r = make_door_call(h, &request, sizeof (request),
3484 	    &response, sizeof (response));
3485 
3486 	if (r < 0)
3487 		DOOR_ERRORS_BLOCK(r);
3488 
3489 	if (response.rpr_response != REP_PROTOCOL_SUCCESS ||
3490 	    r < sizeof (response)) {
3491 		return (scf_set_error(proto_error(response.rpr_response)));
3492 	}
3493 	*out = response.rpr_value;
3494 	return (SCF_SUCCESS);
3495 }
3496 
3497 int
3498 scf_property_type(const scf_property_t *prop, scf_type_t *out)
3499 {
3500 	scf_handle_t *h = prop->rd_d.rd_handle;
3501 	rep_protocol_value_type_t out_raw;
3502 	int ret;
3503 
3504 	(void) pthread_mutex_lock(&h->rh_lock);
3505 	ret = property_type_locked(prop, &out_raw);
3506 	(void) pthread_mutex_unlock(&h->rh_lock);
3507 
3508 	if (ret == SCF_SUCCESS)
3509 		*out = scf_protocol_type_to_type(out_raw);
3510 
3511 	return (ret);
3512 }
3513 
3514 int
3515 scf_property_is_type(const scf_property_t *prop, scf_type_t base_arg)
3516 {
3517 	scf_handle_t *h = prop->rd_d.rd_handle;
3518 	rep_protocol_value_type_t base = scf_type_to_protocol_type(base_arg);
3519 	rep_protocol_value_type_t type;
3520 	int ret;
3521 
3522 	if (base == REP_PROTOCOL_TYPE_INVALID)
3523 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
3524 
3525 	(void) pthread_mutex_lock(&h->rh_lock);
3526 	ret = property_type_locked(prop, &type);
3527 	(void) pthread_mutex_unlock(&h->rh_lock);
3528 
3529 	if (ret == SCF_SUCCESS) {
3530 		if (!scf_is_compatible_protocol_type(base, type))
3531 			return (scf_set_error(SCF_ERROR_TYPE_MISMATCH));
3532 	}
3533 	return (ret);
3534 }
3535 
3536 int
3537 scf_is_compatible_type(scf_type_t base_arg, scf_type_t type_arg)
3538 {
3539 	rep_protocol_value_type_t base = scf_type_to_protocol_type(base_arg);
3540 	rep_protocol_value_type_t type = scf_type_to_protocol_type(type_arg);
3541 
3542 	if (base == REP_PROTOCOL_TYPE_INVALID ||
3543 	    type == REP_PROTOCOL_TYPE_INVALID)
3544 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
3545 
3546 	if (!scf_is_compatible_protocol_type(base, type))
3547 		return (scf_set_error(SCF_ERROR_TYPE_MISMATCH));
3548 
3549 	return (SCF_SUCCESS);
3550 }
3551 
3552 ssize_t
3553 scf_property_get_name(const scf_property_t *prop, char *out, size_t len)
3554 {
3555 	return (datael_get_name(&prop->rd_d, out, len, RP_ENTITY_NAME_NAME));
3556 }
3557 
3558 /*
3559  * transaction functions
3560  */
3561 
3562 /*
3563  * Fails with _NO_MEMORY, _INVALID_ARGUMENT (handle is NULL), _HANDLE_DESTROYED,
3564  * _INTERNAL (bad server response or id in use), or _NO_RESOURCES.
3565  */
3566 scf_transaction_t *
3567 scf_transaction_create(scf_handle_t *handle)
3568 {
3569 	scf_transaction_t *ret;
3570 
3571 	ret = uu_zalloc(sizeof (scf_transaction_t));
3572 	if (ret == NULL) {
3573 		(void) scf_set_error(SCF_ERROR_NO_MEMORY);
3574 		return (NULL);
3575 	}
3576 	if (datael_init(&ret->tran_pg.rd_d, handle,
3577 	    REP_PROTOCOL_ENTITY_PROPERTYGRP) == -1) {
3578 		uu_free(ret);
3579 		return (NULL);			/* error already set */
3580 	}
3581 	ret->tran_state = TRAN_STATE_NEW;
3582 	ret->tran_props = uu_list_create(tran_entry_pool, ret, UU_LIST_SORTED);
3583 	if (ret->tran_props == NULL) {
3584 		datael_destroy(&ret->tran_pg.rd_d);
3585 		uu_free(ret);
3586 		(void) scf_set_error(SCF_ERROR_NO_MEMORY);
3587 		return (NULL);
3588 	}
3589 
3590 	return (ret);
3591 }
3592 
3593 scf_handle_t *
3594 scf_transaction_handle(const scf_transaction_t *val)
3595 {
3596 	return (handle_get(val->tran_pg.rd_d.rd_handle));
3597 }
3598 
3599 int
3600 scf_transaction_start(scf_transaction_t *tran, scf_propertygroup_t *pg)
3601 {
3602 	scf_handle_t *h = tran->tran_pg.rd_d.rd_handle;
3603 
3604 	struct rep_protocol_transaction_start request;
3605 	struct rep_protocol_response response;
3606 	int r;
3607 
3608 	if (h != pg->rd_d.rd_handle)
3609 		return (scf_set_error(SCF_ERROR_HANDLE_MISMATCH));
3610 
3611 	(void) pthread_mutex_lock(&h->rh_lock);
3612 	if (tran->tran_state != TRAN_STATE_NEW) {
3613 		(void) pthread_mutex_unlock(&h->rh_lock);
3614 		return (scf_set_error(SCF_ERROR_IN_USE));
3615 	}
3616 	request.rpr_request = REP_PROTOCOL_PROPERTYGRP_TX_START;
3617 	request.rpr_entityid_tx = tran->tran_pg.rd_d.rd_entity;
3618 	request.rpr_entityid = pg->rd_d.rd_entity;
3619 
3620 	datael_finish_reset(&tran->tran_pg.rd_d);
3621 	datael_finish_reset(&pg->rd_d);
3622 
3623 	r = make_door_call(h, &request, sizeof (request),
3624 	    &response, sizeof (response));
3625 
3626 	if (r < 0) {
3627 		(void) pthread_mutex_unlock(&h->rh_lock);
3628 		DOOR_ERRORS_BLOCK(r);
3629 	}
3630 
3631 	/* r < sizeof (response) cannot happen because sizeof (response) == 4 */
3632 
3633 	if (response.rpr_response != REP_PROTOCOL_SUCCESS ||
3634 	    r < sizeof (response)) {
3635 		(void) pthread_mutex_unlock(&h->rh_lock);
3636 		return (scf_set_error(proto_error(response.rpr_response)));
3637 	}
3638 
3639 	tran->tran_state = TRAN_STATE_SETUP;
3640 	tran->tran_invalid = 0;
3641 	(void) pthread_mutex_unlock(&h->rh_lock);
3642 	return (SCF_SUCCESS);
3643 }
3644 
3645 static void
3646 entry_invalidate(scf_transaction_entry_t *cur, int and_destroy,
3647     int and_reset_value)
3648 {
3649 	scf_value_t *v, *next;
3650 	scf_transaction_t *tx;
3651 	scf_handle_t *h = cur->entry_handle;
3652 
3653 	assert(MUTEX_HELD(&h->rh_lock));
3654 
3655 	if ((tx = cur->entry_tx) != NULL) {
3656 		tx->tran_invalid = 1;
3657 		uu_list_remove(tx->tran_props, cur);
3658 		cur->entry_tx = NULL;
3659 	}
3660 
3661 	cur->entry_property = NULL;
3662 	cur->entry_state = ENTRY_STATE_INVALID;
3663 	cur->entry_action = REP_PROTOCOL_TX_ENTRY_INVALID;
3664 	cur->entry_type = REP_PROTOCOL_TYPE_INVALID;
3665 
3666 	for (v = cur->entry_head; v != NULL; v = next) {
3667 		next = v->value_next;
3668 		v->value_tx = NULL;
3669 		v->value_next = NULL;
3670 		if (and_destroy || and_reset_value)
3671 			scf_value_reset_locked(v, and_destroy);
3672 	}
3673 	cur->entry_head = NULL;
3674 	cur->entry_tail = NULL;
3675 }
3676 
3677 static void
3678 entry_destroy_locked(scf_transaction_entry_t *entry)
3679 {
3680 	scf_handle_t *h = entry->entry_handle;
3681 
3682 	assert(MUTEX_HELD(&h->rh_lock));
3683 
3684 	entry_invalidate(entry, 0, 0);
3685 
3686 	entry->entry_handle = NULL;
3687 	assert(h->rh_entries > 0);
3688 	--h->rh_entries;
3689 	--h->rh_extrefs;
3690 	uu_list_node_fini(entry, &entry->entry_link, tran_entry_pool);
3691 	uu_free(entry);
3692 }
3693 
3694 /*
3695  * Fails with _HANDLE_MISMATCH, _INVALID_ARGUMENT, _NOT_BOUND,
3696  * _CONNECTION_BROKEN, _INTERNAL, _NOT_SET, _DELETED, _NO_RESOURCES,
3697  * _BACKEND_ACCESS, _IN_USE, _NOT_FOUND, _EXISTS, _TYPE_MISMATCH.
3698  */
3699 static int
3700 transaction_add(scf_transaction_t *tran, scf_transaction_entry_t *entry,
3701     enum rep_protocol_transaction_action action,
3702     const char *prop, rep_protocol_value_type_t type)
3703 {
3704 	scf_handle_t *h = tran->tran_pg.rd_d.rd_handle;
3705 	scf_transaction_entry_t *old;
3706 	scf_property_t *prop_p;
3707 	rep_protocol_value_type_t oldtype;
3708 	scf_error_t error = SCF_ERROR_NONE;
3709 	int ret;
3710 	uu_list_index_t idx;
3711 
3712 	if (h != entry->entry_handle)
3713 		return (scf_set_error(SCF_ERROR_HANDLE_MISMATCH));
3714 
3715 	if (action == REP_PROTOCOL_TX_ENTRY_DELETE)
3716 		assert(type == REP_PROTOCOL_TYPE_INVALID);
3717 	else if (type == REP_PROTOCOL_TYPE_INVALID)
3718 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
3719 
3720 	prop_p = HANDLE_HOLD_PROPERTY(h);
3721 
3722 	(void) pthread_mutex_lock(&h->rh_lock);
3723 	if (tran->tran_state != TRAN_STATE_SETUP) {
3724 		error = SCF_ERROR_NOT_SET;
3725 		goto error;
3726 	}
3727 	if (tran->tran_invalid) {
3728 		error = SCF_ERROR_NOT_SET;
3729 		goto error;
3730 	}
3731 
3732 	if (entry->entry_state != ENTRY_STATE_INVALID)
3733 		entry_invalidate(entry, 0, 0);
3734 
3735 	old = uu_list_find(tran->tran_props, &prop, NULL, &idx);
3736 	if (old != NULL) {
3737 		error = SCF_ERROR_IN_USE;
3738 		goto error;
3739 	}
3740 
3741 	ret = datael_get_child_locked(&tran->tran_pg.rd_d, prop,
3742 	    REP_PROTOCOL_ENTITY_PROPERTY, &prop_p->rd_d);
3743 	if (ret == -1 && (error = scf_error()) != SCF_ERROR_NOT_FOUND) {
3744 		goto error;
3745 	}
3746 
3747 	switch (action) {
3748 	case REP_PROTOCOL_TX_ENTRY_DELETE:
3749 		if (ret == -1) {
3750 			error = SCF_ERROR_NOT_FOUND;
3751 			goto error;
3752 		}
3753 		break;
3754 	case REP_PROTOCOL_TX_ENTRY_NEW:
3755 		if (ret != -1) {
3756 			error = SCF_ERROR_EXISTS;
3757 			goto error;
3758 		}
3759 		break;
3760 
3761 	case REP_PROTOCOL_TX_ENTRY_CLEAR:
3762 	case REP_PROTOCOL_TX_ENTRY_REPLACE:
3763 		if (ret == -1) {
3764 			error = SCF_ERROR_NOT_FOUND;
3765 			goto error;
3766 		}
3767 		if (action == REP_PROTOCOL_TX_ENTRY_CLEAR) {
3768 			if (property_type_locked(prop_p, &oldtype) == -1) {
3769 				error = scf_error();
3770 				goto error;
3771 			}
3772 			if (oldtype != type) {
3773 				error = SCF_ERROR_TYPE_MISMATCH;
3774 				goto error;
3775 			}
3776 		}
3777 		break;
3778 	default:
3779 		assert(0);
3780 		abort();
3781 	}
3782 
3783 	(void) strlcpy(entry->entry_namebuf, prop,
3784 	    sizeof (entry->entry_namebuf));
3785 	entry->entry_property = entry->entry_namebuf;
3786 	entry->entry_action = action;
3787 	entry->entry_type = type;
3788 
3789 	entry->entry_state = ENTRY_STATE_IN_TX_ACTION;
3790 	entry->entry_tx = tran;
3791 	uu_list_insert(tran->tran_props, entry, idx);
3792 
3793 	(void) pthread_mutex_unlock(&h->rh_lock);
3794 
3795 	HANDLE_RELE_PROPERTY(h);
3796 
3797 	return (SCF_SUCCESS);
3798 
3799 error:
3800 	(void) pthread_mutex_unlock(&h->rh_lock);
3801 
3802 	HANDLE_RELE_PROPERTY(h);
3803 
3804 	return (scf_set_error(error));
3805 }
3806 
3807 /*
3808  * Fails with _HANDLE_MISMATCH, _INVALID_ARGUMENT, _NOT_BOUND,
3809  * _CONNECTION_BROKEN, _INTERNAL, _NOT_SET, _DELETED, _NO_RESOURCES,
3810  * _BACKEND_ACCESS, _IN_USE, _NOT_FOUND, _EXISTS, _TYPE_MISMATCH.
3811  */
3812 int
3813 scf_transaction_property_new(scf_transaction_t *tx,
3814     scf_transaction_entry_t *entry, const char *prop, scf_type_t type)
3815 {
3816 	return (transaction_add(tx, entry, REP_PROTOCOL_TX_ENTRY_NEW,
3817 	    prop, scf_type_to_protocol_type(type)));
3818 }
3819 
3820 /*
3821  * Fails with _HANDLE_MISMATCH, _INVALID_ARGUMENT, _NOT_BOUND,
3822  * _CONNECTION_BROKEN, _INTERNAL, _NOT_SET, _DELETED, _NO_RESOURCES,
3823  * _BACKEND_ACCESS, _IN_USE, _NOT_FOUND, _EXISTS, _TYPE_MISMATCH.
3824  */
3825 int
3826 scf_transaction_property_change(scf_transaction_t *tx,
3827     scf_transaction_entry_t *entry, const char *prop, scf_type_t type)
3828 {
3829 	return (transaction_add(tx, entry, REP_PROTOCOL_TX_ENTRY_CLEAR,
3830 	    prop, scf_type_to_protocol_type(type)));
3831 }
3832 
3833 /*
3834  * Fails with _HANDLE_MISMATCH, _INVALID_ARGUMENT, _NOT_BOUND,
3835  * _CONNECTION_BROKEN, _INTERNAL, _NOT_SET, _DELETED, _NO_RESOURCES,
3836  * _BACKEND_ACCESS, _IN_USE, _NOT_FOUND, _EXISTS, _TYPE_MISMATCH.
3837  */
3838 int
3839 scf_transaction_property_change_type(scf_transaction_t *tx,
3840     scf_transaction_entry_t *entry, const char *prop, scf_type_t type)
3841 {
3842 	return (transaction_add(tx, entry, REP_PROTOCOL_TX_ENTRY_REPLACE,
3843 	    prop, scf_type_to_protocol_type(type)));
3844 }
3845 
3846 /*
3847  * Fails with _HANDLE_MISMATCH, _INVALID_ARGUMENT, _NOT_BOUND,
3848  * _CONNECTION_BROKEN, _INTERNAL, _NOT_SET, _DELETED, _NO_RESOURCES,
3849  * _BACKEND_ACCESS, _IN_USE, _NOT_FOUND, _EXISTS, _TYPE_MISMATCH.
3850  */
3851 int
3852 scf_transaction_property_delete(scf_transaction_t *tx,
3853     scf_transaction_entry_t *entry, const char *prop)
3854 {
3855 	return (transaction_add(tx, entry, REP_PROTOCOL_TX_ENTRY_DELETE,
3856 	    prop, REP_PROTOCOL_TYPE_INVALID));
3857 }
3858 
3859 #define	BAD_SIZE (-1UL)
3860 
3861 static size_t
3862 commit_value(caddr_t data, scf_value_t *val, rep_protocol_value_type_t t)
3863 {
3864 	size_t len;
3865 
3866 	assert(val->value_type == t);
3867 
3868 	if (t == REP_PROTOCOL_TYPE_OPAQUE) {
3869 		len = scf_opaque_encode(data, val->value_value,
3870 		    val->value_size);
3871 	} else {
3872 		if (data != NULL)
3873 			len = strlcpy(data, val->value_value,
3874 			    REP_PROTOCOL_VALUE_LEN);
3875 		else
3876 			len = strlen(val->value_value);
3877 		if (len >= REP_PROTOCOL_VALUE_LEN)
3878 			return (BAD_SIZE);
3879 	}
3880 	return (len + 1);	/* count the '\0' */
3881 }
3882 
3883 static size_t
3884 commit_process(scf_transaction_entry_t *cur,
3885     struct rep_protocol_transaction_cmd *out)
3886 {
3887 	scf_value_t *child;
3888 	size_t sz = 0;
3889 	size_t len;
3890 	caddr_t data = (caddr_t)out->rptc_data;
3891 	caddr_t val_data;
3892 
3893 	if (out != NULL) {
3894 		len = strlcpy(data, cur->entry_property, REP_PROTOCOL_NAME_LEN);
3895 
3896 		out->rptc_action = cur->entry_action;
3897 		out->rptc_type = cur->entry_type;
3898 		out->rptc_name_len = len + 1;
3899 	} else {
3900 		len = strlen(cur->entry_property);
3901 	}
3902 
3903 	if (len >= REP_PROTOCOL_NAME_LEN)
3904 		return (BAD_SIZE);
3905 
3906 	len = TX_SIZE(len + 1);
3907 
3908 	sz += len;
3909 	val_data = data + len;
3910 
3911 	for (child = cur->entry_head; child != NULL;
3912 	    child = child->value_next) {
3913 		assert(cur->entry_action != REP_PROTOCOL_TX_ENTRY_DELETE);
3914 		if (out != NULL) {
3915 			len = commit_value(val_data + sizeof (uint32_t), child,
3916 			    cur->entry_type);
3917 			/* LINTED alignment */
3918 			*(uint32_t *)val_data = len;
3919 		} else
3920 			len = commit_value(NULL, child, cur->entry_type);
3921 
3922 		if (len == BAD_SIZE)
3923 			return (BAD_SIZE);
3924 
3925 		len += sizeof (uint32_t);
3926 		len = TX_SIZE(len);
3927 
3928 		sz += len;
3929 		val_data += len;
3930 	}
3931 
3932 	assert(val_data - data == sz);
3933 
3934 	if (out != NULL)
3935 		out->rptc_size = REP_PROTOCOL_TRANSACTION_CMD_SIZE(sz);
3936 
3937 	return (REP_PROTOCOL_TRANSACTION_CMD_SIZE(sz));
3938 }
3939 
3940 int
3941 scf_transaction_commit(scf_transaction_t *tran)
3942 {
3943 	scf_handle_t *h = tran->tran_pg.rd_d.rd_handle;
3944 
3945 	struct rep_protocol_transaction_commit *request;
3946 	struct rep_protocol_response response;
3947 	uintptr_t cmd;
3948 	scf_transaction_entry_t *cur;
3949 	size_t total, size;
3950 	size_t request_size;
3951 	size_t new_total;
3952 	int r;
3953 
3954 	(void) pthread_mutex_lock(&h->rh_lock);
3955 	if (tran->tran_state != TRAN_STATE_SETUP ||
3956 	    tran->tran_invalid) {
3957 		(void) pthread_mutex_unlock(&h->rh_lock);
3958 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
3959 	}
3960 
3961 	total = 0;
3962 	for (cur = uu_list_first(tran->tran_props); cur != NULL;
3963 	    cur = uu_list_next(tran->tran_props, cur)) {
3964 		size = commit_process(cur, NULL);
3965 		if (size == BAD_SIZE) {
3966 			(void) pthread_mutex_unlock(&h->rh_lock);
3967 			return (scf_set_error(SCF_ERROR_INTERNAL));
3968 		}
3969 		assert(TX_SIZE(size) == size);
3970 		total += size;
3971 	}
3972 
3973 	request_size = REP_PROTOCOL_TRANSACTION_COMMIT_SIZE(total);
3974 	request = alloca(request_size);
3975 	(void) memset(request, '\0', request_size);
3976 	request->rpr_request = REP_PROTOCOL_PROPERTYGRP_TX_COMMIT;
3977 	request->rpr_entityid = tran->tran_pg.rd_d.rd_entity;
3978 	request->rpr_size = request_size;
3979 	cmd = (uintptr_t)request->rpr_cmd;
3980 
3981 	datael_finish_reset(&tran->tran_pg.rd_d);
3982 
3983 	new_total = 0;
3984 	for (cur = uu_list_first(tran->tran_props); cur != NULL;
3985 	    cur = uu_list_next(tran->tran_props, cur)) {
3986 		size = commit_process(cur, (void *)cmd);
3987 		if (size == BAD_SIZE) {
3988 			(void) pthread_mutex_unlock(&h->rh_lock);
3989 			return (scf_set_error(SCF_ERROR_INTERNAL));
3990 		}
3991 		cmd += size;
3992 		new_total += size;
3993 	}
3994 	assert(new_total == total);
3995 
3996 	r = make_door_call(h, request, request_size,
3997 	    &response, sizeof (response));
3998 
3999 	if (r < 0) {
4000 		(void) pthread_mutex_unlock(&h->rh_lock);
4001 		DOOR_ERRORS_BLOCK(r);
4002 	}
4003 
4004 	if (response.rpr_response != REP_PROTOCOL_SUCCESS &&
4005 	    response.rpr_response != REP_PROTOCOL_FAIL_NOT_LATEST) {
4006 		(void) pthread_mutex_unlock(&h->rh_lock);
4007 		return (scf_set_error(proto_error(response.rpr_response)));
4008 	}
4009 
4010 	tran->tran_state = TRAN_STATE_COMMITTED;
4011 	(void) pthread_mutex_unlock(&h->rh_lock);
4012 	return (response.rpr_response == REP_PROTOCOL_SUCCESS);
4013 }
4014 
4015 static void
4016 transaction_reset(scf_transaction_t *tran)
4017 {
4018 	assert(MUTEX_HELD(&tran->tran_pg.rd_d.rd_handle->rh_lock));
4019 
4020 	tran->tran_state = TRAN_STATE_NEW;
4021 	datael_reset_locked(&tran->tran_pg.rd_d);
4022 }
4023 
4024 static void
4025 scf_transaction_reset_impl(scf_transaction_t *tran, int and_destroy,
4026     int and_reset_value)
4027 {
4028 	scf_transaction_entry_t *cur;
4029 	void *cookie;
4030 
4031 	(void) pthread_mutex_lock(&tran->tran_pg.rd_d.rd_handle->rh_lock);
4032 	cookie = NULL;
4033 	while ((cur = uu_list_teardown(tran->tran_props, &cookie)) != NULL) {
4034 		cur->entry_tx = NULL;
4035 
4036 		assert(cur->entry_state == ENTRY_STATE_IN_TX_ACTION);
4037 		cur->entry_state = ENTRY_STATE_INVALID;
4038 
4039 		entry_invalidate(cur, and_destroy, and_reset_value);
4040 		if (and_destroy)
4041 			entry_destroy_locked(cur);
4042 	}
4043 	transaction_reset(tran);
4044 	handle_unrefed(tran->tran_pg.rd_d.rd_handle);
4045 }
4046 
4047 void
4048 scf_transaction_reset(scf_transaction_t *tran)
4049 {
4050 	scf_transaction_reset_impl(tran, 0, 0);
4051 }
4052 
4053 void
4054 scf_transaction_reset_all(scf_transaction_t *tran)
4055 {
4056 	scf_transaction_reset_impl(tran, 0, 1);
4057 }
4058 
4059 void
4060 scf_transaction_destroy(scf_transaction_t *val)
4061 {
4062 	if (val == NULL)
4063 		return;
4064 
4065 	scf_transaction_reset(val);
4066 
4067 	datael_destroy(&val->tran_pg.rd_d);
4068 
4069 	uu_list_destroy(val->tran_props);
4070 	uu_free(val);
4071 }
4072 
4073 void
4074 scf_transaction_destroy_children(scf_transaction_t *tran)
4075 {
4076 	scf_transaction_reset_impl(tran, 1, 0);
4077 }
4078 
4079 scf_transaction_entry_t *
4080 scf_entry_create(scf_handle_t *h)
4081 {
4082 	scf_transaction_entry_t *ret;
4083 
4084 	if (h == NULL) {
4085 		(void) scf_set_error(SCF_ERROR_INVALID_ARGUMENT);
4086 		return (NULL);
4087 	}
4088 
4089 	ret = uu_zalloc(sizeof (scf_transaction_entry_t));
4090 	if (ret == NULL) {
4091 		(void) scf_set_error(SCF_ERROR_NO_MEMORY);
4092 		return (NULL);
4093 	}
4094 	ret->entry_action = REP_PROTOCOL_TX_ENTRY_INVALID;
4095 	ret->entry_handle = h;
4096 
4097 	(void) pthread_mutex_lock(&h->rh_lock);
4098 	if (h->rh_flags & HANDLE_DEAD) {
4099 		(void) pthread_mutex_unlock(&h->rh_lock);
4100 		uu_free(ret);
4101 		(void) scf_set_error(SCF_ERROR_HANDLE_DESTROYED);
4102 		return (NULL);
4103 	}
4104 	h->rh_entries++;
4105 	h->rh_extrefs++;
4106 	(void) pthread_mutex_unlock(&h->rh_lock);
4107 
4108 	uu_list_node_init(ret, &ret->entry_link, tran_entry_pool);
4109 
4110 	return (ret);
4111 }
4112 
4113 scf_handle_t *
4114 scf_entry_handle(const scf_transaction_entry_t *val)
4115 {
4116 	return (handle_get(val->entry_handle));
4117 }
4118 
4119 void
4120 scf_entry_reset(scf_transaction_entry_t *entry)
4121 {
4122 	scf_handle_t *h = entry->entry_handle;
4123 
4124 	(void) pthread_mutex_lock(&h->rh_lock);
4125 	entry_invalidate(entry, 0, 0);
4126 	(void) pthread_mutex_unlock(&h->rh_lock);
4127 }
4128 
4129 void
4130 scf_entry_destroy_children(scf_transaction_entry_t *entry)
4131 {
4132 	scf_handle_t *h = entry->entry_handle;
4133 
4134 	(void) pthread_mutex_lock(&h->rh_lock);
4135 	entry_invalidate(entry, 1, 0);
4136 	handle_unrefed(h);			/* drops h->rh_lock */
4137 }
4138 
4139 void
4140 scf_entry_destroy(scf_transaction_entry_t *entry)
4141 {
4142 	scf_handle_t *h;
4143 
4144 	if (entry == NULL)
4145 		return;
4146 
4147 	h = entry->entry_handle;
4148 
4149 	(void) pthread_mutex_lock(&h->rh_lock);
4150 	entry_destroy_locked(entry);
4151 	handle_unrefed(h);			/* drops h->rh_lock */
4152 }
4153 
4154 /*
4155  * Fails with
4156  *   _HANDLE_MISMATCH
4157  *   _NOT_SET - has not been added to a transaction
4158  *   _INTERNAL - entry is corrupt
4159  *   _INVALID_ARGUMENT - entry's transaction is not started or corrupt
4160  *			 entry is set to delete a property
4161  *			 v is reset or corrupt
4162  *   _TYPE_MISMATCH - entry & v's types aren't compatible
4163  *   _IN_USE - v has been added to another entry
4164  */
4165 int
4166 scf_entry_add_value(scf_transaction_entry_t *entry, scf_value_t *v)
4167 {
4168 	scf_handle_t *h = entry->entry_handle;
4169 
4170 	if (h != v->value_handle)
4171 		return (scf_set_error(SCF_ERROR_HANDLE_MISMATCH));
4172 
4173 	(void) pthread_mutex_lock(&h->rh_lock);
4174 
4175 	if (entry->entry_state == ENTRY_STATE_INVALID) {
4176 		(void) pthread_mutex_unlock(&h->rh_lock);
4177 		return (scf_set_error(SCF_ERROR_NOT_SET));
4178 	}
4179 
4180 	if (entry->entry_state != ENTRY_STATE_IN_TX_ACTION) {
4181 		(void) pthread_mutex_unlock(&h->rh_lock);
4182 		return (scf_set_error(SCF_ERROR_INTERNAL));
4183 	}
4184 
4185 	if (entry->entry_tx->tran_state != TRAN_STATE_SETUP) {
4186 		(void) pthread_mutex_unlock(&h->rh_lock);
4187 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
4188 	}
4189 
4190 	if (entry->entry_action == REP_PROTOCOL_TX_ENTRY_DELETE) {
4191 		(void) pthread_mutex_unlock(&h->rh_lock);
4192 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
4193 	}
4194 
4195 	if (v->value_type == REP_PROTOCOL_TYPE_INVALID) {
4196 		(void) pthread_mutex_unlock(&h->rh_lock);
4197 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
4198 	}
4199 
4200 	if (!scf_is_compatible_protocol_type(entry->entry_type,
4201 	    v->value_type)) {
4202 		(void) pthread_mutex_unlock(&h->rh_lock);
4203 		return (scf_set_error(SCF_ERROR_TYPE_MISMATCH));
4204 	}
4205 
4206 	if (v->value_tx != NULL) {
4207 		(void) pthread_mutex_unlock(&h->rh_lock);
4208 		return (scf_set_error(SCF_ERROR_IN_USE));
4209 	}
4210 
4211 	v->value_tx = entry;
4212 	v->value_next = NULL;
4213 	if (entry->entry_head == NULL) {
4214 		entry->entry_head = v;
4215 		entry->entry_tail = v;
4216 	} else {
4217 		entry->entry_tail->value_next = v;
4218 		entry->entry_tail = v;
4219 	}
4220 
4221 	(void) pthread_mutex_unlock(&h->rh_lock);
4222 
4223 	return (SCF_SUCCESS);
4224 }
4225 
4226 /*
4227  * value functions
4228  */
4229 scf_value_t *
4230 scf_value_create(scf_handle_t *h)
4231 {
4232 	scf_value_t *ret;
4233 
4234 	if (h == NULL) {
4235 		(void) scf_set_error(SCF_ERROR_INVALID_ARGUMENT);
4236 		return (NULL);
4237 	}
4238 
4239 	ret = uu_zalloc(sizeof (*ret));
4240 	if (ret != NULL) {
4241 		ret->value_type = REP_PROTOCOL_TYPE_INVALID;
4242 		ret->value_handle = h;
4243 		(void) pthread_mutex_lock(&h->rh_lock);
4244 		if (h->rh_flags & HANDLE_DEAD) {
4245 			(void) pthread_mutex_unlock(&h->rh_lock);
4246 			uu_free(ret);
4247 			(void) scf_set_error(SCF_ERROR_HANDLE_DESTROYED);
4248 			return (NULL);
4249 		}
4250 		h->rh_values++;
4251 		h->rh_extrefs++;
4252 		(void) pthread_mutex_unlock(&h->rh_lock);
4253 	} else {
4254 		(void) scf_set_error(SCF_ERROR_NO_MEMORY);
4255 	}
4256 
4257 	return (ret);
4258 }
4259 
4260 static void
4261 scf_value_reset_locked(scf_value_t *val, int and_destroy)
4262 {
4263 	scf_value_t **curp;
4264 	scf_transaction_entry_t *te;
4265 
4266 	scf_handle_t *h = val->value_handle;
4267 	assert(MUTEX_HELD(&h->rh_lock));
4268 	if (val->value_tx != NULL) {
4269 		te = val->value_tx;
4270 		te->entry_tx->tran_invalid = 1;
4271 
4272 		val->value_tx = NULL;
4273 
4274 		for (curp = &te->entry_head; *curp != NULL;
4275 		    curp = &(*curp)->value_next) {
4276 			if (*curp == val) {
4277 				*curp = val->value_next;
4278 				curp = NULL;
4279 				break;
4280 			}
4281 		}
4282 		assert(curp == NULL);
4283 	}
4284 	val->value_type = REP_PROTOCOL_TYPE_INVALID;
4285 
4286 	if (and_destroy) {
4287 		val->value_handle = NULL;
4288 		assert(h->rh_values > 0);
4289 		--h->rh_values;
4290 		--h->rh_extrefs;
4291 		uu_free(val);
4292 	}
4293 }
4294 
4295 void
4296 scf_value_reset(scf_value_t *val)
4297 {
4298 	scf_handle_t *h = val->value_handle;
4299 
4300 	(void) pthread_mutex_lock(&h->rh_lock);
4301 	scf_value_reset_locked(val, 0);
4302 	(void) pthread_mutex_unlock(&h->rh_lock);
4303 }
4304 
4305 scf_handle_t *
4306 scf_value_handle(const scf_value_t *val)
4307 {
4308 	return (handle_get(val->value_handle));
4309 }
4310 
4311 void
4312 scf_value_destroy(scf_value_t *val)
4313 {
4314 	scf_handle_t *h;
4315 
4316 	if (val == NULL)
4317 		return;
4318 
4319 	h = val->value_handle;
4320 
4321 	(void) pthread_mutex_lock(&h->rh_lock);
4322 	scf_value_reset_locked(val, 1);
4323 	handle_unrefed(h);			/* drops h->rh_lock */
4324 }
4325 
4326 scf_type_t
4327 scf_value_base_type(const scf_value_t *val)
4328 {
4329 	rep_protocol_value_type_t t, cur;
4330 	scf_handle_t *h = val->value_handle;
4331 
4332 	(void) pthread_mutex_lock(&h->rh_lock);
4333 	t = val->value_type;
4334 	(void) pthread_mutex_unlock(&h->rh_lock);
4335 
4336 	for (;;) {
4337 		cur = scf_proto_underlying_type(t);
4338 		if (cur == t)
4339 			break;
4340 		t = cur;
4341 	}
4342 
4343 	return (scf_protocol_type_to_type(t));
4344 }
4345 
4346 scf_type_t
4347 scf_value_type(const scf_value_t *val)
4348 {
4349 	rep_protocol_value_type_t t;
4350 	scf_handle_t *h = val->value_handle;
4351 
4352 	(void) pthread_mutex_lock(&h->rh_lock);
4353 	t = val->value_type;
4354 	(void) pthread_mutex_unlock(&h->rh_lock);
4355 
4356 	return (scf_protocol_type_to_type(t));
4357 }
4358 
4359 int
4360 scf_value_is_type(const scf_value_t *val, scf_type_t base_arg)
4361 {
4362 	rep_protocol_value_type_t t;
4363 	rep_protocol_value_type_t base = scf_type_to_protocol_type(base_arg);
4364 	scf_handle_t *h = val->value_handle;
4365 
4366 	(void) pthread_mutex_lock(&h->rh_lock);
4367 	t = val->value_type;
4368 	(void) pthread_mutex_unlock(&h->rh_lock);
4369 
4370 	if (t == REP_PROTOCOL_TYPE_INVALID)
4371 		return (scf_set_error(SCF_ERROR_NOT_SET));
4372 	if (base == REP_PROTOCOL_TYPE_INVALID)
4373 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
4374 	if (!scf_is_compatible_protocol_type(base, t))
4375 		return (scf_set_error(SCF_ERROR_TYPE_MISMATCH));
4376 
4377 	return (SCF_SUCCESS);
4378 }
4379 
4380 /*
4381  * Fails with
4382  *   _NOT_SET - val is reset
4383  *   _TYPE_MISMATCH - val's type is not compatible with t
4384  */
4385 static int
4386 scf_value_check_type(const scf_value_t *val, rep_protocol_value_type_t t)
4387 {
4388 	if (val->value_type == REP_PROTOCOL_TYPE_INVALID) {
4389 		(void) scf_set_error(SCF_ERROR_NOT_SET);
4390 		return (0);
4391 	}
4392 	if (!scf_is_compatible_protocol_type(t, val->value_type)) {
4393 		(void) scf_set_error(SCF_ERROR_TYPE_MISMATCH);
4394 		return (0);
4395 	}
4396 	return (1);
4397 }
4398 
4399 /*
4400  * Fails with
4401  *   _NOT_SET - val is reset
4402  *   _TYPE_MISMATCH - val is not _TYPE_BOOLEAN
4403  */
4404 int
4405 scf_value_get_boolean(const scf_value_t *val, uint8_t *out)
4406 {
4407 	char c;
4408 	scf_handle_t *h = val->value_handle;
4409 	uint8_t o;
4410 
4411 	(void) pthread_mutex_lock(&h->rh_lock);
4412 	if (!scf_value_check_type(val, REP_PROTOCOL_TYPE_BOOLEAN)) {
4413 		(void) pthread_mutex_unlock(&h->rh_lock);
4414 		return (-1);
4415 	}
4416 
4417 	c = val->value_value[0];
4418 	assert((c == '0' || c == '1') && val->value_value[1] == 0);
4419 
4420 	o = (c != '0');
4421 	(void) pthread_mutex_unlock(&h->rh_lock);
4422 	if (out != NULL)
4423 		*out = o;
4424 	return (SCF_SUCCESS);
4425 }
4426 
4427 int
4428 scf_value_get_count(const scf_value_t *val, uint64_t *out)
4429 {
4430 	scf_handle_t *h = val->value_handle;
4431 	uint64_t o;
4432 
4433 	(void) pthread_mutex_lock(&h->rh_lock);
4434 	if (!scf_value_check_type(val, REP_PROTOCOL_TYPE_COUNT)) {
4435 		(void) pthread_mutex_unlock(&h->rh_lock);
4436 		return (-1);
4437 	}
4438 
4439 	o = strtoull(val->value_value, NULL, 10);
4440 	(void) pthread_mutex_unlock(&h->rh_lock);
4441 	if (out != NULL)
4442 		*out = o;
4443 	return (SCF_SUCCESS);
4444 }
4445 
4446 int
4447 scf_value_get_integer(const scf_value_t *val, int64_t *out)
4448 {
4449 	scf_handle_t *h = val->value_handle;
4450 	int64_t o;
4451 
4452 	(void) pthread_mutex_lock(&h->rh_lock);
4453 	if (!scf_value_check_type(val, REP_PROTOCOL_TYPE_INTEGER)) {
4454 		(void) pthread_mutex_unlock(&h->rh_lock);
4455 		return (-1);
4456 	}
4457 
4458 	o = strtoll(val->value_value, NULL, 10);
4459 	(void) pthread_mutex_unlock(&h->rh_lock);
4460 	if (out != NULL)
4461 		*out = o;
4462 	return (SCF_SUCCESS);
4463 }
4464 
4465 int
4466 scf_value_get_time(const scf_value_t *val, int64_t *sec_out, int32_t *nsec_out)
4467 {
4468 	scf_handle_t *h = val->value_handle;
4469 	char *p;
4470 	int64_t os;
4471 	int32_t ons;
4472 
4473 	(void) pthread_mutex_lock(&h->rh_lock);
4474 	if (!scf_value_check_type(val, REP_PROTOCOL_TYPE_TIME)) {
4475 		(void) pthread_mutex_unlock(&h->rh_lock);
4476 		return (-1);
4477 	}
4478 
4479 	os = strtoll(val->value_value, &p, 10);
4480 	if (*p == '.')
4481 		ons = strtoul(p + 1, NULL, 10);
4482 	else
4483 		ons = 0;
4484 	(void) pthread_mutex_unlock(&h->rh_lock);
4485 	if (sec_out != NULL)
4486 		*sec_out = os;
4487 	if (nsec_out != NULL)
4488 		*nsec_out = ons;
4489 
4490 	return (SCF_SUCCESS);
4491 }
4492 
4493 /*
4494  * Fails with
4495  *   _NOT_SET - val is reset
4496  *   _TYPE_MISMATCH - val's type is not compatible with _TYPE_STRING.
4497  */
4498 ssize_t
4499 scf_value_get_astring(const scf_value_t *val, char *out, size_t len)
4500 {
4501 	ssize_t ret;
4502 	scf_handle_t *h = val->value_handle;
4503 
4504 	(void) pthread_mutex_lock(&h->rh_lock);
4505 	if (!scf_value_check_type(val, REP_PROTOCOL_TYPE_STRING)) {
4506 		(void) pthread_mutex_unlock(&h->rh_lock);
4507 		return ((ssize_t)-1);
4508 	}
4509 	ret = (ssize_t)strlcpy(out, val->value_value, len);
4510 	(void) pthread_mutex_unlock(&h->rh_lock);
4511 	return (ret);
4512 }
4513 
4514 ssize_t
4515 scf_value_get_ustring(const scf_value_t *val, char *out, size_t len)
4516 {
4517 	ssize_t ret;
4518 	scf_handle_t *h = val->value_handle;
4519 
4520 	(void) pthread_mutex_lock(&h->rh_lock);
4521 	if (!scf_value_check_type(val, REP_PROTOCOL_SUBTYPE_USTRING)) {
4522 		(void) pthread_mutex_unlock(&h->rh_lock);
4523 		return ((ssize_t)-1);
4524 	}
4525 	ret = (ssize_t)strlcpy(out, val->value_value, len);
4526 	(void) pthread_mutex_unlock(&h->rh_lock);
4527 	return (ret);
4528 }
4529 
4530 ssize_t
4531 scf_value_get_opaque(const scf_value_t *v, void *out, size_t len)
4532 {
4533 	ssize_t ret;
4534 	scf_handle_t *h = v->value_handle;
4535 
4536 	(void) pthread_mutex_lock(&h->rh_lock);
4537 	if (!scf_value_check_type(v, REP_PROTOCOL_TYPE_OPAQUE)) {
4538 		(void) pthread_mutex_unlock(&h->rh_lock);
4539 		return ((ssize_t)-1);
4540 	}
4541 	if (len > v->value_size)
4542 		len = v->value_size;
4543 	ret = len;
4544 
4545 	(void) memcpy(out, v->value_value, len);
4546 	(void) pthread_mutex_unlock(&h->rh_lock);
4547 	return (ret);
4548 }
4549 
4550 void
4551 scf_value_set_boolean(scf_value_t *v, uint8_t new)
4552 {
4553 	scf_handle_t *h = v->value_handle;
4554 
4555 	(void) pthread_mutex_lock(&h->rh_lock);
4556 	scf_value_reset_locked(v, 0);
4557 	v->value_type = REP_PROTOCOL_TYPE_BOOLEAN;
4558 	(void) sprintf(v->value_value, "%d", (new != 0));
4559 	(void) pthread_mutex_unlock(&h->rh_lock);
4560 }
4561 
4562 void
4563 scf_value_set_count(scf_value_t *v, uint64_t new)
4564 {
4565 	scf_handle_t *h = v->value_handle;
4566 
4567 	(void) pthread_mutex_lock(&h->rh_lock);
4568 	scf_value_reset_locked(v, 0);
4569 	v->value_type = REP_PROTOCOL_TYPE_COUNT;
4570 	(void) sprintf(v->value_value, "%llu", (unsigned long long)new);
4571 	(void) pthread_mutex_unlock(&h->rh_lock);
4572 }
4573 
4574 void
4575 scf_value_set_integer(scf_value_t *v, int64_t new)
4576 {
4577 	scf_handle_t *h = v->value_handle;
4578 
4579 	(void) pthread_mutex_lock(&h->rh_lock);
4580 	scf_value_reset_locked(v, 0);
4581 	v->value_type = REP_PROTOCOL_TYPE_INTEGER;
4582 	(void) sprintf(v->value_value, "%lld", (long long)new);
4583 	(void) pthread_mutex_unlock(&h->rh_lock);
4584 }
4585 
4586 int
4587 scf_value_set_time(scf_value_t *v, int64_t new_sec, int32_t new_nsec)
4588 {
4589 	scf_handle_t *h = v->value_handle;
4590 
4591 	(void) pthread_mutex_lock(&h->rh_lock);
4592 	scf_value_reset_locked(v, 0);
4593 	if (new_nsec < 0 || new_nsec >= NANOSEC) {
4594 		(void) pthread_mutex_unlock(&h->rh_lock);
4595 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
4596 	}
4597 	v->value_type = REP_PROTOCOL_TYPE_TIME;
4598 	if (new_nsec == 0)
4599 		(void) sprintf(v->value_value, "%lld", (long long)new_sec);
4600 	else
4601 		(void) sprintf(v->value_value, "%lld.%09u", (long long)new_sec,
4602 		    (unsigned)new_nsec);
4603 	(void) pthread_mutex_unlock(&h->rh_lock);
4604 	return (0);
4605 }
4606 
4607 int
4608 scf_value_set_astring(scf_value_t *v, const char *new)
4609 {
4610 	scf_handle_t *h = v->value_handle;
4611 
4612 	(void) pthread_mutex_lock(&h->rh_lock);
4613 	scf_value_reset_locked(v, 0);
4614 	if (!scf_validate_encoded_value(REP_PROTOCOL_TYPE_STRING, new)) {
4615 		(void) pthread_mutex_unlock(&h->rh_lock);
4616 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
4617 	}
4618 	if (strlcpy(v->value_value, new, sizeof (v->value_value)) >=
4619 	    sizeof (v->value_value)) {
4620 		(void) pthread_mutex_unlock(&h->rh_lock);
4621 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
4622 	}
4623 	v->value_type = REP_PROTOCOL_TYPE_STRING;
4624 	(void) pthread_mutex_unlock(&h->rh_lock);
4625 	return (0);
4626 }
4627 
4628 int
4629 scf_value_set_ustring(scf_value_t *v, const char *new)
4630 {
4631 	scf_handle_t *h = v->value_handle;
4632 
4633 	(void) pthread_mutex_lock(&h->rh_lock);
4634 	scf_value_reset_locked(v, 0);
4635 	if (!scf_validate_encoded_value(REP_PROTOCOL_SUBTYPE_USTRING, new)) {
4636 		(void) pthread_mutex_unlock(&h->rh_lock);
4637 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
4638 	}
4639 	if (strlcpy(v->value_value, new, sizeof (v->value_value)) >=
4640 	    sizeof (v->value_value)) {
4641 		(void) pthread_mutex_unlock(&h->rh_lock);
4642 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
4643 	}
4644 	v->value_type = REP_PROTOCOL_SUBTYPE_USTRING;
4645 	(void) pthread_mutex_unlock(&h->rh_lock);
4646 	return (0);
4647 }
4648 
4649 int
4650 scf_value_set_opaque(scf_value_t *v, const void *new, size_t len)
4651 {
4652 	scf_handle_t *h = v->value_handle;
4653 
4654 	(void) pthread_mutex_lock(&h->rh_lock);
4655 	scf_value_reset_locked(v, 0);
4656 	if (len > sizeof (v->value_value)) {
4657 		(void) pthread_mutex_unlock(&h->rh_lock);
4658 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
4659 	}
4660 	(void) memcpy(v->value_value, new, len);
4661 	v->value_size = len;
4662 	v->value_type = REP_PROTOCOL_TYPE_OPAQUE;
4663 	(void) pthread_mutex_unlock(&h->rh_lock);
4664 	return (0);
4665 }
4666 
4667 /*
4668  * Fails with
4669  *   _NOT_SET - v_arg is reset
4670  *   _INTERNAL - v_arg is corrupt
4671  *
4672  * If t is not _TYPE_INVALID, fails with
4673  *   _TYPE_MISMATCH - v_arg's type is not compatible with t
4674  */
4675 static ssize_t
4676 scf_value_get_as_string_common(const scf_value_t *v_arg,
4677     rep_protocol_value_type_t t, char *buf, size_t bufsz)
4678 {
4679 	scf_handle_t *h = v_arg->value_handle;
4680 	scf_value_t v_s;
4681 	scf_value_t *v = &v_s;
4682 	ssize_t r;
4683 	uint8_t b;
4684 
4685 	(void) pthread_mutex_lock(&h->rh_lock);
4686 	if (t != REP_PROTOCOL_TYPE_INVALID && !scf_value_check_type(v_arg, t)) {
4687 		(void) pthread_mutex_unlock(&h->rh_lock);
4688 		return (-1);
4689 	}
4690 
4691 	v_s = *v_arg;			/* copy locally so we can unlock */
4692 	h->rh_values++;			/* keep the handle from going away */
4693 	h->rh_extrefs++;
4694 	(void) pthread_mutex_unlock(&h->rh_lock);
4695 
4696 
4697 	switch (REP_PROTOCOL_BASE_TYPE(v->value_type)) {
4698 	case REP_PROTOCOL_TYPE_BOOLEAN:
4699 		r = scf_value_get_boolean(v, &b);
4700 		assert(r == SCF_SUCCESS);
4701 
4702 		r = strlcpy(buf, b ? "true" : "false", bufsz);
4703 		break;
4704 
4705 	case REP_PROTOCOL_TYPE_COUNT:
4706 	case REP_PROTOCOL_TYPE_INTEGER:
4707 	case REP_PROTOCOL_TYPE_TIME:
4708 	case REP_PROTOCOL_TYPE_STRING:
4709 		r = strlcpy(buf, v->value_value, bufsz);
4710 		break;
4711 
4712 	case REP_PROTOCOL_TYPE_OPAQUE:
4713 		/*
4714 		 * Note that we only write out full hex bytes -- if they're
4715 		 * short, and bufsz is even, we'll only fill (bufsz - 2) bytes
4716 		 * with data.
4717 		 */
4718 		if (bufsz > 0)
4719 			(void) scf_opaque_encode(buf, v->value_value,
4720 			    MIN(v->value_size, (bufsz - 1)/2));
4721 		r = (v->value_size * 2);
4722 		break;
4723 
4724 	case REP_PROTOCOL_TYPE_INVALID:
4725 		r = scf_set_error(SCF_ERROR_NOT_SET);
4726 		break;
4727 
4728 	default:
4729 		r = (scf_set_error(SCF_ERROR_INTERNAL));
4730 		break;
4731 	}
4732 
4733 	(void) pthread_mutex_lock(&h->rh_lock);
4734 	h->rh_values--;
4735 	h->rh_extrefs--;
4736 	handle_unrefed(h);
4737 
4738 	return (r);
4739 }
4740 
4741 ssize_t
4742 scf_value_get_as_string(const scf_value_t *v, char *buf, size_t bufsz)
4743 {
4744 	return (scf_value_get_as_string_common(v, REP_PROTOCOL_TYPE_INVALID,
4745 	    buf, bufsz));
4746 }
4747 
4748 ssize_t
4749 scf_value_get_as_string_typed(const scf_value_t *v, scf_type_t type,
4750     char *buf, size_t bufsz)
4751 {
4752 	rep_protocol_value_type_t ty = scf_type_to_protocol_type(type);
4753 	if (ty == REP_PROTOCOL_TYPE_INVALID)
4754 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
4755 
4756 	return (scf_value_get_as_string_common(v, ty, buf, bufsz));
4757 }
4758 
4759 int
4760 scf_value_set_from_string(scf_value_t *v, scf_type_t type, const char *str)
4761 {
4762 	scf_handle_t *h = v->value_handle;
4763 	rep_protocol_value_type_t ty;
4764 
4765 	switch (type) {
4766 	case SCF_TYPE_BOOLEAN: {
4767 		uint8_t b;
4768 
4769 		if (strcmp(str, "true") == 0 || strcmp(str, "t") == 0 ||
4770 		    strcmp(str, "1") == 0)
4771 			b = 1;
4772 		else if (strcmp(str, "false") == 0 ||
4773 		    strcmp(str, "f") == 0 || strcmp(str, "0") == 0)
4774 			b = 0;
4775 		else {
4776 			goto bad;
4777 		}
4778 
4779 		scf_value_set_boolean(v, b);
4780 		return (0);
4781 	}
4782 
4783 	case SCF_TYPE_COUNT: {
4784 		uint64_t c;
4785 		char *endp;
4786 
4787 		errno = 0;
4788 		c = strtoull(str, &endp, 0);
4789 
4790 		if (errno != 0 || endp == str || *endp != '\0')
4791 			goto bad;
4792 
4793 		scf_value_set_count(v, c);
4794 		return (0);
4795 	}
4796 
4797 	case SCF_TYPE_INTEGER: {
4798 		int64_t i;
4799 		char *endp;
4800 
4801 		errno = 0;
4802 		i = strtoll(str, &endp, 0);
4803 
4804 		if (errno != 0 || endp == str || *endp != '\0')
4805 			goto bad;
4806 
4807 		scf_value_set_integer(v, i);
4808 		return (0);
4809 	}
4810 
4811 	case SCF_TYPE_TIME: {
4812 		int64_t s;
4813 		uint32_t ns = 0;
4814 		char *endp, *ns_str;
4815 		size_t len;
4816 
4817 		errno = 0;
4818 		s = strtoll(str, &endp, 10);
4819 		if (errno != 0 || endp == str ||
4820 		    (*endp != '\0' && *endp != '.'))
4821 			goto bad;
4822 
4823 		if (*endp == '.') {
4824 			ns_str = endp + 1;
4825 			len = strlen(ns_str);
4826 			if (len == 0 || len > 9)
4827 				goto bad;
4828 
4829 			ns = strtoul(ns_str, &endp, 10);
4830 			if (errno != 0 || endp == ns_str || *endp != '\0')
4831 				goto bad;
4832 
4833 			while (len++ < 9)
4834 				ns *= 10;
4835 			assert(ns < NANOSEC);
4836 		}
4837 
4838 		return (scf_value_set_time(v, s, ns));
4839 	}
4840 
4841 	case SCF_TYPE_ASTRING:
4842 	case SCF_TYPE_USTRING:
4843 	case SCF_TYPE_OPAQUE:
4844 	case SCF_TYPE_URI:
4845 	case SCF_TYPE_FMRI:
4846 	case SCF_TYPE_HOST:
4847 	case SCF_TYPE_HOSTNAME:
4848 	case SCF_TYPE_NET_ADDR_V4:
4849 	case SCF_TYPE_NET_ADDR_V6:
4850 		ty = scf_type_to_protocol_type(type);
4851 
4852 		(void) pthread_mutex_lock(&h->rh_lock);
4853 		scf_value_reset_locked(v, 0);
4854 		if (type == SCF_TYPE_OPAQUE) {
4855 			v->value_size = scf_opaque_decode(v->value_value,
4856 			    str, sizeof (v->value_value));
4857 			if (!scf_validate_encoded_value(ty, str)) {
4858 				(void) pthread_mutex_lock(&h->rh_lock);
4859 				goto bad;
4860 			}
4861 		} else {
4862 			(void) strlcpy(v->value_value, str,
4863 			    sizeof (v->value_value));
4864 			if (!scf_validate_encoded_value(ty, v->value_value)) {
4865 				(void) pthread_mutex_lock(&h->rh_lock);
4866 				goto bad;
4867 			}
4868 		}
4869 		v->value_type = ty;
4870 		(void) pthread_mutex_unlock(&h->rh_lock);
4871 		return (SCF_SUCCESS);
4872 
4873 	case REP_PROTOCOL_TYPE_INVALID:
4874 	default:
4875 		scf_value_reset(v);
4876 		return (scf_set_error(SCF_ERROR_TYPE_MISMATCH));
4877 	}
4878 bad:
4879 	scf_value_reset(v);
4880 	return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
4881 }
4882 
4883 int
4884 scf_iter_property_values(scf_iter_t *iter, const scf_property_t *prop)
4885 {
4886 	return (datael_setup_iter(iter, &prop->rd_d,
4887 	    REP_PROTOCOL_ENTITY_VALUE, 0));
4888 }
4889 
4890 int
4891 scf_iter_next_value(scf_iter_t *iter, scf_value_t *v)
4892 {
4893 	scf_handle_t *h = iter->iter_handle;
4894 
4895 	struct rep_protocol_iter_read_value request;
4896 	struct rep_protocol_value_response response;
4897 
4898 	int r;
4899 
4900 	if (h != v->value_handle)
4901 		return (scf_set_error(SCF_ERROR_HANDLE_MISMATCH));
4902 
4903 	(void) pthread_mutex_lock(&h->rh_lock);
4904 
4905 	scf_value_reset_locked(v, 0);
4906 
4907 	if (iter->iter_type == REP_PROTOCOL_ENTITY_NONE) {
4908 		(void) pthread_mutex_unlock(&h->rh_lock);
4909 		return (scf_set_error(SCF_ERROR_NOT_SET));
4910 	}
4911 
4912 	if (iter->iter_type != REP_PROTOCOL_ENTITY_VALUE) {
4913 		(void) pthread_mutex_unlock(&h->rh_lock);
4914 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
4915 	}
4916 
4917 	request.rpr_request = REP_PROTOCOL_ITER_READ_VALUE;
4918 	request.rpr_iterid = iter->iter_id;
4919 	request.rpr_sequence = iter->iter_sequence;
4920 
4921 	r = make_door_call(h, &request, sizeof (request),
4922 	    &response, sizeof (response));
4923 
4924 	if (r < 0) {
4925 		(void) pthread_mutex_unlock(&h->rh_lock);
4926 		DOOR_ERRORS_BLOCK(r);
4927 	}
4928 
4929 	if (response.rpr_response == REP_PROTOCOL_DONE) {
4930 		(void) pthread_mutex_unlock(&h->rh_lock);
4931 		return (0);
4932 	}
4933 	if (response.rpr_response != REP_PROTOCOL_SUCCESS) {
4934 		(void) pthread_mutex_unlock(&h->rh_lock);
4935 		return (scf_set_error(proto_error(response.rpr_response)));
4936 	}
4937 	iter->iter_sequence++;
4938 
4939 	v->value_type = response.rpr_type;
4940 
4941 	assert(scf_validate_encoded_value(response.rpr_type,
4942 	    response.rpr_value));
4943 
4944 	if (v->value_type != REP_PROTOCOL_TYPE_OPAQUE) {
4945 		(void) strlcpy(v->value_value, response.rpr_value,
4946 		    sizeof (v->value_value));
4947 	} else {
4948 		v->value_size = scf_opaque_decode(v->value_value,
4949 		    response.rpr_value, sizeof (v->value_value));
4950 	}
4951 	(void) pthread_mutex_unlock(&h->rh_lock);
4952 
4953 	return (1);
4954 }
4955 
4956 int
4957 scf_property_get_value(const scf_property_t *prop, scf_value_t *v)
4958 {
4959 	scf_handle_t *h = prop->rd_d.rd_handle;
4960 	struct rep_protocol_property_request request;
4961 	struct rep_protocol_value_response response;
4962 	int r;
4963 
4964 	if (h != v->value_handle)
4965 		return (scf_set_error(SCF_ERROR_HANDLE_MISMATCH));
4966 
4967 	(void) pthread_mutex_lock(&h->rh_lock);
4968 
4969 	request.rpr_request = REP_PROTOCOL_PROPERTY_GET_VALUE;
4970 	request.rpr_entityid = prop->rd_d.rd_entity;
4971 
4972 	scf_value_reset_locked(v, 0);
4973 	datael_finish_reset(&prop->rd_d);
4974 
4975 	r = make_door_call(h, &request, sizeof (request),
4976 	    &response, sizeof (response));
4977 
4978 	if (r < 0) {
4979 		(void) pthread_mutex_unlock(&h->rh_lock);
4980 		DOOR_ERRORS_BLOCK(r);
4981 	}
4982 
4983 	if (response.rpr_response != REP_PROTOCOL_SUCCESS &&
4984 	    response.rpr_response != REP_PROTOCOL_FAIL_TRUNCATED) {
4985 		(void) pthread_mutex_unlock(&h->rh_lock);
4986 		assert(response.rpr_response !=
4987 		    REP_PROTOCOL_FAIL_TYPE_MISMATCH);
4988 		return (scf_set_error(proto_error(response.rpr_response)));
4989 	}
4990 
4991 	v->value_type = response.rpr_type;
4992 	if (v->value_type != REP_PROTOCOL_TYPE_OPAQUE) {
4993 		(void) strlcpy(v->value_value, response.rpr_value,
4994 		    sizeof (v->value_value));
4995 	} else {
4996 		v->value_size = scf_opaque_decode(v->value_value,
4997 		    response.rpr_value, sizeof (v->value_value));
4998 	}
4999 	(void) pthread_mutex_unlock(&h->rh_lock);
5000 	return ((response.rpr_response == REP_PROTOCOL_SUCCESS)?
5001 	    SCF_SUCCESS : scf_set_error(SCF_ERROR_CONSTRAINT_VIOLATED));
5002 }
5003 
5004 int
5005 scf_pg_get_parent_service(const scf_propertygroup_t *pg, scf_service_t *svc)
5006 {
5007 	return (datael_get_parent(&pg->rd_d, &svc->rd_d));
5008 }
5009 
5010 int
5011 scf_pg_get_parent_instance(const scf_propertygroup_t *pg, scf_instance_t *inst)
5012 {
5013 	return (datael_get_parent(&pg->rd_d, &inst->rd_d));
5014 }
5015 
5016 int
5017 scf_pg_get_parent_snaplevel(const scf_propertygroup_t *pg,
5018     scf_snaplevel_t *level)
5019 {
5020 	return (datael_get_parent(&pg->rd_d, &level->rd_d));
5021 }
5022 
5023 int
5024 scf_service_get_parent(const scf_service_t *svc, scf_scope_t *s)
5025 {
5026 	return (datael_get_parent(&svc->rd_d, &s->rd_d));
5027 }
5028 
5029 int
5030 scf_instance_get_parent(const scf_instance_t *inst, scf_service_t *svc)
5031 {
5032 	return (datael_get_parent(&inst->rd_d, &svc->rd_d));
5033 }
5034 
5035 int
5036 scf_snapshot_get_parent(const scf_snapshot_t *inst, scf_instance_t *svc)
5037 {
5038 	return (datael_get_parent(&inst->rd_d, &svc->rd_d));
5039 }
5040 
5041 int
5042 scf_snaplevel_get_parent(const scf_snaplevel_t *inst, scf_snapshot_t *svc)
5043 {
5044 	return (datael_get_parent(&inst->rd_d, &svc->rd_d));
5045 }
5046 
5047 /*
5048  * FMRI functions
5049  *
5050  * Note: In the scf_parse_svc_fmri(), scf_parse_file_fmri() and
5051  * scf_parse_fmri(), fmri isn't const because that would require
5052  * allocating memory. Also, note that scope, at least, is not necessarily
5053  * in the passed in fmri.
5054  */
5055 
5056 int
5057 scf_parse_svc_fmri(char *fmri, const char **scope, const char **service,
5058     const char **instance, const char **propertygroup, const char **property)
5059 {
5060 	char *s, *e, *te, *tpg;
5061 	char *my_s = NULL, *my_i = NULL, *my_pg = NULL, *my_p = NULL;
5062 
5063 	if (scope != NULL)
5064 		*scope = NULL;
5065 	if (service != NULL)
5066 		*service = NULL;
5067 	if (instance != NULL)
5068 		*instance = NULL;
5069 	if (propertygroup != NULL)
5070 		*propertygroup = NULL;
5071 	if (property != NULL)
5072 		*property = NULL;
5073 
5074 	s = fmri;
5075 	e = strchr(s, '\0');
5076 
5077 	if (strncmp(s, SCF_FMRI_SVC_PREFIX,
5078 	    sizeof (SCF_FMRI_SVC_PREFIX) - 1) == 0)
5079 		s += sizeof (SCF_FMRI_SVC_PREFIX) - 1;
5080 
5081 	if (strncmp(s, SCF_FMRI_SCOPE_PREFIX,
5082 	    sizeof (SCF_FMRI_SCOPE_PREFIX) - 1) == 0) {
5083 		char *my_scope;
5084 
5085 		s += sizeof (SCF_FMRI_SCOPE_PREFIX) - 1;
5086 		te = strstr(s, SCF_FMRI_SERVICE_PREFIX);
5087 		if (te == NULL)
5088 			te = e;
5089 
5090 		*te = 0;
5091 		my_scope = s;
5092 
5093 		s = te;
5094 		if (s < e)
5095 			s += sizeof (SCF_FMRI_SERVICE_PREFIX) - 1;
5096 
5097 		/* If the scope ends with the suffix, remove it. */
5098 		te = strstr(my_scope, SCF_FMRI_SCOPE_SUFFIX);
5099 		if (te != NULL && te[sizeof (SCF_FMRI_SCOPE_SUFFIX) - 1] == 0)
5100 			*te = 0;
5101 
5102 		/* Validate the scope. */
5103 		if (my_scope[0] == '\0')
5104 			my_scope = SCF_FMRI_LOCAL_SCOPE;
5105 		else if (uu_check_name(my_scope, 0) == -1) {
5106 			return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
5107 		}
5108 
5109 		if (scope != NULL)
5110 			*scope = my_scope;
5111 	} else {
5112 		if (scope != NULL)
5113 			*scope = SCF_FMRI_LOCAL_SCOPE;
5114 	}
5115 
5116 	if (s[0] != 0) {
5117 		if (strncmp(s, SCF_FMRI_SERVICE_PREFIX,
5118 		    sizeof (SCF_FMRI_SERVICE_PREFIX) - 1) == 0)
5119 			s += sizeof (SCF_FMRI_SERVICE_PREFIX) - 1;
5120 
5121 		/*
5122 		 * Can't validate service here because it might not be null
5123 		 * terminated.
5124 		 */
5125 		my_s = s;
5126 	}
5127 
5128 	tpg = strstr(s, SCF_FMRI_PROPERTYGRP_PREFIX);
5129 	te = strstr(s, SCF_FMRI_INSTANCE_PREFIX);
5130 	if (te != NULL && (tpg == NULL || te < tpg)) {
5131 		*te = 0;
5132 		te += sizeof (SCF_FMRI_INSTANCE_PREFIX) - 1;
5133 
5134 		/* Can't validate instance here either. */
5135 		my_i = s = te;
5136 
5137 		te = strstr(s, SCF_FMRI_PROPERTYGRP_PREFIX);
5138 	} else {
5139 		te = tpg;
5140 	}
5141 
5142 	if (te != NULL) {
5143 		*te = 0;
5144 		te += sizeof (SCF_FMRI_PROPERTYGRP_PREFIX) - 1;
5145 
5146 		my_pg = s = te;
5147 		te = strstr(s, SCF_FMRI_PROPERTY_PREFIX);
5148 		if (te != NULL) {
5149 			*te = 0;
5150 			te += sizeof (SCF_FMRI_PROPERTY_PREFIX) - 1;
5151 
5152 			my_p = te;
5153 			s = te;
5154 		}
5155 	}
5156 
5157 	if (my_s != NULL) {
5158 		if (uu_check_name(my_s, UU_NAME_DOMAIN | UU_NAME_PATH) == -1)
5159 			return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
5160 
5161 		if (service != NULL)
5162 			*service = my_s;
5163 	}
5164 
5165 	if (my_i != NULL) {
5166 		if (uu_check_name(my_i, UU_NAME_DOMAIN) == -1)
5167 			return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
5168 
5169 		if (instance != NULL)
5170 			*instance = my_i;
5171 	}
5172 
5173 	if (my_pg != NULL) {
5174 		if (uu_check_name(my_pg, UU_NAME_DOMAIN) == -1)
5175 			return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
5176 
5177 		if (propertygroup != NULL)
5178 			*propertygroup = my_pg;
5179 	}
5180 
5181 	if (my_p != NULL) {
5182 		if (uu_check_name(my_p, UU_NAME_DOMAIN) == -1)
5183 			return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
5184 
5185 		if (property != NULL)
5186 			*property = my_p;
5187 	}
5188 
5189 	return (0);
5190 }
5191 
5192 int
5193 scf_parse_file_fmri(char *fmri, const char **scope, const char **path)
5194 {
5195 	char *s, *e, *te;
5196 
5197 	if (scope != NULL)
5198 		*scope = NULL;
5199 
5200 	s = fmri;
5201 	e = strchr(s, '\0');
5202 
5203 	if (strncmp(s, SCF_FMRI_FILE_PREFIX,
5204 	    sizeof (SCF_FMRI_FILE_PREFIX) - 1) == 0)
5205 		s += sizeof (SCF_FMRI_FILE_PREFIX) - 1;
5206 
5207 	if (strncmp(s, SCF_FMRI_SCOPE_PREFIX,
5208 	    sizeof (SCF_FMRI_SCOPE_PREFIX) - 1) == 0) {
5209 		char *my_scope;
5210 
5211 		s += sizeof (SCF_FMRI_SCOPE_PREFIX) - 1;
5212 		te = strstr(s, SCF_FMRI_SERVICE_PREFIX);
5213 		if (te == NULL)
5214 			te = e;
5215 
5216 		*te = 0;
5217 		my_scope = s;
5218 
5219 		s = te;
5220 
5221 		/* Validate the scope. */
5222 		if (my_scope[0] != '\0' &&
5223 		    strcmp(my_scope, SCF_FMRI_LOCAL_SCOPE) != 0) {
5224 			return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
5225 		}
5226 
5227 		if (scope != NULL)
5228 			*scope = my_scope;
5229 	} else {
5230 		/*
5231 		 * FMRI paths must be absolute
5232 		 */
5233 		if (s[0] != '/')
5234 			return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
5235 	}
5236 
5237 	s += sizeof (SCF_FMRI_SERVICE_PREFIX) - 1;
5238 
5239 	if (s >= e)
5240 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
5241 
5242 	/*
5243 	 * If the user requests it, return the full path of the file.
5244 	 */
5245 	if (path != NULL) {
5246 		assert(s > fmri);
5247 		s[-1] = '/';
5248 		*path = s - 1;
5249 	}
5250 
5251 	return (0);
5252 }
5253 
5254 int
5255 scf_parse_fmri(char *fmri, int *type, const char **scope, const char **service,
5256     const char **instance, const char **propertygroup, const char **property)
5257 {
5258 	if (strncmp(fmri, SCF_FMRI_SVC_PREFIX,
5259 	    sizeof (SCF_FMRI_SVC_PREFIX) - 1) == 0) {
5260 		if (type)
5261 			*type = SCF_FMRI_TYPE_SVC;
5262 		return (scf_parse_svc_fmri(fmri, scope, service, instance,
5263 		    propertygroup, property));
5264 	} else if (strncmp(fmri, SCF_FMRI_FILE_PREFIX,
5265 	    sizeof (SCF_FMRI_FILE_PREFIX) - 1) == 0) {
5266 		if (type)
5267 			*type = SCF_FMRI_TYPE_FILE;
5268 		return (scf_parse_file_fmri(fmri, scope, NULL));
5269 	} else {
5270 		/*
5271 		 * Parse as a svc if the fmri type is not explicitly
5272 		 * specified.
5273 		 */
5274 		if (type)
5275 			*type = SCF_FMRI_TYPE_SVC;
5276 		return (scf_parse_svc_fmri(fmri, scope, service, instance,
5277 		    propertygroup, property));
5278 	}
5279 }
5280 
5281 /*
5282  * Fails with _INVALID_ARGUMENT.  fmri and buf may be equal.
5283  */
5284 ssize_t
5285 scf_canonify_fmri(const char *fmri, char *buf, size_t bufsz)
5286 {
5287 	const char *scope, *service, *instance, *pg, *property;
5288 	char local[6 * REP_PROTOCOL_NAME_LEN];
5289 	int r;
5290 	size_t len;
5291 
5292 	if (strlcpy(local, fmri, sizeof (local)) >= sizeof (local)) {
5293 		/* Should this be CONSTRAINT_VIOLATED? */
5294 		(void) scf_set_error(SCF_ERROR_INVALID_ARGUMENT);
5295 		return (-1);
5296 	}
5297 
5298 
5299 	r = scf_parse_svc_fmri(local, &scope, &service, &instance, &pg,
5300 	    &property);
5301 	if (r != 0)
5302 		return (-1);
5303 
5304 	len = strlcpy(buf, "svc:/", bufsz);
5305 
5306 	if (scope != NULL && strcmp(scope, SCF_SCOPE_LOCAL) != 0) {
5307 		len += strlcat(buf, "/", bufsz);
5308 		len += strlcat(buf, scope, bufsz);
5309 	}
5310 
5311 	if (service)
5312 		len += strlcat(buf, service, bufsz);
5313 
5314 	if (instance) {
5315 		len += strlcat(buf, ":", bufsz);
5316 		len += strlcat(buf, instance, bufsz);
5317 	}
5318 
5319 	if (pg) {
5320 		len += strlcat(buf, "/:properties/", bufsz);
5321 		len += strlcat(buf, pg, bufsz);
5322 	}
5323 
5324 	if (property) {
5325 		len += strlcat(buf, "/", bufsz);
5326 		len += strlcat(buf, property, bufsz);
5327 	}
5328 
5329 	return (len);
5330 }
5331 
5332 /*
5333  * Fails with _HANDLE_MISMATCH, _INVALID_ARGUMENT, _CONSTRAINT_VIOLATED,
5334  * _NOT_FOUND, _NOT_BOUND, _CONNECTION_BROKEN, _INTERNAL, _NOT_SET, _DELETED,
5335  * _NO_RESOURCES, _BACKEND_ACCESS.
5336  */
5337 int
5338 scf_handle_decode_fmri(scf_handle_t *h, const char *fmri, scf_scope_t *sc,
5339     scf_service_t *svc, scf_instance_t *inst, scf_propertygroup_t *pg,
5340     scf_property_t *prop, int flags)
5341 {
5342 	const char *scope, *service, *instance, *propertygroup, *property;
5343 	int last;
5344 	char local[6 * REP_PROTOCOL_NAME_LEN];
5345 	int ret;
5346 	const uint32_t holds = RH_HOLD_SCOPE | RH_HOLD_SERVICE |
5347 	    RH_HOLD_INSTANCE | RH_HOLD_PG | RH_HOLD_PROPERTY;
5348 
5349 	/*
5350 	 * verify that all handles match
5351 	 */
5352 	if ((sc != NULL && h != sc->rd_d.rd_handle) ||
5353 	    (svc != NULL && h != svc->rd_d.rd_handle) ||
5354 	    (inst != NULL && h != inst->rd_d.rd_handle) ||
5355 	    (pg != NULL && h != pg->rd_d.rd_handle) ||
5356 	    (prop != NULL && h != prop->rd_d.rd_handle))
5357 		return (scf_set_error(SCF_ERROR_HANDLE_MISMATCH));
5358 
5359 	if (strlcpy(local, fmri, sizeof (local)) >= sizeof (local)) {
5360 		ret = scf_set_error(SCF_ERROR_INVALID_ARGUMENT);
5361 		goto reset_args;
5362 	}
5363 
5364 	/*
5365 	 * We can simply return from an error in parsing, because
5366 	 * scf_parse_fmri sets the error code correctly.
5367 	 */
5368 	if (scf_parse_svc_fmri(local, &scope, &service, &instance,
5369 	    &propertygroup, &property) == -1) {
5370 		ret = -1;
5371 		goto reset_args;
5372 	}
5373 
5374 	/*
5375 	 * the FMRI looks valid at this point -- do constraint checks.
5376 	 */
5377 
5378 	if (instance != NULL && (flags & SCF_DECODE_FMRI_REQUIRE_NO_INSTANCE)) {
5379 		ret = scf_set_error(SCF_ERROR_CONSTRAINT_VIOLATED);
5380 		goto reset_args;
5381 	}
5382 	if (instance == NULL && (flags & SCF_DECODE_FMRI_REQUIRE_INSTANCE)) {
5383 		ret = scf_set_error(SCF_ERROR_CONSTRAINT_VIOLATED);
5384 		goto reset_args;
5385 	}
5386 
5387 	if (prop != NULL)
5388 		last = REP_PROTOCOL_ENTITY_PROPERTY;
5389 	else if (pg != NULL)
5390 		last = REP_PROTOCOL_ENTITY_PROPERTYGRP;
5391 	else if (inst != NULL)
5392 		last = REP_PROTOCOL_ENTITY_INSTANCE;
5393 	else if (svc != NULL)
5394 		last = REP_PROTOCOL_ENTITY_SERVICE;
5395 	else if (sc != NULL)
5396 		last = REP_PROTOCOL_ENTITY_SCOPE;
5397 	else
5398 		last = REP_PROTOCOL_ENTITY_NONE;
5399 
5400 	if (flags & SCF_DECODE_FMRI_EXACT) {
5401 		int last_fmri;
5402 
5403 		if (property != NULL)
5404 			last_fmri = REP_PROTOCOL_ENTITY_PROPERTY;
5405 		else if (propertygroup != NULL)
5406 			last_fmri = REP_PROTOCOL_ENTITY_PROPERTYGRP;
5407 		else if (instance != NULL)
5408 			last_fmri = REP_PROTOCOL_ENTITY_INSTANCE;
5409 		else if (service != NULL)
5410 			last_fmri = REP_PROTOCOL_ENTITY_SERVICE;
5411 		else if (scope != NULL)
5412 			last_fmri = REP_PROTOCOL_ENTITY_SCOPE;
5413 		else
5414 			last_fmri = REP_PROTOCOL_ENTITY_NONE;
5415 
5416 		if (last != last_fmri) {
5417 			ret = scf_set_error(SCF_ERROR_CONSTRAINT_VIOLATED);
5418 			goto reset_args;
5419 		}
5420 	}
5421 
5422 	if ((flags & SCF_DECODE_FMRI_TRUNCATE) &&
5423 	    last == REP_PROTOCOL_ENTITY_NONE) {
5424 		ret = 0;				/* nothing to do */
5425 		goto reset_args;
5426 	}
5427 
5428 	if (!(flags & SCF_DECODE_FMRI_TRUNCATE))
5429 		last = REP_PROTOCOL_ENTITY_NONE;	/* never stop */
5430 
5431 	/*
5432 	 * passed the constraint checks -- try to grab the thing itself.
5433 	 */
5434 
5435 	handle_hold_subhandles(h, holds);
5436 	if (sc == NULL)
5437 		sc = h->rh_scope;
5438 	else
5439 		datael_reset(&sc->rd_d);
5440 
5441 	if (svc == NULL)
5442 		svc = h->rh_service;
5443 	else
5444 		datael_reset(&svc->rd_d);
5445 
5446 	if (inst == NULL)
5447 		inst = h->rh_instance;
5448 	else
5449 		datael_reset(&inst->rd_d);
5450 
5451 	if (pg == NULL)
5452 		pg = h->rh_pg;
5453 	else
5454 		datael_reset(&pg->rd_d);
5455 
5456 	if (prop == NULL)
5457 		prop = h->rh_property;
5458 	else
5459 		datael_reset(&prop->rd_d);
5460 
5461 	/*
5462 	 * We only support local scopes, but we check *after* getting
5463 	 * the local scope, so that any repository-related errors take
5464 	 * precedence.
5465 	 */
5466 	if (scf_handle_get_scope(h, SCF_SCOPE_LOCAL, sc) == -1) {
5467 		handle_rele_subhandles(h, holds);
5468 		ret = -1;
5469 		goto reset_args;
5470 	}
5471 
5472 	if (scope != NULL && strcmp(scope, SCF_FMRI_LOCAL_SCOPE) != 0) {
5473 		handle_rele_subhandles(h, holds);
5474 		ret = scf_set_error(SCF_ERROR_NOT_FOUND);
5475 		goto reset_args;
5476 	}
5477 
5478 
5479 	if (service == NULL || last == REP_PROTOCOL_ENTITY_SCOPE) {
5480 		handle_rele_subhandles(h, holds);
5481 		return (0);
5482 	}
5483 
5484 	if (scf_scope_get_service(sc, service, svc) == -1) {
5485 		handle_rele_subhandles(h, holds);
5486 		ret = -1;
5487 		assert(scf_error() != SCF_ERROR_NOT_SET);
5488 		if (scf_error() == SCF_ERROR_DELETED)
5489 			(void) scf_set_error(SCF_ERROR_NOT_FOUND);
5490 		goto reset_args;
5491 	}
5492 
5493 	if (last == REP_PROTOCOL_ENTITY_SERVICE) {
5494 		handle_rele_subhandles(h, holds);
5495 		return (0);
5496 	}
5497 
5498 	if (instance == NULL) {
5499 		if (propertygroup == NULL ||
5500 		    last == REP_PROTOCOL_ENTITY_INSTANCE) {
5501 			handle_rele_subhandles(h, holds);
5502 			return (0);
5503 		}
5504 
5505 		if (scf_service_get_pg(svc, propertygroup, pg) == -1) {
5506 			handle_rele_subhandles(h, holds);
5507 			ret = -1;
5508 			assert(scf_error() != SCF_ERROR_NOT_SET);
5509 			if (scf_error() == SCF_ERROR_DELETED)
5510 				(void) scf_set_error(SCF_ERROR_NOT_FOUND);
5511 			goto reset_args;
5512 		}
5513 	} else {
5514 		if (scf_service_get_instance(svc, instance, inst) == -1) {
5515 			handle_rele_subhandles(h, holds);
5516 			ret = -1;
5517 			assert(scf_error() != SCF_ERROR_NOT_SET);
5518 			if (scf_error() == SCF_ERROR_DELETED)
5519 				(void) scf_set_error(SCF_ERROR_NOT_FOUND);
5520 			goto reset_args;
5521 		}
5522 
5523 		if (propertygroup == NULL ||
5524 		    last == REP_PROTOCOL_ENTITY_INSTANCE) {
5525 			handle_rele_subhandles(h, holds);
5526 			return (0);
5527 		}
5528 
5529 		if (scf_instance_get_pg(inst, propertygroup, pg) == -1) {
5530 			handle_rele_subhandles(h, holds);
5531 			ret = -1;
5532 			assert(scf_error() != SCF_ERROR_NOT_SET);
5533 			if (scf_error() == SCF_ERROR_DELETED)
5534 				(void) scf_set_error(SCF_ERROR_NOT_FOUND);
5535 			goto reset_args;
5536 		}
5537 	}
5538 
5539 	if (property == NULL || last == REP_PROTOCOL_ENTITY_PROPERTYGRP) {
5540 		handle_rele_subhandles(h, holds);
5541 		return (0);
5542 	}
5543 
5544 	if (scf_pg_get_property(pg, property, prop) == -1) {
5545 		handle_rele_subhandles(h, holds);
5546 		ret = -1;
5547 		assert(scf_error() != SCF_ERROR_NOT_SET);
5548 		if (scf_error() == SCF_ERROR_DELETED)
5549 			(void) scf_set_error(SCF_ERROR_NOT_FOUND);
5550 		goto reset_args;
5551 	}
5552 
5553 	handle_rele_subhandles(h, holds);
5554 	return (0);
5555 
5556 reset_args:
5557 	if (sc != NULL)
5558 		datael_reset(&sc->rd_d);
5559 	if (svc != NULL)
5560 		datael_reset(&svc->rd_d);
5561 	if (inst != NULL)
5562 		datael_reset(&inst->rd_d);
5563 	if (pg != NULL)
5564 		datael_reset(&pg->rd_d);
5565 	if (prop != NULL)
5566 		datael_reset(&prop->rd_d);
5567 
5568 	return (ret);
5569 }
5570 
5571 /*
5572  * Fails with _NOT_BOUND, _CONNECTION_BROKEN, _INTERNAL (server response too
5573  * big, bad entity id, request not applicable to entity, name too long for
5574  * buffer), _NOT_SET, or _DELETED.
5575  */
5576 ssize_t
5577 scf_scope_to_fmri(const scf_scope_t *scope, char *out, size_t sz)
5578 {
5579 	ssize_t r, len;
5580 
5581 	char tmp[REP_PROTOCOL_NAME_LEN];
5582 
5583 	r = scf_scope_get_name(scope, tmp, sizeof (tmp));
5584 
5585 	if (r <= 0)
5586 		return (r);
5587 
5588 	len = strlcpy(out, SCF_FMRI_SVC_PREFIX, sz);
5589 	if (strcmp(tmp, SCF_FMRI_LOCAL_SCOPE) != 0) {
5590 		if (len >= sz)
5591 			return (len + r + sizeof (SCF_FMRI_SCOPE_SUFFIX) - 1);
5592 
5593 		len = strlcat(out, tmp, sz);
5594 		if (len >= sz)
5595 			return (len + sizeof (SCF_FMRI_SCOPE_SUFFIX) - 1);
5596 		len = strlcat(out,
5597 		    SCF_FMRI_SCOPE_SUFFIX SCF_FMRI_SERVICE_PREFIX, sz);
5598 	}
5599 
5600 	return (len);
5601 }
5602 
5603 /*
5604  * Fails with _NOT_BOUND, _CONNECTION_BROKEN, _INTERNAL (server response too
5605  * big, bad element id, bad ids, bad types, scope has no parent, request not
5606  * applicable to entity, name too long), _NOT_SET, _DELETED,
5607  */
5608 ssize_t
5609 scf_service_to_fmri(const scf_service_t *svc, char *out, size_t sz)
5610 {
5611 	scf_handle_t *h = svc->rd_d.rd_handle;
5612 	scf_scope_t *scope = HANDLE_HOLD_SCOPE(h);
5613 	ssize_t r, len;
5614 
5615 	char tmp[REP_PROTOCOL_NAME_LEN];
5616 
5617 	r = datael_get_parent(&svc->rd_d, &scope->rd_d);
5618 	if (r != SCF_SUCCESS) {
5619 		HANDLE_RELE_SCOPE(h);
5620 
5621 		assert(scf_error() != SCF_ERROR_HANDLE_MISMATCH);
5622 		return (-1);
5623 	}
5624 	if (out != NULL && sz > 0)
5625 		len = scf_scope_to_fmri(scope, out, sz);
5626 	else
5627 		len = scf_scope_to_fmri(scope, tmp, 2);
5628 
5629 	HANDLE_RELE_SCOPE(h);
5630 
5631 	if (len < 0)
5632 		return (-1);
5633 
5634 	if (out == NULL || len >= sz)
5635 		len += sizeof (SCF_FMRI_SERVICE_PREFIX) - 1;
5636 	else
5637 		len = strlcat(out, SCF_FMRI_SERVICE_PREFIX, sz);
5638 
5639 	r = scf_service_get_name(svc, tmp, sizeof (tmp));
5640 	if (r < 0)
5641 		return (r);
5642 
5643 	if (out == NULL || len >= sz)
5644 		len += r;
5645 	else
5646 		len = strlcat(out, tmp, sz);
5647 
5648 	return (len);
5649 }
5650 
5651 ssize_t
5652 scf_instance_to_fmri(const scf_instance_t *inst, char *out, size_t sz)
5653 {
5654 	scf_handle_t *h = inst->rd_d.rd_handle;
5655 	scf_service_t *svc = HANDLE_HOLD_SERVICE(h);
5656 	ssize_t r, len;
5657 
5658 	char tmp[REP_PROTOCOL_NAME_LEN];
5659 
5660 	r = datael_get_parent(&inst->rd_d, &svc->rd_d);
5661 	if (r != SCF_SUCCESS) {
5662 		HANDLE_RELE_SERVICE(h);
5663 		return (-1);
5664 	}
5665 
5666 	len = scf_service_to_fmri(svc, out, sz);
5667 
5668 	HANDLE_RELE_SERVICE(h);
5669 
5670 	if (len < 0)
5671 		return (len);
5672 
5673 	if (len >= sz)
5674 		len += sizeof (SCF_FMRI_INSTANCE_PREFIX) - 1;
5675 	else
5676 		len = strlcat(out, SCF_FMRI_INSTANCE_PREFIX, sz);
5677 
5678 	r = scf_instance_get_name(inst, tmp, sizeof (tmp));
5679 	if (r < 0)
5680 		return (r);
5681 
5682 	if (len >= sz)
5683 		len += r;
5684 	else
5685 		len = strlcat(out, tmp, sz);
5686 
5687 	return (len);
5688 }
5689 
5690 ssize_t
5691 scf_pg_to_fmri(const scf_propertygroup_t *pg, char *out, size_t sz)
5692 {
5693 	scf_handle_t *h = pg->rd_d.rd_handle;
5694 
5695 	struct rep_protocol_entity_parent_type request;
5696 	struct rep_protocol_integer_response response;
5697 
5698 	char tmp[REP_PROTOCOL_NAME_LEN];
5699 	ssize_t len, r;
5700 
5701 	(void) pthread_mutex_lock(&h->rh_lock);
5702 	request.rpr_request = REP_PROTOCOL_ENTITY_PARENT_TYPE;
5703 	request.rpr_entityid = pg->rd_d.rd_entity;
5704 
5705 	datael_finish_reset(&pg->rd_d);
5706 	r = make_door_call(h, &request, sizeof (request),
5707 	    &response, sizeof (response));
5708 	(void) pthread_mutex_unlock(&h->rh_lock);
5709 
5710 	if (r < 0)
5711 		DOOR_ERRORS_BLOCK(r);
5712 
5713 	if (response.rpr_response != REP_PROTOCOL_SUCCESS ||
5714 	    r < sizeof (response)) {
5715 		return (scf_set_error(proto_error(response.rpr_response)));
5716 	}
5717 
5718 	switch (response.rpr_value) {
5719 	case REP_PROTOCOL_ENTITY_SERVICE: {
5720 		scf_service_t *svc;
5721 
5722 		svc = HANDLE_HOLD_SERVICE(h);
5723 
5724 		r = datael_get_parent(&pg->rd_d, &svc->rd_d);
5725 
5726 		if (r == SCF_SUCCESS)
5727 			len = scf_service_to_fmri(svc, out, sz);
5728 
5729 		HANDLE_RELE_SERVICE(h);
5730 		break;
5731 	}
5732 
5733 	case REP_PROTOCOL_ENTITY_INSTANCE: {
5734 		scf_instance_t *inst;
5735 
5736 		inst = HANDLE_HOLD_INSTANCE(h);
5737 
5738 		r = datael_get_parent(&pg->rd_d, &inst->rd_d);
5739 
5740 		if (r == SCF_SUCCESS)
5741 			len = scf_instance_to_fmri(inst, out, sz);
5742 
5743 		HANDLE_RELE_INSTANCE(h);
5744 		break;
5745 	}
5746 
5747 	case REP_PROTOCOL_ENTITY_SNAPLEVEL: {
5748 		scf_instance_t *inst = HANDLE_HOLD_INSTANCE(h);
5749 		scf_snapshot_t *snap = HANDLE_HOLD_SNAPSHOT(h);
5750 		scf_snaplevel_t *level = HANDLE_HOLD_SNAPLVL(h);
5751 
5752 		r = datael_get_parent(&pg->rd_d, &level->rd_d);
5753 
5754 		if (r == SCF_SUCCESS)
5755 			r = datael_get_parent(&level->rd_d, &snap->rd_d);
5756 
5757 		if (r == SCF_SUCCESS)
5758 			r = datael_get_parent(&snap->rd_d, &inst->rd_d);
5759 
5760 		if (r == SCF_SUCCESS)
5761 			len = scf_instance_to_fmri(inst, out, sz);
5762 
5763 		HANDLE_RELE_INSTANCE(h);
5764 		HANDLE_RELE_SNAPSHOT(h);
5765 		HANDLE_RELE_SNAPLVL(h);
5766 		break;
5767 	}
5768 
5769 	default:
5770 		return (scf_set_error(SCF_ERROR_INTERNAL));
5771 	}
5772 
5773 	if (r != SCF_SUCCESS)
5774 		return (r);
5775 
5776 	if (len >= sz)
5777 		len += sizeof (SCF_FMRI_PROPERTYGRP_PREFIX) - 1;
5778 	else
5779 		len = strlcat(out, SCF_FMRI_PROPERTYGRP_PREFIX, sz);
5780 
5781 	r = scf_pg_get_name(pg, tmp, sizeof (tmp));
5782 
5783 	if (r < 0)
5784 		return (r);
5785 
5786 	if (len >= sz)
5787 		len += r;
5788 	else
5789 		len = strlcat(out, tmp, sz);
5790 
5791 	return (len);
5792 }
5793 
5794 ssize_t
5795 scf_property_to_fmri(const scf_property_t *prop, char *out, size_t sz)
5796 {
5797 	scf_handle_t *h = prop->rd_d.rd_handle;
5798 	scf_propertygroup_t *pg = HANDLE_HOLD_PG(h);
5799 
5800 	char tmp[REP_PROTOCOL_NAME_LEN];
5801 	ssize_t len;
5802 	int r;
5803 
5804 	r = datael_get_parent(&prop->rd_d, &pg->rd_d);
5805 	if (r != SCF_SUCCESS) {
5806 		HANDLE_RELE_PG(h);
5807 		return (-1);
5808 	}
5809 
5810 	len = scf_pg_to_fmri(pg, out, sz);
5811 
5812 	HANDLE_RELE_PG(h);
5813 
5814 	if (len >= sz)
5815 		len += sizeof (SCF_FMRI_PROPERTY_PREFIX) - 1;
5816 	else
5817 		len = strlcat(out, SCF_FMRI_PROPERTY_PREFIX, sz);
5818 
5819 	r = scf_property_get_name(prop, tmp, sizeof (tmp));
5820 
5821 	if (r < 0)
5822 		return (r);
5823 
5824 	if (len >= sz)
5825 		len += r;
5826 	else
5827 		len = strlcat(out, tmp, sz);
5828 
5829 	return (len);
5830 }
5831 
5832 /*
5833  * Fails with _HANDLE_MISMATCH, _NOT_BOUND, _CONNECTION_BROKEN, _INTERNAL
5834  * (server response too big, bad entity id, request not applicable to entity,
5835  * name too long for buffer, bad element id, iter already exists, element
5836  * cannot have children of type, type is invalid, iter was reset, sequence
5837  * was bad, iter walks values, iter does not walk type entities),
5838  * _NOT_SET, _DELETED, or _CONSTRAINT_VIOLATED,
5839  * _NOT_FOUND (scope has no parent),  _INVALID_ARGUMENT, _NO_RESOURCES,
5840  * _BACKEND_ACCESS.
5841  */
5842 int
5843 scf_pg_get_underlying_pg(const scf_propertygroup_t *pg,
5844     scf_propertygroup_t *out)
5845 {
5846 	scf_handle_t *h = pg->rd_d.rd_handle;
5847 	scf_service_t *svc;
5848 	scf_instance_t *inst;
5849 
5850 	char me[REP_PROTOCOL_NAME_LEN];
5851 	int r;
5852 
5853 	if (h != out->rd_d.rd_handle)
5854 		return (scf_set_error(SCF_ERROR_HANDLE_MISMATCH));
5855 
5856 	r = scf_pg_get_name(pg, me, sizeof (me));
5857 
5858 	if (r < 0)
5859 		return (r);
5860 
5861 	svc = HANDLE_HOLD_SERVICE(h);
5862 	inst = HANDLE_HOLD_INSTANCE(h);
5863 
5864 	r = datael_get_parent(&pg->rd_d, &inst->rd_d);
5865 
5866 	if (r == SCF_SUCCESS) {
5867 		r = datael_get_parent(&inst->rd_d, &svc->rd_d);
5868 		if (r != SCF_SUCCESS) {
5869 			goto out;
5870 		}
5871 		r = scf_service_get_pg(svc, me, out);
5872 	} else {
5873 		r = scf_set_error(SCF_ERROR_NOT_FOUND);
5874 	}
5875 
5876 out:
5877 	HANDLE_RELE_SERVICE(h);
5878 	HANDLE_RELE_INSTANCE(h);
5879 	return (r);
5880 }
5881 
5882 #define	LEGACY_SCHEME	"lrc:"
5883 #define	LEGACY_UNKNOWN	"unknown"
5884 
5885 /*
5886  * Implementation of scf_walk_fmri()
5887  *
5888  * This is a little tricky due to the many-to-many relationship between patterns
5889  * and matches.  We need to be able to satisfy the following requirements:
5890  *
5891  * 	1) Detect patterns which match more than one FMRI, and be able to
5892  *         report which FMRIs have been matched.
5893  * 	2) Detect patterns which have not matched any FMRIs
5894  * 	3) Visit each matching FMRI exactly once across all patterns
5895  * 	4) Ignore FMRIs which have only been matched due to multiply-matching
5896  *         patterns.
5897  *
5898  * We maintain an array of scf_pattern_t structures, one for each argument, and
5899  * maintain a linked list of scf_match_t structures for each one.  We first
5900  * qualify each pattern's type:
5901  *
5902  *	PATTERN_INVALID		The argument is invalid (too long).
5903  *
5904  *	PATTERN_EXACT		The pattern is a complete FMRI.  The list of
5905  *				matches contains only a single entry.
5906  *
5907  * 	PATTERN_GLOB		The pattern will be matched against all
5908  * 				FMRIs via fnmatch() in the second phase.
5909  * 				Matches will be added to the pattern's list
5910  * 				as they are found.
5911  *
5912  * 	PATTERN_PARTIAL		Everything else.  We will assume that this is
5913  * 				an abbreviated FMRI, and match according to
5914  * 				our abbreviated FMRI rules.  Matches will be
5915  * 				added to the pattern's list as they are found.
5916  *
5917  * The first pass searches for arguments that are complete FMRIs.  These are
5918  * classified as EXACT patterns and do not necessitate searching the entire
5919  * tree.
5920  *
5921  * Once this is done, if we have any GLOB or PARTIAL patterns (or if no
5922  * arguments were given), we iterate over all services and instances in the
5923  * repository, looking for matches.
5924  *
5925  * When a match is found, we add the match to the pattern's list.  We also enter
5926  * the match into a hash table, resulting in something like this:
5927  *
5928  *       scf_pattern_t       scf_match_t
5929  *     +---------------+      +-------+     +-------+
5930  *     | pattern 'foo' |----->| match |---->| match |
5931  *     +---------------+      +-------+     +-------+
5932  *                                |             |
5933  *           scf_match_key_t      |             |
5934  *           +--------------+     |             |
5935  *           | FMRI bar/foo |<----+             |
5936  *           +--------------+                   |
5937  *           | FMRI baz/foo |<------------------+
5938  *           +--------------+
5939  *
5940  * Once we have all of this set up, we do one pass to report patterns matching
5941  * multiple FMRIs (if SCF_WALK_MULTIPLE is not set) and patterns for which no
5942  * match was found.
5943  *
5944  * Finally, we walk through all valid patterns, and for each match, if we
5945  * haven't already seen the match (as recorded in the hash table), then we
5946  * execute the callback.
5947  */
5948 
5949 struct scf_matchkey;
5950 struct scf_match;
5951 
5952 /*
5953  * scf_matchkey_t
5954  */
5955 typedef struct scf_matchkey {
5956 	char			*sk_fmri;	/* Matching FMRI */
5957 	char			*sk_legacy;	/* Legacy name */
5958 	int			sk_seen;	/* If we've been seen */
5959 	struct scf_matchkey	*sk_next;	/* Next in hash chain */
5960 } scf_matchkey_t;
5961 
5962 /*
5963  * scf_match_t
5964  */
5965 typedef struct scf_match {
5966 	scf_matchkey_t		*sm_key;
5967 	struct scf_match	*sm_next;
5968 } scf_match_t;
5969 
5970 #define	WALK_HTABLE_SIZE	123
5971 
5972 /*
5973  * scf_get_key()
5974  *
5975  * Given an FMRI and a hash table, returns the scf_matchkey_t corresponding to
5976  * this FMRI.  If the FMRI does not exist, it is added to the hash table.  If a
5977  * new entry cannot be allocated due to lack of memory, NULL is returned.
5978  */
5979 static scf_matchkey_t *
5980 scf_get_key(scf_matchkey_t **htable, const char *fmri, const char *legacy)
5981 {
5982 	uint_t h = 0, g;
5983 	const char *p, *k;
5984 	scf_matchkey_t *key;
5985 
5986 	k = strstr(fmri, ":/");
5987 	assert(k != NULL);
5988 	k += 2;
5989 
5990 	/*
5991 	 * Generic hash function from uts/common/os/modhash.c.
5992 	 */
5993 	for (p = k; *p != '\0'; ++p) {
5994 		h = (h << 4) + *p;
5995 		if ((g = (h & 0xf0000000)) != 0) {
5996 			h ^= (g >> 24);
5997 			h ^= g;
5998 		}
5999 	}
6000 
6001 	h %= WALK_HTABLE_SIZE;
6002 
6003 	/*
6004 	 * Search for an existing key
6005 	 */
6006 	for (key = htable[h]; key != NULL; key = key->sk_next) {
6007 		if (strcmp(key->sk_fmri, fmri) == 0)
6008 			return (key);
6009 	}
6010 
6011 	if ((key = calloc(sizeof (scf_matchkey_t), 1)) == NULL)
6012 		return (NULL);
6013 
6014 	/*
6015 	 * Add new key to hash table.
6016 	 */
6017 	if ((key->sk_fmri = strdup(fmri)) == NULL) {
6018 		free(key);
6019 		return (NULL);
6020 	}
6021 
6022 	if (legacy == NULL) {
6023 		key->sk_legacy = NULL;
6024 	} else if ((key->sk_legacy = strdup(legacy)) == NULL) {
6025 		free(key->sk_fmri);
6026 		free(key);
6027 		return (NULL);
6028 	}
6029 
6030 	key->sk_next = htable[h];
6031 	htable[h] = key;
6032 
6033 	return (key);
6034 }
6035 
6036 /*
6037  * Given an FMRI, insert it into the pattern's list appropriately.
6038  * svc_explicit indicates whether matching services should take
6039  * precedence over matching instances.
6040  */
6041 static scf_error_t
6042 scf_add_match(scf_matchkey_t **htable, const char *fmri, const char *legacy,
6043     scf_pattern_t *pattern, int svc_explicit)
6044 {
6045 	scf_match_t *match;
6046 
6047 	/*
6048 	 * If svc_explicit is set, enforce the constaint that matching
6049 	 * instances take precedence over matching services. Otherwise,
6050 	 * matching services take precedence over matching instances.
6051 	 */
6052 	if (svc_explicit) {
6053 		scf_match_t *next, *prev;
6054 		/*
6055 		 * If we match an instance, check to see if we must remove
6056 		 * any matching services (for SCF_WALK_EXPLICIT).
6057 		 */
6058 		for (prev = match = pattern->sp_matches; match != NULL;
6059 		    match = next) {
6060 			size_t len = strlen(match->sm_key->sk_fmri);
6061 			next = match->sm_next;
6062 			if (strncmp(match->sm_key->sk_fmri, fmri, len) == 0 &&
6063 			    fmri[len] == ':') {
6064 				if (prev == match)
6065 					pattern->sp_matches = match->sm_next;
6066 				else
6067 					prev->sm_next = match->sm_next;
6068 				pattern->sp_matchcount--;
6069 				free(match);
6070 			} else
6071 				prev = match;
6072 		}
6073 	} else {
6074 		/*
6075 		 * If we've matched a service don't add any instances (for
6076 		 * SCF_WALK_SERVICE).
6077 		 */
6078 		for (match = pattern->sp_matches; match != NULL;
6079 		    match = match->sm_next) {
6080 			size_t len = strlen(match->sm_key->sk_fmri);
6081 			if (strncmp(match->sm_key->sk_fmri, fmri, len) == 0 &&
6082 			    fmri[len] == ':')
6083 				return (0);
6084 		}
6085 	}
6086 
6087 	if ((match = malloc(sizeof (scf_match_t))) == NULL)
6088 		return (SCF_ERROR_NO_MEMORY);
6089 
6090 	if ((match->sm_key = scf_get_key(htable, fmri, legacy)) == NULL) {
6091 		free(match);
6092 		return (SCF_ERROR_NO_MEMORY);
6093 	}
6094 
6095 	match->sm_next = pattern->sp_matches;
6096 	pattern->sp_matches = match;
6097 	pattern->sp_matchcount++;
6098 
6099 	return (0);
6100 }
6101 
6102 /*
6103  * Returns 1 if the fmri matches the given pattern, 0 otherwise.
6104  */
6105 int
6106 scf_cmp_pattern(char *fmri, scf_pattern_t *pattern)
6107 {
6108 	char *tmp;
6109 
6110 	if (pattern->sp_type == PATTERN_GLOB) {
6111 		if (fnmatch(pattern->sp_arg, fmri, 0) == 0)
6112 			return (1);
6113 	} else if (pattern->sp_type == PATTERN_PARTIAL &&
6114 	    (tmp = strstr(fmri, pattern->sp_arg)) != NULL) {
6115 		/*
6116 		 * We only allow partial matches anchored on the end of
6117 		 * a service or instance, and beginning on an element
6118 		 * boundary.
6119 		 */
6120 		if (tmp != fmri && tmp[-1] != '/' && tmp[-1] != ':' &&
6121 		    tmp[0] != ':')
6122 			return (0);
6123 		tmp += strlen(pattern->sp_arg);
6124 		if (tmp != fmri + strlen(fmri) && tmp[0] != ':' &&
6125 		    tmp[-1] != ':')
6126 			return (0);
6127 
6128 		/*
6129 		 * If the user has supplied a short pattern that matches
6130 		 * 'svc:/' or 'lrc:/', ignore it.
6131 		 */
6132 		if (tmp <= fmri + 4)
6133 			return (0);
6134 
6135 		return (1);
6136 	}
6137 
6138 	return (0);
6139 }
6140 
6141 /*
6142  * Attempts to match the given FMRI against a set of patterns, keeping track of
6143  * the results.
6144  */
6145 static scf_error_t
6146 scf_pattern_match(scf_matchkey_t **htable, char *fmri, const char *legacy,
6147     int npattern, scf_pattern_t *pattern, int svc_explicit)
6148 {
6149 	int i;
6150 	int ret = 0;
6151 
6152 	for (i = 0; i < npattern; i++) {
6153 		if (scf_cmp_pattern(fmri, &pattern[i]) &&
6154 		    (ret = scf_add_match(htable, fmri,
6155 		    legacy, &pattern[i], svc_explicit)) != 0)
6156 			return (ret);
6157 	}
6158 
6159 	return (0);
6160 }
6161 
6162 /*
6163  * Fails with _INVALID_ARGUMENT, _HANDLE_DESTROYED, _INTERNAL (bad server
6164  * response or id in use), _NO_MEMORY, _HANDLE_MISMATCH, _CONSTRAINT_VIOLATED,
6165  * _NOT_FOUND, _NOT_BOUND, _CONNECTION_BROKEN, _NOT_SET, _DELETED,
6166  * _NO_RESOURCES, _BACKEND_ACCESS, _TYPE_MISMATCH.
6167  */
6168 scf_error_t
6169 scf_walk_fmri(scf_handle_t *h, int argc, char **argv, int flags,
6170     scf_walk_callback callback, void *data, int *err,
6171     void (*errfunc)(const char *, ...))
6172 {
6173 	scf_pattern_t *pattern = NULL;
6174 	int i;
6175 	char *fmri = NULL;
6176 	ssize_t max_fmri_length;
6177 	scf_service_t *svc = NULL;
6178 	scf_instance_t *inst = NULL;
6179 	scf_iter_t *iter = NULL, *sciter = NULL, *siter = NULL;
6180 	scf_scope_t *scope = NULL;
6181 	scf_propertygroup_t *pg = NULL;
6182 	scf_property_t *prop = NULL;
6183 	scf_value_t *value = NULL;
6184 	int ret = 0;
6185 	scf_matchkey_t **htable = NULL;
6186 	int pattern_search = 0;
6187 	ssize_t max_name_length;
6188 	char *pgname = NULL;
6189 	scf_walkinfo_t info;
6190 
6191 #ifndef NDEBUG
6192 	if (flags & SCF_WALK_EXPLICIT)
6193 		assert(flags & SCF_WALK_SERVICE);
6194 	if (flags & SCF_WALK_NOINSTANCE)
6195 		assert(flags & SCF_WALK_SERVICE);
6196 	if (flags & SCF_WALK_PROPERTY)
6197 		assert(!(flags & SCF_WALK_LEGACY));
6198 #endif
6199 
6200 	/*
6201 	 * Setup initial variables
6202 	 */
6203 	max_fmri_length = scf_limit(SCF_LIMIT_MAX_FMRI_LENGTH);
6204 	assert(max_fmri_length != -1);
6205 	max_name_length = scf_limit(SCF_LIMIT_MAX_NAME_LENGTH);
6206 	assert(max_name_length != -1);
6207 
6208 	if ((fmri = malloc(max_fmri_length + 1)) == NULL ||
6209 	    (pgname = malloc(max_name_length + 1)) == NULL) {
6210 		ret = SCF_ERROR_NO_MEMORY;
6211 		goto error;
6212 	}
6213 
6214 	if (argc == 0) {
6215 		pattern = NULL;
6216 	} else if ((pattern = calloc(argc, sizeof (scf_pattern_t)))
6217 	    == NULL) {
6218 		ret = SCF_ERROR_NO_MEMORY;
6219 		goto error;
6220 	}
6221 
6222 	if ((htable = calloc(WALK_HTABLE_SIZE, sizeof (void *))) == NULL) {
6223 		ret = SCF_ERROR_NO_MEMORY;
6224 		goto error;
6225 	}
6226 
6227 	if ((inst = scf_instance_create(h)) == NULL ||
6228 	    (svc = scf_service_create(h)) == NULL ||
6229 	    (iter = scf_iter_create(h)) == NULL ||
6230 	    (sciter = scf_iter_create(h)) == NULL ||
6231 	    (siter = scf_iter_create(h)) == NULL ||
6232 	    (scope = scf_scope_create(h)) == NULL ||
6233 	    (pg = scf_pg_create(h)) == NULL ||
6234 	    (prop = scf_property_create(h)) == NULL ||
6235 	    (value = scf_value_create(h)) == NULL) {
6236 		ret = scf_error();
6237 		goto error;
6238 	}
6239 
6240 	/*
6241 	 * For each fmri given, we first check to see if it's a full service,
6242 	 * instance, property group, or property FMRI.  This avoids having to do
6243 	 * the (rather expensive) walk of all instances.  Any element which does
6244 	 * not match a full fmri is identified as a globbed pattern or a partial
6245 	 * fmri and stored in a private array when walking instances.
6246 	 */
6247 	for (i = 0; i < argc; i++) {
6248 		const char *scope_name, *svc_name, *inst_name, *pg_name;
6249 		const char *prop_name;
6250 
6251 		if (strlen(argv[i]) > max_fmri_length) {
6252 			errfunc(scf_get_msg(SCF_MSG_ARGTOOLONG), argv[i]);
6253 			if (err != NULL)
6254 				*err = UU_EXIT_FATAL;
6255 			continue;
6256 		}
6257 
6258 		(void) strcpy(fmri, argv[i]);
6259 		if (scf_parse_svc_fmri(fmri, &scope_name, &svc_name, &inst_name,
6260 		    &pg_name, &prop_name) != SCF_SUCCESS)
6261 			goto badfmri;
6262 
6263 		/*
6264 		 * If the user has specified SCF_WALK_PROPERTY, allow property
6265 		 * groups and properties.
6266 		 */
6267 		if (pg_name != NULL || prop_name != NULL) {
6268 			if (!(flags & SCF_WALK_PROPERTY))
6269 				goto badfmri;
6270 
6271 			if (scf_handle_decode_fmri(h, argv[i], NULL, NULL,
6272 			    NULL, pg, prop, 0) != 0)
6273 				goto badfmri;
6274 
6275 			if (scf_pg_get_name(pg, NULL, 0) < 0 &&
6276 			    scf_property_get_name(prop, NULL, 0) < 0)
6277 				goto badfmri;
6278 
6279 			if (scf_canonify_fmri(argv[i], fmri, max_fmri_length)
6280 			    <= 0) {
6281 				/*
6282 				 * scf_parse_fmri() should have caught this.
6283 				 */
6284 				abort();
6285 			}
6286 
6287 			if ((ret = scf_add_match(htable, fmri, NULL,
6288 			    &pattern[i], flags & SCF_WALK_EXPLICIT)) != 0)
6289 				goto error;
6290 
6291 			if ((pattern[i].sp_arg = strdup(argv[i])) == NULL) {
6292 				ret = SCF_ERROR_NO_MEMORY;
6293 				goto error;
6294 			}
6295 			pattern[i].sp_type = PATTERN_EXACT;
6296 		}
6297 
6298 		/*
6299 		 * We need at least a service name
6300 		 */
6301 		if (scope_name == NULL || svc_name == NULL)
6302 			goto badfmri;
6303 
6304 		/*
6305 		 * If we have a fully qualified instance, add it to our list of
6306 		 * fmris to watch.
6307 		 */
6308 		if (inst_name != NULL) {
6309 			if (flags & SCF_WALK_NOINSTANCE)
6310 				goto badfmri;
6311 
6312 			if (scf_handle_decode_fmri(h, argv[i], NULL, NULL,
6313 			    inst, NULL, NULL, SCF_DECODE_FMRI_EXACT) != 0)
6314 				goto badfmri;
6315 
6316 			if (scf_canonify_fmri(argv[i], fmri, max_fmri_length)
6317 			    <= 0)
6318 				goto badfmri;
6319 
6320 			if ((ret = scf_add_match(htable, fmri, NULL,
6321 			    &pattern[i], flags & SCF_WALK_EXPLICIT)) != 0)
6322 				goto error;
6323 
6324 			if ((pattern[i].sp_arg = strdup(argv[i])) == NULL) {
6325 				ret = SCF_ERROR_NO_MEMORY;
6326 				goto error;
6327 			}
6328 			pattern[i].sp_type = PATTERN_EXACT;
6329 
6330 			continue;
6331 		}
6332 
6333 		if (scf_handle_decode_fmri(h, argv[i], NULL, svc,
6334 		    NULL, NULL, NULL, SCF_DECODE_FMRI_EXACT) !=
6335 		    SCF_SUCCESS)
6336 			goto badfmri;
6337 
6338 		/*
6339 		 * If the user allows for bare services, then simply
6340 		 * pass this service on.
6341 		 */
6342 		if (flags & SCF_WALK_SERVICE) {
6343 			if (scf_service_to_fmri(svc, fmri,
6344 			    max_fmri_length + 1) <= 0) {
6345 				ret = scf_error();
6346 				goto error;
6347 			}
6348 
6349 			if ((ret = scf_add_match(htable, fmri, NULL,
6350 			    &pattern[i], flags & SCF_WALK_EXPLICIT)) != 0)
6351 				goto error;
6352 
6353 			if ((pattern[i].sp_arg = strdup(argv[i]))
6354 			    == NULL) {
6355 				ret = SCF_ERROR_NO_MEMORY;
6356 				goto error;
6357 			}
6358 			pattern[i].sp_type = PATTERN_EXACT;
6359 			continue;
6360 		}
6361 
6362 		if (flags & SCF_WALK_NOINSTANCE)
6363 			goto badfmri;
6364 
6365 		/*
6366 		 * Otherwise, iterate over all instances in the service.
6367 		 */
6368 		if (scf_iter_service_instances(iter, svc) !=
6369 		    SCF_SUCCESS) {
6370 			ret = scf_error();
6371 			goto error;
6372 		}
6373 
6374 		for (;;) {
6375 			ret = scf_iter_next_instance(iter, inst);
6376 			if (ret == 0)
6377 				break;
6378 			if (ret != 1) {
6379 				ret = scf_error();
6380 				goto error;
6381 			}
6382 
6383 			if (scf_instance_to_fmri(inst, fmri,
6384 			    max_fmri_length + 1) == -1)
6385 				goto badfmri;
6386 
6387 			if ((ret = scf_add_match(htable, fmri, NULL,
6388 			    &pattern[i], flags & SCF_WALK_EXPLICIT)) != 0)
6389 				goto error;
6390 		}
6391 
6392 		if ((pattern[i].sp_arg = strdup(argv[i])) == NULL) {
6393 			ret = SCF_ERROR_NO_MEMORY;
6394 			goto error;
6395 		}
6396 		pattern[i].sp_type = PATTERN_EXACT;
6397 
6398 		continue;
6399 
6400 badfmri:
6401 
6402 		/*
6403 		 * If we got here because of a fatal error, bail out
6404 		 * immediately.
6405 		 */
6406 		if (scf_error() == SCF_ERROR_CONNECTION_BROKEN) {
6407 			ret = scf_error();
6408 			goto error;
6409 		}
6410 
6411 		/*
6412 		 * At this point we failed to interpret the argument as a
6413 		 * complete fmri, so mark it as a partial or globbed FMRI for
6414 		 * later processing.
6415 		 */
6416 		if (strpbrk(argv[i], "*?[") != NULL) {
6417 			/*
6418 			 * Prepend svc:/ to patterns which don't begin with * or
6419 			 * svc: or lrc:.
6420 			 */
6421 			pattern[i].sp_type = PATTERN_GLOB;
6422 			if (argv[i][0] == '*' ||
6423 			    (strlen(argv[i]) >= 4 && argv[i][3] == ':'))
6424 				pattern[i].sp_arg = strdup(argv[i]);
6425 			else {
6426 				pattern[i].sp_arg = malloc(strlen(argv[i]) + 6);
6427 				if (pattern[i].sp_arg != NULL)
6428 					(void) snprintf(pattern[i].sp_arg,
6429 					    strlen(argv[i]) + 6, "svc:/%s",
6430 					    argv[i]);
6431 			}
6432 		} else {
6433 			pattern[i].sp_type = PATTERN_PARTIAL;
6434 			pattern[i].sp_arg = strdup(argv[i]);
6435 		}
6436 		pattern_search = 1;
6437 		if (pattern[i].sp_arg == NULL) {
6438 			ret = SCF_ERROR_NO_MEMORY;
6439 			goto error;
6440 		}
6441 	}
6442 
6443 	if (pattern_search || argc == 0) {
6444 		/*
6445 		 * We have a set of patterns to search for.  Iterate over all
6446 		 * instances and legacy services searching for matches.
6447 		 */
6448 		if (scf_handle_get_local_scope(h, scope) != 0) {
6449 			ret = scf_error();
6450 			goto error;
6451 		}
6452 
6453 		if (scf_iter_scope_services(sciter, scope) != 0) {
6454 			ret = scf_error();
6455 			goto error;
6456 		}
6457 
6458 		for (;;) {
6459 			ret = scf_iter_next_service(sciter, svc);
6460 			if (ret == 0)
6461 				break;
6462 			if (ret != 1) {
6463 				ret = scf_error();
6464 				goto error;
6465 			}
6466 
6467 			if (flags & SCF_WALK_SERVICE) {
6468 				/*
6469 				 * If the user is requesting bare services, try
6470 				 * to match the service first.
6471 				 */
6472 				if (scf_service_to_fmri(svc, fmri,
6473 				    max_fmri_length + 1) < 0) {
6474 					ret = scf_error();
6475 					goto error;
6476 				}
6477 
6478 				if (argc == 0) {
6479 					info.fmri = fmri;
6480 					info.scope = scope;
6481 					info.svc = svc;
6482 					info.inst = NULL;
6483 					info.pg = NULL;
6484 					info.prop = NULL;
6485 					if ((ret = callback(data, &info)) != 0)
6486 						goto error;
6487 					continue;
6488 				} else if ((ret = scf_pattern_match(htable,
6489 				    fmri, NULL, argc, pattern,
6490 				    flags & SCF_WALK_EXPLICIT)) != 0) {
6491 					goto error;
6492 				}
6493 			}
6494 
6495 			if (flags & SCF_WALK_NOINSTANCE)
6496 				continue;
6497 
6498 			/*
6499 			 * Iterate over all instances in the service.
6500 			 */
6501 			if (scf_iter_service_instances(siter, svc) != 0) {
6502 				if (scf_error() != SCF_ERROR_DELETED) {
6503 					ret = scf_error();
6504 					goto error;
6505 				}
6506 				continue;
6507 			}
6508 
6509 			for (;;) {
6510 				ret = scf_iter_next_instance(siter, inst);
6511 				if (ret == 0)
6512 					break;
6513 				if (ret != 1) {
6514 					if (scf_error() != SCF_ERROR_DELETED) {
6515 						ret = scf_error();
6516 						goto error;
6517 					}
6518 					break;
6519 				}
6520 
6521 				if (scf_instance_to_fmri(inst, fmri,
6522 				    max_fmri_length + 1) < 0) {
6523 					ret = scf_error();
6524 					goto error;
6525 				}
6526 
6527 				/*
6528 				 * Without arguments, execute the callback
6529 				 * immediately.
6530 				 */
6531 				if (argc == 0) {
6532 					info.fmri = fmri;
6533 					info.scope = scope;
6534 					info.svc = svc;
6535 					info.inst = inst;
6536 					info.pg = NULL;
6537 					info.prop = NULL;
6538 					if ((ret = callback(data, &info)) != 0)
6539 						goto error;
6540 				} else if ((ret = scf_pattern_match(htable,
6541 				    fmri, NULL, argc, pattern,
6542 				    flags & SCF_WALK_EXPLICIT)) != 0) {
6543 					goto error;
6544 				}
6545 			}
6546 		}
6547 
6548 		/*
6549 		 * Search legacy services
6550 		 */
6551 		if ((flags & SCF_WALK_LEGACY)) {
6552 			if (scf_scope_get_service(scope, SCF_LEGACY_SERVICE,
6553 			    svc) != 0) {
6554 				if (scf_error() != SCF_ERROR_NOT_FOUND) {
6555 					ret = scf_error();
6556 					goto error;
6557 				}
6558 
6559 				goto nolegacy;
6560 			}
6561 
6562 			if (scf_iter_service_pgs_typed(iter, svc,
6563 			    SCF_GROUP_FRAMEWORK) != SCF_SUCCESS) {
6564 				ret = scf_error();
6565 				goto error;
6566 			}
6567 
6568 			(void) strcpy(fmri, LEGACY_SCHEME);
6569 
6570 			for (;;) {
6571 				ret = scf_iter_next_pg(iter, pg);
6572 				if (ret == -1) {
6573 					ret = scf_error();
6574 					goto error;
6575 				}
6576 				if (ret == 0)
6577 					break;
6578 
6579 				if (scf_pg_get_property(pg,
6580 				    SCF_LEGACY_PROPERTY_NAME, prop) == -1) {
6581 					ret = scf_error();
6582 					if (ret == SCF_ERROR_DELETED ||
6583 					    ret == SCF_ERROR_NOT_FOUND) {
6584 						ret = 0;
6585 						continue;
6586 					}
6587 					goto error;
6588 				}
6589 
6590 				if (scf_property_is_type(prop, SCF_TYPE_ASTRING)
6591 				    != SCF_SUCCESS) {
6592 					if (scf_error() == SCF_ERROR_DELETED)
6593 						continue;
6594 					ret = scf_error();
6595 					goto error;
6596 				}
6597 
6598 				if (scf_property_get_value(prop, value) !=
6599 				    SCF_SUCCESS)
6600 					continue;
6601 
6602 				if (scf_value_get_astring(value,
6603 				    fmri + sizeof (LEGACY_SCHEME) - 1,
6604 				    max_fmri_length + 2 -
6605 				    sizeof (LEGACY_SCHEME)) <= 0)
6606 					continue;
6607 
6608 				if (scf_pg_get_name(pg, pgname,
6609 				    max_name_length + 1) <= 0) {
6610 					if (scf_error() == SCF_ERROR_DELETED)
6611 						continue;
6612 					ret = scf_error();
6613 					goto error;
6614 				}
6615 
6616 				if (argc == 0) {
6617 					info.fmri = fmri;
6618 					info.scope = scope;
6619 					info.svc = NULL;
6620 					info.inst = NULL;
6621 					info.pg = pg;
6622 					info.prop = NULL;
6623 					if ((ret = callback(data, &info)) != 0)
6624 						goto error;
6625 				} else if ((ret = scf_pattern_match(htable,
6626 				    fmri, pgname, argc, pattern,
6627 				    flags & SCF_WALK_EXPLICIT)) != 0)
6628 					goto error;
6629 			}
6630 
6631 		}
6632 	}
6633 nolegacy:
6634 	ret = 0;
6635 
6636 	if (argc == 0)
6637 		goto error;
6638 
6639 	/*
6640 	 * Check all patterns, and see if we have that any that didn't match
6641 	 * or any that matched multiple instances.  For svcprop, add up the
6642 	 * total number of matching keys.
6643 	 */
6644 	info.count = 0;
6645 	for (i = 0; i < argc; i++) {
6646 		scf_match_t *match;
6647 
6648 		if (pattern[i].sp_type == PATTERN_INVALID)
6649 			continue;
6650 		if (pattern[i].sp_matchcount == 0) {
6651 			scf_msg_t msgid;
6652 			/*
6653 			 * Provide a useful error message based on the argument
6654 			 * and the type of entity requested.
6655 			 */
6656 			if (!(flags & SCF_WALK_LEGACY) &&
6657 			    strncmp(pattern[i].sp_arg, "lrc:/", 5) == 0)
6658 				msgid = SCF_MSG_PATTERN_LEGACY;
6659 			else if (flags & SCF_WALK_PROPERTY)
6660 				msgid = SCF_MSG_PATTERN_NOENTITY;
6661 			else if (flags & SCF_WALK_NOINSTANCE)
6662 				msgid = SCF_MSG_PATTERN_NOSERVICE;
6663 			else if (flags & SCF_WALK_SERVICE)
6664 				msgid = SCF_MSG_PATTERN_NOINSTSVC;
6665 			else
6666 				msgid = SCF_MSG_PATTERN_NOINSTANCE;
6667 
6668 			errfunc(scf_get_msg(msgid), pattern[i].sp_arg);
6669 			if (err)
6670 				*err = UU_EXIT_FATAL;
6671 		} else if (!(flags & SCF_WALK_MULTIPLE) &&
6672 		    pattern[i].sp_matchcount > 1) {
6673 			size_t len, off;
6674 			char *msg;
6675 
6676 			/*
6677 			 * Construct a message with all possible FMRIs before
6678 			 * passing off to error handling function.
6679 			 *
6680 			 * Note that strlen(scf_get_msg(...)) includes the
6681 			 * length of '%s', which accounts for the terminating
6682 			 * null byte.
6683 			 */
6684 			len = strlen(scf_get_msg(SCF_MSG_PATTERN_MULTIMATCH)) +
6685 			    strlen(pattern[i].sp_arg);
6686 			for (match = pattern[i].sp_matches; match != NULL;
6687 			    match = match->sm_next) {
6688 				len += strlen(match->sm_key->sk_fmri) + 2;
6689 			}
6690 			if ((msg = malloc(len)) == NULL) {
6691 				ret = SCF_ERROR_NO_MEMORY;
6692 				goto error;
6693 			}
6694 
6695 			/* LINTED - format argument */
6696 			(void) snprintf(msg, len,
6697 			    scf_get_msg(SCF_MSG_PATTERN_MULTIMATCH),
6698 			    pattern[i].sp_arg);
6699 			off = strlen(msg);
6700 			for (match = pattern[i].sp_matches; match != NULL;
6701 			    match = match->sm_next) {
6702 				off += snprintf(msg + off, len - off, "\t%s\n",
6703 				    match->sm_key->sk_fmri);
6704 			}
6705 
6706 			errfunc(msg);
6707 			if (err != NULL)
6708 				*err = UU_EXIT_FATAL;
6709 
6710 			free(msg);
6711 		} else {
6712 			for (match = pattern[i].sp_matches; match != NULL;
6713 			    match = match->sm_next) {
6714 				if (!match->sm_key->sk_seen)
6715 					info.count++;
6716 				match->sm_key->sk_seen = 1;
6717 			}
6718 		}
6719 	}
6720 
6721 	/*
6722 	 * Clear 'sk_seen' for all keys.
6723 	 */
6724 	for (i = 0; i < WALK_HTABLE_SIZE; i++) {
6725 		scf_matchkey_t *key;
6726 		for (key = htable[i]; key != NULL; key = key->sk_next)
6727 			key->sk_seen = 0;
6728 	}
6729 
6730 	/*
6731 	 * Iterate over all the FMRIs in our hash table and execute the
6732 	 * callback.
6733 	 */
6734 	for (i = 0; i < argc; i++) {
6735 		scf_match_t *match;
6736 		scf_matchkey_t *key;
6737 
6738 		/*
6739 		 * Ignore patterns which didn't match anything or matched too
6740 		 * many FMRIs.
6741 		 */
6742 		if (pattern[i].sp_matchcount == 0 ||
6743 		    (!(flags & SCF_WALK_MULTIPLE) &&
6744 		    pattern[i].sp_matchcount > 1))
6745 			continue;
6746 
6747 		for (match = pattern[i].sp_matches; match != NULL;
6748 		    match = match->sm_next) {
6749 
6750 			key = match->sm_key;
6751 			if (key->sk_seen)
6752 				continue;
6753 
6754 			key->sk_seen = 1;
6755 
6756 			if (key->sk_legacy != NULL) {
6757 				if (scf_scope_get_service(scope,
6758 				    "smf/legacy_run", svc) != 0) {
6759 					ret = scf_error();
6760 					goto error;
6761 				}
6762 
6763 				if (scf_service_get_pg(svc, key->sk_legacy,
6764 				    pg) != 0)
6765 					continue;
6766 
6767 				info.fmri = key->sk_fmri;
6768 				info.scope = scope;
6769 				info.svc = NULL;
6770 				info.inst = NULL;
6771 				info.pg = pg;
6772 				info.prop = NULL;
6773 				if ((ret = callback(data, &info)) != 0)
6774 					goto error;
6775 			} else {
6776 				if (scf_handle_decode_fmri(h, key->sk_fmri,
6777 				    scope, svc, inst, pg, prop, 0) !=
6778 				    SCF_SUCCESS)
6779 					continue;
6780 
6781 				info.fmri = key->sk_fmri;
6782 				info.scope = scope;
6783 				info.svc = svc;
6784 				if (scf_instance_get_name(inst, NULL, 0) < 0) {
6785 					if (scf_error() ==
6786 					    SCF_ERROR_CONNECTION_BROKEN) {
6787 						ret = scf_error();
6788 						goto error;
6789 					}
6790 					info.inst = NULL;
6791 				} else {
6792 					info.inst = inst;
6793 				}
6794 				if (scf_pg_get_name(pg, NULL, 0) < 0) {
6795 					if (scf_error() ==
6796 					    SCF_ERROR_CONNECTION_BROKEN) {
6797 						ret = scf_error();
6798 						goto error;
6799 					}
6800 					info.pg = NULL;
6801 				} else {
6802 					info.pg = pg;
6803 				}
6804 				if (scf_property_get_name(prop, NULL, 0) < 0) {
6805 					if (scf_error() ==
6806 					    SCF_ERROR_CONNECTION_BROKEN) {
6807 						ret = scf_error();
6808 						goto error;
6809 					}
6810 					info.prop = NULL;
6811 				} else {
6812 					info.prop = prop;
6813 				}
6814 
6815 				if ((ret = callback(data, &info)) != 0)
6816 					goto error;
6817 			}
6818 		}
6819 	}
6820 
6821 error:
6822 	if (htable) {
6823 		scf_matchkey_t *key, *next;
6824 
6825 		for (i = 0; i < WALK_HTABLE_SIZE; i++) {
6826 
6827 			for (key = htable[i]; key != NULL;
6828 			    key = next) {
6829 
6830 				next = key->sk_next;
6831 
6832 				if (key->sk_fmri != NULL)
6833 					free(key->sk_fmri);
6834 				if (key->sk_legacy != NULL)
6835 					free(key->sk_legacy);
6836 				free(key);
6837 			}
6838 		}
6839 		free(htable);
6840 	}
6841 	if (pattern != NULL) {
6842 		for (i = 0; i < argc; i++) {
6843 			scf_match_t *match, *next;
6844 
6845 			if (pattern[i].sp_arg != NULL)
6846 				free(pattern[i].sp_arg);
6847 
6848 			for (match = pattern[i].sp_matches; match != NULL;
6849 			    match = next) {
6850 
6851 				next = match->sm_next;
6852 
6853 				free(match);
6854 			}
6855 		}
6856 		free(pattern);
6857 	}
6858 
6859 	free(fmri);
6860 	free(pgname);
6861 
6862 	scf_value_destroy(value);
6863 	scf_property_destroy(prop);
6864 	scf_pg_destroy(pg);
6865 	scf_scope_destroy(scope);
6866 	scf_iter_destroy(siter);
6867 	scf_iter_destroy(sciter);
6868 	scf_iter_destroy(iter);
6869 	scf_instance_destroy(inst);
6870 	scf_service_destroy(svc);
6871 
6872 	return (ret);
6873 }
6874 
6875 /*
6876  * scf_encode32() is an implementation of Base32 encoding as described in
6877  * section 6 of RFC 4648 - "The Base16, Base32, and Base64 Data
6878  * Encodings". See http://www.ietf.org/rfc/rfc4648.txt?number=4648.  The
6879  * input stream is divided into groups of 5 characters (40 bits).  Each
6880  * group is encoded into 8 output characters where each output character
6881  * represents 5 bits of input.
6882  *
6883  * If the input is not an even multiple of 5 characters, the output will be
6884  * padded so that the output is an even multiple of 8 characters.  The
6885  * standard specifies that the pad character is '='.  Unfortunately, '=' is
6886  * not a legal character in SMF property names.  Thus, the caller can
6887  * specify an alternate pad character with the pad argument.  If pad is 0,
6888  * scf_encode32() will use '='.  Note that use of anything other than '='
6889  * produces output that is not in conformance with RFC 4648.  It is
6890  * suitable, however, for internal use of SMF software.  When the encoded
6891  * data is used as part of an SMF property name, SCF_ENCODE32_PAD should be
6892  * used as the pad character.
6893  *
6894  * Arguments:
6895  *	input -		Address of the buffer to be encoded.
6896  *	inlen -		Number of characters at input.
6897  *	output -	Address of the buffer to receive the encoded data.
6898  *	outmax -	Size of the buffer at output.
6899  *	outlen -	If it is not NULL, outlen receives the number of
6900  *			bytes placed in output.
6901  *	pad -		Alternate padding character.
6902  *
6903  * Returns:
6904  *	0	Buffer was successfully encoded.
6905  *	-1	Indicates output buffer too small, or pad is one of the
6906  *		standard encoding characters.
6907  */
6908 int
6909 scf_encode32(const char *input, size_t inlen, char *output, size_t outmax,
6910     size_t *outlen, char pad)
6911 {
6912 	uint_t group_size = 5;
6913 	uint_t i;
6914 	const unsigned char *in = (const unsigned char *)input;
6915 	size_t olen;
6916 	uchar_t *out = (uchar_t *)output;
6917 	uint_t oval;
6918 	uint_t pad_count;
6919 
6920 	/* Verify that there is enough room for the output. */
6921 	olen = ((inlen + (group_size - 1)) / group_size) * 8;
6922 	if (outlen)
6923 		*outlen = olen;
6924 	if (olen > outmax)
6925 		return (-1);
6926 
6927 	/* If caller did not provide pad character, use the default. */
6928 	if (pad == 0) {
6929 		pad = '=';
6930 	} else {
6931 		/*
6932 		 * Make sure that caller's pad is not one of the encoding
6933 		 * characters.
6934 		 */
6935 		for (i = 0; i < sizeof (base32) - 1; i++) {
6936 			if (pad == base32[i])
6937 				return (-1);
6938 		}
6939 	}
6940 
6941 	/* Process full groups capturing 5 bits per output character. */
6942 	for (; inlen >= group_size; in += group_size, inlen -= group_size) {
6943 		/*
6944 		 * The comments in this section number the bits in an
6945 		 * 8 bit byte 0 to 7.  The high order bit is bit 7 and
6946 		 * the low order bit is bit 0.
6947 		 */
6948 
6949 		/* top 5 bits (7-3) from in[0] */
6950 		*out++ = base32[in[0] >> 3];
6951 		/* bits 2-0 from in[0] and top 2 (7-6) from in[1] */
6952 		*out++ = base32[((in[0] << 2) & 0x1c) | (in[1] >> 6)];
6953 		/* 5 bits (5-1) from in[1] */
6954 		*out++ = base32[(in[1] >> 1) & 0x1f];
6955 		/* low bit (0) from in[1] and top 4 (7-4) from in[2] */
6956 		*out++ = base32[((in[1] << 4) & 0x10) | ((in[2] >> 4) & 0xf)];
6957 		/* low 4 (3-0) from in[2] and top bit (7) from in[3] */
6958 		*out++ = base32[((in[2] << 1) & 0x1e) | (in[3] >> 7)];
6959 		/* 5 bits (6-2) from in[3] */
6960 		*out++ = base32[(in[3] >> 2) & 0x1f];
6961 		/* low 2 (1-0) from in[3] and top 3 (7-5) from in[4] */
6962 		*out++ = base32[((in[3] << 3) & 0x18) | (in[4] >> 5)];
6963 		/* low 5 (4-0) from in[4] */
6964 		*out++ = base32[in[4] & 0x1f];
6965 	}
6966 
6967 	/* Take care of final input bytes. */
6968 	pad_count = 0;
6969 	if (inlen) {
6970 		/* top 5 bits (7-3) from in[0] */
6971 		*out++ = base32[in[0] >> 3];
6972 		/*
6973 		 * low 3 (2-0) from in[0] and top 2 (7-6) from in[1] if
6974 		 * available.
6975 		 */
6976 		oval = (in[0] << 2) & 0x1c;
6977 		if (inlen == 1) {
6978 			*out++ = base32[oval];
6979 			pad_count = 6;
6980 			goto padout;
6981 		}
6982 		oval |= in[1] >> 6;
6983 		*out++ = base32[oval];
6984 		/* 5 bits (5-1) from in[1] */
6985 		*out++ = base32[(in[1] >> 1) & 0x1f];
6986 		/*
6987 		 * low bit (0) from in[1] and top 4 (7-4) from in[2] if
6988 		 * available.
6989 		 */
6990 		oval = (in[1] << 4) & 0x10;
6991 		if (inlen == 2) {
6992 			*out++ = base32[oval];
6993 			pad_count = 4;
6994 			goto padout;
6995 		}
6996 		oval |= in[2] >> 4;
6997 		*out++ = base32[oval];
6998 		/*
6999 		 * low 4 (3-0) from in[2] and top 1 (7) from in[3] if
7000 		 * available.
7001 		 */
7002 		oval = (in[2] << 1) & 0x1e;
7003 		if (inlen == 3) {
7004 			*out++ = base32[oval];
7005 			pad_count = 3;
7006 			goto padout;
7007 		}
7008 		oval |= in[3] >> 7;
7009 		*out++ = base32[oval];
7010 		/* 5 bits (6-2) from in[3] */
7011 		*out++ = base32[(in[3] >> 2) & 0x1f];
7012 		/* low 2 bits (1-0) from in[3] */
7013 		*out++ = base32[(in[3] << 3) & 0x18];
7014 		pad_count = 1;
7015 	}
7016 padout:
7017 	/*
7018 	 * Pad the output so that it is a multiple of 8 bytes.
7019 	 */
7020 	for (; pad_count > 0; pad_count--) {
7021 		*out++ = pad;
7022 	}
7023 
7024 	/*
7025 	 * Null terminate the output if there is enough room.
7026 	 */
7027 	if (olen < outmax)
7028 		*out = 0;
7029 
7030 	return (0);
7031 }
7032 
7033 /*
7034  * scf_decode32() is an implementation of Base32 decoding as described in
7035  * section 6 of RFC 4648 - "The Base16, Base32, and Base64 Data
7036  * Encodings". See http://www.ietf.org/rfc/rfc4648.txt?number=4648.  The
7037  * input stream is divided into groups of 8 encoded characters.  Each
7038  * encoded character represents 5 bits of data.  Thus, the 8 encoded
7039  * characters are used to produce 40 bits or 5 bytes of unencoded data in
7040  * outbuf.
7041  *
7042  * If the encoder did not have enough data to generate a mulitple of 8
7043  * characters of encoded data, it used a pad character to get to the 8
7044  * character boundry. The standard specifies that the pad character is '='.
7045  * Unfortunately, '=' is not a legal character in SMF property names.
7046  * Thus, the caller can specify an alternate pad character with the pad
7047  * argument.  If pad is 0, scf_decode32() will use '='.  Note that use of
7048  * anything other than '=' is not in conformance with RFC 4648.  It is
7049  * suitable, however, for internal use of SMF software.  When the encoded
7050  * data is used in SMF property names, SCF_ENCODE32_PAD should be used as
7051  * the pad character.
7052  *
7053  * Arguments:
7054  *	in -		Buffer of encoded characters.
7055  *	inlen -		Number of characters at in.
7056  *	outbuf -	Buffer to receive the decoded bytes.  It can be the
7057  *			same buffer as in.
7058  *	outmax -	Size of the buffer at outbuf.
7059  *	outlen -	If it is not NULL, outlen receives the number of
7060  *			bytes placed in output.
7061  *	pad -		Alternate padding character.
7062  *
7063  * Returns:
7064  *	0	Buffer was successfully decoded.
7065  *	-1	Indicates an invalid input character, output buffer too
7066  *		small, or pad is one of the standard encoding characters.
7067  */
7068 int
7069 scf_decode32(const char *in, size_t inlen, char *outbuf, size_t outmax,
7070     size_t *outlen, char pad)
7071 {
7072 	char *bufend = outbuf + outmax;
7073 	char c;
7074 	uint_t count;
7075 	uint32_t g[DECODE32_GS];
7076 	size_t i;
7077 	uint_t j;
7078 	char *out = outbuf;
7079 	boolean_t pad_seen = B_FALSE;
7080 
7081 	/* If caller did not provide pad character, use the default. */
7082 	if (pad == 0) {
7083 		pad = '=';
7084 	} else {
7085 		/*
7086 		 * Make sure that caller's pad is not one of the encoding
7087 		 * characters.
7088 		 */
7089 		for (i = 0; i < sizeof (base32) - 1; i++) {
7090 			if (pad == base32[i])
7091 				return (-1);
7092 		}
7093 	}
7094 
7095 	i = 0;
7096 	while ((i < inlen) && (out < bufend)) {
7097 		/* Get a group of input characters. */
7098 		for (j = 0, count = 0;
7099 		    (j < DECODE32_GS) && (i < inlen);
7100 		    i++) {
7101 			c = in[i];
7102 			/*
7103 			 * RFC 4648 allows for the encoded data to be split
7104 			 * into multiple lines, so skip carriage returns
7105 			 * and new lines.
7106 			 */
7107 			if ((c == '\r') || (c == '\n'))
7108 				continue;
7109 			if ((pad_seen == B_TRUE) && (c != pad)) {
7110 				/* Group not completed by pads */
7111 				return (-1);
7112 			}
7113 			if ((c < 0) || (c >= sizeof (index32))) {
7114 				/* Illegal character. */
7115 				return (-1);
7116 			}
7117 			if (c == pad) {
7118 				pad_seen = B_TRUE;
7119 				continue;
7120 			}
7121 			if ((g[j++] = index32[c]) == 0xff) {
7122 				/* Illegal character */
7123 				return (-1);
7124 			}
7125 			count++;
7126 		}
7127 
7128 		/* Pack the group into five 8 bit bytes. */
7129 		if ((count >= 2) && (out < bufend)) {
7130 			/*
7131 			 * Output byte 0:
7132 			 *	5 bits (7-3) from g[0]
7133 			 *	3 bits (2-0) from g[1] (4-2)
7134 			 */
7135 			*out++ = (g[0] << 3) | ((g[1] >> 2) & 0x7);
7136 		}
7137 		if ((count >= 4) && (out < bufend)) {
7138 			/*
7139 			 * Output byte 1:
7140 			 *	2 bits (7-6) from g[1] (1-0)
7141 			 *	5 bits (5-1) from g[2] (4-0)
7142 			 *	1 bit (0) from g[3] (4)
7143 			 */
7144 			*out++ = (g[1] << 6) | (g[2] << 1) | \
7145 			    ((g[3] >> 4) & 0x1);
7146 		}
7147 		if ((count >= 5) && (out < bufend)) {
7148 			/*
7149 			 * Output byte 2:
7150 			 *	4 bits (7-4) from g[3] (3-0)
7151 			 *	4 bits (3-0) from g[4] (4-1)
7152 			 */
7153 			*out++ = (g[3] << 4) | ((g[4] >> 1) & 0xf);
7154 		}
7155 		if ((count >= 7) && (out < bufend)) {
7156 			/*
7157 			 * Output byte 3:
7158 			 *	1 bit (7) from g[4] (0)
7159 			 *	5 bits (6-2) from g[5] (4-0)
7160 			 *	2 bits (0-1) from g[6] (4-3)
7161 			 */
7162 			*out++ = (g[4] << 7) | (g[5] << 2) |
7163 			    ((g[6] >> 3) & 0x3);
7164 		}
7165 		if ((count == 8) && (out < bufend)) {
7166 			/*
7167 			 * Output byte 4;
7168 			 *	3 bits (7-5) from g[6] (2-0)
7169 			 *	5 bits (4-0) from g[7] (4-0)
7170 			 */
7171 			*out++ = (g[6] << 5) | g[7];
7172 		}
7173 	}
7174 	if (i < inlen) {
7175 		/* Did not process all input characters. */
7176 		return (-1);
7177 	}
7178 	if (outlen)
7179 		*outlen = out - outbuf;
7180 	/* Null terminate the output if there is room. */
7181 	if (out < bufend)
7182 		*out = 0;
7183 	return (0);
7184 }
7185 
7186 
7187 /*
7188  * _scf_request_backup:  a simple wrapper routine
7189  */
7190 int
7191 _scf_request_backup(scf_handle_t *h, const char *name)
7192 {
7193 	struct rep_protocol_backup_request request;
7194 	struct rep_protocol_response response;
7195 
7196 	int r;
7197 
7198 	if (strlcpy(request.rpr_name, name, sizeof (request.rpr_name)) >=
7199 	    sizeof (request.rpr_name))
7200 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
7201 
7202 	(void) pthread_mutex_lock(&h->rh_lock);
7203 	request.rpr_request = REP_PROTOCOL_BACKUP;
7204 	request.rpr_changeid = handle_next_changeid(h);
7205 
7206 	r = make_door_call(h, &request, sizeof (request),
7207 	    &response, sizeof (response));
7208 	(void) pthread_mutex_unlock(&h->rh_lock);
7209 
7210 	if (r < 0) {
7211 		DOOR_ERRORS_BLOCK(r);
7212 	}
7213 
7214 	if (response.rpr_response != REP_PROTOCOL_SUCCESS)
7215 		return (scf_set_error(proto_error(response.rpr_response)));
7216 	return (SCF_SUCCESS);
7217 }
7218 
7219 /*
7220  * Request svc.configd daemon to switch repository database.
7221  *
7222  * Can fail:
7223  *
7224  *	_NOT_BOUND		handle is not bound
7225  *	_CONNECTION_BROKEN	server is not reachable
7226  *	_INTERNAL		file operation error
7227  *				the server response is too big
7228  *	_PERMISSION_DENIED	not enough privileges to do request
7229  *	_BACKEND_READONLY	backend is not writable
7230  *	_BACKEND_ACCESS		backend access fails
7231  *	_NO_RESOURCES		svc.configd is out of memory
7232  */
7233 int
7234 _scf_repository_switch(scf_handle_t *h, int scf_sw)
7235 {
7236 	struct rep_protocol_switch_request request;
7237 	struct rep_protocol_response response;
7238 	int	r;
7239 
7240 	/*
7241 	 * Setup request protocol and make door call
7242 	 * Hold rh_lock lock before handle_next_changeid call
7243 	 */
7244 	(void) pthread_mutex_lock(&h->rh_lock);
7245 
7246 	request.rpr_flag = scf_sw;
7247 	request.rpr_request = REP_PROTOCOL_SWITCH;
7248 	request.rpr_changeid = handle_next_changeid(h);
7249 
7250 	r = make_door_call(h, &request, sizeof (request),
7251 	    &response, sizeof (response));
7252 
7253 	(void) pthread_mutex_unlock(&h->rh_lock);
7254 
7255 	if (r < 0) {
7256 		DOOR_ERRORS_BLOCK(r);
7257 	}
7258 
7259 	/*
7260 	 * Pass protocol error up
7261 	 */
7262 	if (response.rpr_response != REP_PROTOCOL_SUCCESS)
7263 		return (scf_set_error(proto_error(response.rpr_response)));
7264 
7265 	return (SCF_SUCCESS);
7266 }
7267 
7268 int
7269 _scf_pg_is_read_protected(const scf_propertygroup_t *pg, boolean_t *out)
7270 {
7271 	char buf[REP_PROTOCOL_NAME_LEN];
7272 	ssize_t res;
7273 
7274 	res = datael_get_name(&pg->rd_d, buf, sizeof (buf),
7275 	    RP_ENTITY_NAME_PGREADPROT);
7276 
7277 	if (res == -1)
7278 		return (-1);
7279 
7280 	if (uu_strtouint(buf, out, sizeof (*out), 0, 0, 1) == -1)
7281 		return (scf_set_error(SCF_ERROR_INTERNAL));
7282 	return (SCF_SUCCESS);
7283 }
7284 
7285 /*
7286  * _scf_set_annotation: a wrapper to set the annotation fields for SMF
7287  * security auditing.
7288  *
7289  * Fails with following in scf_error_key thread specific data:
7290  *	_INVALID_ARGUMENT - operation or file too large
7291  *	_NOT_BOUND
7292  *	_CONNECTION_BROKEN
7293  *	_INTERNAL
7294  *	_NO_RESOURCES
7295  */
7296 int
7297 _scf_set_annotation(scf_handle_t *h, const char *operation, const char *file)
7298 {
7299 	struct rep_protocol_annotation request;
7300 	struct rep_protocol_response response;
7301 	size_t copied;
7302 	int r;
7303 
7304 	if (h == NULL) {
7305 		/* We can't do anything if the handle is destroyed. */
7306 		return (scf_set_error(SCF_ERROR_HANDLE_DESTROYED));
7307 	}
7308 
7309 	request.rpr_request = REP_PROTOCOL_SET_AUDIT_ANNOTATION;
7310 	copied = strlcpy(request.rpr_operation,
7311 	    (operation == NULL) ? "" : operation,
7312 	    sizeof (request.rpr_operation));
7313 	if (copied >= sizeof (request.rpr_operation))
7314 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
7315 
7316 	copied = strlcpy(request.rpr_file,
7317 	    (file == NULL) ? "" : file,
7318 	    sizeof (request.rpr_file));
7319 	if (copied >= sizeof (request.rpr_file))
7320 		return (scf_set_error(SCF_ERROR_INVALID_ARGUMENT));
7321 
7322 	(void) pthread_mutex_lock(&h->rh_lock);
7323 	r = make_door_call(h, &request, sizeof (request),
7324 	    &response, sizeof (response));
7325 	(void) pthread_mutex_unlock(&h->rh_lock);
7326 
7327 	if (r < 0) {
7328 		DOOR_ERRORS_BLOCK(r);
7329 	}
7330 
7331 	if (response.rpr_response != REP_PROTOCOL_SUCCESS)
7332 		return (scf_set_error(proto_error(response.rpr_response)));
7333 	return (0);
7334 }
7335