xref: /titanic_41/usr/src/lib/libproc/sparcv9/Pisadep.c (revision b9238976491622ad75a67ab0c12edf99e36212b9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #define	__sparcv9cpu
29 
30 #include <sys/stack.h>
31 #include <sys/regset.h>
32 #include <sys/frame.h>
33 #include <sys/sysmacros.h>
34 
35 #include <stdlib.h>
36 #include <unistd.h>
37 #include <sys/types.h>
38 #include <errno.h>
39 #include <string.h>
40 
41 #include "Pcontrol.h"
42 #include "Pstack.h"
43 #include "Pisadep.h"
44 #include "P32ton.h"
45 
46 #define	M_PLT32_NRSV		4	/* reserved PLT entries */
47 #define	M_PLT32_ENTSIZE		12	/* size of each PLT entry */
48 
49 #define	M_PLT64_NRSV		4	/* reserved bit PLT entries */
50 #define	M_PLT64_ENTSIZE		32	/* size of each PLT entry */
51 #define	M_PLT64_FENTSIZE	24	/* size of far PLT entry */
52 #define	M_PLT64_NEARPLTS	0x8000	/* # of NEAR PLTS we can have */
53 #define	M_PLT64_FBLKCNTS	160	/* # of plts in far PLT blocks */
54 #define	M_PLT64_FBLOCKSZ	(M_PLT64_FBLKCNTS * \
55 				(M_PLT64_FENTSIZE + sizeof (uint64_t)))
56 					/* size of far PLT block */
57 
58 #define	SYSCALL32 0x91d02008	/* 32-bit syscall (ta 8) instruction */
59 #define	SYSCALL64 0x91d02040	/* 64-bit syscall (ta 64) instruction */
60 
61 const char *
62 Ppltdest(struct ps_prochandle *P, uintptr_t pltaddr)
63 {
64 	map_info_t *mp = Paddr2mptr(P, pltaddr);
65 
66 	uintptr_t r_addr;
67 	file_info_t *fp;
68 	size_t i;
69 
70 	if (mp == NULL || (fp = mp->map_file) == NULL ||
71 	    fp->file_plt_base == 0 || pltaddr < fp->file_plt_base ||
72 	    pltaddr >= fp->file_plt_base + fp->file_plt_size) {
73 		errno = EINVAL;
74 		return (NULL);
75 	}
76 
77 	if (P->status.pr_dmodel == PR_MODEL_LP64) {
78 		Elf64_Rela	r;
79 		uintptr_t	pltoff;
80 
81 		pltoff = pltaddr - fp->file_plt_base;
82 		if (pltoff < (M_PLT64_NEARPLTS * M_PLT64_ENTSIZE)) {
83 			i = (pltaddr - fp->file_plt_base -
84 			    M_PLT64_NRSV * M_PLT64_ENTSIZE) / M_PLT64_ENTSIZE;
85 		} else {
86 			uintptr_t	pltblockoff;
87 			pltblockoff = pltoff - (M_PLT64_NEARPLTS *
88 				M_PLT64_ENTSIZE);
89 			i = M_PLT64_NEARPLTS +
90 				((pltblockoff / M_PLT64_FBLOCKSZ) *
91 				M_PLT64_FBLKCNTS) + ((pltblockoff %
92 				M_PLT64_FBLOCKSZ) / M_PLT64_FENTSIZE) -
93 				M_PLT64_NRSV;
94 		}
95 
96 		r_addr = fp->file_jmp_rel + i * sizeof (Elf64_Rela);
97 
98 		if (Pread(P, &r, sizeof (r), r_addr) == sizeof (r) &&
99 		    (i = ELF64_R_SYM(r.r_info)) < fp->file_dynsym.sym_symn) {
100 
101 			Elf_Data *data = fp->file_dynsym.sym_data_pri;
102 			Elf64_Sym *symp = &(((Elf64_Sym *)data->d_buf)[i]);
103 
104 			return (fp->file_dynsym.sym_strs + symp->st_name);
105 		}
106 
107 	} else /* PR_MODEL_ILP32 */ {
108 		Elf32_Rela r;
109 
110 		i = (pltaddr - fp->file_plt_base -
111 		    M_PLT32_NRSV * M_PLT32_ENTSIZE) / M_PLT32_ENTSIZE;
112 
113 		r_addr = fp->file_jmp_rel + i * sizeof (Elf32_Rela);
114 
115 		if (Pread(P, &r, sizeof (r), r_addr) == sizeof (r) &&
116 		    (i = ELF32_R_SYM(r.r_info)) < fp->file_dynsym.sym_symn) {
117 
118 			Elf_Data *data = fp->file_dynsym.sym_data_pri;
119 			Elf32_Sym *symp = &(((Elf32_Sym *)data->d_buf)[i]);
120 
121 			return (fp->file_dynsym.sym_strs + symp->st_name);
122 		}
123 	}
124 
125 	return (NULL);
126 }
127 
128 int
129 Pissyscall(struct ps_prochandle *P, uintptr_t addr)
130 {
131 	instr_t sysinstr;
132 	instr_t instr;
133 
134 	if (P->status.pr_dmodel == PR_MODEL_LP64)
135 		sysinstr = SYSCALL64;
136 	else
137 		sysinstr = SYSCALL32;
138 
139 	if (Pread(P, &instr, sizeof (instr), addr) != sizeof (instr) ||
140 	    instr != sysinstr)
141 		return (0);
142 	else
143 		return (1);
144 }
145 
146 int
147 Pissyscall_prev(struct ps_prochandle *P, uintptr_t addr, uintptr_t *dst)
148 {
149 	uintptr_t prevaddr = addr - sizeof (instr_t);
150 
151 	if (Pissyscall(P, prevaddr)) {
152 		if (dst)
153 			*dst = prevaddr;
154 		return (1);
155 	}
156 
157 	return (0);
158 }
159 
160 /* ARGSUSED */
161 int
162 Pissyscall_text(struct ps_prochandle *P, const void *buf, size_t buflen)
163 {
164 	instr_t sysinstr;
165 
166 	if (P->status.pr_dmodel == PR_MODEL_LP64)
167 		sysinstr = SYSCALL64;
168 	else
169 		sysinstr = SYSCALL32;
170 
171 	if (buflen >= sizeof (instr_t) &&
172 	    memcmp(buf, &sysinstr, sizeof (instr_t)) == 0)
173 		return (1);
174 	else
175 		return (0);
176 }
177 
178 /*
179  * For gwindows_t support, we define a structure to pass arguments to
180  * a Plwp_iter() callback routine.
181  */
182 typedef struct {
183 	struct ps_prochandle *gq_proc;	/* libproc handle */
184 	struct rwindow *gq_rwin;	/* rwindow destination buffer */
185 	uintptr_t gq_addr;		/* stack address to match */
186 } gwin_query_t;
187 
188 static int
189 find_gwin(gwin_query_t *gqp, const lwpstatus_t *psp)
190 {
191 	gwindows_t gwin;
192 	struct stat64 st;
193 	char path[64];
194 	ssize_t n;
195 	int fd, i;
196 	int rv = 0; /* Return value for skip to next lwp */
197 
198 	(void) snprintf(path, sizeof (path), "/proc/%d/lwp/%d/gwindows",
199 	    (int)gqp->gq_proc->pid, (int)psp->pr_lwpid);
200 
201 	if (stat64(path, &st) == -1 || st.st_size == 0)
202 		return (0); /* Nothing doing; skip to next lwp */
203 
204 	if ((fd = open64(path, O_RDONLY)) >= 0) {
205 		/*
206 		 * Zero out the gwindows_t because the gwindows file only has
207 		 * as much data as needed to represent the saved windows.
208 		 */
209 		if (gqp->gq_proc->status.pr_dmodel == PR_MODEL_ILP32) {
210 			gwindows32_t g32;
211 
212 			(void) memset(&g32, 0, sizeof (g32));
213 			if ((n = read(fd, &g32, sizeof (g32))) > 0)
214 				gwindows_32_to_n(&g32, &gwin);
215 
216 		} else {
217 			(void) memset(&gwin, 0, sizeof (gwin));
218 			n = read(fd, &gwin, sizeof (gwin));
219 		}
220 
221 		if (n > 0) {
222 			/*
223 			 * If we actually found a non-zero gwindows file and
224 			 * were able to read it, iterate through the buffers
225 			 * looking for a stack pointer match; if one is found,
226 			 * copy out the corresponding register window.
227 			 */
228 			for (i = 0; i < gwin.wbcnt; i++) {
229 				if (gwin.spbuf[i] == (greg_t *)gqp->gq_addr) {
230 					(void) memcpy(gqp->gq_rwin,
231 					    &gwin.wbuf[i],
232 					    sizeof (struct rwindow));
233 
234 					rv = 1; /* We're done */
235 					break;
236 				}
237 			}
238 		}
239 		(void) close(fd);
240 	}
241 
242 	return (rv);
243 }
244 
245 static int
246 read_gwin(struct ps_prochandle *P, struct rwindow *rwp, uintptr_t sp)
247 {
248 	gwin_query_t gq;
249 
250 	if (P->state == PS_DEAD) {
251 		lwp_info_t *lwp = list_next(&P->core->core_lwp_head);
252 		uint_t n;
253 		int i;
254 
255 		for (n = 0; n < P->core->core_nlwp; n++, lwp = list_next(lwp)) {
256 			gwindows_t *gwin = lwp->lwp_gwins;
257 
258 			if (gwin == NULL)
259 				continue; /* No gwindows for this lwp */
260 
261 			/*
262 			 * If this lwp has gwindows associated with it, iterate
263 			 * through the buffers looking for a stack pointer
264 			 * match; if one is found, copy out the register window.
265 			 */
266 			for (i = 0; i < gwin->wbcnt; i++) {
267 				if (gwin->spbuf[i] == (greg_t *)sp) {
268 					(void) memcpy(rwp, &gwin->wbuf[i],
269 					    sizeof (struct rwindow));
270 					return (0); /* We're done */
271 				}
272 			}
273 		}
274 
275 		return (-1); /* No gwindows match found */
276 
277 	}
278 
279 	gq.gq_proc = P;
280 	gq.gq_rwin = rwp;
281 	gq.gq_addr = sp;
282 
283 	return (Plwp_iter(P, (proc_lwp_f *)find_gwin, &gq) ? 0 : -1);
284 }
285 
286 static void
287 ucontext_n_to_prgregs(const ucontext_t *src, prgregset_t dst)
288 {
289 	const greg_t *gregs = &src->uc_mcontext.gregs[0];
290 
291 	dst[R_CCR] = gregs[REG_CCR];
292 	dst[R_ASI] = gregs[REG_ASI];
293 	dst[R_FPRS] = gregs[REG_FPRS];
294 	dst[R_PC] = gregs[REG_PC];
295 	dst[R_nPC] = gregs[REG_nPC];
296 	dst[R_Y] = gregs[REG_Y];
297 
298 	dst[R_G1] = gregs[REG_G1];
299 	dst[R_G2] = gregs[REG_G2];
300 	dst[R_G3] = gregs[REG_G3];
301 	dst[R_G4] = gregs[REG_G4];
302 	dst[R_G5] = gregs[REG_G5];
303 	dst[R_G6] = gregs[REG_G6];
304 	dst[R_G7] = gregs[REG_G7];
305 
306 	dst[R_O0] = gregs[REG_O0];
307 	dst[R_O1] = gregs[REG_O1];
308 	dst[R_O2] = gregs[REG_O2];
309 	dst[R_O3] = gregs[REG_O3];
310 	dst[R_O4] = gregs[REG_O4];
311 	dst[R_O5] = gregs[REG_O5];
312 	dst[R_O6] = gregs[REG_O6];
313 	dst[R_O7] = gregs[REG_O7];
314 }
315 
316 static void
317 ucontext_32_to_prgregs(const ucontext32_t *src, prgregset_t dst)
318 {
319 	/*
320 	 * We need to be very careful here to cast the greg32_t's (signed) to
321 	 * unsigned and then explicitly promote them as unsigned values.
322 	 */
323 	const greg32_t *gregs = &src->uc_mcontext.gregs[0];
324 
325 	dst[R_PSR] = (uint64_t)(uint32_t)gregs[REG_PSR];
326 	dst[R_PC] = (uint64_t)(uint32_t)gregs[REG_PC];
327 	dst[R_nPC] = (uint64_t)(uint32_t)gregs[REG_nPC];
328 	dst[R_Y] = (uint64_t)(uint32_t)gregs[REG_Y];
329 
330 	dst[R_G1] = (uint64_t)(uint32_t)gregs[REG_G1];
331 	dst[R_G2] = (uint64_t)(uint32_t)gregs[REG_G2];
332 	dst[R_G3] = (uint64_t)(uint32_t)gregs[REG_G3];
333 	dst[R_G4] = (uint64_t)(uint32_t)gregs[REG_G4];
334 	dst[R_G5] = (uint64_t)(uint32_t)gregs[REG_G5];
335 	dst[R_G6] = (uint64_t)(uint32_t)gregs[REG_G6];
336 	dst[R_G7] = (uint64_t)(uint32_t)gregs[REG_G7];
337 
338 	dst[R_O0] = (uint64_t)(uint32_t)gregs[REG_O0];
339 	dst[R_O1] = (uint64_t)(uint32_t)gregs[REG_O1];
340 	dst[R_O2] = (uint64_t)(uint32_t)gregs[REG_O2];
341 	dst[R_O3] = (uint64_t)(uint32_t)gregs[REG_O3];
342 	dst[R_O4] = (uint64_t)(uint32_t)gregs[REG_O4];
343 	dst[R_O5] = (uint64_t)(uint32_t)gregs[REG_O5];
344 	dst[R_O6] = (uint64_t)(uint32_t)gregs[REG_O6];
345 	dst[R_O7] = (uint64_t)(uint32_t)gregs[REG_O7];
346 }
347 
348 int
349 Pstack_iter(struct ps_prochandle *P, const prgregset_t regs,
350 	proc_stack_f *func, void *arg)
351 {
352 	prgreg_t *prevfp = NULL;
353 	uint_t pfpsize = 0;
354 	int nfp = 0;
355 	prgregset_t gregs;
356 	long args[6];
357 	prgreg_t fp;
358 	int i;
359 	int rv;
360 	uintptr_t sp;
361 	ssize_t n;
362 	uclist_t ucl;
363 	ucontext_t uc;
364 
365 	init_uclist(&ucl, P);
366 	(void) memcpy(gregs, regs, sizeof (gregs));
367 
368 	for (;;) {
369 		fp = gregs[R_FP];
370 		if (stack_loop(fp, &prevfp, &nfp, &pfpsize))
371 			break;
372 
373 		for (i = 0; i < 6; i++)
374 			args[i] = gregs[R_I0 + i];
375 		if ((rv = func(arg, gregs, 6, args)) != 0)
376 			break;
377 
378 		gregs[R_PC] = gregs[R_I7];
379 		gregs[R_nPC] = gregs[R_PC] + 4;
380 		(void) memcpy(&gregs[R_O0], &gregs[R_I0], 8*sizeof (prgreg_t));
381 		if ((sp = gregs[R_FP]) == 0)
382 			break;
383 
384 		if (P->status.pr_dmodel == PR_MODEL_ILP32) {
385 			struct rwindow32 rw32;
386 			ucontext32_t uc32;
387 
388 			if (find_uclink(&ucl, sp +
389 			    SA32(sizeof (struct frame32))) &&
390 			    Pread(P, &uc32, sizeof (uc32), sp +
391 			    SA32(sizeof (struct frame32))) == sizeof (uc32)) {
392 				ucontext_32_to_prgregs(&uc32, gregs);
393 				sp = gregs[R_SP];
394 			}
395 
396 			n = Pread(P, &rw32, sizeof (struct rwindow32), sp);
397 
398 			if (n == sizeof (struct rwindow32)) {
399 				rwindow_32_to_n(&rw32,
400 				    (struct rwindow *)&gregs[R_L0]);
401 				continue;
402 			}
403 
404 		} else {
405 			sp += STACK_BIAS;
406 
407 			if (find_uclink(&ucl, sp + SA(sizeof (struct frame))) &&
408 			    Pread(P, &uc, sizeof (uc), sp +
409 			    SA(sizeof (struct frame))) == sizeof (uc)) {
410 				ucontext_n_to_prgregs(&uc, gregs);
411 				sp = gregs[R_SP] + STACK_BIAS;
412 			}
413 
414 			n = Pread(P, &gregs[R_L0], sizeof (struct rwindow), sp);
415 
416 			if (n == sizeof (struct rwindow))
417 				continue;
418 		}
419 
420 		/*
421 		 * If we get here, then our Pread of the register window
422 		 * failed.  If this is because the address was not mapped,
423 		 * then we attempt to read this window via any gwindows
424 		 * information we have.  If that too fails, abort our loop.
425 		 */
426 		if (n > 0)
427 			break;	/* Failed for reason other than not mapped */
428 
429 		if (read_gwin(P, (struct rwindow *)&gregs[R_L0], sp) == -1)
430 			break;	/* No gwindows match either */
431 	}
432 
433 	if (prevfp)
434 		free(prevfp);
435 
436 	free_uclist(&ucl);
437 	return (rv);
438 }
439 
440 uintptr_t
441 Psyscall_setup(struct ps_prochandle *P, int nargs, int sysindex, uintptr_t sp)
442 {
443 	uintptr_t ret;
444 	int model = P->status.pr_dmodel;
445 
446 	if (model == PR_MODEL_LP64) {
447 		sp -= (nargs > 6)?
448 			WINDOWSIZE64 + sizeof (int64_t) * nargs :
449 			WINDOWSIZE64 + sizeof (int64_t) * 6;
450 		sp = PSTACK_ALIGN64(sp);
451 		ret = sp + WINDOWSIZE32 + sizeof (int32_t);
452 	} else {
453 		sp -= (nargs > 6)?
454 			WINDOWSIZE32 + sizeof (int32_t) * (1 + nargs) :
455 			WINDOWSIZE32 + sizeof (int32_t) * (1 + 6);
456 		sp = PSTACK_ALIGN32(sp);
457 		ret = sp + WINDOWSIZE64 + sizeof (int32_t);
458 	}
459 
460 	P->status.pr_lwp.pr_reg[R_G1] = sysindex;
461 	if (model == PR_MODEL_LP64)
462 		P->status.pr_lwp.pr_reg[R_SP] = sp - STACK_BIAS;
463 	else
464 		P->status.pr_lwp.pr_reg[R_SP] = sp;
465 	P->status.pr_lwp.pr_reg[R_PC] = P->sysaddr;
466 	P->status.pr_lwp.pr_reg[R_nPC] = P->sysaddr + sizeof (instr_t);
467 
468 	return (ret);
469 }
470 
471 int
472 Psyscall_copyinargs(struct ps_prochandle *P, int nargs, argdes_t *argp,
473     uintptr_t ap)
474 {
475 	uint32_t arglist32[MAXARGS+2];
476 	uint64_t arglist64[MAXARGS+2];
477 	int i;
478 	argdes_t *adp;
479 	int model = P->status.pr_dmodel;
480 
481 	for (i = 0, adp = argp; i < nargs; i++, adp++) {
482 		arglist32[i] = (uint32_t)adp->arg_value;
483 		arglist64[i] = (uint64_t)adp->arg_value;
484 
485 		if (i < 6)
486 			(void) Pputareg(P, R_O0+i, adp->arg_value);
487 	}
488 
489 	if (model == PR_MODEL_LP64) {
490 		if (nargs > 6 &&
491 		    Pwrite(P, &arglist64[0], sizeof (int64_t) * nargs,
492 		    (uintptr_t)ap) != sizeof (int64_t) * nargs)
493 			return (-1);
494 	} else {
495 		if (nargs > 6 &&
496 		    Pwrite(P, &arglist32[0], sizeof (int32_t) * nargs,
497 		    (uintptr_t)ap) != sizeof (int32_t) * nargs)
498 			return (-1);
499 	}
500 
501 	return (0);
502 }
503 
504 /* ARGSUSED */
505 int
506 Psyscall_copyoutargs(struct ps_prochandle *P, int nargs, argdes_t *argp,
507     uintptr_t ap)
508 {
509 	/* Do nothing */
510 	return (0);
511 }
512