1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <assert.h> 30 #include <stdio.h> 31 #include <stdlib.h> 32 #include <stddef.h> 33 #include <unistd.h> 34 #include <ctype.h> 35 #include <fcntl.h> 36 #include <string.h> 37 #include <strings.h> 38 #include <memory.h> 39 #include <errno.h> 40 #include <dirent.h> 41 #include <signal.h> 42 #include <limits.h> 43 #include <libgen.h> 44 #include <zone.h> 45 #include <sys/types.h> 46 #include <sys/stat.h> 47 #include <sys/systeminfo.h> 48 #include <sys/sysmacros.h> 49 50 #include "libproc.h" 51 #include "Pcontrol.h" 52 #include "Putil.h" 53 #include "Psymtab_machelf.h" 54 55 static file_info_t *build_map_symtab(struct ps_prochandle *, map_info_t *); 56 static map_info_t *exec_map(struct ps_prochandle *); 57 static map_info_t *object_to_map(struct ps_prochandle *, Lmid_t, const char *); 58 static map_info_t *object_name_to_map(struct ps_prochandle *, 59 Lmid_t, const char *); 60 static GElf_Sym *sym_by_name(sym_tbl_t *, const char *, GElf_Sym *, uint_t *); 61 static int read_ehdr32(struct ps_prochandle *, Elf32_Ehdr *, uint_t *, 62 uintptr_t); 63 #ifdef _LP64 64 static int read_ehdr64(struct ps_prochandle *, Elf64_Ehdr *, uint_t *, 65 uintptr_t); 66 #endif 67 68 #define DATA_TYPES \ 69 ((1 << STT_OBJECT) | (1 << STT_FUNC) | \ 70 (1 << STT_COMMON) | (1 << STT_TLS)) 71 #define IS_DATA_TYPE(tp) (((1 << (tp)) & DATA_TYPES) != 0) 72 73 #define MA_RWX (MA_READ | MA_WRITE | MA_EXEC) 74 75 typedef enum { 76 PRO_NATURAL, 77 PRO_BYADDR, 78 PRO_BYNAME 79 } pr_order_t; 80 81 static int 82 addr_cmp(const void *aa, const void *bb) 83 { 84 uintptr_t a = *((uintptr_t *)aa); 85 uintptr_t b = *((uintptr_t *)bb); 86 87 if (a > b) 88 return (1); 89 if (a < b) 90 return (-1); 91 return (0); 92 } 93 94 /* 95 * This function creates a list of addresses for a load object's sections. 96 * The list is in ascending address order and alternates start address 97 * then end address for each section we're interested in. The function 98 * returns a pointer to the list, which must be freed by the caller. 99 */ 100 static uintptr_t * 101 get_saddrs(struct ps_prochandle *P, uintptr_t ehdr_start, uint_t *n) 102 { 103 uintptr_t a, addr, *addrs, last = 0; 104 uint_t i, naddrs = 0, unordered = 0; 105 106 if (P->status.pr_dmodel == PR_MODEL_ILP32) { 107 Elf32_Ehdr ehdr; 108 Elf32_Phdr phdr; 109 uint_t phnum; 110 111 if (read_ehdr32(P, &ehdr, &phnum, ehdr_start) != 0) 112 return (NULL); 113 114 addrs = malloc(sizeof (uintptr_t) * phnum * 2); 115 a = ehdr_start + ehdr.e_phoff; 116 for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) { 117 if (Pread(P, &phdr, sizeof (phdr), a) != 118 sizeof (phdr)) { 119 free(addrs); 120 return (NULL); 121 } 122 if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0) 123 continue; 124 125 addr = phdr.p_vaddr; 126 if (ehdr.e_type == ET_DYN) 127 addr += ehdr_start; 128 if (last > addr) 129 unordered = 1; 130 addrs[naddrs++] = addr; 131 addrs[naddrs++] = last = addr + phdr.p_memsz - 1; 132 } 133 #ifdef _LP64 134 } else { 135 Elf64_Ehdr ehdr; 136 Elf64_Phdr phdr; 137 uint_t phnum; 138 139 if (read_ehdr64(P, &ehdr, &phnum, ehdr_start) != 0) 140 return (NULL); 141 142 addrs = malloc(sizeof (uintptr_t) * phnum * 2); 143 a = ehdr_start + ehdr.e_phoff; 144 for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) { 145 if (Pread(P, &phdr, sizeof (phdr), a) != 146 sizeof (phdr)) { 147 free(addrs); 148 return (NULL); 149 } 150 if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0) 151 continue; 152 153 addr = phdr.p_vaddr; 154 if (ehdr.e_type == ET_DYN) 155 addr += ehdr_start; 156 if (last > addr) 157 unordered = 1; 158 addrs[naddrs++] = addr; 159 addrs[naddrs++] = last = addr + phdr.p_memsz - 1; 160 } 161 #endif 162 } 163 164 if (unordered) 165 qsort(addrs, naddrs, sizeof (uintptr_t), addr_cmp); 166 167 *n = naddrs; 168 return (addrs); 169 } 170 171 /* 172 * Allocation function for a new file_info_t 173 */ 174 file_info_t * 175 file_info_new(struct ps_prochandle *P, map_info_t *mptr) 176 { 177 file_info_t *fptr; 178 map_info_t *mp; 179 uintptr_t mstart, mend, sstart, send; 180 uint_t i; 181 182 if ((fptr = calloc(1, sizeof (file_info_t))) == NULL) 183 return (NULL); 184 185 list_link(fptr, &P->file_head); 186 (void) strcpy(fptr->file_pname, mptr->map_pmap.pr_mapname); 187 mptr->map_file = fptr; 188 fptr->file_ref = 1; 189 fptr->file_fd = -1; 190 P->num_files++; 191 192 /* 193 * To figure out which map_info_t instances correspond to the mappings 194 * for this load object we try to obtain the start and end address 195 * for each section of our in-memory ELF image. If successful, we 196 * walk down the list of addresses and the list of map_info_t 197 * instances in lock step to correctly find the mappings that 198 * correspond to this load object. 199 */ 200 if ((fptr->file_saddrs = get_saddrs(P, mptr->map_pmap.pr_vaddr, 201 &fptr->file_nsaddrs)) == NULL) 202 return (fptr); 203 204 mp = P->mappings; 205 i = 0; 206 while (mp < P->mappings + P->map_count && i < fptr->file_nsaddrs) { 207 208 /* Calculate the start and end of the mapping and section */ 209 mstart = mp->map_pmap.pr_vaddr; 210 mend = mp->map_pmap.pr_vaddr + mp->map_pmap.pr_size; 211 sstart = fptr->file_saddrs[i]; 212 send = fptr->file_saddrs[i + 1]; 213 214 if (mend <= sstart) { 215 /* This mapping is below the current section */ 216 mp++; 217 } else if (mstart >= send) { 218 /* This mapping is above the current section */ 219 i += 2; 220 } else { 221 /* This mapping overlaps the current section */ 222 if (mp->map_file == NULL) { 223 dprintf("file_info_new: associating " 224 "segment at %p\n", 225 (void *)mp->map_pmap.pr_vaddr); 226 mp->map_file = fptr; 227 fptr->file_ref++; 228 } else { 229 dprintf("file_info_new: segment at %p " 230 "already associated with %s\n", 231 (void *)mp->map_pmap.pr_vaddr, 232 (mp == mptr ? "this file" : 233 mp->map_file->file_pname)); 234 } 235 mp++; 236 } 237 } 238 239 return (fptr); 240 } 241 242 /* 243 * Deallocation function for a file_info_t 244 */ 245 static void 246 file_info_free(struct ps_prochandle *P, file_info_t *fptr) 247 { 248 if (--fptr->file_ref == 0) { 249 list_unlink(fptr); 250 if (fptr->file_symtab.sym_elf) { 251 (void) elf_end(fptr->file_symtab.sym_elf); 252 free(fptr->file_symtab.sym_elfmem); 253 } 254 if (fptr->file_symtab.sym_byname) 255 free(fptr->file_symtab.sym_byname); 256 if (fptr->file_symtab.sym_byaddr) 257 free(fptr->file_symtab.sym_byaddr); 258 259 if (fptr->file_dynsym.sym_elf) { 260 (void) elf_end(fptr->file_dynsym.sym_elf); 261 free(fptr->file_dynsym.sym_elfmem); 262 } 263 if (fptr->file_dynsym.sym_byname) 264 free(fptr->file_dynsym.sym_byname); 265 if (fptr->file_dynsym.sym_byaddr) 266 free(fptr->file_dynsym.sym_byaddr); 267 268 if (fptr->file_lo) 269 free(fptr->file_lo); 270 if (fptr->file_lname) 271 free(fptr->file_lname); 272 if (fptr->file_elf) 273 (void) elf_end(fptr->file_elf); 274 if (fptr->file_elfmem != NULL) 275 free(fptr->file_elfmem); 276 if (fptr->file_fd >= 0) 277 (void) close(fptr->file_fd); 278 if (fptr->file_ctfp) { 279 ctf_close(fptr->file_ctfp); 280 free(fptr->file_ctf_buf); 281 } 282 if (fptr->file_saddrs) 283 free(fptr->file_saddrs); 284 free(fptr); 285 P->num_files--; 286 } 287 } 288 289 /* 290 * Deallocation function for a map_info_t 291 */ 292 static void 293 map_info_free(struct ps_prochandle *P, map_info_t *mptr) 294 { 295 file_info_t *fptr; 296 297 if ((fptr = mptr->map_file) != NULL) { 298 if (fptr->file_map == mptr) 299 fptr->file_map = NULL; 300 file_info_free(P, fptr); 301 } 302 if (P->execname && mptr == P->map_exec) { 303 free(P->execname); 304 P->execname = NULL; 305 } 306 if (P->auxv && (mptr == P->map_exec || mptr == P->map_ldso)) { 307 free(P->auxv); 308 P->auxv = NULL; 309 P->nauxv = 0; 310 } 311 if (mptr == P->map_exec) 312 P->map_exec = NULL; 313 if (mptr == P->map_ldso) 314 P->map_ldso = NULL; 315 } 316 317 /* 318 * Call-back function for librtld_db to iterate through all of its shared 319 * libraries. We use this to get the load object names for the mappings. 320 */ 321 static int 322 map_iter(const rd_loadobj_t *lop, void *cd) 323 { 324 char buf[PATH_MAX]; 325 struct ps_prochandle *P = cd; 326 map_info_t *mptr; 327 file_info_t *fptr; 328 329 dprintf("encountered rd object at %p\n", (void *)lop->rl_base); 330 331 if ((mptr = Paddr2mptr(P, lop->rl_base)) == NULL) { 332 dprintf("map_iter: base address doesn't match any mapping\n"); 333 return (1); /* Base address does not match any mapping */ 334 } 335 336 if ((fptr = mptr->map_file) == NULL && 337 (fptr = file_info_new(P, mptr)) == NULL) { 338 dprintf("map_iter: failed to allocate a new file_info_t\n"); 339 return (1); /* Failed to allocate a new file_info_t */ 340 } 341 342 if ((fptr->file_lo == NULL) && 343 (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) { 344 dprintf("map_iter: failed to allocate rd_loadobj_t\n"); 345 file_info_free(P, fptr); 346 return (1); /* Failed to allocate rd_loadobj_t */ 347 } 348 349 fptr->file_map = mptr; 350 *fptr->file_lo = *lop; 351 352 fptr->file_lo->rl_plt_base = fptr->file_plt_base; 353 fptr->file_lo->rl_plt_size = fptr->file_plt_size; 354 355 if (fptr->file_lname) { 356 free(fptr->file_lname); 357 fptr->file_lname = NULL; 358 } 359 360 if (Pread_string(P, buf, sizeof (buf), lop->rl_nameaddr) > 0) { 361 if ((fptr->file_lname = strdup(buf)) != NULL) 362 fptr->file_lbase = basename(fptr->file_lname); 363 } else { 364 dprintf("map_iter: failed to read string at %p\n", 365 (void *)lop->rl_nameaddr); 366 } 367 368 dprintf("loaded rd object %s lmid %lx\n", 369 fptr->file_lname ? fptr->file_lname : "<NULL>", lop->rl_lmident); 370 return (1); 371 } 372 373 static void 374 map_set(struct ps_prochandle *P, map_info_t *mptr, const char *lname) 375 { 376 file_info_t *fptr; 377 378 if ((fptr = mptr->map_file) == NULL && 379 (fptr = file_info_new(P, mptr)) == NULL) 380 return; /* Failed to allocate a new file_info_t */ 381 382 fptr->file_map = mptr; 383 384 if ((fptr->file_lo == NULL) && 385 (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) { 386 file_info_free(P, fptr); 387 return; /* Failed to allocate rd_loadobj_t */ 388 } 389 390 (void) memset(fptr->file_lo, 0, sizeof (rd_loadobj_t)); 391 fptr->file_lo->rl_base = mptr->map_pmap.pr_vaddr; 392 fptr->file_lo->rl_bend = 393 mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size; 394 395 fptr->file_lo->rl_plt_base = fptr->file_plt_base; 396 fptr->file_lo->rl_plt_size = fptr->file_plt_size; 397 398 if (fptr->file_lname == NULL && 399 (fptr->file_lname = strdup(lname)) != NULL) 400 fptr->file_lbase = basename(fptr->file_lname); 401 } 402 403 static void 404 load_static_maps(struct ps_prochandle *P) 405 { 406 map_info_t *mptr; 407 408 /* 409 * Construct the map for the a.out. 410 */ 411 if ((mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_EXEC)) != NULL) 412 map_set(P, mptr, "a.out"); 413 414 /* 415 * If the dynamic linker exists for this process, 416 * construct the map for it. 417 */ 418 if (Pgetauxval(P, AT_BASE) != -1L && 419 (mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_LDSO)) != NULL) 420 map_set(P, mptr, "ld.so.1"); 421 } 422 423 /* 424 * Go through all the address space mappings, validating or updating 425 * the information already gathered, or gathering new information. 426 * 427 * This function is only called when we suspect that the mappings have changed 428 * because this is the first time we're calling it or because of rtld activity. 429 */ 430 void 431 Pupdate_maps(struct ps_prochandle *P) 432 { 433 char mapfile[PATH_MAX]; 434 int mapfd; 435 struct stat statb; 436 prmap_t *Pmap = NULL; 437 prmap_t *pmap; 438 ssize_t nmap; 439 int i; 440 uint_t oldmapcount; 441 map_info_t *newmap, *newp; 442 map_info_t *mptr; 443 444 if (P->info_valid || P->state == PS_UNDEAD) 445 return; 446 447 Preadauxvec(P); 448 449 (void) snprintf(mapfile, sizeof (mapfile), "%s/%d/map", 450 procfs_path, (int)P->pid); 451 if ((mapfd = open(mapfile, O_RDONLY)) < 0 || 452 fstat(mapfd, &statb) != 0 || 453 statb.st_size < sizeof (prmap_t) || 454 (Pmap = malloc(statb.st_size)) == NULL || 455 (nmap = pread(mapfd, Pmap, statb.st_size, 0L)) <= 0 || 456 (nmap /= sizeof (prmap_t)) == 0) { 457 if (Pmap != NULL) 458 free(Pmap); 459 if (mapfd >= 0) 460 (void) close(mapfd); 461 Preset_maps(P); /* utter failure; destroy tables */ 462 return; 463 } 464 (void) close(mapfd); 465 466 if ((newmap = calloc(1, nmap * sizeof (map_info_t))) == NULL) 467 return; 468 469 /* 470 * We try to merge any file information we may have for existing 471 * mappings, to avoid having to rebuild the file info. 472 */ 473 mptr = P->mappings; 474 pmap = Pmap; 475 newp = newmap; 476 oldmapcount = P->map_count; 477 for (i = 0; i < nmap; i++, pmap++, newp++) { 478 479 if (oldmapcount == 0) { 480 /* 481 * We've exhausted all the old mappings. Every new 482 * mapping should be added. 483 */ 484 newp->map_pmap = *pmap; 485 486 } else if (pmap->pr_vaddr == mptr->map_pmap.pr_vaddr && 487 pmap->pr_size == mptr->map_pmap.pr_size && 488 pmap->pr_offset == mptr->map_pmap.pr_offset && 489 (pmap->pr_mflags & ~(MA_BREAK | MA_STACK)) == 490 (mptr->map_pmap.pr_mflags & ~(MA_BREAK | MA_STACK)) && 491 pmap->pr_pagesize == mptr->map_pmap.pr_pagesize && 492 pmap->pr_shmid == mptr->map_pmap.pr_shmid && 493 strcmp(pmap->pr_mapname, mptr->map_pmap.pr_mapname) == 0) { 494 495 /* 496 * This mapping matches exactly. Copy over the old 497 * mapping, taking care to get the latest flags. 498 * Make sure the associated file_info_t is updated 499 * appropriately. 500 */ 501 *newp = *mptr; 502 if (P->map_exec == mptr) 503 P->map_exec = newp; 504 if (P->map_ldso == mptr) 505 P->map_ldso = newp; 506 newp->map_pmap.pr_mflags = pmap->pr_mflags; 507 if (mptr->map_file != NULL && 508 mptr->map_file->file_map == mptr) 509 mptr->map_file->file_map = newp; 510 oldmapcount--; 511 mptr++; 512 513 } else if (pmap->pr_vaddr + pmap->pr_size > 514 mptr->map_pmap.pr_vaddr) { 515 516 /* 517 * The old mapping doesn't exist any more, remove it 518 * from the list. 519 */ 520 map_info_free(P, mptr); 521 oldmapcount--; 522 i--; 523 newp--; 524 pmap--; 525 mptr++; 526 527 } else { 528 529 /* 530 * This is a new mapping, add it directly. 531 */ 532 newp->map_pmap = *pmap; 533 } 534 } 535 536 /* 537 * Free any old maps 538 */ 539 while (oldmapcount) { 540 map_info_free(P, mptr); 541 oldmapcount--; 542 mptr++; 543 } 544 545 free(Pmap); 546 if (P->mappings != NULL) 547 free(P->mappings); 548 P->mappings = newmap; 549 P->map_count = P->map_alloc = nmap; 550 P->info_valid = 1; 551 552 /* 553 * Consult librtld_db to get the load object 554 * names for all of the shared libraries. 555 */ 556 if (P->rap != NULL) 557 (void) rd_loadobj_iter(P->rap, map_iter, P); 558 } 559 560 /* 561 * Update all of the mappings and rtld_db as if by Pupdate_maps(), and then 562 * forcibly cache all of the symbol tables associated with all object files. 563 */ 564 void 565 Pupdate_syms(struct ps_prochandle *P) 566 { 567 file_info_t *fptr; 568 int i; 569 570 Pupdate_maps(P); 571 572 for (i = 0, fptr = list_next(&P->file_head); i < P->num_files; 573 i++, fptr = list_next(fptr)) { 574 Pbuild_file_symtab(P, fptr); 575 (void) Pbuild_file_ctf(P, fptr); 576 } 577 } 578 579 /* 580 * Return the librtld_db agent handle for the victim process. 581 * The handle will become invalid at the next successful exec() and the 582 * client (caller of proc_rd_agent()) must not use it beyond that point. 583 * If the process is already dead, we've already tried our best to 584 * create the agent during core file initialization. 585 */ 586 rd_agent_t * 587 Prd_agent(struct ps_prochandle *P) 588 { 589 if (P->rap == NULL && P->state != PS_DEAD && P->state != PS_IDLE) { 590 Pupdate_maps(P); 591 if (P->num_files == 0) 592 load_static_maps(P); 593 rd_log(_libproc_debug); 594 if ((P->rap = rd_new(P)) != NULL) 595 (void) rd_loadobj_iter(P->rap, map_iter, P); 596 } 597 return (P->rap); 598 } 599 600 /* 601 * Return the prmap_t structure containing 'addr', but only if it 602 * is in the dynamic linker's link map and is the text section. 603 */ 604 const prmap_t * 605 Paddr_to_text_map(struct ps_prochandle *P, uintptr_t addr) 606 { 607 map_info_t *mptr; 608 609 if (!P->info_valid) 610 Pupdate_maps(P); 611 612 if ((mptr = Paddr2mptr(P, addr)) != NULL) { 613 file_info_t *fptr = build_map_symtab(P, mptr); 614 const prmap_t *pmp = &mptr->map_pmap; 615 616 /* 617 * Assume that if rl_data_base is NULL, it means that no 618 * data section was found for this load object, and that 619 * a section must be text. Otherwise, a section will be 620 * text unless it ends above the start of the data 621 * section. 622 */ 623 if (fptr != NULL && fptr->file_lo != NULL && 624 (fptr->file_lo->rl_data_base == NULL || 625 pmp->pr_vaddr + pmp->pr_size < 626 fptr->file_lo->rl_data_base)) 627 return (pmp); 628 } 629 630 return (NULL); 631 } 632 633 /* 634 * Return the prmap_t structure containing 'addr' (no restrictions on 635 * the type of mapping). 636 */ 637 const prmap_t * 638 Paddr_to_map(struct ps_prochandle *P, uintptr_t addr) 639 { 640 map_info_t *mptr; 641 642 if (!P->info_valid) 643 Pupdate_maps(P); 644 645 if ((mptr = Paddr2mptr(P, addr)) != NULL) 646 return (&mptr->map_pmap); 647 648 return (NULL); 649 } 650 651 /* 652 * Convert a full or partial load object name to the prmap_t for its 653 * corresponding primary text mapping. 654 */ 655 const prmap_t * 656 Plmid_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name) 657 { 658 map_info_t *mptr; 659 660 if (name == PR_OBJ_EVERY) 661 return (NULL); /* A reasonable mistake */ 662 663 if ((mptr = object_name_to_map(P, lmid, name)) != NULL) 664 return (&mptr->map_pmap); 665 666 return (NULL); 667 } 668 669 const prmap_t * 670 Pname_to_map(struct ps_prochandle *P, const char *name) 671 { 672 return (Plmid_to_map(P, PR_LMID_EVERY, name)); 673 } 674 675 const rd_loadobj_t * 676 Paddr_to_loadobj(struct ps_prochandle *P, uintptr_t addr) 677 { 678 map_info_t *mptr; 679 680 if (!P->info_valid) 681 Pupdate_maps(P); 682 683 if ((mptr = Paddr2mptr(P, addr)) == NULL) 684 return (NULL); 685 686 /* 687 * By building the symbol table, we implicitly bring the PLT 688 * information up to date in the load object. 689 */ 690 (void) build_map_symtab(P, mptr); 691 692 return (mptr->map_file->file_lo); 693 } 694 695 const rd_loadobj_t * 696 Plmid_to_loadobj(struct ps_prochandle *P, Lmid_t lmid, const char *name) 697 { 698 map_info_t *mptr; 699 700 if (name == PR_OBJ_EVERY) 701 return (NULL); 702 703 if ((mptr = object_name_to_map(P, lmid, name)) == NULL) 704 return (NULL); 705 706 /* 707 * By building the symbol table, we implicitly bring the PLT 708 * information up to date in the load object. 709 */ 710 (void) build_map_symtab(P, mptr); 711 712 return (mptr->map_file->file_lo); 713 } 714 715 const rd_loadobj_t * 716 Pname_to_loadobj(struct ps_prochandle *P, const char *name) 717 { 718 return (Plmid_to_loadobj(P, PR_LMID_EVERY, name)); 719 } 720 721 ctf_file_t * 722 Pbuild_file_ctf(struct ps_prochandle *P, file_info_t *fptr) 723 { 724 ctf_sect_t ctdata, symtab, strtab; 725 sym_tbl_t *symp; 726 int err; 727 728 if (fptr->file_ctfp != NULL) 729 return (fptr->file_ctfp); 730 731 Pbuild_file_symtab(P, fptr); 732 733 if (fptr->file_ctf_size == 0) 734 return (NULL); 735 736 symp = fptr->file_ctf_dyn ? &fptr->file_dynsym : &fptr->file_symtab; 737 if (symp->sym_data_pri == NULL) 738 return (NULL); 739 740 /* 741 * The buffer may alread be allocated if this is a core file that 742 * contained CTF data for this file. 743 */ 744 if (fptr->file_ctf_buf == NULL) { 745 fptr->file_ctf_buf = malloc(fptr->file_ctf_size); 746 if (fptr->file_ctf_buf == NULL) { 747 dprintf("failed to allocate ctf buffer\n"); 748 return (NULL); 749 } 750 751 if (pread(fptr->file_fd, fptr->file_ctf_buf, 752 fptr->file_ctf_size, fptr->file_ctf_off) != 753 fptr->file_ctf_size) { 754 free(fptr->file_ctf_buf); 755 fptr->file_ctf_buf = NULL; 756 dprintf("failed to read ctf data\n"); 757 return (NULL); 758 } 759 } 760 761 ctdata.cts_name = ".SUNW_ctf"; 762 ctdata.cts_type = SHT_PROGBITS; 763 ctdata.cts_flags = 0; 764 ctdata.cts_data = fptr->file_ctf_buf; 765 ctdata.cts_size = fptr->file_ctf_size; 766 ctdata.cts_entsize = 1; 767 ctdata.cts_offset = 0; 768 769 symtab.cts_name = fptr->file_ctf_dyn ? ".dynsym" : ".symtab"; 770 symtab.cts_type = symp->sym_hdr_pri.sh_type; 771 symtab.cts_flags = symp->sym_hdr_pri.sh_flags; 772 symtab.cts_data = symp->sym_data_pri->d_buf; 773 symtab.cts_size = symp->sym_hdr_pri.sh_size; 774 symtab.cts_entsize = symp->sym_hdr_pri.sh_entsize; 775 symtab.cts_offset = symp->sym_hdr_pri.sh_offset; 776 777 strtab.cts_name = fptr->file_ctf_dyn ? ".dynstr" : ".strtab"; 778 strtab.cts_type = symp->sym_strhdr.sh_type; 779 strtab.cts_flags = symp->sym_strhdr.sh_flags; 780 strtab.cts_data = symp->sym_strs; 781 strtab.cts_size = symp->sym_strhdr.sh_size; 782 strtab.cts_entsize = symp->sym_strhdr.sh_entsize; 783 strtab.cts_offset = symp->sym_strhdr.sh_offset; 784 785 fptr->file_ctfp = ctf_bufopen(&ctdata, &symtab, &strtab, &err); 786 if (fptr->file_ctfp == NULL) { 787 free(fptr->file_ctf_buf); 788 fptr->file_ctf_buf = NULL; 789 return (NULL); 790 } 791 792 dprintf("loaded %lu bytes of CTF data for %s\n", 793 (ulong_t)fptr->file_ctf_size, fptr->file_pname); 794 795 return (fptr->file_ctfp); 796 } 797 798 ctf_file_t * 799 Paddr_to_ctf(struct ps_prochandle *P, uintptr_t addr) 800 { 801 map_info_t *mptr; 802 file_info_t *fptr; 803 804 if (!P->info_valid) 805 Pupdate_maps(P); 806 807 if ((mptr = Paddr2mptr(P, addr)) == NULL || 808 (fptr = mptr->map_file) == NULL) 809 return (NULL); 810 811 return (Pbuild_file_ctf(P, fptr)); 812 } 813 814 ctf_file_t * 815 Plmid_to_ctf(struct ps_prochandle *P, Lmid_t lmid, const char *name) 816 { 817 map_info_t *mptr; 818 file_info_t *fptr; 819 820 if (name == PR_OBJ_EVERY) 821 return (NULL); 822 823 if ((mptr = object_name_to_map(P, lmid, name)) == NULL || 824 (fptr = mptr->map_file) == NULL) 825 return (NULL); 826 827 return (Pbuild_file_ctf(P, fptr)); 828 } 829 830 ctf_file_t * 831 Pname_to_ctf(struct ps_prochandle *P, const char *name) 832 { 833 return (Plmid_to_ctf(P, PR_LMID_EVERY, name)); 834 } 835 836 /* 837 * If we're not a core file, re-read the /proc/<pid>/auxv file and store 838 * its contents in P->auxv. In the case of a core file, we either 839 * initialized P->auxv in Pcore() from the NT_AUXV, or we don't have an 840 * auxv because the note was missing. 841 */ 842 void 843 Preadauxvec(struct ps_prochandle *P) 844 { 845 char auxfile[64]; 846 struct stat statb; 847 ssize_t naux; 848 int fd; 849 850 if (P->state == PS_DEAD) 851 return; /* Already read during Pgrab_core() */ 852 if (P->state == PS_IDLE) 853 return; /* No aux vec for Pgrab_file() */ 854 855 if (P->auxv != NULL) { 856 free(P->auxv); 857 P->auxv = NULL; 858 P->nauxv = 0; 859 } 860 861 (void) snprintf(auxfile, sizeof (auxfile), "%s/%d/auxv", 862 procfs_path, (int)P->pid); 863 if ((fd = open(auxfile, O_RDONLY)) < 0) 864 return; 865 866 if (fstat(fd, &statb) == 0 && 867 statb.st_size >= sizeof (auxv_t) && 868 (P->auxv = malloc(statb.st_size + sizeof (auxv_t))) != NULL) { 869 if ((naux = read(fd, P->auxv, statb.st_size)) < 0 || 870 (naux /= sizeof (auxv_t)) < 1) { 871 free(P->auxv); 872 P->auxv = NULL; 873 } else { 874 P->auxv[naux].a_type = AT_NULL; 875 P->auxv[naux].a_un.a_val = 0L; 876 P->nauxv = (int)naux; 877 } 878 } 879 880 (void) close(fd); 881 } 882 883 /* 884 * Return a requested element from the process's aux vector. 885 * Return -1 on failure (this is adequate for our purposes). 886 */ 887 long 888 Pgetauxval(struct ps_prochandle *P, int type) 889 { 890 auxv_t *auxv; 891 892 if (P->auxv == NULL) 893 Preadauxvec(P); 894 895 if (P->auxv == NULL) 896 return (-1); 897 898 for (auxv = P->auxv; auxv->a_type != AT_NULL; auxv++) { 899 if (auxv->a_type == type) 900 return (auxv->a_un.a_val); 901 } 902 903 return (-1); 904 } 905 906 /* 907 * Return a pointer to our internal copy of the process's aux vector. 908 * The caller should not hold on to this pointer across any libproc calls. 909 */ 910 const auxv_t * 911 Pgetauxvec(struct ps_prochandle *P) 912 { 913 static const auxv_t empty = { AT_NULL, 0L }; 914 915 if (P->auxv == NULL) 916 Preadauxvec(P); 917 918 if (P->auxv == NULL) 919 return (&empty); 920 921 return (P->auxv); 922 } 923 924 /* 925 * Return 1 if the given mapping corresponds to the given file_info_t's 926 * load object; return 0 otherwise. 927 */ 928 static int 929 is_mapping_in_file(struct ps_prochandle *P, map_info_t *mptr, file_info_t *fptr) 930 { 931 prmap_t *pmap = &mptr->map_pmap; 932 rd_loadobj_t *lop = fptr->file_lo; 933 uint_t i; 934 uintptr_t mstart, mend, sstart, send; 935 936 /* 937 * We can get for free the start address of the text and data 938 * sections of the load object. Start by seeing if the mapping 939 * encloses either of these. 940 */ 941 if ((pmap->pr_vaddr <= lop->rl_base && 942 lop->rl_base < pmap->pr_vaddr + pmap->pr_size) || 943 (pmap->pr_vaddr <= lop->rl_data_base && 944 lop->rl_data_base < pmap->pr_vaddr + pmap->pr_size)) 945 return (1); 946 947 /* 948 * It's still possible that this mapping correponds to the load 949 * object. Consider the example of a mapping whose start and end 950 * addresses correspond to those of the load object's text section. 951 * If the mapping splits, e.g. as a result of a segment demotion, 952 * then although both mappings are still backed by the same section, 953 * only one will be seen to enclose that section's start address. 954 * Thus, to be rigorous, we ask not whether this mapping encloses 955 * the start of a section, but whether there exists a section that 956 * overlaps this mapping. 957 * 958 * If we don't already have the section addresses, and we successfully 959 * get them, then we cache them in case we come here again. 960 */ 961 if (fptr->file_saddrs == NULL && 962 (fptr->file_saddrs = get_saddrs(P, 963 fptr->file_map->map_pmap.pr_vaddr, &fptr->file_nsaddrs)) == NULL) 964 return (0); 965 966 mstart = mptr->map_pmap.pr_vaddr; 967 mend = mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size; 968 for (i = 0; i < fptr->file_nsaddrs; i += 2) { 969 /* Does this section overlap the mapping? */ 970 sstart = fptr->file_saddrs[i]; 971 send = fptr->file_saddrs[i + 1]; 972 if (!(mend <= sstart || mstart >= send)) 973 return (1); 974 } 975 976 return (0); 977 } 978 979 /* 980 * Find or build the symbol table for the given mapping. 981 */ 982 static file_info_t * 983 build_map_symtab(struct ps_prochandle *P, map_info_t *mptr) 984 { 985 prmap_t *pmap = &mptr->map_pmap; 986 file_info_t *fptr; 987 uint_t i; 988 989 if ((fptr = mptr->map_file) != NULL) { 990 Pbuild_file_symtab(P, fptr); 991 return (fptr); 992 } 993 994 if (pmap->pr_mapname[0] == '\0') 995 return (NULL); 996 997 /* 998 * Attempt to find a matching file. 999 * (A file can be mapped at several different addresses.) 1000 */ 1001 for (i = 0, fptr = list_next(&P->file_head); i < P->num_files; 1002 i++, fptr = list_next(fptr)) { 1003 if (strcmp(fptr->file_pname, pmap->pr_mapname) == 0 && 1004 fptr->file_lo && is_mapping_in_file(P, mptr, fptr)) { 1005 mptr->map_file = fptr; 1006 fptr->file_ref++; 1007 Pbuild_file_symtab(P, fptr); 1008 return (fptr); 1009 } 1010 } 1011 1012 /* 1013 * If we need to create a new file_info structure, iterate 1014 * through the load objects in order to attempt to connect 1015 * this new file with its primary text mapping. We again 1016 * need to handle ld.so as a special case because we need 1017 * to be able to bootstrap librtld_db. 1018 */ 1019 if ((fptr = file_info_new(P, mptr)) == NULL) 1020 return (NULL); 1021 1022 if (P->map_ldso != mptr) { 1023 if (P->rap != NULL) 1024 (void) rd_loadobj_iter(P->rap, map_iter, P); 1025 else 1026 (void) Prd_agent(P); 1027 } else { 1028 fptr->file_map = mptr; 1029 } 1030 1031 /* 1032 * If librtld_db wasn't able to help us connect the file to a primary 1033 * text mapping, set file_map to the current mapping because we require 1034 * fptr->file_map to be set in Pbuild_file_symtab. librtld_db may be 1035 * unaware of what's going on in the rare case that a legitimate ELF 1036 * file has been mmap(2)ed into the process address space *without* 1037 * the use of dlopen(3x). 1038 */ 1039 if (fptr->file_map == NULL) 1040 fptr->file_map = mptr; 1041 1042 Pbuild_file_symtab(P, fptr); 1043 1044 return (fptr); 1045 } 1046 1047 static int 1048 read_ehdr32(struct ps_prochandle *P, Elf32_Ehdr *ehdr, uint_t *phnum, 1049 uintptr_t addr) 1050 { 1051 if (Pread(P, ehdr, sizeof (*ehdr), addr) != sizeof (*ehdr)) 1052 return (-1); 1053 1054 if (ehdr->e_ident[EI_MAG0] != ELFMAG0 || 1055 ehdr->e_ident[EI_MAG1] != ELFMAG1 || 1056 ehdr->e_ident[EI_MAG2] != ELFMAG2 || 1057 ehdr->e_ident[EI_MAG3] != ELFMAG3 || 1058 ehdr->e_ident[EI_CLASS] != ELFCLASS32 || 1059 #ifdef _BIG_ENDIAN 1060 ehdr->e_ident[EI_DATA] != ELFDATA2MSB || 1061 #else 1062 ehdr->e_ident[EI_DATA] != ELFDATA2LSB || 1063 #endif 1064 ehdr->e_ident[EI_VERSION] != EV_CURRENT) 1065 return (-1); 1066 1067 if ((*phnum = ehdr->e_phnum) == PN_XNUM) { 1068 Elf32_Shdr shdr0; 1069 1070 if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) || 1071 Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) != 1072 sizeof (shdr0)) 1073 return (-1); 1074 1075 if (shdr0.sh_info != 0) 1076 *phnum = shdr0.sh_info; 1077 } 1078 1079 return (0); 1080 } 1081 1082 static int 1083 read_dynamic_phdr32(struct ps_prochandle *P, const Elf32_Ehdr *ehdr, 1084 uint_t phnum, Elf32_Phdr *phdr, uintptr_t addr) 1085 { 1086 uint_t i; 1087 1088 for (i = 0; i < phnum; i++) { 1089 uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize; 1090 if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr)) 1091 return (-1); 1092 1093 if (phdr->p_type == PT_DYNAMIC) 1094 return (0); 1095 } 1096 1097 return (-1); 1098 } 1099 1100 #ifdef _LP64 1101 static int 1102 read_ehdr64(struct ps_prochandle *P, Elf64_Ehdr *ehdr, uint_t *phnum, 1103 uintptr_t addr) 1104 { 1105 if (Pread(P, ehdr, sizeof (Elf64_Ehdr), addr) != sizeof (Elf64_Ehdr)) 1106 return (-1); 1107 1108 if (ehdr->e_ident[EI_MAG0] != ELFMAG0 || 1109 ehdr->e_ident[EI_MAG1] != ELFMAG1 || 1110 ehdr->e_ident[EI_MAG2] != ELFMAG2 || 1111 ehdr->e_ident[EI_MAG3] != ELFMAG3 || 1112 ehdr->e_ident[EI_CLASS] != ELFCLASS64 || 1113 #ifdef _BIG_ENDIAN 1114 ehdr->e_ident[EI_DATA] != ELFDATA2MSB || 1115 #else 1116 ehdr->e_ident[EI_DATA] != ELFDATA2LSB || 1117 #endif 1118 ehdr->e_ident[EI_VERSION] != EV_CURRENT) 1119 return (-1); 1120 1121 if ((*phnum = ehdr->e_phnum) == PN_XNUM) { 1122 Elf64_Shdr shdr0; 1123 1124 if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) || 1125 Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) != 1126 sizeof (shdr0)) 1127 return (-1); 1128 1129 if (shdr0.sh_info != 0) 1130 *phnum = shdr0.sh_info; 1131 } 1132 1133 return (0); 1134 } 1135 1136 static int 1137 read_dynamic_phdr64(struct ps_prochandle *P, const Elf64_Ehdr *ehdr, 1138 uint_t phnum, Elf64_Phdr *phdr, uintptr_t addr) 1139 { 1140 uint_t i; 1141 1142 for (i = 0; i < phnum; i++) { 1143 uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize; 1144 if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr)) 1145 return (-1); 1146 1147 if (phdr->p_type == PT_DYNAMIC) 1148 return (0); 1149 } 1150 1151 return (-1); 1152 } 1153 #endif /* _LP64 */ 1154 1155 /* 1156 * The text segment for each load object contains the elf header and 1157 * program headers. We can use this information to determine if the 1158 * file that corresponds to the load object is the same file that 1159 * was loaded into the process's address space. There can be a discrepency 1160 * if a file is recompiled after the process is started or if the target 1161 * represents a core file from a differently configured system -- two 1162 * common examples. The DT_CHECKSUM entry in the dynamic section 1163 * provides an easy method of comparison. It is important to note that 1164 * the dynamic section usually lives in the data segment, but the meta 1165 * data we use to find the dynamic section lives in the text segment so 1166 * if either of those segments is absent we can't proceed. 1167 * 1168 * We're looking through the elf file for several items: the symbol tables 1169 * (both dynsym and symtab), the procedure linkage table (PLT) base, 1170 * size, and relocation base, and the CTF information. Most of this can 1171 * be recovered from the loaded image of the file itself, the exceptions 1172 * being the symtab and CTF data. 1173 * 1174 * First we try to open the file that we think corresponds to the load 1175 * object, if the DT_CHECKSUM values match, we're all set, and can simply 1176 * recover all the information we need from the file. If the values of 1177 * DT_CHECKSUM don't match, or if we can't access the file for whatever 1178 * reasaon, we fake up a elf file to use in its stead. If we can't read 1179 * the elf data in the process's address space, we fall back to using 1180 * the file even though it may give inaccurate information. 1181 * 1182 * The elf file that we fake up has to consist of sections for the 1183 * dynsym, the PLT and the dynamic section. Note that in the case of a 1184 * core file, we'll get the CTF data in the file_info_t later on from 1185 * a section embedded the core file (if it's present). 1186 * 1187 * file_differs() conservatively looks for mismatched files, identifying 1188 * a match when there is any ambiguity (since that's the legacy behavior). 1189 */ 1190 static int 1191 file_differs(struct ps_prochandle *P, Elf *elf, file_info_t *fptr) 1192 { 1193 Elf_Scn *scn; 1194 GElf_Shdr shdr; 1195 GElf_Dyn dyn; 1196 Elf_Data *data; 1197 uint_t i, ndyn; 1198 GElf_Xword cksum; 1199 uintptr_t addr; 1200 1201 if (fptr->file_map == NULL) 1202 return (0); 1203 1204 if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) != 1205 (CC_CONTENT_TEXT | CC_CONTENT_DATA)) 1206 return (0); 1207 1208 /* 1209 * First, we find the checksum value in the elf file. 1210 */ 1211 scn = NULL; 1212 while ((scn = elf_nextscn(elf, scn)) != NULL) { 1213 if (gelf_getshdr(scn, &shdr) != NULL && 1214 shdr.sh_type == SHT_DYNAMIC) 1215 goto found_shdr; 1216 } 1217 return (0); 1218 1219 found_shdr: 1220 if ((data = elf_getdata(scn, NULL)) == NULL) 1221 return (0); 1222 1223 if (P->status.pr_dmodel == PR_MODEL_ILP32) 1224 ndyn = shdr.sh_size / sizeof (Elf32_Dyn); 1225 #ifdef _LP64 1226 else if (P->status.pr_dmodel == PR_MODEL_LP64) 1227 ndyn = shdr.sh_size / sizeof (Elf64_Dyn); 1228 #endif 1229 else 1230 return (0); 1231 1232 for (i = 0; i < ndyn; i++) { 1233 if (gelf_getdyn(data, i, &dyn) != NULL && 1234 dyn.d_tag == DT_CHECKSUM) 1235 goto found_cksum; 1236 } 1237 1238 /* 1239 * The in-memory ELF has no DT_CHECKSUM section, but we will report it 1240 * as matching the file anyhow. 1241 */ 1242 return (0); 1243 1244 found_cksum: 1245 cksum = dyn.d_un.d_val; 1246 dprintf("elf cksum value is %llx\n", (u_longlong_t)cksum); 1247 1248 /* 1249 * Get the base of the text mapping that corresponds to this file. 1250 */ 1251 addr = fptr->file_map->map_pmap.pr_vaddr; 1252 1253 if (P->status.pr_dmodel == PR_MODEL_ILP32) { 1254 Elf32_Ehdr ehdr; 1255 Elf32_Phdr phdr; 1256 Elf32_Dyn dync, *dynp; 1257 uint_t phnum, i; 1258 1259 if (read_ehdr32(P, &ehdr, &phnum, addr) != 0 || 1260 read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0) 1261 return (0); 1262 1263 if (ehdr.e_type == ET_DYN) 1264 phdr.p_vaddr += addr; 1265 if ((dynp = malloc(phdr.p_filesz)) == NULL) 1266 return (0); 1267 dync.d_tag = DT_NULL; 1268 if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) != 1269 phdr.p_filesz) { 1270 free(dynp); 1271 return (0); 1272 } 1273 1274 for (i = 0; i < phdr.p_filesz / sizeof (Elf32_Dyn); i++) { 1275 if (dynp[i].d_tag == DT_CHECKSUM) 1276 dync = dynp[i]; 1277 } 1278 1279 free(dynp); 1280 1281 if (dync.d_tag != DT_CHECKSUM) 1282 return (0); 1283 1284 dprintf("image cksum value is %llx\n", 1285 (u_longlong_t)dync.d_un.d_val); 1286 return (dync.d_un.d_val != cksum); 1287 #ifdef _LP64 1288 } else if (P->status.pr_dmodel == PR_MODEL_LP64) { 1289 Elf64_Ehdr ehdr; 1290 Elf64_Phdr phdr; 1291 Elf64_Dyn dync, *dynp; 1292 uint_t phnum, i; 1293 1294 if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 || 1295 read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0) 1296 return (0); 1297 1298 if (ehdr.e_type == ET_DYN) 1299 phdr.p_vaddr += addr; 1300 if ((dynp = malloc(phdr.p_filesz)) == NULL) 1301 return (0); 1302 dync.d_tag = DT_NULL; 1303 if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) != 1304 phdr.p_filesz) { 1305 free(dynp); 1306 return (0); 1307 } 1308 1309 for (i = 0; i < phdr.p_filesz / sizeof (Elf64_Dyn); i++) { 1310 if (dynp[i].d_tag == DT_CHECKSUM) 1311 dync = dynp[i]; 1312 } 1313 1314 free(dynp); 1315 1316 if (dync.d_tag != DT_CHECKSUM) 1317 return (0); 1318 1319 dprintf("image cksum value is %llx\n", 1320 (u_longlong_t)dync.d_un.d_val); 1321 return (dync.d_un.d_val != cksum); 1322 #endif /* _LP64 */ 1323 } 1324 1325 return (0); 1326 } 1327 1328 /* 1329 * Read data from the specified process and construct an in memory 1330 * image of an ELF file that represents it well enough to let 1331 * us probe it for information. 1332 */ 1333 static Elf * 1334 fake_elf(struct ps_prochandle *P, file_info_t *fptr) 1335 { 1336 Elf *elf; 1337 uintptr_t addr; 1338 uint_t phnum; 1339 1340 if (fptr->file_map == NULL) 1341 return (NULL); 1342 1343 if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) != 1344 (CC_CONTENT_TEXT | CC_CONTENT_DATA)) 1345 return (NULL); 1346 1347 addr = fptr->file_map->map_pmap.pr_vaddr; 1348 1349 if (P->status.pr_dmodel == PR_MODEL_ILP32) { 1350 Elf32_Ehdr ehdr; 1351 Elf32_Phdr phdr; 1352 1353 if ((read_ehdr32(P, &ehdr, &phnum, addr) != 0) || 1354 read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0) 1355 return (NULL); 1356 1357 elf = fake_elf32(P, fptr, addr, &ehdr, phnum, &phdr); 1358 #ifdef _LP64 1359 } else { 1360 Elf64_Ehdr ehdr; 1361 Elf64_Phdr phdr; 1362 1363 if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 || 1364 read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0) 1365 return (NULL); 1366 1367 elf = fake_elf64(P, fptr, addr, &ehdr, phnum, &phdr); 1368 #endif 1369 } 1370 1371 return (elf); 1372 } 1373 1374 /* 1375 * We wouldn't need these if qsort(3C) took an argument for the callback... 1376 */ 1377 static mutex_t sort_mtx = DEFAULTMUTEX; 1378 static char *sort_strs; 1379 static GElf_Sym *sort_syms; 1380 1381 int 1382 byaddr_cmp_common(GElf_Sym *a, char *aname, GElf_Sym *b, char *bname) 1383 { 1384 if (a->st_value < b->st_value) 1385 return (-1); 1386 if (a->st_value > b->st_value) 1387 return (1); 1388 1389 /* 1390 * Prefer the function to the non-function. 1391 */ 1392 if (GELF_ST_TYPE(a->st_info) != GELF_ST_TYPE(b->st_info)) { 1393 if (GELF_ST_TYPE(a->st_info) == STT_FUNC) 1394 return (-1); 1395 if (GELF_ST_TYPE(b->st_info) == STT_FUNC) 1396 return (1); 1397 } 1398 1399 /* 1400 * Prefer the weak or strong global symbol to the local symbol. 1401 */ 1402 if (GELF_ST_BIND(a->st_info) != GELF_ST_BIND(b->st_info)) { 1403 if (GELF_ST_BIND(b->st_info) == STB_LOCAL) 1404 return (-1); 1405 if (GELF_ST_BIND(a->st_info) == STB_LOCAL) 1406 return (1); 1407 } 1408 1409 /* 1410 * Prefer the symbol that doesn't begin with a '$' since compilers and 1411 * other symbol generators often use it as a prefix. 1412 */ 1413 if (*bname == '$') 1414 return (-1); 1415 if (*aname == '$') 1416 return (1); 1417 1418 /* 1419 * Prefer the name with fewer leading underscores in the name. 1420 */ 1421 while (*aname == '_' && *bname == '_') { 1422 aname++; 1423 bname++; 1424 } 1425 1426 if (*bname == '_') 1427 return (-1); 1428 if (*aname == '_') 1429 return (1); 1430 1431 /* 1432 * Prefer the symbol with the smaller size. 1433 */ 1434 if (a->st_size < b->st_size) 1435 return (-1); 1436 if (a->st_size > b->st_size) 1437 return (1); 1438 1439 /* 1440 * All other factors being equal, fall back to lexicographic order. 1441 */ 1442 return (strcmp(aname, bname)); 1443 } 1444 1445 static int 1446 byaddr_cmp(const void *aa, const void *bb) 1447 { 1448 GElf_Sym *a = &sort_syms[*(uint_t *)aa]; 1449 GElf_Sym *b = &sort_syms[*(uint_t *)bb]; 1450 char *aname = sort_strs + a->st_name; 1451 char *bname = sort_strs + b->st_name; 1452 1453 return (byaddr_cmp_common(a, aname, b, bname)); 1454 } 1455 1456 static int 1457 byname_cmp(const void *aa, const void *bb) 1458 { 1459 GElf_Sym *a = &sort_syms[*(uint_t *)aa]; 1460 GElf_Sym *b = &sort_syms[*(uint_t *)bb]; 1461 char *aname = sort_strs + a->st_name; 1462 char *bname = sort_strs + b->st_name; 1463 1464 return (strcmp(aname, bname)); 1465 } 1466 1467 /* 1468 * Given a symbol index, look up the corresponding symbol from the 1469 * given symbol table. 1470 * 1471 * This function allows the caller to treat the symbol table as a single 1472 * logical entity even though there may be 2 actual ELF symbol tables 1473 * involved. See the comments in Pcontrol.h for details. 1474 */ 1475 static GElf_Sym * 1476 symtab_getsym(sym_tbl_t *symtab, int ndx, GElf_Sym *dst) 1477 { 1478 /* If index is in range of primary symtab, look it up there */ 1479 if (ndx >= symtab->sym_symn_aux) { 1480 return (gelf_getsym(symtab->sym_data_pri, 1481 ndx - symtab->sym_symn_aux, dst)); 1482 } 1483 1484 /* Not in primary: Look it up in the auxiliary symtab */ 1485 return (gelf_getsym(symtab->sym_data_aux, ndx, dst)); 1486 } 1487 1488 void 1489 optimize_symtab(sym_tbl_t *symtab) 1490 { 1491 GElf_Sym *symp, *syms; 1492 uint_t i, *indexa, *indexb; 1493 size_t symn, strsz, count; 1494 1495 if (symtab == NULL || symtab->sym_data_pri == NULL || 1496 symtab->sym_byaddr != NULL) 1497 return; 1498 1499 symn = symtab->sym_symn; 1500 strsz = symtab->sym_strsz; 1501 1502 symp = syms = malloc(sizeof (GElf_Sym) * symn); 1503 if (symp == NULL) { 1504 dprintf("optimize_symtab: failed to malloc symbol array"); 1505 return; 1506 } 1507 1508 /* 1509 * First record all the symbols into a table and count up the ones 1510 * that we're interested in. We mark symbols as invalid by setting 1511 * the st_name to an illegal value. 1512 */ 1513 for (i = 0, count = 0; i < symn; i++, symp++) { 1514 if (symtab_getsym(symtab, i, symp) != NULL && 1515 symp->st_name < strsz && 1516 IS_DATA_TYPE(GELF_ST_TYPE(symp->st_info))) 1517 count++; 1518 else 1519 symp->st_name = strsz; 1520 } 1521 1522 /* 1523 * Allocate sufficient space for both tables and populate them 1524 * with the same symbols we just counted. 1525 */ 1526 symtab->sym_count = count; 1527 indexa = symtab->sym_byaddr = calloc(sizeof (uint_t), count); 1528 indexb = symtab->sym_byname = calloc(sizeof (uint_t), count); 1529 if (indexa == NULL || indexb == NULL) { 1530 dprintf( 1531 "optimize_symtab: failed to malloc symbol index arrays"); 1532 symtab->sym_count = 0; 1533 if (indexa != NULL) { /* First alloc succeeded. Free it */ 1534 free(indexa); 1535 symtab->sym_byaddr = NULL; 1536 } 1537 free(syms); 1538 return; 1539 } 1540 for (i = 0, symp = syms; i < symn; i++, symp++) { 1541 if (symp->st_name < strsz) 1542 *indexa++ = *indexb++ = i; 1543 } 1544 1545 /* 1546 * Sort the two tables according to the appropriate criteria, 1547 * unless the user has overridden this behaviour. 1548 * 1549 * An example where we might not sort the tables is the relatively 1550 * unusual case of a process with very large symbol tables in which 1551 * we perform few lookups. In such a case the total time would be 1552 * dominated by the sort. It is difficult to determine a priori 1553 * how many lookups an arbitrary client will perform, and 1554 * hence whether the symbol tables should be sorted. We therefore 1555 * sort the tables by default, but provide the user with a 1556 * "chicken switch" in the form of the LIBPROC_NO_QSORT 1557 * environment variable. 1558 */ 1559 if (!_libproc_no_qsort) { 1560 (void) mutex_lock(&sort_mtx); 1561 sort_strs = symtab->sym_strs; 1562 sort_syms = syms; 1563 1564 qsort(symtab->sym_byaddr, count, sizeof (uint_t), byaddr_cmp); 1565 qsort(symtab->sym_byname, count, sizeof (uint_t), byname_cmp); 1566 1567 sort_strs = NULL; 1568 sort_syms = NULL; 1569 (void) mutex_unlock(&sort_mtx); 1570 } 1571 1572 free(syms); 1573 } 1574 1575 /* 1576 * Build the symbol table for the given mapped file. 1577 */ 1578 void 1579 Pbuild_file_symtab(struct ps_prochandle *P, file_info_t *fptr) 1580 { 1581 char objectfile[PATH_MAX]; 1582 uint_t i; 1583 1584 GElf_Ehdr ehdr; 1585 GElf_Sym s; 1586 1587 Elf_Data *shdata; 1588 Elf_Scn *scn; 1589 Elf *elf; 1590 size_t nshdrs, shstrndx; 1591 1592 struct { 1593 GElf_Shdr c_shdr; 1594 Elf_Data *c_data; 1595 const char *c_name; 1596 } *cp, *cache = NULL, *dyn = NULL, *plt = NULL, *ctf = NULL; 1597 1598 if (fptr->file_init) 1599 return; /* We've already processed this file */ 1600 1601 /* 1602 * Mark the file_info struct as having the symbol table initialized 1603 * even if we fail below. We tried once; we don't try again. 1604 */ 1605 fptr->file_init = 1; 1606 1607 if (elf_version(EV_CURRENT) == EV_NONE) { 1608 dprintf("libproc ELF version is more recent than libelf\n"); 1609 return; 1610 } 1611 1612 if (P->state == PS_DEAD || P->state == PS_IDLE) { 1613 /* 1614 * If we're a not live, we can't open files from the /proc 1615 * object directory; we have only the mapping and file names 1616 * to guide us. We prefer the file_lname, but need to handle 1617 * the case of it being NULL in order to bootstrap: we first 1618 * come here during rd_new() when the only information we have 1619 * is interpreter name associated with the AT_BASE mapping. 1620 */ 1621 (void) snprintf(objectfile, sizeof (objectfile), "%s", 1622 fptr->file_lname ? fptr->file_lname : fptr->file_pname); 1623 } else { 1624 (void) snprintf(objectfile, sizeof (objectfile), 1625 "%s/%d/object/%s", 1626 procfs_path, (int)P->pid, fptr->file_pname); 1627 } 1628 1629 /* 1630 * Open the object file, create the elf file, and then get the elf 1631 * header and .shstrtab data buffer so we can process sections by 1632 * name. If anything goes wrong try to fake up an elf file from 1633 * the in-core elf image. 1634 */ 1635 if ((fptr->file_fd = open(objectfile, O_RDONLY)) < 0) { 1636 dprintf("Pbuild_file_symtab: failed to open %s: %s\n", 1637 objectfile, strerror(errno)); 1638 1639 if ((elf = fake_elf(P, fptr)) == NULL || 1640 elf_kind(elf) != ELF_K_ELF || 1641 gelf_getehdr(elf, &ehdr) == NULL || 1642 elf_getshnum(elf, &nshdrs) == 0 || 1643 elf_getshstrndx(elf, &shstrndx) == 0 || 1644 (scn = elf_getscn(elf, shstrndx)) == NULL || 1645 (shdata = elf_getdata(scn, NULL)) == NULL) { 1646 dprintf("failed to fake up ELF file\n"); 1647 return; 1648 } 1649 1650 } else if ((elf = elf_begin(fptr->file_fd, ELF_C_READ, NULL)) == NULL || 1651 elf_kind(elf) != ELF_K_ELF || 1652 gelf_getehdr(elf, &ehdr) == NULL || 1653 elf_getshnum(elf, &nshdrs) == 0 || 1654 elf_getshstrndx(elf, &shstrndx) == 0 || 1655 (scn = elf_getscn(elf, shstrndx)) == NULL || 1656 (shdata = elf_getdata(scn, NULL)) == NULL) { 1657 int err = elf_errno(); 1658 1659 dprintf("failed to process ELF file %s: %s\n", 1660 objectfile, (err == 0) ? "<null>" : elf_errmsg(err)); 1661 1662 if ((elf = fake_elf(P, fptr)) == NULL || 1663 elf_kind(elf) != ELF_K_ELF || 1664 gelf_getehdr(elf, &ehdr) == NULL || 1665 elf_getshnum(elf, &nshdrs) == 0 || 1666 elf_getshstrndx(elf, &shstrndx) == 0 || 1667 (scn = elf_getscn(elf, shstrndx)) == NULL || 1668 (shdata = elf_getdata(scn, NULL)) == NULL) { 1669 dprintf("failed to fake up ELF file\n"); 1670 goto bad; 1671 } 1672 1673 } else if (file_differs(P, elf, fptr)) { 1674 Elf *newelf; 1675 1676 /* 1677 * Before we get too excited about this elf file, we'll check 1678 * its checksum value against the value we have in memory. If 1679 * they don't agree, we try to fake up a new elf file and 1680 * proceed with that instead. 1681 */ 1682 1683 dprintf("ELF file %s (%lx) doesn't match in-core image\n", 1684 fptr->file_pname, 1685 (ulong_t)fptr->file_map->map_pmap.pr_vaddr); 1686 1687 if ((newelf = fake_elf(P, fptr)) == NULL || 1688 elf_kind(newelf) != ELF_K_ELF || 1689 gelf_getehdr(newelf, &ehdr) == NULL || 1690 elf_getshnum(newelf, &nshdrs) == 0 || 1691 elf_getshstrndx(newelf, &shstrndx) == 0 || 1692 (scn = elf_getscn(newelf, shstrndx)) == NULL || 1693 (shdata = elf_getdata(scn, NULL)) == NULL) { 1694 dprintf("failed to fake up ELF file\n"); 1695 } else { 1696 (void) elf_end(elf); 1697 elf = newelf; 1698 1699 dprintf("switched to faked up ELF file\n"); 1700 } 1701 } 1702 1703 if ((cache = malloc(nshdrs * sizeof (*cache))) == NULL) { 1704 dprintf("failed to malloc section cache for %s\n", objectfile); 1705 goto bad; 1706 } 1707 1708 dprintf("processing ELF file %s\n", objectfile); 1709 fptr->file_class = ehdr.e_ident[EI_CLASS]; 1710 fptr->file_etype = ehdr.e_type; 1711 fptr->file_elf = elf; 1712 fptr->file_shstrs = shdata->d_buf; 1713 fptr->file_shstrsz = shdata->d_size; 1714 1715 /* 1716 * Iterate through each section, caching its section header, data 1717 * pointer, and name. We use this for handling sh_link values below. 1718 */ 1719 for (cp = cache + 1, scn = NULL; scn = elf_nextscn(elf, scn); cp++) { 1720 if (gelf_getshdr(scn, &cp->c_shdr) == NULL) { 1721 dprintf("Pbuild_file_symtab: Failed to get section " 1722 "header\n"); 1723 goto bad; /* Failed to get section header */ 1724 } 1725 1726 if ((cp->c_data = elf_getdata(scn, NULL)) == NULL) { 1727 dprintf("Pbuild_file_symtab: Failed to get section " 1728 "data\n"); 1729 goto bad; /* Failed to get section data */ 1730 } 1731 1732 if (cp->c_shdr.sh_name >= shdata->d_size) { 1733 dprintf("Pbuild_file_symtab: corrupt section name"); 1734 goto bad; /* Corrupt section name */ 1735 } 1736 1737 cp->c_name = (const char *)shdata->d_buf + cp->c_shdr.sh_name; 1738 } 1739 1740 /* 1741 * Now iterate through the section cache in order to locate info 1742 * for the .symtab, .dynsym, .SUNW_ldynsym, .dynamic, .plt, 1743 * and .SUNW_ctf sections: 1744 */ 1745 for (i = 1, cp = cache + 1; i < nshdrs; i++, cp++) { 1746 GElf_Shdr *shp = &cp->c_shdr; 1747 1748 if (shp->sh_type == SHT_SYMTAB || shp->sh_type == SHT_DYNSYM) { 1749 sym_tbl_t *symp = shp->sh_type == SHT_SYMTAB ? 1750 &fptr->file_symtab : &fptr->file_dynsym; 1751 /* 1752 * It's possible that the we already got the symbol 1753 * table from the core file itself. Either the file 1754 * differs in which case our faked up elf file will 1755 * only contain the dynsym (not the symtab) or the 1756 * file matches in which case we'll just be replacing 1757 * the symbol table we pulled out of the core file 1758 * with an equivalent one. In either case, this 1759 * check isn't essential, but it's a good idea. 1760 */ 1761 if (symp->sym_data_pri == NULL) { 1762 dprintf("Symbol table found for %s\n", 1763 objectfile); 1764 symp->sym_data_pri = cp->c_data; 1765 symp->sym_symn += 1766 shp->sh_size / shp->sh_entsize; 1767 symp->sym_strs = 1768 cache[shp->sh_link].c_data->d_buf; 1769 symp->sym_strsz = 1770 cache[shp->sh_link].c_data->d_size; 1771 symp->sym_hdr_pri = cp->c_shdr; 1772 symp->sym_strhdr = cache[shp->sh_link].c_shdr; 1773 } else { 1774 dprintf("Symbol table already there for %s\n", 1775 objectfile); 1776 } 1777 } else if (shp->sh_type == SHT_SUNW_LDYNSYM) { 1778 /* .SUNW_ldynsym section is auxiliary to .dynsym */ 1779 if (fptr->file_dynsym.sym_data_aux == NULL) { 1780 dprintf(".SUNW_ldynsym symbol table" 1781 " found for %s\n", objectfile); 1782 fptr->file_dynsym.sym_data_aux = cp->c_data; 1783 fptr->file_dynsym.sym_symn_aux = 1784 shp->sh_size / shp->sh_entsize; 1785 fptr->file_dynsym.sym_symn += 1786 fptr->file_dynsym.sym_symn_aux; 1787 fptr->file_dynsym.sym_hdr_aux = cp->c_shdr; 1788 } else { 1789 dprintf(".SUNW_ldynsym symbol table already" 1790 " there for %s\n", objectfile); 1791 } 1792 } else if (shp->sh_type == SHT_DYNAMIC) { 1793 dyn = cp; 1794 } else if (strcmp(cp->c_name, ".plt") == 0) { 1795 plt = cp; 1796 } else if (strcmp(cp->c_name, ".SUNW_ctf") == 0) { 1797 /* 1798 * Skip over bogus CTF sections so they don't come back 1799 * to haunt us later. 1800 */ 1801 if (shp->sh_link == 0 || 1802 shp->sh_link >= nshdrs || 1803 (cache[shp->sh_link].c_shdr.sh_type != SHT_DYNSYM && 1804 cache[shp->sh_link].c_shdr.sh_type != SHT_SYMTAB)) { 1805 dprintf("Bad sh_link %d for " 1806 "CTF\n", shp->sh_link); 1807 continue; 1808 } 1809 ctf = cp; 1810 } 1811 } 1812 1813 /* 1814 * At this point, we've found all the symbol tables we're ever going 1815 * to find: the ones in the loop above and possibly the symtab that 1816 * was included in the core file. Before we perform any lookups, we 1817 * create sorted versions to optimize for lookups. 1818 */ 1819 optimize_symtab(&fptr->file_symtab); 1820 optimize_symtab(&fptr->file_dynsym); 1821 1822 /* 1823 * Fill in the base address of the text mapping for shared libraries. 1824 * This allows us to translate symbols before librtld_db is ready. 1825 */ 1826 if (fptr->file_etype == ET_DYN) { 1827 fptr->file_dyn_base = fptr->file_map->map_pmap.pr_vaddr - 1828 fptr->file_map->map_pmap.pr_offset; 1829 dprintf("setting file_dyn_base for %s to %lx\n", 1830 objectfile, (long)fptr->file_dyn_base); 1831 } 1832 1833 /* 1834 * Record the CTF section information in the file info structure. 1835 */ 1836 if (ctf != NULL) { 1837 fptr->file_ctf_off = ctf->c_shdr.sh_offset; 1838 fptr->file_ctf_size = ctf->c_shdr.sh_size; 1839 if (ctf->c_shdr.sh_link != 0 && 1840 cache[ctf->c_shdr.sh_link].c_shdr.sh_type == SHT_DYNSYM) 1841 fptr->file_ctf_dyn = 1; 1842 } 1843 1844 if (fptr->file_lo == NULL) 1845 goto done; /* Nothing else to do if no load object info */ 1846 1847 /* 1848 * If the object is a shared library and we have a different rl_base 1849 * value, reset file_dyn_base according to librtld_db's information. 1850 */ 1851 if (fptr->file_etype == ET_DYN && 1852 fptr->file_lo->rl_base != fptr->file_dyn_base) { 1853 dprintf("resetting file_dyn_base for %s to %lx\n", 1854 objectfile, (long)fptr->file_lo->rl_base); 1855 fptr->file_dyn_base = fptr->file_lo->rl_base; 1856 } 1857 1858 /* 1859 * Fill in the PLT information for this file if a PLT symbol is found. 1860 */ 1861 if (sym_by_name(&fptr->file_dynsym, "_PROCEDURE_LINKAGE_TABLE_", &s, 1862 NULL) != NULL) { 1863 fptr->file_plt_base = s.st_value + fptr->file_dyn_base; 1864 fptr->file_plt_size = (plt != NULL) ? plt->c_shdr.sh_size : 0; 1865 1866 /* 1867 * Bring the load object up to date; it is the only way the 1868 * user has to access the PLT data. The PLT information in the 1869 * rd_loadobj_t is not set in the call to map_iter() (the 1870 * callback for rd_loadobj_iter) where we set file_lo. 1871 */ 1872 fptr->file_lo->rl_plt_base = fptr->file_plt_base; 1873 fptr->file_lo->rl_plt_size = fptr->file_plt_size; 1874 1875 dprintf("PLT found at %p, size = %lu\n", 1876 (void *)fptr->file_plt_base, (ulong_t)fptr->file_plt_size); 1877 } 1878 1879 /* 1880 * Fill in the PLT information. 1881 */ 1882 if (dyn != NULL) { 1883 uintptr_t dynaddr = dyn->c_shdr.sh_addr + fptr->file_dyn_base; 1884 size_t ndyn = dyn->c_shdr.sh_size / dyn->c_shdr.sh_entsize; 1885 GElf_Dyn d; 1886 1887 for (i = 0; i < ndyn; i++) { 1888 if (gelf_getdyn(dyn->c_data, i, &d) != NULL && 1889 d.d_tag == DT_JMPREL) { 1890 dprintf("DT_JMPREL is %p\n", 1891 (void *)(uintptr_t)d.d_un.d_ptr); 1892 fptr->file_jmp_rel = 1893 d.d_un.d_ptr + fptr->file_dyn_base; 1894 break; 1895 } 1896 } 1897 1898 dprintf("_DYNAMIC found at %p, %lu entries, DT_JMPREL = %p\n", 1899 (void *)dynaddr, (ulong_t)ndyn, (void *)fptr->file_jmp_rel); 1900 } 1901 1902 done: 1903 free(cache); 1904 return; 1905 1906 bad: 1907 if (cache != NULL) 1908 free(cache); 1909 1910 (void) elf_end(elf); 1911 fptr->file_elf = NULL; 1912 if (fptr->file_elfmem != NULL) { 1913 free(fptr->file_elfmem); 1914 fptr->file_elfmem = NULL; 1915 } 1916 (void) close(fptr->file_fd); 1917 fptr->file_fd = -1; 1918 } 1919 1920 /* 1921 * Given a process virtual address, return the map_info_t containing it. 1922 * If none found, return NULL. 1923 */ 1924 map_info_t * 1925 Paddr2mptr(struct ps_prochandle *P, uintptr_t addr) 1926 { 1927 int lo = 0; 1928 int hi = P->map_count - 1; 1929 int mid; 1930 map_info_t *mp; 1931 1932 while (lo <= hi) { 1933 1934 mid = (lo + hi) / 2; 1935 mp = &P->mappings[mid]; 1936 1937 /* check that addr is in [vaddr, vaddr + size) */ 1938 if ((addr - mp->map_pmap.pr_vaddr) < mp->map_pmap.pr_size) 1939 return (mp); 1940 1941 if (addr < mp->map_pmap.pr_vaddr) 1942 hi = mid - 1; 1943 else 1944 lo = mid + 1; 1945 } 1946 1947 return (NULL); 1948 } 1949 1950 /* 1951 * Return the map_info_t for the executable file. 1952 * If not found, return NULL. 1953 */ 1954 static map_info_t * 1955 exec_map(struct ps_prochandle *P) 1956 { 1957 uint_t i; 1958 map_info_t *mptr; 1959 map_info_t *mold = NULL; 1960 file_info_t *fptr; 1961 uintptr_t base; 1962 1963 for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) { 1964 if (mptr->map_pmap.pr_mapname[0] == '\0') 1965 continue; 1966 if (strcmp(mptr->map_pmap.pr_mapname, "a.out") == 0) { 1967 if ((fptr = mptr->map_file) != NULL && 1968 fptr->file_lo != NULL) { 1969 base = fptr->file_lo->rl_base; 1970 if (base >= mptr->map_pmap.pr_vaddr && 1971 base < mptr->map_pmap.pr_vaddr + 1972 mptr->map_pmap.pr_size) /* text space */ 1973 return (mptr); 1974 mold = mptr; /* must be the data */ 1975 continue; 1976 } 1977 /* This is a poor way to test for text space */ 1978 if (!(mptr->map_pmap.pr_mflags & MA_EXEC) || 1979 (mptr->map_pmap.pr_mflags & MA_WRITE)) { 1980 mold = mptr; 1981 continue; 1982 } 1983 return (mptr); 1984 } 1985 } 1986 1987 return (mold); 1988 } 1989 1990 /* 1991 * Given a shared object name, return the map_info_t for it. If no matching 1992 * object is found, return NULL. Normally, the link maps contain the full 1993 * object pathname, e.g. /usr/lib/libc.so.1. We allow the object name to 1994 * take one of the following forms: 1995 * 1996 * 1. An exact match (i.e. a full pathname): "/usr/lib/libc.so.1" 1997 * 2. An exact basename match: "libc.so.1" 1998 * 3. An initial basename match up to a '.' suffix: "libc.so" or "libc" 1999 * 4. The literal string "a.out" is an alias for the executable mapping 2000 * 2001 * The third case is a convenience for callers and may not be necessary. 2002 * 2003 * As the exact same object name may be loaded on different link maps (see 2004 * dlmopen(3DL)), we also allow the caller to resolve the object name by 2005 * specifying a particular link map id. If lmid is PR_LMID_EVERY, the 2006 * first matching name will be returned, regardless of the link map id. 2007 */ 2008 static map_info_t * 2009 object_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *objname) 2010 { 2011 map_info_t *mp; 2012 file_info_t *fp; 2013 size_t objlen; 2014 uint_t i; 2015 2016 /* 2017 * If we have no rtld_db, then always treat a request as one for all 2018 * link maps. 2019 */ 2020 if (P->rap == NULL) 2021 lmid = PR_LMID_EVERY; 2022 2023 /* 2024 * First pass: look for exact matches of the entire pathname or 2025 * basename (cases 1 and 2 above): 2026 */ 2027 for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) { 2028 2029 if (mp->map_pmap.pr_mapname[0] == '\0' || 2030 (fp = mp->map_file) == NULL || fp->file_lname == NULL) 2031 continue; 2032 2033 if (lmid != PR_LMID_EVERY && 2034 (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident)) 2035 continue; 2036 2037 /* 2038 * If we match, return the primary text mapping; otherwise 2039 * just return the mapping we matched. 2040 */ 2041 if (strcmp(fp->file_lname, objname) == 0 || 2042 strcmp(fp->file_lbase, objname) == 0) 2043 return (fp->file_map ? fp->file_map : mp); 2044 } 2045 2046 objlen = strlen(objname); 2047 2048 /* 2049 * Second pass: look for partial matches (case 3 above): 2050 */ 2051 for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) { 2052 2053 if (mp->map_pmap.pr_mapname[0] == '\0' || 2054 (fp = mp->map_file) == NULL || fp->file_lname == NULL) 2055 continue; 2056 2057 if (lmid != PR_LMID_EVERY && 2058 (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident)) 2059 continue; 2060 2061 /* 2062 * If we match, return the primary text mapping; otherwise 2063 * just return the mapping we matched. 2064 */ 2065 if (strncmp(fp->file_lbase, objname, objlen) == 0 && 2066 fp->file_lbase[objlen] == '.') 2067 return (fp->file_map ? fp->file_map : mp); 2068 } 2069 2070 /* 2071 * One last check: we allow "a.out" to always alias the executable, 2072 * assuming this name was not in use for something else. 2073 */ 2074 if ((lmid == PR_LMID_EVERY || lmid == LM_ID_BASE) && 2075 (strcmp(objname, "a.out") == 0)) 2076 return (P->map_exec); 2077 2078 return (NULL); 2079 } 2080 2081 static map_info_t * 2082 object_name_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name) 2083 { 2084 map_info_t *mptr; 2085 2086 if (!P->info_valid) 2087 Pupdate_maps(P); 2088 2089 if (P->map_exec == NULL && ((mptr = Paddr2mptr(P, 2090 Pgetauxval(P, AT_ENTRY))) != NULL || (mptr = exec_map(P)) != NULL)) 2091 P->map_exec = mptr; 2092 2093 if (P->map_ldso == NULL && (mptr = Paddr2mptr(P, 2094 Pgetauxval(P, AT_BASE))) != NULL) 2095 P->map_ldso = mptr; 2096 2097 if (name == PR_OBJ_EXEC) 2098 mptr = P->map_exec; 2099 else if (name == PR_OBJ_LDSO) 2100 mptr = P->map_ldso; 2101 else if (Prd_agent(P) != NULL || P->state == PS_IDLE) 2102 mptr = object_to_map(P, lmid, name); 2103 else 2104 mptr = NULL; 2105 2106 return (mptr); 2107 } 2108 2109 /* 2110 * When two symbols are found by address, decide which one is to be preferred. 2111 */ 2112 static GElf_Sym * 2113 sym_prefer(GElf_Sym *sym1, char *name1, GElf_Sym *sym2, char *name2) 2114 { 2115 /* 2116 * Prefer the non-NULL symbol. 2117 */ 2118 if (sym1 == NULL) 2119 return (sym2); 2120 if (sym2 == NULL) 2121 return (sym1); 2122 2123 /* 2124 * Defer to the sort ordering... 2125 */ 2126 return (byaddr_cmp_common(sym1, name1, sym2, name2) <= 0 ? sym1 : sym2); 2127 } 2128 2129 /* 2130 * Use a binary search to do the work of sym_by_addr(). 2131 */ 2132 static GElf_Sym * 2133 sym_by_addr_binary(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp, 2134 uint_t *idp) 2135 { 2136 GElf_Sym sym, osym; 2137 uint_t i, oid, *byaddr = symtab->sym_byaddr; 2138 int min, max, mid, omid, found = 0; 2139 2140 if (symtab->sym_data_pri == NULL || symtab->sym_count == 0) 2141 return (NULL); 2142 2143 min = 0; 2144 max = symtab->sym_count - 1; 2145 osym.st_value = 0; 2146 2147 /* 2148 * We can't return when we've found a match, we have to continue 2149 * searching for the closest matching symbol. 2150 */ 2151 while (min <= max) { 2152 mid = (max + min) / 2; 2153 2154 i = byaddr[mid]; 2155 (void) symtab_getsym(symtab, i, &sym); 2156 2157 if (addr >= sym.st_value && 2158 addr < sym.st_value + sym.st_size && 2159 (!found || sym.st_value > osym.st_value)) { 2160 osym = sym; 2161 omid = mid; 2162 oid = i; 2163 found = 1; 2164 } 2165 2166 if (addr < sym.st_value) 2167 max = mid - 1; 2168 else 2169 min = mid + 1; 2170 } 2171 2172 if (!found) 2173 return (NULL); 2174 2175 /* 2176 * There may be many symbols with identical values so we walk 2177 * backward in the byaddr table to find the best match. 2178 */ 2179 do { 2180 sym = osym; 2181 i = oid; 2182 2183 if (omid == 0) 2184 break; 2185 2186 oid = byaddr[--omid]; 2187 (void) symtab_getsym(symtab, oid, &osym); 2188 } while (addr >= osym.st_value && 2189 addr < sym.st_value + osym.st_size && 2190 osym.st_value == sym.st_value); 2191 2192 *symp = sym; 2193 if (idp != NULL) 2194 *idp = i; 2195 return (symp); 2196 } 2197 2198 /* 2199 * Use a linear search to do the work of sym_by_addr(). 2200 */ 2201 static GElf_Sym * 2202 sym_by_addr_linear(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symbolp, 2203 uint_t *idp) 2204 { 2205 size_t symn = symtab->sym_symn; 2206 char *strs = symtab->sym_strs; 2207 GElf_Sym sym, *symp = NULL; 2208 GElf_Sym osym, *osymp = NULL; 2209 int i, id; 2210 2211 if (symtab->sym_data_pri == NULL || symn == 0 || strs == NULL) 2212 return (NULL); 2213 2214 for (i = 0; i < symn; i++) { 2215 if ((symp = symtab_getsym(symtab, i, &sym)) != NULL) { 2216 if (addr >= sym.st_value && 2217 addr < sym.st_value + sym.st_size) { 2218 if (osymp) 2219 symp = sym_prefer( 2220 symp, strs + symp->st_name, 2221 osymp, strs + osymp->st_name); 2222 if (symp != osymp) { 2223 osym = sym; 2224 osymp = &osym; 2225 id = i; 2226 } 2227 } 2228 } 2229 } 2230 if (osymp) { 2231 *symbolp = osym; 2232 if (idp) 2233 *idp = id; 2234 return (symbolp); 2235 } 2236 return (NULL); 2237 } 2238 2239 /* 2240 * Look up a symbol by address in the specified symbol table. 2241 * Adjustment to 'addr' must already have been made for the 2242 * offset of the symbol if this is a dynamic library symbol table. 2243 * 2244 * Use a linear or a binary search depending on whether or not we 2245 * chose to sort the table in optimize_symtab(). 2246 */ 2247 static GElf_Sym * 2248 sym_by_addr(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp, uint_t *idp) 2249 { 2250 if (_libproc_no_qsort) { 2251 return (sym_by_addr_linear(symtab, addr, symp, idp)); 2252 } else { 2253 return (sym_by_addr_binary(symtab, addr, symp, idp)); 2254 } 2255 } 2256 2257 /* 2258 * Use a binary search to do the work of sym_by_name(). 2259 */ 2260 static GElf_Sym * 2261 sym_by_name_binary(sym_tbl_t *symtab, const char *name, GElf_Sym *symp, 2262 uint_t *idp) 2263 { 2264 char *strs = symtab->sym_strs; 2265 uint_t i, *byname = symtab->sym_byname; 2266 int min, mid, max, cmp; 2267 2268 if (symtab->sym_data_pri == NULL || strs == NULL || 2269 symtab->sym_count == 0) 2270 return (NULL); 2271 2272 min = 0; 2273 max = symtab->sym_count - 1; 2274 2275 while (min <= max) { 2276 mid = (max + min) / 2; 2277 2278 i = byname[mid]; 2279 (void) symtab_getsym(symtab, i, symp); 2280 2281 if ((cmp = strcmp(name, strs + symp->st_name)) == 0) { 2282 if (idp != NULL) 2283 *idp = i; 2284 return (symp); 2285 } 2286 2287 if (cmp < 0) 2288 max = mid - 1; 2289 else 2290 min = mid + 1; 2291 } 2292 2293 return (NULL); 2294 } 2295 2296 /* 2297 * Use a linear search to do the work of sym_by_name(). 2298 */ 2299 static GElf_Sym * 2300 sym_by_name_linear(sym_tbl_t *symtab, const char *name, GElf_Sym *symp, 2301 uint_t *idp) 2302 { 2303 size_t symn = symtab->sym_symn; 2304 char *strs = symtab->sym_strs; 2305 int i; 2306 2307 if (symtab->sym_data_pri == NULL || symn == 0 || strs == NULL) 2308 return (NULL); 2309 2310 for (i = 0; i < symn; i++) { 2311 if (symtab_getsym(symtab, i, symp) && 2312 strcmp(name, strs + symp->st_name) == 0) { 2313 if (idp) 2314 *idp = i; 2315 return (symp); 2316 } 2317 } 2318 2319 return (NULL); 2320 } 2321 2322 /* 2323 * Look up a symbol by name in the specified symbol table. 2324 * 2325 * Use a linear or a binary search depending on whether or not we 2326 * chose to sort the table in optimize_symtab(). 2327 */ 2328 static GElf_Sym * 2329 sym_by_name(sym_tbl_t *symtab, const char *name, GElf_Sym *symp, uint_t *idp) 2330 { 2331 if (_libproc_no_qsort) { 2332 return (sym_by_name_linear(symtab, name, symp, idp)); 2333 } else { 2334 return (sym_by_name_binary(symtab, name, symp, idp)); 2335 } 2336 } 2337 2338 /* 2339 * Search the process symbol tables looking for a symbol whose 2340 * value to value+size contain the address specified by addr. 2341 * Return values are: 2342 * sym_name_buffer containing the symbol name 2343 * GElf_Sym symbol table entry 2344 * prsyminfo_t ancillary symbol information 2345 * Returns 0 on success, -1 on failure. 2346 */ 2347 int 2348 Pxlookup_by_addr( 2349 struct ps_prochandle *P, 2350 uintptr_t addr, /* process address being sought */ 2351 char *sym_name_buffer, /* buffer for the symbol name */ 2352 size_t bufsize, /* size of sym_name_buffer */ 2353 GElf_Sym *symbolp, /* returned symbol table entry */ 2354 prsyminfo_t *sip) /* returned symbol info */ 2355 { 2356 GElf_Sym *symp; 2357 char *name; 2358 GElf_Sym sym1, *sym1p = NULL; 2359 GElf_Sym sym2, *sym2p = NULL; 2360 char *name1 = NULL; 2361 char *name2 = NULL; 2362 uint_t i1; 2363 uint_t i2; 2364 map_info_t *mptr; 2365 file_info_t *fptr; 2366 2367 (void) Prd_agent(P); 2368 2369 if ((mptr = Paddr2mptr(P, addr)) == NULL || /* no such address */ 2370 (fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */ 2371 fptr->file_elf == NULL) /* not an ELF file */ 2372 return (-1); 2373 2374 /* 2375 * Adjust the address by the load object base address in 2376 * case the address turns out to be in a shared library. 2377 */ 2378 addr -= fptr->file_dyn_base; 2379 2380 /* 2381 * Search both symbol tables, symtab first, then dynsym. 2382 */ 2383 if ((sym1p = sym_by_addr(&fptr->file_symtab, addr, &sym1, &i1)) != NULL) 2384 name1 = fptr->file_symtab.sym_strs + sym1.st_name; 2385 if ((sym2p = sym_by_addr(&fptr->file_dynsym, addr, &sym2, &i2)) != NULL) 2386 name2 = fptr->file_dynsym.sym_strs + sym2.st_name; 2387 2388 if ((symp = sym_prefer(sym1p, name1, sym2p, name2)) == NULL) 2389 return (-1); 2390 2391 name = (symp == sym1p) ? name1 : name2; 2392 if (bufsize > 0) { 2393 (void) strncpy(sym_name_buffer, name, bufsize); 2394 sym_name_buffer[bufsize - 1] = '\0'; 2395 } 2396 2397 *symbolp = *symp; 2398 if (sip != NULL) { 2399 sip->prs_name = bufsize == 0 ? NULL : sym_name_buffer; 2400 sip->prs_object = fptr->file_lbase; 2401 sip->prs_id = (symp == sym1p) ? i1 : i2; 2402 sip->prs_table = (symp == sym1p) ? PR_SYMTAB : PR_DYNSYM; 2403 sip->prs_lmid = (fptr->file_lo == NULL) ? LM_ID_BASE : 2404 fptr->file_lo->rl_lmident; 2405 } 2406 2407 if (GELF_ST_TYPE(symbolp->st_info) != STT_TLS) 2408 symbolp->st_value += fptr->file_dyn_base; 2409 2410 return (0); 2411 } 2412 2413 int 2414 Plookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf, size_t size, 2415 GElf_Sym *symp) 2416 { 2417 return (Pxlookup_by_addr(P, addr, buf, size, symp, NULL)); 2418 } 2419 2420 /* 2421 * Search the process symbol tables looking for a symbol whose name matches the 2422 * specified name and whose object and link map optionally match the specified 2423 * parameters. On success, the function returns 0 and fills in the GElf_Sym 2424 * symbol table entry. On failure, -1 is returned. 2425 */ 2426 int 2427 Pxlookup_by_name( 2428 struct ps_prochandle *P, 2429 Lmid_t lmid, /* link map to match, or -1 for any */ 2430 const char *oname, /* load object name */ 2431 const char *sname, /* symbol name */ 2432 GElf_Sym *symp, /* returned symbol table entry */ 2433 prsyminfo_t *sip) /* returned symbol info */ 2434 { 2435 map_info_t *mptr; 2436 file_info_t *fptr; 2437 int cnt; 2438 2439 GElf_Sym sym; 2440 prsyminfo_t si; 2441 int rv = -1; 2442 uint_t id; 2443 2444 if (oname == PR_OBJ_EVERY) { 2445 /* create all the file_info_t's for all the mappings */ 2446 (void) Prd_agent(P); 2447 cnt = P->num_files; 2448 fptr = list_next(&P->file_head); 2449 } else { 2450 cnt = 1; 2451 if ((mptr = object_name_to_map(P, lmid, oname)) == NULL || 2452 (fptr = build_map_symtab(P, mptr)) == NULL) 2453 return (-1); 2454 } 2455 2456 /* 2457 * Iterate through the loaded object files and look for the symbol 2458 * name in the .symtab and .dynsym of each. If we encounter a match 2459 * with SHN_UNDEF, keep looking in hopes of finding a better match. 2460 * This means that a name such as "puts" will match the puts function 2461 * in libc instead of matching the puts PLT entry in the a.out file. 2462 */ 2463 for (; cnt > 0; cnt--, fptr = list_next(fptr)) { 2464 Pbuild_file_symtab(P, fptr); 2465 2466 if (fptr->file_elf == NULL) 2467 continue; 2468 2469 if (lmid != PR_LMID_EVERY && fptr->file_lo != NULL && 2470 lmid != fptr->file_lo->rl_lmident) 2471 continue; 2472 2473 if (fptr->file_symtab.sym_data_pri != NULL && 2474 sym_by_name(&fptr->file_symtab, sname, symp, &id)) { 2475 if (sip != NULL) { 2476 sip->prs_id = id; 2477 sip->prs_table = PR_SYMTAB; 2478 sip->prs_object = oname; 2479 sip->prs_name = sname; 2480 sip->prs_lmid = fptr->file_lo == NULL ? 2481 LM_ID_BASE : fptr->file_lo->rl_lmident; 2482 } 2483 } else if (fptr->file_dynsym.sym_data_pri != NULL && 2484 sym_by_name(&fptr->file_dynsym, sname, symp, &id)) { 2485 if (sip != NULL) { 2486 sip->prs_id = id; 2487 sip->prs_table = PR_DYNSYM; 2488 sip->prs_object = oname; 2489 sip->prs_name = sname; 2490 sip->prs_lmid = fptr->file_lo == NULL ? 2491 LM_ID_BASE : fptr->file_lo->rl_lmident; 2492 } 2493 } else { 2494 continue; 2495 } 2496 2497 if (GELF_ST_TYPE(symp->st_info) != STT_TLS) 2498 symp->st_value += fptr->file_dyn_base; 2499 2500 if (symp->st_shndx != SHN_UNDEF) 2501 return (0); 2502 2503 if (rv != 0) { 2504 if (sip != NULL) 2505 si = *sip; 2506 sym = *symp; 2507 rv = 0; 2508 } 2509 } 2510 2511 if (rv == 0) { 2512 if (sip != NULL) 2513 *sip = si; 2514 *symp = sym; 2515 } 2516 2517 return (rv); 2518 } 2519 2520 /* 2521 * Search the process symbol tables looking for a symbol whose name matches the 2522 * specified name, but without any restriction on the link map id. 2523 */ 2524 int 2525 Plookup_by_name(struct ps_prochandle *P, const char *object, 2526 const char *symbol, GElf_Sym *symp) 2527 { 2528 return (Pxlookup_by_name(P, PR_LMID_EVERY, object, symbol, symp, NULL)); 2529 } 2530 2531 /* 2532 * Iterate over the process's address space mappings. 2533 */ 2534 int 2535 Pmapping_iter(struct ps_prochandle *P, proc_map_f *func, void *cd) 2536 { 2537 map_info_t *mptr; 2538 file_info_t *fptr; 2539 char *object_name; 2540 int rc = 0; 2541 int i; 2542 2543 /* create all the file_info_t's for all the mappings */ 2544 (void) Prd_agent(P); 2545 2546 for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) { 2547 if ((fptr = mptr->map_file) == NULL) 2548 object_name = NULL; 2549 else 2550 object_name = fptr->file_lname; 2551 if ((rc = func(cd, &mptr->map_pmap, object_name)) != 0) 2552 return (rc); 2553 } 2554 return (0); 2555 } 2556 2557 /* 2558 * Iterate over the process's mapped objects. 2559 */ 2560 int 2561 Pobject_iter(struct ps_prochandle *P, proc_map_f *func, void *cd) 2562 { 2563 map_info_t *mptr; 2564 file_info_t *fptr; 2565 uint_t cnt; 2566 int rc = 0; 2567 2568 (void) Prd_agent(P); /* create file_info_t's for all the mappings */ 2569 Pupdate_maps(P); 2570 2571 for (cnt = P->num_files, fptr = list_next(&P->file_head); 2572 cnt; cnt--, fptr = list_next(fptr)) { 2573 2574 const char *lname = fptr->file_lname ? fptr->file_lname : ""; 2575 2576 if ((mptr = fptr->file_map) == NULL) 2577 continue; 2578 2579 if ((rc = func(cd, &mptr->map_pmap, lname)) != 0) 2580 return (rc); 2581 } 2582 return (0); 2583 } 2584 2585 /* 2586 * Given a virtual address, return the name of the underlying 2587 * mapped object (file), as provided by the dynamic linker. 2588 * Return NULL on failure (no underlying shared library). 2589 */ 2590 char * 2591 Pobjname(struct ps_prochandle *P, uintptr_t addr, 2592 char *buffer, size_t bufsize) 2593 { 2594 map_info_t *mptr; 2595 file_info_t *fptr; 2596 2597 /* create all the file_info_t's for all the mappings */ 2598 (void) Prd_agent(P); 2599 2600 if ((mptr = Paddr2mptr(P, addr)) != NULL && 2601 (fptr = mptr->map_file) != NULL && 2602 fptr->file_lname != NULL) { 2603 (void) strncpy(buffer, fptr->file_lname, bufsize); 2604 if (strlen(fptr->file_lname) >= bufsize) 2605 buffer[bufsize-1] = '\0'; 2606 return (buffer); 2607 } 2608 return (NULL); 2609 } 2610 2611 /* 2612 * Given a virtual address, return the link map id of the underlying mapped 2613 * object (file), as provided by the dynamic linker. Return -1 on failure. 2614 */ 2615 int 2616 Plmid(struct ps_prochandle *P, uintptr_t addr, Lmid_t *lmidp) 2617 { 2618 map_info_t *mptr; 2619 file_info_t *fptr; 2620 2621 /* create all the file_info_t's for all the mappings */ 2622 (void) Prd_agent(P); 2623 2624 if ((mptr = Paddr2mptr(P, addr)) != NULL && 2625 (fptr = mptr->map_file) != NULL && fptr->file_lo != NULL) { 2626 *lmidp = fptr->file_lo->rl_lmident; 2627 return (0); 2628 } 2629 2630 return (-1); 2631 } 2632 2633 /* 2634 * Given an object name and optional lmid, iterate over the object's symbols. 2635 * If which == PR_SYMTAB, search the normal symbol table. 2636 * If which == PR_DYNSYM, search the dynamic symbol table. 2637 */ 2638 static int 2639 Psymbol_iter_com(struct ps_prochandle *P, Lmid_t lmid, const char *object_name, 2640 int which, int mask, pr_order_t order, proc_xsym_f *func, void *cd) 2641 { 2642 GElf_Sym sym; 2643 GElf_Shdr shdr; 2644 map_info_t *mptr; 2645 file_info_t *fptr; 2646 sym_tbl_t *symtab; 2647 size_t symn; 2648 const char *strs; 2649 size_t strsz; 2650 prsyminfo_t si; 2651 int rv; 2652 uint_t *map, i, count, ndx; 2653 2654 if ((mptr = object_name_to_map(P, lmid, object_name)) == NULL) 2655 return (-1); 2656 2657 if ((fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */ 2658 fptr->file_elf == NULL) /* not an ELF file */ 2659 return (-1); 2660 2661 /* 2662 * Search the specified symbol table. 2663 */ 2664 switch (which) { 2665 case PR_SYMTAB: 2666 symtab = &fptr->file_symtab; 2667 si.prs_table = PR_SYMTAB; 2668 break; 2669 case PR_DYNSYM: 2670 symtab = &fptr->file_dynsym; 2671 si.prs_table = PR_DYNSYM; 2672 break; 2673 default: 2674 return (-1); 2675 } 2676 2677 si.prs_object = object_name; 2678 si.prs_lmid = fptr->file_lo == NULL ? 2679 LM_ID_BASE : fptr->file_lo->rl_lmident; 2680 2681 symn = symtab->sym_symn; 2682 strs = symtab->sym_strs; 2683 strsz = symtab->sym_strsz; 2684 2685 switch (order) { 2686 case PRO_NATURAL: 2687 map = NULL; 2688 count = symn; 2689 break; 2690 case PRO_BYNAME: 2691 map = symtab->sym_byname; 2692 count = symtab->sym_count; 2693 break; 2694 case PRO_BYADDR: 2695 map = symtab->sym_byaddr; 2696 count = symtab->sym_count; 2697 break; 2698 default: 2699 return (-1); 2700 } 2701 2702 if (symtab->sym_data_pri == NULL || strs == NULL || count == 0) 2703 return (-1); 2704 2705 rv = 0; 2706 2707 for (i = 0; i < count; i++) { 2708 ndx = map == NULL ? i : map[i]; 2709 if (symtab_getsym(symtab, ndx, &sym) != NULL) { 2710 uint_t s_bind, s_type, type; 2711 2712 if (sym.st_name >= strsz) /* invalid st_name */ 2713 continue; 2714 2715 s_bind = GELF_ST_BIND(sym.st_info); 2716 s_type = GELF_ST_TYPE(sym.st_info); 2717 2718 /* 2719 * In case you haven't already guessed, this relies on 2720 * the bitmask used in <libproc.h> for encoding symbol 2721 * type and binding matching the order of STB and STT 2722 * constants in <sys/elf.h>. ELF can't change without 2723 * breaking binary compatibility, so I think this is 2724 * reasonably fair game. 2725 */ 2726 if (s_bind < STB_NUM && s_type < STT_NUM) { 2727 type = (1 << (s_type + 8)) | (1 << s_bind); 2728 if ((type & ~mask) != 0) 2729 continue; 2730 } else 2731 continue; /* Invalid type or binding */ 2732 2733 if (GELF_ST_TYPE(sym.st_info) != STT_TLS) 2734 sym.st_value += fptr->file_dyn_base; 2735 2736 si.prs_name = strs + sym.st_name; 2737 2738 /* 2739 * If symbol's type is STT_SECTION, then try to lookup 2740 * the name of the corresponding section. 2741 */ 2742 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && 2743 fptr->file_shstrs != NULL && 2744 gelf_getshdr(elf_getscn(fptr->file_elf, 2745 sym.st_shndx), &shdr) != NULL && 2746 shdr.sh_name != 0 && 2747 shdr.sh_name < fptr->file_shstrsz) 2748 si.prs_name = fptr->file_shstrs + shdr.sh_name; 2749 2750 si.prs_id = ndx; 2751 if ((rv = func(cd, &sym, si.prs_name, &si)) != 0) 2752 break; 2753 } 2754 } 2755 2756 return (rv); 2757 } 2758 2759 int 2760 Pxsymbol_iter(struct ps_prochandle *P, Lmid_t lmid, const char *object_name, 2761 int which, int mask, proc_xsym_f *func, void *cd) 2762 { 2763 return (Psymbol_iter_com(P, lmid, object_name, which, mask, 2764 PRO_NATURAL, func, cd)); 2765 } 2766 2767 int 2768 Psymbol_iter_by_lmid(struct ps_prochandle *P, Lmid_t lmid, 2769 const char *object_name, int which, int mask, proc_sym_f *func, void *cd) 2770 { 2771 return (Psymbol_iter_com(P, lmid, object_name, which, mask, 2772 PRO_NATURAL, (proc_xsym_f *)func, cd)); 2773 } 2774 2775 int 2776 Psymbol_iter(struct ps_prochandle *P, 2777 const char *object_name, int which, int mask, proc_sym_f *func, void *cd) 2778 { 2779 return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask, 2780 PRO_NATURAL, (proc_xsym_f *)func, cd)); 2781 } 2782 2783 int 2784 Psymbol_iter_by_addr(struct ps_prochandle *P, 2785 const char *object_name, int which, int mask, proc_sym_f *func, void *cd) 2786 { 2787 return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask, 2788 PRO_BYADDR, (proc_xsym_f *)func, cd)); 2789 } 2790 2791 int 2792 Psymbol_iter_by_name(struct ps_prochandle *P, 2793 const char *object_name, int which, int mask, proc_sym_f *func, void *cd) 2794 { 2795 return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask, 2796 PRO_BYNAME, (proc_xsym_f *)func, cd)); 2797 } 2798 2799 /* 2800 * Get the platform string from the core file if we have it; 2801 * just perform the system call for the caller if this is a live process. 2802 */ 2803 char * 2804 Pplatform(struct ps_prochandle *P, char *s, size_t n) 2805 { 2806 if (P->state == PS_IDLE) { 2807 errno = ENODATA; 2808 return (NULL); 2809 } 2810 2811 if (P->state == PS_DEAD) { 2812 if (P->core->core_platform == NULL) { 2813 errno = ENODATA; 2814 return (NULL); 2815 } 2816 (void) strncpy(s, P->core->core_platform, n - 1); 2817 s[n - 1] = '\0'; 2818 2819 } else if (sysinfo(SI_PLATFORM, s, n) == -1) 2820 return (NULL); 2821 2822 return (s); 2823 } 2824 2825 /* 2826 * Get the uname(2) information from the core file if we have it; 2827 * just perform the system call for the caller if this is a live process. 2828 */ 2829 int 2830 Puname(struct ps_prochandle *P, struct utsname *u) 2831 { 2832 if (P->state == PS_IDLE) { 2833 errno = ENODATA; 2834 return (-1); 2835 } 2836 2837 if (P->state == PS_DEAD) { 2838 if (P->core->core_uts == NULL) { 2839 errno = ENODATA; 2840 return (-1); 2841 } 2842 (void) memcpy(u, P->core->core_uts, sizeof (struct utsname)); 2843 return (0); 2844 } 2845 return (uname(u)); 2846 } 2847 2848 /* 2849 * Get the zone name from the core file if we have it; look up the 2850 * name based on the zone id if this is a live process. 2851 */ 2852 char * 2853 Pzonename(struct ps_prochandle *P, char *s, size_t n) 2854 { 2855 if (P->state == PS_IDLE) { 2856 errno = ENODATA; 2857 return (NULL); 2858 } 2859 2860 if (P->state == PS_DEAD) { 2861 if (P->core->core_zonename == NULL) { 2862 errno = ENODATA; 2863 return (NULL); 2864 } 2865 (void) strlcpy(s, P->core->core_zonename, n); 2866 } else { 2867 if (getzonenamebyid(P->status.pr_zoneid, s, n) < 0) 2868 return (NULL); 2869 s[n - 1] = '\0'; 2870 } 2871 return (s); 2872 } 2873 2874 /* 2875 * Called from Pcreate(), Pgrab(), and Pfgrab_core() to initialize 2876 * the symbol table heads in the new ps_prochandle. 2877 */ 2878 void 2879 Pinitsym(struct ps_prochandle *P) 2880 { 2881 P->num_files = 0; 2882 list_link(&P->file_head, NULL); 2883 } 2884 2885 /* 2886 * Called from Prelease() to destroy the symbol tables. 2887 * Must be called by the client after an exec() in the victim process. 2888 */ 2889 void 2890 Preset_maps(struct ps_prochandle *P) 2891 { 2892 int i; 2893 2894 if (P->rap != NULL) { 2895 rd_delete(P->rap); 2896 P->rap = NULL; 2897 } 2898 2899 if (P->execname != NULL) { 2900 free(P->execname); 2901 P->execname = NULL; 2902 } 2903 2904 if (P->auxv != NULL) { 2905 free(P->auxv); 2906 P->auxv = NULL; 2907 P->nauxv = 0; 2908 } 2909 2910 for (i = 0; i < P->map_count; i++) 2911 map_info_free(P, &P->mappings[i]); 2912 2913 if (P->mappings != NULL) { 2914 free(P->mappings); 2915 P->mappings = NULL; 2916 } 2917 P->map_count = P->map_alloc = 0; 2918 2919 P->info_valid = 0; 2920 } 2921 2922 typedef struct getenv_data { 2923 char *buf; 2924 size_t bufsize; 2925 const char *search; 2926 size_t searchlen; 2927 } getenv_data_t; 2928 2929 /*ARGSUSED*/ 2930 static int 2931 getenv_func(void *data, struct ps_prochandle *P, uintptr_t addr, 2932 const char *nameval) 2933 { 2934 getenv_data_t *d = data; 2935 size_t len; 2936 2937 if (nameval == NULL) 2938 return (0); 2939 2940 if (d->searchlen < strlen(nameval) && 2941 strncmp(nameval, d->search, d->searchlen) == 0 && 2942 nameval[d->searchlen] == '=') { 2943 len = MIN(strlen(nameval), d->bufsize - 1); 2944 (void) strncpy(d->buf, nameval, len); 2945 d->buf[len] = '\0'; 2946 return (1); 2947 } 2948 2949 return (0); 2950 } 2951 2952 char * 2953 Pgetenv(struct ps_prochandle *P, const char *name, char *buf, size_t buflen) 2954 { 2955 getenv_data_t d; 2956 2957 d.buf = buf; 2958 d.bufsize = buflen; 2959 d.search = name; 2960 d.searchlen = strlen(name); 2961 2962 if (Penv_iter(P, getenv_func, &d) == 1) { 2963 char *equals = strchr(d.buf, '='); 2964 2965 if (equals != NULL) { 2966 (void) memmove(d.buf, equals + 1, 2967 d.buf + buflen - equals - 1); 2968 d.buf[d.buf + buflen - equals] = '\0'; 2969 2970 return (buf); 2971 } 2972 } 2973 2974 return (NULL); 2975 } 2976 2977 /* number of argument or environment pointers to read all at once */ 2978 #define NARG 100 2979 2980 int 2981 Penv_iter(struct ps_prochandle *P, proc_env_f *func, void *data) 2982 { 2983 const psinfo_t *psp; 2984 uintptr_t envpoff; 2985 GElf_Sym sym; 2986 int ret; 2987 char *buf, *nameval; 2988 size_t buflen; 2989 2990 int nenv = NARG; 2991 long envp[NARG]; 2992 2993 /* 2994 * Attempt to find the "_environ" variable in the process. 2995 * Failing that, use the original value provided by Ppsinfo(). 2996 */ 2997 if ((psp = Ppsinfo(P)) == NULL) 2998 return (-1); 2999 3000 envpoff = psp->pr_envp; /* Default if no _environ found */ 3001 3002 if (Plookup_by_name(P, PR_OBJ_EXEC, "_environ", &sym) == 0) { 3003 if (P->status.pr_dmodel == PR_MODEL_NATIVE) { 3004 if (Pread(P, &envpoff, sizeof (envpoff), 3005 sym.st_value) != sizeof (envpoff)) 3006 envpoff = psp->pr_envp; 3007 } else if (P->status.pr_dmodel == PR_MODEL_ILP32) { 3008 uint32_t envpoff32; 3009 3010 if (Pread(P, &envpoff32, sizeof (envpoff32), 3011 sym.st_value) != sizeof (envpoff32)) 3012 envpoff = psp->pr_envp; 3013 else 3014 envpoff = envpoff32; 3015 } 3016 } 3017 3018 buflen = 128; 3019 buf = malloc(buflen); 3020 3021 ret = 0; 3022 for (;;) { 3023 uintptr_t envoff; 3024 3025 if (nenv == NARG) { 3026 (void) memset(envp, 0, sizeof (envp)); 3027 if (P->status.pr_dmodel == PR_MODEL_NATIVE) { 3028 if (Pread(P, envp, 3029 sizeof (envp), envpoff) <= 0) { 3030 ret = -1; 3031 break; 3032 } 3033 } else if (P->status.pr_dmodel == PR_MODEL_ILP32) { 3034 uint32_t e32[NARG]; 3035 int i; 3036 3037 (void) memset(e32, 0, sizeof (e32)); 3038 if (Pread(P, e32, sizeof (e32), envpoff) <= 0) { 3039 ret = -1; 3040 break; 3041 } 3042 for (i = 0; i < NARG; i++) 3043 envp[i] = e32[i]; 3044 } 3045 nenv = 0; 3046 } 3047 3048 if ((envoff = envp[nenv++]) == NULL) 3049 break; 3050 3051 /* 3052 * Attempt to read the string from the process. 3053 */ 3054 again: 3055 ret = Pread_string(P, buf, buflen, envoff); 3056 3057 if (ret <= 0) { 3058 nameval = NULL; 3059 } else if (ret == buflen - 1) { 3060 free(buf); 3061 /* 3062 * Bail if we have a corrupted environment 3063 */ 3064 if (buflen >= ARG_MAX) 3065 return (-1); 3066 buflen *= 2; 3067 buf = malloc(buflen); 3068 goto again; 3069 } else { 3070 nameval = buf; 3071 } 3072 3073 if ((ret = func(data, P, envoff, nameval)) != 0) 3074 break; 3075 3076 envpoff += (P->status.pr_dmodel == PR_MODEL_LP64)? 8 : 4; 3077 } 3078 3079 free(buf); 3080 3081 return (ret); 3082 } 3083