1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <assert.h> 30 #include <stdio.h> 31 #include <stdlib.h> 32 #include <stddef.h> 33 #include <unistd.h> 34 #include <ctype.h> 35 #include <fcntl.h> 36 #include <string.h> 37 #include <strings.h> 38 #include <memory.h> 39 #include <errno.h> 40 #include <dirent.h> 41 #include <signal.h> 42 #include <limits.h> 43 #include <libgen.h> 44 #include <zone.h> 45 #include <sys/types.h> 46 #include <sys/stat.h> 47 #include <sys/systeminfo.h> 48 #include <sys/sysmacros.h> 49 50 #include "libproc.h" 51 #include "Pcontrol.h" 52 #include "Putil.h" 53 #include "Psymtab_machelf.h" 54 55 static file_info_t *build_map_symtab(struct ps_prochandle *, map_info_t *); 56 static map_info_t *exec_map(struct ps_prochandle *); 57 static map_info_t *object_to_map(struct ps_prochandle *, Lmid_t, const char *); 58 static map_info_t *object_name_to_map(struct ps_prochandle *, 59 Lmid_t, const char *); 60 static GElf_Sym *sym_by_name(sym_tbl_t *, const char *, GElf_Sym *, uint_t *); 61 static int read_ehdr32(struct ps_prochandle *, Elf32_Ehdr *, uint_t *, 62 uintptr_t); 63 #ifdef _LP64 64 static int read_ehdr64(struct ps_prochandle *, Elf64_Ehdr *, uint_t *, 65 uintptr_t); 66 #endif 67 68 #define DATA_TYPES \ 69 ((1 << STT_OBJECT) | (1 << STT_FUNC) | \ 70 (1 << STT_COMMON) | (1 << STT_TLS)) 71 #define IS_DATA_TYPE(tp) (((1 << (tp)) & DATA_TYPES) != 0) 72 73 #define MA_RWX (MA_READ | MA_WRITE | MA_EXEC) 74 75 typedef enum { 76 PRO_NATURAL, 77 PRO_BYADDR, 78 PRO_BYNAME 79 } pr_order_t; 80 81 static int 82 addr_cmp(const void *aa, const void *bb) 83 { 84 uintptr_t a = *((uintptr_t *)aa); 85 uintptr_t b = *((uintptr_t *)bb); 86 87 if (a > b) 88 return (1); 89 if (a < b) 90 return (-1); 91 return (0); 92 } 93 94 /* 95 * This function creates a list of addresses for a load object's sections. 96 * The list is in ascending address order and alternates start address 97 * then end address for each section we're interested in. The function 98 * returns a pointer to the list, which must be freed by the caller. 99 */ 100 static uintptr_t * 101 get_saddrs(struct ps_prochandle *P, uintptr_t ehdr_start, uint_t *n) 102 { 103 uintptr_t a, addr, *addrs, last = 0; 104 uint_t i, naddrs = 0, unordered = 0; 105 106 if (P->status.pr_dmodel == PR_MODEL_ILP32) { 107 Elf32_Ehdr ehdr; 108 Elf32_Phdr phdr; 109 uint_t phnum; 110 111 if (read_ehdr32(P, &ehdr, &phnum, ehdr_start) != 0) 112 return (NULL); 113 114 addrs = malloc(sizeof (uintptr_t) * phnum * 2); 115 a = ehdr_start + ehdr.e_phoff; 116 for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) { 117 if (Pread(P, &phdr, sizeof (phdr), a) != 118 sizeof (phdr)) { 119 free(addrs); 120 return (NULL); 121 } 122 if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0) 123 continue; 124 125 addr = phdr.p_vaddr; 126 if (ehdr.e_type == ET_DYN) 127 addr += ehdr_start; 128 if (last > addr) 129 unordered = 1; 130 addrs[naddrs++] = addr; 131 addrs[naddrs++] = last = addr + phdr.p_memsz - 1; 132 } 133 #ifdef _LP64 134 } else { 135 Elf64_Ehdr ehdr; 136 Elf64_Phdr phdr; 137 uint_t phnum; 138 139 if (read_ehdr64(P, &ehdr, &phnum, ehdr_start) != 0) 140 return (NULL); 141 142 addrs = malloc(sizeof (uintptr_t) * phnum * 2); 143 a = ehdr_start + ehdr.e_phoff; 144 for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) { 145 if (Pread(P, &phdr, sizeof (phdr), a) != 146 sizeof (phdr)) { 147 free(addrs); 148 return (NULL); 149 } 150 if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0) 151 continue; 152 153 addr = phdr.p_vaddr; 154 if (ehdr.e_type == ET_DYN) 155 addr += ehdr_start; 156 if (last > addr) 157 unordered = 1; 158 addrs[naddrs++] = addr; 159 addrs[naddrs++] = last = addr + phdr.p_memsz - 1; 160 } 161 #endif 162 } 163 164 if (unordered) 165 qsort(addrs, naddrs, sizeof (uintptr_t), addr_cmp); 166 167 *n = naddrs; 168 return (addrs); 169 } 170 171 /* 172 * Allocation function for a new file_info_t 173 */ 174 static file_info_t * 175 file_info_new(struct ps_prochandle *P, map_info_t *mptr) 176 { 177 file_info_t *fptr; 178 map_info_t *mp; 179 uintptr_t addr; 180 uint_t i, j; 181 182 if ((fptr = calloc(1, sizeof (file_info_t))) == NULL) 183 return (NULL); 184 185 list_link(fptr, &P->file_head); 186 (void) strcpy(fptr->file_pname, mptr->map_pmap.pr_mapname); 187 mptr->map_file = fptr; 188 fptr->file_ref = 1; 189 fptr->file_fd = -1; 190 P->num_files++; 191 192 /* 193 * To figure out which map_info_t instances correspond to the mappings 194 * for this load object we try to obtain the start and end address 195 * for each section of our in-memory ELF image. If successful, we 196 * walk down the list of addresses and the list of map_info_t 197 * instances in lock step to correctly find the mappings that 198 * correspond to this load object. 199 */ 200 if ((fptr->file_saddrs = get_saddrs(P, mptr->map_pmap.pr_vaddr, 201 &fptr->file_nsaddrs)) == NULL) 202 return (fptr); 203 204 i = j = 0; 205 mp = P->mappings; 206 while (j < P->map_count && i < fptr->file_nsaddrs) { 207 addr = fptr->file_saddrs[i]; 208 if (addr >= mp->map_pmap.pr_vaddr && 209 addr < mp->map_pmap.pr_vaddr + mp->map_pmap.pr_size && 210 mp->map_file == NULL) { 211 mp->map_file = fptr; 212 fptr->file_ref++; 213 } 214 215 if (addr < mp->map_pmap.pr_vaddr + mp->map_pmap.pr_size) { 216 i++; 217 } else { 218 mp++; 219 j++; 220 } 221 } 222 223 return (fptr); 224 } 225 226 /* 227 * Deallocation function for a file_info_t 228 */ 229 static void 230 file_info_free(struct ps_prochandle *P, file_info_t *fptr) 231 { 232 if (--fptr->file_ref == 0) { 233 list_unlink(fptr); 234 if (fptr->file_symtab.sym_elf) { 235 (void) elf_end(fptr->file_symtab.sym_elf); 236 free(fptr->file_symtab.sym_elfmem); 237 } 238 if (fptr->file_symtab.sym_byname) 239 free(fptr->file_symtab.sym_byname); 240 if (fptr->file_symtab.sym_byaddr) 241 free(fptr->file_symtab.sym_byaddr); 242 243 if (fptr->file_dynsym.sym_elf) { 244 (void) elf_end(fptr->file_dynsym.sym_elf); 245 free(fptr->file_dynsym.sym_elfmem); 246 } 247 if (fptr->file_dynsym.sym_byname) 248 free(fptr->file_dynsym.sym_byname); 249 if (fptr->file_dynsym.sym_byaddr) 250 free(fptr->file_dynsym.sym_byaddr); 251 252 if (fptr->file_lo) 253 free(fptr->file_lo); 254 if (fptr->file_lname) 255 free(fptr->file_lname); 256 if (fptr->file_elf) 257 (void) elf_end(fptr->file_elf); 258 if (fptr->file_elfmem != NULL) 259 free(fptr->file_elfmem); 260 if (fptr->file_fd >= 0) 261 (void) close(fptr->file_fd); 262 if (fptr->file_ctfp) { 263 ctf_close(fptr->file_ctfp); 264 free(fptr->file_ctf_buf); 265 } 266 if (fptr->file_saddrs) 267 free(fptr->file_saddrs); 268 free(fptr); 269 P->num_files--; 270 } 271 } 272 273 /* 274 * Deallocation function for a map_info_t 275 */ 276 static void 277 map_info_free(struct ps_prochandle *P, map_info_t *mptr) 278 { 279 file_info_t *fptr; 280 281 if ((fptr = mptr->map_file) != NULL) { 282 if (fptr->file_map == mptr) 283 fptr->file_map = NULL; 284 file_info_free(P, fptr); 285 } 286 if (P->execname && mptr == P->map_exec) { 287 free(P->execname); 288 P->execname = NULL; 289 } 290 if (P->auxv && (mptr == P->map_exec || mptr == P->map_ldso)) { 291 free(P->auxv); 292 P->auxv = NULL; 293 P->nauxv = 0; 294 } 295 if (mptr == P->map_exec) 296 P->map_exec = NULL; 297 if (mptr == P->map_ldso) 298 P->map_ldso = NULL; 299 } 300 301 /* 302 * Call-back function for librtld_db to iterate through all of its shared 303 * libraries. We use this to get the load object names for the mappings. 304 */ 305 static int 306 map_iter(const rd_loadobj_t *lop, void *cd) 307 { 308 char buf[PATH_MAX]; 309 struct ps_prochandle *P = cd; 310 map_info_t *mptr; 311 file_info_t *fptr; 312 313 dprintf("encountered rd object at %p\n", (void *)lop->rl_base); 314 315 if ((mptr = Paddr2mptr(P, lop->rl_base)) == NULL) { 316 dprintf("map_iter: base address doesn't match any mapping\n"); 317 return (1); /* Base address does not match any mapping */ 318 } 319 320 if ((fptr = mptr->map_file) == NULL && 321 (fptr = file_info_new(P, mptr)) == NULL) { 322 dprintf("map_iter: failed to allocate a new file_info_t\n"); 323 return (1); /* Failed to allocate a new file_info_t */ 324 } 325 326 if ((fptr->file_lo == NULL) && 327 (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) { 328 dprintf("map_iter: failed to allocate rd_loadobj_t\n"); 329 file_info_free(P, fptr); 330 return (1); /* Failed to allocate rd_loadobj_t */ 331 } 332 333 fptr->file_map = mptr; 334 *fptr->file_lo = *lop; 335 336 fptr->file_lo->rl_plt_base = fptr->file_plt_base; 337 fptr->file_lo->rl_plt_size = fptr->file_plt_size; 338 339 if (fptr->file_lname) { 340 free(fptr->file_lname); 341 fptr->file_lname = NULL; 342 } 343 344 if (Pread_string(P, buf, sizeof (buf), lop->rl_nameaddr) > 0) { 345 if ((fptr->file_lname = strdup(buf)) != NULL) 346 fptr->file_lbase = basename(fptr->file_lname); 347 } else { 348 dprintf("map_iter: failed to read string at %p\n", 349 (void *)lop->rl_nameaddr); 350 } 351 352 dprintf("loaded rd object %s lmid %lx\n", 353 fptr->file_lname ? fptr->file_lname : "<NULL>", lop->rl_lmident); 354 return (1); 355 } 356 357 static void 358 map_set(struct ps_prochandle *P, map_info_t *mptr, const char *lname) 359 { 360 file_info_t *fptr; 361 362 if ((fptr = mptr->map_file) == NULL && 363 (fptr = file_info_new(P, mptr)) == NULL) 364 return; /* Failed to allocate a new file_info_t */ 365 366 fptr->file_map = mptr; 367 368 if ((fptr->file_lo == NULL) && 369 (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) { 370 file_info_free(P, fptr); 371 return; /* Failed to allocate rd_loadobj_t */ 372 } 373 374 (void) memset(fptr->file_lo, 0, sizeof (rd_loadobj_t)); 375 fptr->file_lo->rl_base = mptr->map_pmap.pr_vaddr; 376 fptr->file_lo->rl_bend = 377 mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size; 378 379 fptr->file_lo->rl_plt_base = fptr->file_plt_base; 380 fptr->file_lo->rl_plt_size = fptr->file_plt_size; 381 382 if (fptr->file_lname == NULL && 383 (fptr->file_lname = strdup(lname)) != NULL) 384 fptr->file_lbase = basename(fptr->file_lname); 385 } 386 387 static void 388 load_static_maps(struct ps_prochandle *P) 389 { 390 map_info_t *mptr; 391 392 /* 393 * Construct the map for the a.out. 394 */ 395 if ((mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_EXEC)) != NULL) 396 map_set(P, mptr, "a.out"); 397 398 /* 399 * If the dynamic linker exists for this process, 400 * construct the map for it. 401 */ 402 if (Pgetauxval(P, AT_BASE) != -1L && 403 (mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_LDSO)) != NULL) 404 map_set(P, mptr, "ld.so.1"); 405 } 406 407 /* 408 * Go through all the address space mappings, validating or updating 409 * the information already gathered, or gathering new information. 410 * 411 * This function is only called when we suspect that the mappings have changed 412 * because this is the first time we're calling it or because of rtld activity. 413 */ 414 void 415 Pupdate_maps(struct ps_prochandle *P) 416 { 417 char mapfile[PATH_MAX]; 418 int mapfd; 419 struct stat statb; 420 prmap_t *Pmap = NULL; 421 prmap_t *pmap; 422 ssize_t nmap; 423 int i; 424 uint_t oldmapcount; 425 map_info_t *newmap, *newp; 426 map_info_t *mptr; 427 428 if (P->info_valid || P->state == PS_UNDEAD) 429 return; 430 431 Preadauxvec(P); 432 433 (void) snprintf(mapfile, sizeof (mapfile), "%s/%d/map", 434 procfs_path, (int)P->pid); 435 if ((mapfd = open(mapfile, O_RDONLY)) < 0 || 436 fstat(mapfd, &statb) != 0 || 437 statb.st_size < sizeof (prmap_t) || 438 (Pmap = malloc(statb.st_size)) == NULL || 439 (nmap = pread(mapfd, Pmap, statb.st_size, 0L)) <= 0 || 440 (nmap /= sizeof (prmap_t)) == 0) { 441 if (Pmap != NULL) 442 free(Pmap); 443 if (mapfd >= 0) 444 (void) close(mapfd); 445 Preset_maps(P); /* utter failure; destroy tables */ 446 return; 447 } 448 (void) close(mapfd); 449 450 if ((newmap = calloc(1, nmap * sizeof (map_info_t))) == NULL) 451 return; 452 453 /* 454 * We try to merge any file information we may have for existing 455 * mappings, to avoid having to rebuild the file info. 456 */ 457 mptr = P->mappings; 458 pmap = Pmap; 459 newp = newmap; 460 oldmapcount = P->map_count; 461 for (i = 0; i < nmap; i++, pmap++, newp++) { 462 463 if (oldmapcount == 0) { 464 /* 465 * We've exhausted all the old mappings. Every new 466 * mapping should be added. 467 */ 468 newp->map_pmap = *pmap; 469 470 } else if (pmap->pr_vaddr == mptr->map_pmap.pr_vaddr && 471 pmap->pr_size == mptr->map_pmap.pr_size && 472 pmap->pr_offset == mptr->map_pmap.pr_offset && 473 (pmap->pr_mflags & ~(MA_BREAK | MA_STACK)) == 474 (mptr->map_pmap.pr_mflags & ~(MA_BREAK | MA_STACK)) && 475 pmap->pr_pagesize == mptr->map_pmap.pr_pagesize && 476 pmap->pr_shmid == mptr->map_pmap.pr_shmid && 477 strcmp(pmap->pr_mapname, mptr->map_pmap.pr_mapname) == 0) { 478 479 /* 480 * This mapping matches exactly. Copy over the old 481 * mapping, taking care to get the latest flags. 482 * Make sure the associated file_info_t is updated 483 * appropriately. 484 */ 485 *newp = *mptr; 486 if (P->map_exec == mptr) 487 P->map_exec = newp; 488 if (P->map_ldso == mptr) 489 P->map_ldso = newp; 490 newp->map_pmap.pr_mflags = pmap->pr_mflags; 491 if (mptr->map_file != NULL && 492 mptr->map_file->file_map == mptr) 493 mptr->map_file->file_map = newp; 494 oldmapcount--; 495 mptr++; 496 497 } else if (pmap->pr_vaddr + pmap->pr_size > 498 mptr->map_pmap.pr_vaddr) { 499 500 /* 501 * The old mapping doesn't exist any more, remove it 502 * from the list. 503 */ 504 map_info_free(P, mptr); 505 oldmapcount--; 506 i--; 507 newp--; 508 pmap--; 509 mptr++; 510 511 } else { 512 513 /* 514 * This is a new mapping, add it directly. 515 */ 516 newp->map_pmap = *pmap; 517 } 518 } 519 520 /* 521 * Free any old maps 522 */ 523 while (oldmapcount) { 524 map_info_free(P, mptr); 525 oldmapcount--; 526 mptr++; 527 } 528 529 free(Pmap); 530 if (P->mappings != NULL) 531 free(P->mappings); 532 P->mappings = newmap; 533 P->map_count = P->map_alloc = nmap; 534 P->info_valid = 1; 535 536 /* 537 * Consult librtld_db to get the load object 538 * names for all of the shared libraries. 539 */ 540 if (P->rap != NULL) 541 (void) rd_loadobj_iter(P->rap, map_iter, P); 542 } 543 544 /* 545 * Update all of the mappings and rtld_db as if by Pupdate_maps(), and then 546 * forcibly cache all of the symbol tables associated with all object files. 547 */ 548 void 549 Pupdate_syms(struct ps_prochandle *P) 550 { 551 file_info_t *fptr = list_next(&P->file_head); 552 int i; 553 554 Pupdate_maps(P); 555 556 for (i = 0; i < P->num_files; i++, fptr = list_next(fptr)) { 557 Pbuild_file_symtab(P, fptr); 558 (void) Pbuild_file_ctf(P, fptr); 559 } 560 } 561 562 /* 563 * Return the librtld_db agent handle for the victim process. 564 * The handle will become invalid at the next successful exec() and the 565 * client (caller of proc_rd_agent()) must not use it beyond that point. 566 * If the process is already dead, we've already tried our best to 567 * create the agent during core file initialization. 568 */ 569 rd_agent_t * 570 Prd_agent(struct ps_prochandle *P) 571 { 572 if (P->rap == NULL && P->state != PS_DEAD && P->state != PS_IDLE) { 573 Pupdate_maps(P); 574 if (P->num_files == 0) 575 load_static_maps(P); 576 rd_log(_libproc_debug); 577 if ((P->rap = rd_new(P)) != NULL) 578 (void) rd_loadobj_iter(P->rap, map_iter, P); 579 } 580 return (P->rap); 581 } 582 583 /* 584 * Return the prmap_t structure containing 'addr', but only if it 585 * is in the dynamic linker's link map and is the text section. 586 */ 587 const prmap_t * 588 Paddr_to_text_map(struct ps_prochandle *P, uintptr_t addr) 589 { 590 map_info_t *mptr; 591 592 if (!P->info_valid) 593 Pupdate_maps(P); 594 595 if ((mptr = Paddr2mptr(P, addr)) != NULL) { 596 file_info_t *fptr = build_map_symtab(P, mptr); 597 const prmap_t *pmp = &mptr->map_pmap; 598 599 if (fptr != NULL && fptr->file_lo != NULL && 600 fptr->file_lo->rl_base >= pmp->pr_vaddr && 601 fptr->file_lo->rl_base < pmp->pr_vaddr + pmp->pr_size) 602 return (pmp); 603 } 604 605 return (NULL); 606 } 607 608 /* 609 * Return the prmap_t structure containing 'addr' (no restrictions on 610 * the type of mapping). 611 */ 612 const prmap_t * 613 Paddr_to_map(struct ps_prochandle *P, uintptr_t addr) 614 { 615 map_info_t *mptr; 616 617 if (!P->info_valid) 618 Pupdate_maps(P); 619 620 if ((mptr = Paddr2mptr(P, addr)) != NULL) 621 return (&mptr->map_pmap); 622 623 return (NULL); 624 } 625 626 /* 627 * Convert a full or partial load object name to the prmap_t for its 628 * corresponding primary text mapping. 629 */ 630 const prmap_t * 631 Plmid_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name) 632 { 633 map_info_t *mptr; 634 635 if (name == PR_OBJ_EVERY) 636 return (NULL); /* A reasonable mistake */ 637 638 if ((mptr = object_name_to_map(P, lmid, name)) != NULL) 639 return (&mptr->map_pmap); 640 641 return (NULL); 642 } 643 644 const prmap_t * 645 Pname_to_map(struct ps_prochandle *P, const char *name) 646 { 647 return (Plmid_to_map(P, PR_LMID_EVERY, name)); 648 } 649 650 const rd_loadobj_t * 651 Paddr_to_loadobj(struct ps_prochandle *P, uintptr_t addr) 652 { 653 map_info_t *mptr; 654 655 if (!P->info_valid) 656 Pupdate_maps(P); 657 658 if ((mptr = Paddr2mptr(P, addr)) == NULL) 659 return (NULL); 660 661 /* 662 * By building the symbol table, we implicitly bring the PLT 663 * information up to date in the load object. 664 */ 665 (void) build_map_symtab(P, mptr); 666 667 return (mptr->map_file->file_lo); 668 } 669 670 const rd_loadobj_t * 671 Plmid_to_loadobj(struct ps_prochandle *P, Lmid_t lmid, const char *name) 672 { 673 map_info_t *mptr; 674 675 if (name == PR_OBJ_EVERY) 676 return (NULL); 677 678 if ((mptr = object_name_to_map(P, lmid, name)) == NULL) 679 return (NULL); 680 681 /* 682 * By building the symbol table, we implicitly bring the PLT 683 * information up to date in the load object. 684 */ 685 (void) build_map_symtab(P, mptr); 686 687 return (mptr->map_file->file_lo); 688 } 689 690 const rd_loadobj_t * 691 Pname_to_loadobj(struct ps_prochandle *P, const char *name) 692 { 693 return (Plmid_to_loadobj(P, PR_LMID_EVERY, name)); 694 } 695 696 ctf_file_t * 697 Pbuild_file_ctf(struct ps_prochandle *P, file_info_t *fptr) 698 { 699 ctf_sect_t ctdata, symtab, strtab; 700 sym_tbl_t *symp; 701 int err; 702 703 if (fptr->file_ctfp != NULL) 704 return (fptr->file_ctfp); 705 706 Pbuild_file_symtab(P, fptr); 707 708 if (fptr->file_ctf_size == 0) 709 return (NULL); 710 711 symp = fptr->file_ctf_dyn ? &fptr->file_dynsym : &fptr->file_symtab; 712 if (symp->sym_data_pri == NULL) 713 return (NULL); 714 715 /* 716 * The buffer may alread be allocated if this is a core file that 717 * contained CTF data for this file. 718 */ 719 if (fptr->file_ctf_buf == NULL) { 720 fptr->file_ctf_buf = malloc(fptr->file_ctf_size); 721 if (fptr->file_ctf_buf == NULL) { 722 dprintf("failed to allocate ctf buffer\n"); 723 return (NULL); 724 } 725 726 if (pread(fptr->file_fd, fptr->file_ctf_buf, 727 fptr->file_ctf_size, fptr->file_ctf_off) != 728 fptr->file_ctf_size) { 729 free(fptr->file_ctf_buf); 730 fptr->file_ctf_buf = NULL; 731 dprintf("failed to read ctf data\n"); 732 return (NULL); 733 } 734 } 735 736 ctdata.cts_name = ".SUNW_ctf"; 737 ctdata.cts_type = SHT_PROGBITS; 738 ctdata.cts_flags = 0; 739 ctdata.cts_data = fptr->file_ctf_buf; 740 ctdata.cts_size = fptr->file_ctf_size; 741 ctdata.cts_entsize = 1; 742 ctdata.cts_offset = 0; 743 744 symtab.cts_name = fptr->file_ctf_dyn ? ".dynsym" : ".symtab"; 745 symtab.cts_type = symp->sym_hdr_pri.sh_type; 746 symtab.cts_flags = symp->sym_hdr_pri.sh_flags; 747 symtab.cts_data = symp->sym_data_pri->d_buf; 748 symtab.cts_size = symp->sym_hdr_pri.sh_size; 749 symtab.cts_entsize = symp->sym_hdr_pri.sh_entsize; 750 symtab.cts_offset = symp->sym_hdr_pri.sh_offset; 751 752 strtab.cts_name = fptr->file_ctf_dyn ? ".dynstr" : ".strtab"; 753 strtab.cts_type = symp->sym_strhdr.sh_type; 754 strtab.cts_flags = symp->sym_strhdr.sh_flags; 755 strtab.cts_data = symp->sym_strs; 756 strtab.cts_size = symp->sym_strhdr.sh_size; 757 strtab.cts_entsize = symp->sym_strhdr.sh_entsize; 758 strtab.cts_offset = symp->sym_strhdr.sh_offset; 759 760 fptr->file_ctfp = ctf_bufopen(&ctdata, &symtab, &strtab, &err); 761 if (fptr->file_ctfp == NULL) { 762 free(fptr->file_ctf_buf); 763 fptr->file_ctf_buf = NULL; 764 return (NULL); 765 } 766 767 dprintf("loaded %lu bytes of CTF data for %s\n", 768 (ulong_t)fptr->file_ctf_size, fptr->file_pname); 769 770 return (fptr->file_ctfp); 771 } 772 773 ctf_file_t * 774 Paddr_to_ctf(struct ps_prochandle *P, uintptr_t addr) 775 { 776 map_info_t *mptr; 777 file_info_t *fptr; 778 779 if (!P->info_valid) 780 Pupdate_maps(P); 781 782 if ((mptr = Paddr2mptr(P, addr)) == NULL || 783 (fptr = mptr->map_file) == NULL) 784 return (NULL); 785 786 return (Pbuild_file_ctf(P, fptr)); 787 } 788 789 ctf_file_t * 790 Plmid_to_ctf(struct ps_prochandle *P, Lmid_t lmid, const char *name) 791 { 792 map_info_t *mptr; 793 file_info_t *fptr; 794 795 if (name == PR_OBJ_EVERY) 796 return (NULL); 797 798 if ((mptr = object_name_to_map(P, lmid, name)) == NULL || 799 (fptr = mptr->map_file) == NULL) 800 return (NULL); 801 802 return (Pbuild_file_ctf(P, fptr)); 803 } 804 805 ctf_file_t * 806 Pname_to_ctf(struct ps_prochandle *P, const char *name) 807 { 808 return (Plmid_to_ctf(P, PR_LMID_EVERY, name)); 809 } 810 811 /* 812 * If we're not a core file, re-read the /proc/<pid>/auxv file and store 813 * its contents in P->auxv. In the case of a core file, we either 814 * initialized P->auxv in Pcore() from the NT_AUXV, or we don't have an 815 * auxv because the note was missing. 816 */ 817 void 818 Preadauxvec(struct ps_prochandle *P) 819 { 820 char auxfile[64]; 821 struct stat statb; 822 ssize_t naux; 823 int fd; 824 825 if (P->state == PS_DEAD) 826 return; /* Already read during Pgrab_core() */ 827 if (P->state == PS_IDLE) 828 return; /* No aux vec for Pgrab_file() */ 829 830 if (P->auxv != NULL) { 831 free(P->auxv); 832 P->auxv = NULL; 833 P->nauxv = 0; 834 } 835 836 (void) snprintf(auxfile, sizeof (auxfile), "%s/%d/auxv", 837 procfs_path, (int)P->pid); 838 if ((fd = open(auxfile, O_RDONLY)) < 0) 839 return; 840 841 if (fstat(fd, &statb) == 0 && 842 statb.st_size >= sizeof (auxv_t) && 843 (P->auxv = malloc(statb.st_size + sizeof (auxv_t))) != NULL) { 844 if ((naux = read(fd, P->auxv, statb.st_size)) < 0 || 845 (naux /= sizeof (auxv_t)) < 1) { 846 free(P->auxv); 847 P->auxv = NULL; 848 } else { 849 P->auxv[naux].a_type = AT_NULL; 850 P->auxv[naux].a_un.a_val = 0L; 851 P->nauxv = (int)naux; 852 } 853 } 854 855 (void) close(fd); 856 } 857 858 /* 859 * Return a requested element from the process's aux vector. 860 * Return -1 on failure (this is adequate for our purposes). 861 */ 862 long 863 Pgetauxval(struct ps_prochandle *P, int type) 864 { 865 auxv_t *auxv; 866 867 if (P->auxv == NULL) 868 Preadauxvec(P); 869 870 if (P->auxv == NULL) 871 return (-1); 872 873 for (auxv = P->auxv; auxv->a_type != AT_NULL; auxv++) { 874 if (auxv->a_type == type) 875 return (auxv->a_un.a_val); 876 } 877 878 return (-1); 879 } 880 881 /* 882 * Return a pointer to our internal copy of the process's aux vector. 883 * The caller should not hold on to this pointer across any libproc calls. 884 */ 885 const auxv_t * 886 Pgetauxvec(struct ps_prochandle *P) 887 { 888 static const auxv_t empty = { AT_NULL, 0L }; 889 890 if (P->auxv == NULL) 891 Preadauxvec(P); 892 893 if (P->auxv == NULL) 894 return (&empty); 895 896 return (P->auxv); 897 } 898 899 /* 900 * Return 1 if the given mapping corresponds to the given file_info_t's 901 * load object; return 0 otherwise. 902 */ 903 static int 904 is_mapping_in_file(struct ps_prochandle *P, map_info_t *mptr, file_info_t *fptr) 905 { 906 prmap_t *pmap = &mptr->map_pmap; 907 rd_loadobj_t *lop = fptr->file_lo; 908 uint_t i; 909 910 /* 911 * We can get for free the start address of the text and data 912 * sections of the load object. Start by seeing if the mapping 913 * encloses either of these. 914 */ 915 if ((pmap->pr_vaddr <= lop->rl_base && 916 lop->rl_base < pmap->pr_vaddr + pmap->pr_size) || 917 (pmap->pr_vaddr <= lop->rl_data_base && 918 lop->rl_data_base < pmap->pr_vaddr + pmap->pr_size)) 919 return (1); 920 921 /* 922 * It's still possible that this mapping correponds to the load 923 * object. Consider the example of a mapping whose start and end 924 * addresses correspond to those of the load object's text section. 925 * If the mapping splits, e.g. as a result of a segment demotion, 926 * then although both mappings are still backed by the same section, 927 * only one will be seen to enclose that section's start address. 928 * Thus, to be rigorous, we ask not whether this mapping encloses 929 * the start of a section, but whether there exists a section that 930 * encloses the start of this mapping. 931 * 932 * If we don't already have the section addresses, and we successfully 933 * get them, then we cache them in case we come here again. 934 */ 935 if (fptr->file_saddrs == NULL && 936 (fptr->file_saddrs = get_saddrs(P, 937 fptr->file_map->map_pmap.pr_vaddr, &fptr->file_nsaddrs)) == NULL) 938 return (0); 939 for (i = 0; i < fptr->file_nsaddrs; i += 2) { 940 /* Does this section enclose the start of the mapping? */ 941 if (fptr->file_saddrs[i] <= pmap->pr_vaddr && 942 fptr->file_saddrs[i + 1] > pmap->pr_vaddr) 943 return (1); 944 } 945 946 return (0); 947 } 948 949 /* 950 * Find or build the symbol table for the given mapping. 951 */ 952 static file_info_t * 953 build_map_symtab(struct ps_prochandle *P, map_info_t *mptr) 954 { 955 prmap_t *pmap = &mptr->map_pmap; 956 file_info_t *fptr; 957 uint_t i; 958 959 if ((fptr = mptr->map_file) != NULL) { 960 Pbuild_file_symtab(P, fptr); 961 return (fptr); 962 } 963 964 if (pmap->pr_mapname[0] == '\0') 965 return (NULL); 966 967 /* 968 * Attempt to find a matching file. 969 * (A file can be mapped at several different addresses.) 970 */ 971 for (i = 0, fptr = list_next(&P->file_head); i < P->num_files; 972 i++, fptr = list_next(fptr)) { 973 if (strcmp(fptr->file_pname, pmap->pr_mapname) == 0 && 974 fptr->file_lo && is_mapping_in_file(P, mptr, fptr)) { 975 mptr->map_file = fptr; 976 fptr->file_ref++; 977 Pbuild_file_symtab(P, fptr); 978 return (fptr); 979 } 980 } 981 982 /* 983 * If we need to create a new file_info structure, iterate 984 * through the load objects in order to attempt to connect 985 * this new file with its primary text mapping. We again 986 * need to handle ld.so as a special case because we need 987 * to be able to bootstrap librtld_db. 988 */ 989 if ((fptr = file_info_new(P, mptr)) == NULL) 990 return (NULL); 991 992 if (P->map_ldso != mptr) { 993 if (P->rap != NULL) 994 (void) rd_loadobj_iter(P->rap, map_iter, P); 995 else 996 (void) Prd_agent(P); 997 } else { 998 fptr->file_map = mptr; 999 } 1000 1001 /* 1002 * If librtld_db wasn't able to help us connect the file to a primary 1003 * text mapping, set file_map to the current mapping because we require 1004 * fptr->file_map to be set in Pbuild_file_symtab. librtld_db may be 1005 * unaware of what's going on in the rare case that a legitimate ELF 1006 * file has been mmap(2)ed into the process address space *without* 1007 * the use of dlopen(3x). 1008 */ 1009 if (fptr->file_map == NULL) 1010 fptr->file_map = mptr; 1011 1012 Pbuild_file_symtab(P, fptr); 1013 1014 return (fptr); 1015 } 1016 1017 static int 1018 read_ehdr32(struct ps_prochandle *P, Elf32_Ehdr *ehdr, uint_t *phnum, 1019 uintptr_t addr) 1020 { 1021 if (Pread(P, ehdr, sizeof (*ehdr), addr) != sizeof (*ehdr)) 1022 return (-1); 1023 1024 if (ehdr->e_ident[EI_MAG0] != ELFMAG0 || 1025 ehdr->e_ident[EI_MAG1] != ELFMAG1 || 1026 ehdr->e_ident[EI_MAG2] != ELFMAG2 || 1027 ehdr->e_ident[EI_MAG3] != ELFMAG3 || 1028 ehdr->e_ident[EI_CLASS] != ELFCLASS32 || 1029 #ifdef _BIG_ENDIAN 1030 ehdr->e_ident[EI_DATA] != ELFDATA2MSB || 1031 #else 1032 ehdr->e_ident[EI_DATA] != ELFDATA2LSB || 1033 #endif 1034 ehdr->e_ident[EI_VERSION] != EV_CURRENT) 1035 return (-1); 1036 1037 if ((*phnum = ehdr->e_phnum) == PN_XNUM) { 1038 Elf32_Shdr shdr0; 1039 1040 if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) || 1041 Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) != 1042 sizeof (shdr0)) 1043 return (-1); 1044 1045 if (shdr0.sh_info != 0) 1046 *phnum = shdr0.sh_info; 1047 } 1048 1049 return (0); 1050 } 1051 1052 static int 1053 read_dynamic_phdr32(struct ps_prochandle *P, const Elf32_Ehdr *ehdr, 1054 uint_t phnum, Elf32_Phdr *phdr, uintptr_t addr) 1055 { 1056 uint_t i; 1057 1058 for (i = 0; i < phnum; i++) { 1059 uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize; 1060 if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr)) 1061 return (-1); 1062 1063 if (phdr->p_type == PT_DYNAMIC) 1064 return (0); 1065 } 1066 1067 return (-1); 1068 } 1069 1070 #ifdef _LP64 1071 static int 1072 read_ehdr64(struct ps_prochandle *P, Elf64_Ehdr *ehdr, uint_t *phnum, 1073 uintptr_t addr) 1074 { 1075 if (Pread(P, ehdr, sizeof (Elf64_Ehdr), addr) != sizeof (Elf64_Ehdr)) 1076 return (-1); 1077 1078 if (ehdr->e_ident[EI_MAG0] != ELFMAG0 || 1079 ehdr->e_ident[EI_MAG1] != ELFMAG1 || 1080 ehdr->e_ident[EI_MAG2] != ELFMAG2 || 1081 ehdr->e_ident[EI_MAG3] != ELFMAG3 || 1082 ehdr->e_ident[EI_CLASS] != ELFCLASS64 || 1083 #ifdef _BIG_ENDIAN 1084 ehdr->e_ident[EI_DATA] != ELFDATA2MSB || 1085 #else 1086 ehdr->e_ident[EI_DATA] != ELFDATA2LSB || 1087 #endif 1088 ehdr->e_ident[EI_VERSION] != EV_CURRENT) 1089 return (-1); 1090 1091 if ((*phnum = ehdr->e_phnum) == PN_XNUM) { 1092 Elf64_Shdr shdr0; 1093 1094 if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) || 1095 Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) != 1096 sizeof (shdr0)) 1097 return (-1); 1098 1099 if (shdr0.sh_info != 0) 1100 *phnum = shdr0.sh_info; 1101 } 1102 1103 return (0); 1104 } 1105 1106 static int 1107 read_dynamic_phdr64(struct ps_prochandle *P, const Elf64_Ehdr *ehdr, 1108 uint_t phnum, Elf64_Phdr *phdr, uintptr_t addr) 1109 { 1110 uint_t i; 1111 1112 for (i = 0; i < phnum; i++) { 1113 uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize; 1114 if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr)) 1115 return (-1); 1116 1117 if (phdr->p_type == PT_DYNAMIC) 1118 return (0); 1119 } 1120 1121 return (-1); 1122 } 1123 #endif /* _LP64 */ 1124 1125 /* 1126 * The text segment for each load object contains the elf header and 1127 * program headers. We can use this information to determine if the 1128 * file that corresponds to the load object is the same file that 1129 * was loaded into the process's address space. There can be a discrepency 1130 * if a file is recompiled after the process is started or if the target 1131 * represents a core file from a differently configured system -- two 1132 * common examples. The DT_CHECKSUM entry in the dynamic section 1133 * provides an easy method of comparison. It is important to note that 1134 * the dynamic section usually lives in the data segment, but the meta 1135 * data we use to find the dynamic section lives in the text segment so 1136 * if either of those segments is absent we can't proceed. 1137 * 1138 * We're looking through the elf file for several items: the symbol tables 1139 * (both dynsym and symtab), the procedure linkage table (PLT) base, 1140 * size, and relocation base, and the CTF information. Most of this can 1141 * be recovered from the loaded image of the file itself, the exceptions 1142 * being the symtab and CTF data. 1143 * 1144 * First we try to open the file that we think corresponds to the load 1145 * object, if the DT_CHECKSUM values match, we're all set, and can simply 1146 * recover all the information we need from the file. If the values of 1147 * DT_CHECKSUM don't match, or if we can't access the file for whatever 1148 * reasaon, we fake up a elf file to use in its stead. If we can't read 1149 * the elf data in the process's address space, we fall back to using 1150 * the file even though it may give inaccurate information. 1151 * 1152 * The elf file that we fake up has to consist of sections for the 1153 * dynsym, the PLT and the dynamic section. Note that in the case of a 1154 * core file, we'll get the CTF data in the file_info_t later on from 1155 * a section embedded the core file (if it's present). 1156 * 1157 * file_differs() conservatively looks for mismatched files, identifying 1158 * a match when there is any ambiguity (since that's the legacy behavior). 1159 */ 1160 static int 1161 file_differs(struct ps_prochandle *P, Elf *elf, file_info_t *fptr) 1162 { 1163 Elf_Scn *scn; 1164 GElf_Shdr shdr; 1165 GElf_Dyn dyn; 1166 Elf_Data *data; 1167 uint_t i, ndyn; 1168 GElf_Xword cksum; 1169 uintptr_t addr; 1170 1171 if (fptr->file_map == NULL) 1172 return (0); 1173 1174 if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) != 1175 (CC_CONTENT_TEXT | CC_CONTENT_DATA)) 1176 return (0); 1177 1178 /* 1179 * First, we find the checksum value in the elf file. 1180 */ 1181 scn = NULL; 1182 while ((scn = elf_nextscn(elf, scn)) != NULL) { 1183 if (gelf_getshdr(scn, &shdr) != NULL && 1184 shdr.sh_type == SHT_DYNAMIC) 1185 goto found_shdr; 1186 } 1187 return (0); 1188 1189 found_shdr: 1190 if ((data = elf_getdata(scn, NULL)) == NULL) 1191 return (0); 1192 1193 if (P->status.pr_dmodel == PR_MODEL_ILP32) 1194 ndyn = shdr.sh_size / sizeof (Elf32_Dyn); 1195 #ifdef _LP64 1196 else if (P->status.pr_dmodel == PR_MODEL_LP64) 1197 ndyn = shdr.sh_size / sizeof (Elf64_Dyn); 1198 #endif 1199 else 1200 return (0); 1201 1202 for (i = 0; i < ndyn; i++) { 1203 if (gelf_getdyn(data, i, &dyn) != NULL && 1204 dyn.d_tag == DT_CHECKSUM) 1205 goto found_cksum; 1206 } 1207 1208 /* 1209 * The in-memory ELF has no DT_CHECKSUM section, but we will report it 1210 * as matching the file anyhow. 1211 */ 1212 return (0); 1213 1214 found_cksum: 1215 cksum = dyn.d_un.d_val; 1216 dprintf("elf cksum value is %llx\n", (u_longlong_t)cksum); 1217 1218 /* 1219 * Get the base of the text mapping that corresponds to this file. 1220 */ 1221 addr = fptr->file_map->map_pmap.pr_vaddr; 1222 1223 if (P->status.pr_dmodel == PR_MODEL_ILP32) { 1224 Elf32_Ehdr ehdr; 1225 Elf32_Phdr phdr; 1226 Elf32_Dyn dync, *dynp; 1227 uint_t phnum, i; 1228 1229 if (read_ehdr32(P, &ehdr, &phnum, addr) != 0 || 1230 read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0) 1231 return (0); 1232 1233 if (ehdr.e_type == ET_DYN) 1234 phdr.p_vaddr += addr; 1235 if ((dynp = malloc(phdr.p_filesz)) == NULL) 1236 return (0); 1237 dync.d_tag = DT_NULL; 1238 if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) != 1239 phdr.p_filesz) { 1240 free(dynp); 1241 return (0); 1242 } 1243 1244 for (i = 0; i < phdr.p_filesz / sizeof (Elf32_Dyn); i++) { 1245 if (dynp[i].d_tag == DT_CHECKSUM) 1246 dync = dynp[i]; 1247 } 1248 1249 free(dynp); 1250 1251 if (dync.d_tag != DT_CHECKSUM) 1252 return (0); 1253 1254 dprintf("image cksum value is %llx\n", 1255 (u_longlong_t)dync.d_un.d_val); 1256 return (dync.d_un.d_val != cksum); 1257 #ifdef _LP64 1258 } else if (P->status.pr_dmodel == PR_MODEL_LP64) { 1259 Elf64_Ehdr ehdr; 1260 Elf64_Phdr phdr; 1261 Elf64_Dyn dync, *dynp; 1262 uint_t phnum, i; 1263 1264 if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 || 1265 read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0) 1266 return (0); 1267 1268 if (ehdr.e_type == ET_DYN) 1269 phdr.p_vaddr += addr; 1270 if ((dynp = malloc(phdr.p_filesz)) == NULL) 1271 return (0); 1272 dync.d_tag = DT_NULL; 1273 if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) != 1274 phdr.p_filesz) { 1275 free(dynp); 1276 return (0); 1277 } 1278 1279 for (i = 0; i < phdr.p_filesz / sizeof (Elf64_Dyn); i++) { 1280 if (dynp[i].d_tag == DT_CHECKSUM) 1281 dync = dynp[i]; 1282 } 1283 1284 free(dynp); 1285 1286 if (dync.d_tag != DT_CHECKSUM) 1287 return (0); 1288 1289 dprintf("image cksum value is %llx\n", 1290 (u_longlong_t)dync.d_un.d_val); 1291 return (dync.d_un.d_val != cksum); 1292 #endif /* _LP64 */ 1293 } 1294 1295 return (0); 1296 } 1297 1298 /* 1299 * Read data from the specified process and construct an in memory 1300 * image of an ELF file that represents it well enough to let 1301 * us probe it for information. 1302 */ 1303 static Elf * 1304 fake_elf(struct ps_prochandle *P, file_info_t *fptr) 1305 { 1306 Elf *elf; 1307 uintptr_t addr; 1308 uint_t phnum; 1309 1310 if (fptr->file_map == NULL) 1311 return (NULL); 1312 1313 if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) != 1314 (CC_CONTENT_TEXT | CC_CONTENT_DATA)) 1315 return (NULL); 1316 1317 addr = fptr->file_map->map_pmap.pr_vaddr; 1318 1319 if (P->status.pr_dmodel == PR_MODEL_ILP32) { 1320 Elf32_Ehdr ehdr; 1321 Elf32_Phdr phdr; 1322 1323 if ((read_ehdr32(P, &ehdr, &phnum, addr) != 0) || 1324 read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0) 1325 return (NULL); 1326 1327 elf = fake_elf32(P, fptr, addr, &ehdr, phnum, &phdr); 1328 #ifdef _LP64 1329 } else { 1330 Elf64_Ehdr ehdr; 1331 Elf64_Phdr phdr; 1332 1333 if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 || 1334 read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0) 1335 return (NULL); 1336 1337 elf = fake_elf64(P, fptr, addr, &ehdr, phnum, &phdr); 1338 #endif 1339 } 1340 1341 return (elf); 1342 } 1343 1344 /* 1345 * We wouldn't need these if qsort(3C) took an argument for the callback... 1346 */ 1347 static mutex_t sort_mtx = DEFAULTMUTEX; 1348 static char *sort_strs; 1349 static GElf_Sym *sort_syms; 1350 1351 int 1352 byaddr_cmp_common(GElf_Sym *a, char *aname, GElf_Sym *b, char *bname) 1353 { 1354 if (a->st_value < b->st_value) 1355 return (-1); 1356 if (a->st_value > b->st_value) 1357 return (1); 1358 1359 /* 1360 * Prefer the function to the non-function. 1361 */ 1362 if (GELF_ST_TYPE(a->st_info) != GELF_ST_TYPE(b->st_info)) { 1363 if (GELF_ST_TYPE(a->st_info) == STT_FUNC) 1364 return (-1); 1365 if (GELF_ST_TYPE(b->st_info) == STT_FUNC) 1366 return (1); 1367 } 1368 1369 /* 1370 * Prefer the weak or strong global symbol to the local symbol. 1371 */ 1372 if (GELF_ST_BIND(a->st_info) != GELF_ST_BIND(b->st_info)) { 1373 if (GELF_ST_BIND(b->st_info) == STB_LOCAL) 1374 return (-1); 1375 if (GELF_ST_BIND(a->st_info) == STB_LOCAL) 1376 return (1); 1377 } 1378 1379 /* 1380 * Prefer the symbol that doesn't begin with a '$' since compilers and 1381 * other symbol generators often use it as a prefix. 1382 */ 1383 if (*bname == '$') 1384 return (-1); 1385 if (*aname == '$') 1386 return (1); 1387 1388 /* 1389 * Prefer the name with fewer leading underscores in the name. 1390 */ 1391 while (*aname == '_' && *bname == '_') { 1392 aname++; 1393 bname++; 1394 } 1395 1396 if (*bname == '_') 1397 return (-1); 1398 if (*aname == '_') 1399 return (1); 1400 1401 /* 1402 * Prefer the symbol with the smaller size. 1403 */ 1404 if (a->st_size < b->st_size) 1405 return (-1); 1406 if (a->st_size > b->st_size) 1407 return (1); 1408 1409 /* 1410 * All other factors being equal, fall back to lexicographic order. 1411 */ 1412 return (strcmp(aname, bname)); 1413 } 1414 1415 static int 1416 byaddr_cmp(const void *aa, const void *bb) 1417 { 1418 GElf_Sym *a = &sort_syms[*(uint_t *)aa]; 1419 GElf_Sym *b = &sort_syms[*(uint_t *)bb]; 1420 char *aname = sort_strs + a->st_name; 1421 char *bname = sort_strs + b->st_name; 1422 1423 return (byaddr_cmp_common(a, aname, b, bname)); 1424 } 1425 1426 static int 1427 byname_cmp(const void *aa, const void *bb) 1428 { 1429 GElf_Sym *a = &sort_syms[*(uint_t *)aa]; 1430 GElf_Sym *b = &sort_syms[*(uint_t *)bb]; 1431 char *aname = sort_strs + a->st_name; 1432 char *bname = sort_strs + b->st_name; 1433 1434 return (strcmp(aname, bname)); 1435 } 1436 1437 /* 1438 * Given a symbol index, look up the corresponding symbol from the 1439 * given symbol table. 1440 * 1441 * This function allows the caller to treat the symbol table as a single 1442 * logical entity even though there may be 2 actual ELF symbol tables 1443 * involved. See the comments in Pcontrol.h for details. 1444 */ 1445 static GElf_Sym * 1446 symtab_getsym(sym_tbl_t *symtab, int ndx, GElf_Sym *dst) 1447 { 1448 /* If index is in range of primary symtab, look it up there */ 1449 if (ndx >= symtab->sym_symn_aux) { 1450 return (gelf_getsym(symtab->sym_data_pri, 1451 ndx - symtab->sym_symn_aux, dst)); 1452 } 1453 1454 /* Not in primary: Look it up in the auxiliary symtab */ 1455 return (gelf_getsym(symtab->sym_data_aux, ndx, dst)); 1456 } 1457 1458 void 1459 optimize_symtab(sym_tbl_t *symtab) 1460 { 1461 GElf_Sym *symp, *syms; 1462 uint_t i, *indexa, *indexb; 1463 size_t symn, strsz, count; 1464 1465 if (symtab == NULL || symtab->sym_data_pri == NULL || 1466 symtab->sym_byaddr != NULL) 1467 return; 1468 1469 symn = symtab->sym_symn; 1470 strsz = symtab->sym_strsz; 1471 1472 symp = syms = malloc(sizeof (GElf_Sym) * symn); 1473 if (symp == NULL) { 1474 dprintf("optimize_symtab: failed to malloc symbol array"); 1475 return; 1476 } 1477 1478 /* 1479 * First record all the symbols into a table and count up the ones 1480 * that we're interested in. We mark symbols as invalid by setting 1481 * the st_name to an illegal value. 1482 */ 1483 for (i = 0, count = 0; i < symn; i++, symp++) { 1484 if (symtab_getsym(symtab, i, symp) != NULL && 1485 symp->st_name < strsz && 1486 IS_DATA_TYPE(GELF_ST_TYPE(symp->st_info))) 1487 count++; 1488 else 1489 symp->st_name = strsz; 1490 } 1491 1492 /* 1493 * Allocate sufficient space for both tables and populate them 1494 * with the same symbols we just counted. 1495 */ 1496 symtab->sym_count = count; 1497 indexa = symtab->sym_byaddr = calloc(sizeof (uint_t), count); 1498 indexb = symtab->sym_byname = calloc(sizeof (uint_t), count); 1499 if (indexa == NULL || indexb == NULL) { 1500 dprintf( 1501 "optimize_symtab: failed to malloc symbol index arrays"); 1502 symtab->sym_count = 0; 1503 if (indexa != NULL) { /* First alloc succeeded. Free it */ 1504 free(indexa); 1505 symtab->sym_byaddr = NULL; 1506 } 1507 free(syms); 1508 return; 1509 } 1510 for (i = 0, symp = syms; i < symn; i++, symp++) { 1511 if (symp->st_name < strsz) 1512 *indexa++ = *indexb++ = i; 1513 } 1514 1515 /* 1516 * Sort the two tables according to the appropriate criteria. 1517 */ 1518 (void) mutex_lock(&sort_mtx); 1519 sort_strs = symtab->sym_strs; 1520 sort_syms = syms; 1521 1522 qsort(symtab->sym_byaddr, count, sizeof (uint_t), byaddr_cmp); 1523 qsort(symtab->sym_byname, count, sizeof (uint_t), byname_cmp); 1524 1525 sort_strs = NULL; 1526 sort_syms = NULL; 1527 (void) mutex_unlock(&sort_mtx); 1528 1529 free(syms); 1530 } 1531 1532 /* 1533 * Build the symbol table for the given mapped file. 1534 */ 1535 void 1536 Pbuild_file_symtab(struct ps_prochandle *P, file_info_t *fptr) 1537 { 1538 char objectfile[PATH_MAX]; 1539 uint_t i; 1540 1541 GElf_Ehdr ehdr; 1542 GElf_Sym s; 1543 1544 Elf_Data *shdata; 1545 Elf_Scn *scn; 1546 Elf *elf; 1547 size_t nshdrs, shstrndx; 1548 1549 struct { 1550 GElf_Shdr c_shdr; 1551 Elf_Data *c_data; 1552 const char *c_name; 1553 } *cp, *cache = NULL, *dyn = NULL, *plt = NULL, *ctf = NULL; 1554 1555 if (fptr->file_init) 1556 return; /* We've already processed this file */ 1557 1558 /* 1559 * Mark the file_info struct as having the symbol table initialized 1560 * even if we fail below. We tried once; we don't try again. 1561 */ 1562 fptr->file_init = 1; 1563 1564 if (elf_version(EV_CURRENT) == EV_NONE) { 1565 dprintf("libproc ELF version is more recent than libelf\n"); 1566 return; 1567 } 1568 1569 if (P->state == PS_DEAD || P->state == PS_IDLE) { 1570 /* 1571 * If we're a not live, we can't open files from the /proc 1572 * object directory; we have only the mapping and file names 1573 * to guide us. We prefer the file_lname, but need to handle 1574 * the case of it being NULL in order to bootstrap: we first 1575 * come here during rd_new() when the only information we have 1576 * is interpreter name associated with the AT_BASE mapping. 1577 */ 1578 (void) snprintf(objectfile, sizeof (objectfile), "%s", 1579 fptr->file_lname ? fptr->file_lname : fptr->file_pname); 1580 } else { 1581 (void) snprintf(objectfile, sizeof (objectfile), 1582 "%s/%d/object/%s", 1583 procfs_path, (int)P->pid, fptr->file_pname); 1584 } 1585 1586 /* 1587 * Open the object file, create the elf file, and then get the elf 1588 * header and .shstrtab data buffer so we can process sections by 1589 * name. If anything goes wrong try to fake up an elf file from 1590 * the in-core elf image. 1591 */ 1592 if ((fptr->file_fd = open(objectfile, O_RDONLY)) < 0) { 1593 dprintf("Pbuild_file_symtab: failed to open %s: %s\n", 1594 objectfile, strerror(errno)); 1595 1596 if ((elf = fake_elf(P, fptr)) == NULL || 1597 elf_kind(elf) != ELF_K_ELF || 1598 gelf_getehdr(elf, &ehdr) == NULL || 1599 elf_getshnum(elf, &nshdrs) == 0 || 1600 elf_getshstrndx(elf, &shstrndx) == 0 || 1601 (scn = elf_getscn(elf, shstrndx)) == NULL || 1602 (shdata = elf_getdata(scn, NULL)) == NULL) { 1603 dprintf("failed to fake up ELF file\n"); 1604 return; 1605 } 1606 1607 } else if ((elf = elf_begin(fptr->file_fd, ELF_C_READ, NULL)) == NULL || 1608 elf_kind(elf) != ELF_K_ELF || 1609 gelf_getehdr(elf, &ehdr) == NULL || 1610 elf_getshnum(elf, &nshdrs) == 0 || 1611 elf_getshstrndx(elf, &shstrndx) == 0 || 1612 (scn = elf_getscn(elf, shstrndx)) == NULL || 1613 (shdata = elf_getdata(scn, NULL)) == NULL) { 1614 int err = elf_errno(); 1615 1616 dprintf("failed to process ELF file %s: %s\n", 1617 objectfile, (err == 0) ? "<null>" : elf_errmsg(err)); 1618 1619 if ((elf = fake_elf(P, fptr)) == NULL || 1620 elf_kind(elf) != ELF_K_ELF || 1621 gelf_getehdr(elf, &ehdr) == NULL || 1622 elf_getshnum(elf, &nshdrs) == 0 || 1623 elf_getshstrndx(elf, &shstrndx) == 0 || 1624 (scn = elf_getscn(elf, shstrndx)) == NULL || 1625 (shdata = elf_getdata(scn, NULL)) == NULL) { 1626 dprintf("failed to fake up ELF file\n"); 1627 goto bad; 1628 } 1629 1630 } else if (file_differs(P, elf, fptr)) { 1631 Elf *newelf; 1632 1633 /* 1634 * Before we get too excited about this elf file, we'll check 1635 * its checksum value against the value we have in memory. If 1636 * they don't agree, we try to fake up a new elf file and 1637 * proceed with that instead. 1638 */ 1639 1640 dprintf("ELF file %s (%lx) doesn't match in-core image\n", 1641 fptr->file_pname, 1642 (ulong_t)fptr->file_map->map_pmap.pr_vaddr); 1643 1644 if ((newelf = fake_elf(P, fptr)) == NULL || 1645 elf_kind(newelf) != ELF_K_ELF || 1646 gelf_getehdr(newelf, &ehdr) == NULL || 1647 elf_getshnum(newelf, &nshdrs) == 0 || 1648 elf_getshstrndx(newelf, &shstrndx) == 0 || 1649 (scn = elf_getscn(newelf, shstrndx)) == NULL || 1650 (shdata = elf_getdata(scn, NULL)) == NULL) { 1651 dprintf("failed to fake up ELF file\n"); 1652 } else { 1653 (void) elf_end(elf); 1654 elf = newelf; 1655 1656 dprintf("switched to faked up ELF file\n"); 1657 } 1658 } 1659 1660 if ((cache = malloc(nshdrs * sizeof (*cache))) == NULL) { 1661 dprintf("failed to malloc section cache for %s\n", objectfile); 1662 goto bad; 1663 } 1664 1665 dprintf("processing ELF file %s\n", objectfile); 1666 fptr->file_class = ehdr.e_ident[EI_CLASS]; 1667 fptr->file_etype = ehdr.e_type; 1668 fptr->file_elf = elf; 1669 fptr->file_shstrs = shdata->d_buf; 1670 fptr->file_shstrsz = shdata->d_size; 1671 1672 /* 1673 * Iterate through each section, caching its section header, data 1674 * pointer, and name. We use this for handling sh_link values below. 1675 */ 1676 for (cp = cache + 1, scn = NULL; scn = elf_nextscn(elf, scn); cp++) { 1677 if (gelf_getshdr(scn, &cp->c_shdr) == NULL) { 1678 dprintf("Pbuild_file_symtab: Failed to get section " 1679 "header\n"); 1680 goto bad; /* Failed to get section header */ 1681 } 1682 1683 if ((cp->c_data = elf_getdata(scn, NULL)) == NULL) { 1684 dprintf("Pbuild_file_symtab: Failed to get section " 1685 "data\n"); 1686 goto bad; /* Failed to get section data */ 1687 } 1688 1689 if (cp->c_shdr.sh_name >= shdata->d_size) { 1690 dprintf("Pbuild_file_symtab: corrupt section name"); 1691 goto bad; /* Corrupt section name */ 1692 } 1693 1694 cp->c_name = (const char *)shdata->d_buf + cp->c_shdr.sh_name; 1695 } 1696 1697 /* 1698 * Now iterate through the section cache in order to locate info 1699 * for the .symtab, .dynsym, .SUNW_ldynsym, .dynamic, .plt, 1700 * and .SUNW_ctf sections: 1701 */ 1702 for (i = 1, cp = cache + 1; i < nshdrs; i++, cp++) { 1703 GElf_Shdr *shp = &cp->c_shdr; 1704 1705 if (shp->sh_type == SHT_SYMTAB || shp->sh_type == SHT_DYNSYM) { 1706 sym_tbl_t *symp = shp->sh_type == SHT_SYMTAB ? 1707 &fptr->file_symtab : &fptr->file_dynsym; 1708 /* 1709 * It's possible that the we already got the symbol 1710 * table from the core file itself. Either the file 1711 * differs in which case our faked up elf file will 1712 * only contain the dynsym (not the symtab) or the 1713 * file matches in which case we'll just be replacing 1714 * the symbol table we pulled out of the core file 1715 * with an equivalent one. In either case, this 1716 * check isn't essential, but it's a good idea. 1717 */ 1718 if (symp->sym_data_pri == NULL) { 1719 dprintf("Symbol table found for %s\n", 1720 objectfile); 1721 symp->sym_data_pri = cp->c_data; 1722 symp->sym_symn += 1723 shp->sh_size / shp->sh_entsize; 1724 symp->sym_strs = 1725 cache[shp->sh_link].c_data->d_buf; 1726 symp->sym_strsz = 1727 cache[shp->sh_link].c_data->d_size; 1728 symp->sym_hdr_pri = cp->c_shdr; 1729 symp->sym_strhdr = cache[shp->sh_link].c_shdr; 1730 } else { 1731 dprintf("Symbol table already there for %s\n", 1732 objectfile); 1733 } 1734 } else if (shp->sh_type == SHT_SUNW_LDYNSYM) { 1735 /* .SUNW_ldynsym section is auxiliary to .dynsym */ 1736 if (fptr->file_dynsym.sym_data_aux == NULL) { 1737 dprintf(".SUNW_ldynsym symbol table" 1738 " found for %s\n", objectfile); 1739 fptr->file_dynsym.sym_data_aux = cp->c_data; 1740 fptr->file_dynsym.sym_symn_aux = 1741 shp->sh_size / shp->sh_entsize; 1742 fptr->file_dynsym.sym_symn += 1743 fptr->file_dynsym.sym_symn_aux; 1744 fptr->file_dynsym.sym_hdr_aux = cp->c_shdr; 1745 } else { 1746 dprintf(".SUNW_ldynsym symbol table already" 1747 " there for %s\n", objectfile); 1748 } 1749 } else if (shp->sh_type == SHT_DYNAMIC) { 1750 dyn = cp; 1751 } else if (strcmp(cp->c_name, ".plt") == 0) { 1752 plt = cp; 1753 } else if (strcmp(cp->c_name, ".SUNW_ctf") == 0) { 1754 /* 1755 * Skip over bogus CTF sections so they don't come back 1756 * to haunt us later. 1757 */ 1758 if (shp->sh_link == 0 || 1759 shp->sh_link >= nshdrs || 1760 (cache[shp->sh_link].c_shdr.sh_type != SHT_DYNSYM && 1761 cache[shp->sh_link].c_shdr.sh_type != SHT_SYMTAB)) { 1762 dprintf("Bad sh_link %d for " 1763 "CTF\n", shp->sh_link); 1764 continue; 1765 } 1766 ctf = cp; 1767 } 1768 } 1769 1770 /* 1771 * At this point, we've found all the symbol tables we're ever going 1772 * to find: the ones in the loop above and possibly the symtab that 1773 * was included in the core file. Before we perform any lookups, we 1774 * create sorted versions to optimize for lookups. 1775 */ 1776 optimize_symtab(&fptr->file_symtab); 1777 optimize_symtab(&fptr->file_dynsym); 1778 1779 /* 1780 * Fill in the base address of the text mapping for shared libraries. 1781 * This allows us to translate symbols before librtld_db is ready. 1782 */ 1783 if (fptr->file_etype == ET_DYN) { 1784 fptr->file_dyn_base = fptr->file_map->map_pmap.pr_vaddr - 1785 fptr->file_map->map_pmap.pr_offset; 1786 dprintf("setting file_dyn_base for %s to %lx\n", 1787 objectfile, (long)fptr->file_dyn_base); 1788 } 1789 1790 /* 1791 * Record the CTF section information in the file info structure. 1792 */ 1793 if (ctf != NULL) { 1794 fptr->file_ctf_off = ctf->c_shdr.sh_offset; 1795 fptr->file_ctf_size = ctf->c_shdr.sh_size; 1796 if (ctf->c_shdr.sh_link != 0 && 1797 cache[ctf->c_shdr.sh_link].c_shdr.sh_type == SHT_DYNSYM) 1798 fptr->file_ctf_dyn = 1; 1799 } 1800 1801 if (fptr->file_lo == NULL) 1802 goto done; /* Nothing else to do if no load object info */ 1803 1804 /* 1805 * If the object is a shared library and we have a different rl_base 1806 * value, reset file_dyn_base according to librtld_db's information. 1807 */ 1808 if (fptr->file_etype == ET_DYN && 1809 fptr->file_lo->rl_base != fptr->file_dyn_base) { 1810 dprintf("resetting file_dyn_base for %s to %lx\n", 1811 objectfile, (long)fptr->file_lo->rl_base); 1812 fptr->file_dyn_base = fptr->file_lo->rl_base; 1813 } 1814 1815 /* 1816 * Fill in the PLT information for this file if a PLT symbol is found. 1817 */ 1818 if (sym_by_name(&fptr->file_dynsym, "_PROCEDURE_LINKAGE_TABLE_", &s, 1819 NULL) != NULL) { 1820 fptr->file_plt_base = s.st_value + fptr->file_dyn_base; 1821 fptr->file_plt_size = (plt != NULL) ? plt->c_shdr.sh_size : 0; 1822 1823 /* 1824 * Bring the load object up to date; it is the only way the 1825 * user has to access the PLT data. The PLT information in the 1826 * rd_loadobj_t is not set in the call to map_iter() (the 1827 * callback for rd_loadobj_iter) where we set file_lo. 1828 */ 1829 fptr->file_lo->rl_plt_base = fptr->file_plt_base; 1830 fptr->file_lo->rl_plt_size = fptr->file_plt_size; 1831 1832 dprintf("PLT found at %p, size = %lu\n", 1833 (void *)fptr->file_plt_base, (ulong_t)fptr->file_plt_size); 1834 } 1835 1836 /* 1837 * Fill in the PLT information. 1838 */ 1839 if (dyn != NULL) { 1840 uintptr_t dynaddr = dyn->c_shdr.sh_addr + fptr->file_dyn_base; 1841 size_t ndyn = dyn->c_shdr.sh_size / dyn->c_shdr.sh_entsize; 1842 GElf_Dyn d; 1843 1844 for (i = 0; i < ndyn; i++) { 1845 if (gelf_getdyn(dyn->c_data, i, &d) != NULL && 1846 d.d_tag == DT_JMPREL) { 1847 dprintf("DT_JMPREL is %p\n", 1848 (void *)(uintptr_t)d.d_un.d_ptr); 1849 fptr->file_jmp_rel = 1850 d.d_un.d_ptr + fptr->file_dyn_base; 1851 break; 1852 } 1853 } 1854 1855 dprintf("_DYNAMIC found at %p, %lu entries, DT_JMPREL = %p\n", 1856 (void *)dynaddr, (ulong_t)ndyn, (void *)fptr->file_jmp_rel); 1857 } 1858 1859 done: 1860 free(cache); 1861 return; 1862 1863 bad: 1864 if (cache != NULL) 1865 free(cache); 1866 1867 (void) elf_end(elf); 1868 fptr->file_elf = NULL; 1869 if (fptr->file_elfmem != NULL) { 1870 free(fptr->file_elfmem); 1871 fptr->file_elfmem = NULL; 1872 } 1873 (void) close(fptr->file_fd); 1874 fptr->file_fd = -1; 1875 } 1876 1877 /* 1878 * Given a process virtual address, return the map_info_t containing it. 1879 * If none found, return NULL. 1880 */ 1881 map_info_t * 1882 Paddr2mptr(struct ps_prochandle *P, uintptr_t addr) 1883 { 1884 int lo = 0; 1885 int hi = P->map_count - 1; 1886 int mid; 1887 map_info_t *mp; 1888 1889 while (lo <= hi) { 1890 1891 mid = (lo + hi) / 2; 1892 mp = &P->mappings[mid]; 1893 1894 /* check that addr is in [vaddr, vaddr + size) */ 1895 if ((addr - mp->map_pmap.pr_vaddr) < mp->map_pmap.pr_size) 1896 return (mp); 1897 1898 if (addr < mp->map_pmap.pr_vaddr) 1899 hi = mid - 1; 1900 else 1901 lo = mid + 1; 1902 } 1903 1904 return (NULL); 1905 } 1906 1907 /* 1908 * Return the map_info_t for the executable file. 1909 * If not found, return NULL. 1910 */ 1911 static map_info_t * 1912 exec_map(struct ps_prochandle *P) 1913 { 1914 uint_t i; 1915 map_info_t *mptr; 1916 map_info_t *mold = NULL; 1917 file_info_t *fptr; 1918 uintptr_t base; 1919 1920 for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) { 1921 if (mptr->map_pmap.pr_mapname[0] == '\0') 1922 continue; 1923 if (strcmp(mptr->map_pmap.pr_mapname, "a.out") == 0) { 1924 if ((fptr = mptr->map_file) != NULL && 1925 fptr->file_lo != NULL) { 1926 base = fptr->file_lo->rl_base; 1927 if (base >= mptr->map_pmap.pr_vaddr && 1928 base < mptr->map_pmap.pr_vaddr + 1929 mptr->map_pmap.pr_size) /* text space */ 1930 return (mptr); 1931 mold = mptr; /* must be the data */ 1932 continue; 1933 } 1934 /* This is a poor way to test for text space */ 1935 if (!(mptr->map_pmap.pr_mflags & MA_EXEC) || 1936 (mptr->map_pmap.pr_mflags & MA_WRITE)) { 1937 mold = mptr; 1938 continue; 1939 } 1940 return (mptr); 1941 } 1942 } 1943 1944 return (mold); 1945 } 1946 1947 /* 1948 * Given a shared object name, return the map_info_t for it. If no matching 1949 * object is found, return NULL. Normally, the link maps contain the full 1950 * object pathname, e.g. /usr/lib/libc.so.1. We allow the object name to 1951 * take one of the following forms: 1952 * 1953 * 1. An exact match (i.e. a full pathname): "/usr/lib/libc.so.1" 1954 * 2. An exact basename match: "libc.so.1" 1955 * 3. An initial basename match up to a '.' suffix: "libc.so" or "libc" 1956 * 4. The literal string "a.out" is an alias for the executable mapping 1957 * 1958 * The third case is a convenience for callers and may not be necessary. 1959 * 1960 * As the exact same object name may be loaded on different link maps (see 1961 * dlmopen(3DL)), we also allow the caller to resolve the object name by 1962 * specifying a particular link map id. If lmid is PR_LMID_EVERY, the 1963 * first matching name will be returned, regardless of the link map id. 1964 */ 1965 static map_info_t * 1966 object_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *objname) 1967 { 1968 map_info_t *mp; 1969 file_info_t *fp; 1970 size_t objlen; 1971 uint_t i; 1972 1973 /* 1974 * If we have no rtld_db, then always treat a request as one for all 1975 * link maps. 1976 */ 1977 if (P->rap == NULL) 1978 lmid = PR_LMID_EVERY; 1979 1980 /* 1981 * First pass: look for exact matches of the entire pathname or 1982 * basename (cases 1 and 2 above): 1983 */ 1984 for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) { 1985 1986 if (mp->map_pmap.pr_mapname[0] == '\0' || 1987 (fp = mp->map_file) == NULL || fp->file_lname == NULL) 1988 continue; 1989 1990 if (lmid != PR_LMID_EVERY && 1991 (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident)) 1992 continue; 1993 1994 /* 1995 * If we match, return the primary text mapping; otherwise 1996 * just return the mapping we matched. 1997 */ 1998 if (strcmp(fp->file_lname, objname) == 0 || 1999 strcmp(fp->file_lbase, objname) == 0) 2000 return (fp->file_map ? fp->file_map : mp); 2001 } 2002 2003 objlen = strlen(objname); 2004 2005 /* 2006 * Second pass: look for partial matches (case 3 above): 2007 */ 2008 for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) { 2009 2010 if (mp->map_pmap.pr_mapname[0] == '\0' || 2011 (fp = mp->map_file) == NULL || fp->file_lname == NULL) 2012 continue; 2013 2014 if (lmid != PR_LMID_EVERY && 2015 (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident)) 2016 continue; 2017 2018 /* 2019 * If we match, return the primary text mapping; otherwise 2020 * just return the mapping we matched. 2021 */ 2022 if (strncmp(fp->file_lbase, objname, objlen) == 0 && 2023 fp->file_lbase[objlen] == '.') 2024 return (fp->file_map ? fp->file_map : mp); 2025 } 2026 2027 /* 2028 * One last check: we allow "a.out" to always alias the executable, 2029 * assuming this name was not in use for something else. 2030 */ 2031 if ((lmid == PR_LMID_EVERY || lmid == LM_ID_BASE) && 2032 (strcmp(objname, "a.out") == 0)) 2033 return (P->map_exec); 2034 2035 return (NULL); 2036 } 2037 2038 static map_info_t * 2039 object_name_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name) 2040 { 2041 map_info_t *mptr; 2042 2043 if (!P->info_valid) 2044 Pupdate_maps(P); 2045 2046 if (P->map_exec == NULL && ((mptr = Paddr2mptr(P, 2047 Pgetauxval(P, AT_ENTRY))) != NULL || (mptr = exec_map(P)) != NULL)) 2048 P->map_exec = mptr; 2049 2050 if (P->map_ldso == NULL && (mptr = Paddr2mptr(P, 2051 Pgetauxval(P, AT_BASE))) != NULL) 2052 P->map_ldso = mptr; 2053 2054 if (name == PR_OBJ_EXEC) 2055 mptr = P->map_exec; 2056 else if (name == PR_OBJ_LDSO) 2057 mptr = P->map_ldso; 2058 else if (Prd_agent(P) != NULL || P->state == PS_IDLE) 2059 mptr = object_to_map(P, lmid, name); 2060 else 2061 mptr = NULL; 2062 2063 return (mptr); 2064 } 2065 2066 /* 2067 * When two symbols are found by address, decide which one is to be preferred. 2068 */ 2069 static GElf_Sym * 2070 sym_prefer(GElf_Sym *sym1, char *name1, GElf_Sym *sym2, char *name2) 2071 { 2072 /* 2073 * Prefer the non-NULL symbol. 2074 */ 2075 if (sym1 == NULL) 2076 return (sym2); 2077 if (sym2 == NULL) 2078 return (sym1); 2079 2080 /* 2081 * Defer to the sort ordering... 2082 */ 2083 return (byaddr_cmp_common(sym1, name1, sym2, name2) <= 0 ? sym1 : sym2); 2084 } 2085 2086 /* 2087 * Look up a symbol by address in the specified symbol table. 2088 * Adjustment to 'addr' must already have been made for the 2089 * offset of the symbol if this is a dynamic library symbol table. 2090 */ 2091 static GElf_Sym * 2092 sym_by_addr(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp, uint_t *idp) 2093 { 2094 GElf_Sym sym, osym; 2095 uint_t i, oid, *byaddr = symtab->sym_byaddr; 2096 int min, max, mid, omid, found = 0; 2097 2098 if (symtab->sym_data_pri == NULL || symtab->sym_count == 0) 2099 return (NULL); 2100 2101 min = 0; 2102 max = symtab->sym_count - 1; 2103 osym.st_value = 0; 2104 2105 /* 2106 * We can't return when we've found a match, we have to continue 2107 * searching for the closest matching symbol. 2108 */ 2109 while (min <= max) { 2110 mid = (max + min) / 2; 2111 2112 i = byaddr[mid]; 2113 (void) symtab_getsym(symtab, i, &sym); 2114 2115 if (addr >= sym.st_value && 2116 addr < sym.st_value + sym.st_size && 2117 (!found || sym.st_value > osym.st_value)) { 2118 osym = sym; 2119 omid = mid; 2120 oid = i; 2121 found = 1; 2122 } 2123 2124 if (addr < sym.st_value) 2125 max = mid - 1; 2126 else 2127 min = mid + 1; 2128 } 2129 2130 if (!found) 2131 return (NULL); 2132 2133 /* 2134 * There may be many symbols with identical values so we walk 2135 * backward in the byaddr table to find the best match. 2136 */ 2137 do { 2138 sym = osym; 2139 i = oid; 2140 2141 if (omid == 0) 2142 break; 2143 2144 oid = byaddr[--omid]; 2145 (void) symtab_getsym(symtab, oid, &osym); 2146 } while (addr >= osym.st_value && 2147 addr < sym.st_value + osym.st_size && 2148 osym.st_value == sym.st_value); 2149 2150 *symp = sym; 2151 if (idp != NULL) 2152 *idp = i; 2153 return (symp); 2154 } 2155 2156 /* 2157 * Look up a symbol by name in the specified symbol table. 2158 */ 2159 static GElf_Sym * 2160 sym_by_name(sym_tbl_t *symtab, const char *name, GElf_Sym *symp, uint_t *idp) 2161 { 2162 char *strs = symtab->sym_strs; 2163 uint_t i, *byname = symtab->sym_byname; 2164 int min, mid, max, cmp; 2165 2166 if (symtab->sym_data_pri == NULL || strs == NULL || 2167 symtab->sym_count == 0) 2168 return (NULL); 2169 2170 min = 0; 2171 max = symtab->sym_count - 1; 2172 2173 while (min <= max) { 2174 mid = (max + min) / 2; 2175 2176 i = byname[mid]; 2177 (void) symtab_getsym(symtab, i, symp); 2178 2179 if ((cmp = strcmp(name, strs + symp->st_name)) == 0) { 2180 if (idp != NULL) 2181 *idp = i; 2182 return (symp); 2183 } 2184 2185 if (cmp < 0) 2186 max = mid - 1; 2187 else 2188 min = mid + 1; 2189 } 2190 2191 return (NULL); 2192 } 2193 2194 /* 2195 * Search the process symbol tables looking for a symbol whose 2196 * value to value+size contain the address specified by addr. 2197 * Return values are: 2198 * sym_name_buffer containing the symbol name 2199 * GElf_Sym symbol table entry 2200 * prsyminfo_t ancillary symbol information 2201 * Returns 0 on success, -1 on failure. 2202 */ 2203 int 2204 Pxlookup_by_addr( 2205 struct ps_prochandle *P, 2206 uintptr_t addr, /* process address being sought */ 2207 char *sym_name_buffer, /* buffer for the symbol name */ 2208 size_t bufsize, /* size of sym_name_buffer */ 2209 GElf_Sym *symbolp, /* returned symbol table entry */ 2210 prsyminfo_t *sip) /* returned symbol info */ 2211 { 2212 GElf_Sym *symp; 2213 char *name; 2214 GElf_Sym sym1, *sym1p = NULL; 2215 GElf_Sym sym2, *sym2p = NULL; 2216 char *name1 = NULL; 2217 char *name2 = NULL; 2218 uint_t i1; 2219 uint_t i2; 2220 map_info_t *mptr; 2221 file_info_t *fptr; 2222 2223 (void) Prd_agent(P); 2224 2225 if ((mptr = Paddr2mptr(P, addr)) == NULL || /* no such address */ 2226 (fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */ 2227 fptr->file_elf == NULL) /* not an ELF file */ 2228 return (-1); 2229 2230 /* 2231 * Adjust the address by the load object base address in 2232 * case the address turns out to be in a shared library. 2233 */ 2234 addr -= fptr->file_dyn_base; 2235 2236 /* 2237 * Search both symbol tables, symtab first, then dynsym. 2238 */ 2239 if ((sym1p = sym_by_addr(&fptr->file_symtab, addr, &sym1, &i1)) != NULL) 2240 name1 = fptr->file_symtab.sym_strs + sym1.st_name; 2241 if ((sym2p = sym_by_addr(&fptr->file_dynsym, addr, &sym2, &i2)) != NULL) 2242 name2 = fptr->file_dynsym.sym_strs + sym2.st_name; 2243 2244 if ((symp = sym_prefer(sym1p, name1, sym2p, name2)) == NULL) 2245 return (-1); 2246 2247 name = (symp == sym1p) ? name1 : name2; 2248 if (bufsize > 0) { 2249 (void) strncpy(sym_name_buffer, name, bufsize); 2250 sym_name_buffer[bufsize - 1] = '\0'; 2251 } 2252 2253 *symbolp = *symp; 2254 if (sip != NULL) { 2255 sip->prs_name = bufsize == 0 ? NULL : sym_name_buffer; 2256 sip->prs_object = fptr->file_lbase; 2257 sip->prs_id = (symp == sym1p) ? i1 : i2; 2258 sip->prs_table = (symp == sym1p) ? PR_SYMTAB : PR_DYNSYM; 2259 sip->prs_lmid = (fptr->file_lo == NULL) ? LM_ID_BASE : 2260 fptr->file_lo->rl_lmident; 2261 } 2262 2263 if (GELF_ST_TYPE(symbolp->st_info) != STT_TLS) 2264 symbolp->st_value += fptr->file_dyn_base; 2265 2266 return (0); 2267 } 2268 2269 int 2270 Plookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf, size_t size, 2271 GElf_Sym *symp) 2272 { 2273 return (Pxlookup_by_addr(P, addr, buf, size, symp, NULL)); 2274 } 2275 2276 /* 2277 * Search the process symbol tables looking for a symbol whose name matches the 2278 * specified name and whose object and link map optionally match the specified 2279 * parameters. On success, the function returns 0 and fills in the GElf_Sym 2280 * symbol table entry. On failure, -1 is returned. 2281 */ 2282 int 2283 Pxlookup_by_name( 2284 struct ps_prochandle *P, 2285 Lmid_t lmid, /* link map to match, or -1 for any */ 2286 const char *oname, /* load object name */ 2287 const char *sname, /* symbol name */ 2288 GElf_Sym *symp, /* returned symbol table entry */ 2289 prsyminfo_t *sip) /* returned symbol info */ 2290 { 2291 map_info_t *mptr; 2292 file_info_t *fptr; 2293 int cnt; 2294 2295 GElf_Sym sym; 2296 prsyminfo_t si; 2297 int rv = -1; 2298 uint_t id; 2299 2300 if (oname == PR_OBJ_EVERY) { 2301 /* create all the file_info_t's for all the mappings */ 2302 (void) Prd_agent(P); 2303 cnt = P->num_files; 2304 fptr = list_next(&P->file_head); 2305 } else { 2306 cnt = 1; 2307 if ((mptr = object_name_to_map(P, lmid, oname)) == NULL || 2308 (fptr = build_map_symtab(P, mptr)) == NULL) 2309 return (-1); 2310 } 2311 2312 /* 2313 * Iterate through the loaded object files and look for the symbol 2314 * name in the .symtab and .dynsym of each. If we encounter a match 2315 * with SHN_UNDEF, keep looking in hopes of finding a better match. 2316 * This means that a name such as "puts" will match the puts function 2317 * in libc instead of matching the puts PLT entry in the a.out file. 2318 */ 2319 for (; cnt > 0; cnt--, fptr = list_next(fptr)) { 2320 Pbuild_file_symtab(P, fptr); 2321 2322 if (fptr->file_elf == NULL) 2323 continue; 2324 2325 if (lmid != PR_LMID_EVERY && fptr->file_lo != NULL && 2326 lmid != fptr->file_lo->rl_lmident) 2327 continue; 2328 2329 if (fptr->file_symtab.sym_data_pri != NULL && 2330 sym_by_name(&fptr->file_symtab, sname, symp, &id)) { 2331 if (sip != NULL) { 2332 sip->prs_id = id; 2333 sip->prs_table = PR_SYMTAB; 2334 sip->prs_object = oname; 2335 sip->prs_name = sname; 2336 sip->prs_lmid = fptr->file_lo == NULL ? 2337 LM_ID_BASE : fptr->file_lo->rl_lmident; 2338 } 2339 } else if (fptr->file_dynsym.sym_data_pri != NULL && 2340 sym_by_name(&fptr->file_dynsym, sname, symp, &id)) { 2341 if (sip != NULL) { 2342 sip->prs_id = id; 2343 sip->prs_table = PR_DYNSYM; 2344 sip->prs_object = oname; 2345 sip->prs_name = sname; 2346 sip->prs_lmid = fptr->file_lo == NULL ? 2347 LM_ID_BASE : fptr->file_lo->rl_lmident; 2348 } 2349 } else { 2350 continue; 2351 } 2352 2353 if (GELF_ST_TYPE(symp->st_info) != STT_TLS) 2354 symp->st_value += fptr->file_dyn_base; 2355 2356 if (symp->st_shndx != SHN_UNDEF) 2357 return (0); 2358 2359 if (rv != 0) { 2360 if (sip != NULL) 2361 si = *sip; 2362 sym = *symp; 2363 rv = 0; 2364 } 2365 } 2366 2367 if (rv == 0) { 2368 if (sip != NULL) 2369 *sip = si; 2370 *symp = sym; 2371 } 2372 2373 return (rv); 2374 } 2375 2376 /* 2377 * Search the process symbol tables looking for a symbol whose name matches the 2378 * specified name, but without any restriction on the link map id. 2379 */ 2380 int 2381 Plookup_by_name(struct ps_prochandle *P, const char *object, 2382 const char *symbol, GElf_Sym *symp) 2383 { 2384 return (Pxlookup_by_name(P, PR_LMID_EVERY, object, symbol, symp, NULL)); 2385 } 2386 2387 /* 2388 * Iterate over the process's address space mappings. 2389 */ 2390 int 2391 Pmapping_iter(struct ps_prochandle *P, proc_map_f *func, void *cd) 2392 { 2393 map_info_t *mptr; 2394 file_info_t *fptr; 2395 char *object_name; 2396 int rc = 0; 2397 int i; 2398 2399 /* create all the file_info_t's for all the mappings */ 2400 (void) Prd_agent(P); 2401 2402 for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) { 2403 if ((fptr = mptr->map_file) == NULL) 2404 object_name = NULL; 2405 else 2406 object_name = fptr->file_lname; 2407 if ((rc = func(cd, &mptr->map_pmap, object_name)) != 0) 2408 return (rc); 2409 } 2410 return (0); 2411 } 2412 2413 /* 2414 * Iterate over the process's mapped objects. 2415 */ 2416 int 2417 Pobject_iter(struct ps_prochandle *P, proc_map_f *func, void *cd) 2418 { 2419 map_info_t *mptr; 2420 file_info_t *fptr; 2421 uint_t cnt; 2422 int rc = 0; 2423 2424 (void) Prd_agent(P); /* create file_info_t's for all the mappings */ 2425 Pupdate_maps(P); 2426 2427 for (cnt = P->num_files, fptr = list_next(&P->file_head); 2428 cnt; cnt--, fptr = list_next(fptr)) { 2429 2430 const char *lname = fptr->file_lname ? fptr->file_lname : ""; 2431 2432 if ((mptr = fptr->file_map) == NULL) 2433 continue; 2434 2435 if ((rc = func(cd, &mptr->map_pmap, lname)) != 0) 2436 return (rc); 2437 } 2438 return (0); 2439 } 2440 2441 /* 2442 * Given a virtual address, return the name of the underlying 2443 * mapped object (file), as provided by the dynamic linker. 2444 * Return NULL on failure (no underlying shared library). 2445 */ 2446 char * 2447 Pobjname(struct ps_prochandle *P, uintptr_t addr, 2448 char *buffer, size_t bufsize) 2449 { 2450 map_info_t *mptr; 2451 file_info_t *fptr; 2452 2453 /* create all the file_info_t's for all the mappings */ 2454 (void) Prd_agent(P); 2455 2456 if ((mptr = Paddr2mptr(P, addr)) != NULL && 2457 (fptr = mptr->map_file) != NULL && 2458 fptr->file_lname != NULL) { 2459 (void) strncpy(buffer, fptr->file_lname, bufsize); 2460 if (strlen(fptr->file_lname) >= bufsize) 2461 buffer[bufsize-1] = '\0'; 2462 return (buffer); 2463 } 2464 return (NULL); 2465 } 2466 2467 /* 2468 * Given a virtual address, return the link map id of the underlying mapped 2469 * object (file), as provided by the dynamic linker. Return -1 on failure. 2470 */ 2471 int 2472 Plmid(struct ps_prochandle *P, uintptr_t addr, Lmid_t *lmidp) 2473 { 2474 map_info_t *mptr; 2475 file_info_t *fptr; 2476 2477 /* create all the file_info_t's for all the mappings */ 2478 (void) Prd_agent(P); 2479 2480 if ((mptr = Paddr2mptr(P, addr)) != NULL && 2481 (fptr = mptr->map_file) != NULL && fptr->file_lo != NULL) { 2482 *lmidp = fptr->file_lo->rl_lmident; 2483 return (0); 2484 } 2485 2486 return (-1); 2487 } 2488 2489 /* 2490 * Given an object name and optional lmid, iterate over the object's symbols. 2491 * If which == PR_SYMTAB, search the normal symbol table. 2492 * If which == PR_DYNSYM, search the dynamic symbol table. 2493 */ 2494 static int 2495 Psymbol_iter_com(struct ps_prochandle *P, Lmid_t lmid, const char *object_name, 2496 int which, int mask, pr_order_t order, proc_xsym_f *func, void *cd) 2497 { 2498 GElf_Sym sym; 2499 GElf_Shdr shdr; 2500 map_info_t *mptr; 2501 file_info_t *fptr; 2502 sym_tbl_t *symtab; 2503 size_t symn; 2504 const char *strs; 2505 size_t strsz; 2506 prsyminfo_t si; 2507 int rv; 2508 uint_t *map, i, count, ndx; 2509 2510 if ((mptr = object_name_to_map(P, lmid, object_name)) == NULL) 2511 return (-1); 2512 2513 if ((fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */ 2514 fptr->file_elf == NULL) /* not an ELF file */ 2515 return (-1); 2516 2517 /* 2518 * Search the specified symbol table. 2519 */ 2520 switch (which) { 2521 case PR_SYMTAB: 2522 symtab = &fptr->file_symtab; 2523 si.prs_table = PR_SYMTAB; 2524 break; 2525 case PR_DYNSYM: 2526 symtab = &fptr->file_dynsym; 2527 si.prs_table = PR_DYNSYM; 2528 break; 2529 default: 2530 return (-1); 2531 } 2532 2533 si.prs_object = object_name; 2534 si.prs_lmid = fptr->file_lo == NULL ? 2535 LM_ID_BASE : fptr->file_lo->rl_lmident; 2536 2537 symn = symtab->sym_symn; 2538 strs = symtab->sym_strs; 2539 strsz = symtab->sym_strsz; 2540 2541 switch (order) { 2542 case PRO_NATURAL: 2543 map = NULL; 2544 count = symn; 2545 break; 2546 case PRO_BYNAME: 2547 map = symtab->sym_byname; 2548 count = symtab->sym_count; 2549 break; 2550 case PRO_BYADDR: 2551 map = symtab->sym_byaddr; 2552 count = symtab->sym_count; 2553 break; 2554 default: 2555 return (-1); 2556 } 2557 2558 if (symtab->sym_data_pri == NULL || strs == NULL || count == 0) 2559 return (-1); 2560 2561 rv = 0; 2562 2563 for (i = 0; i < count; i++) { 2564 ndx = map == NULL ? i : map[i]; 2565 if (symtab_getsym(symtab, ndx, &sym) != NULL) { 2566 uint_t s_bind, s_type, type; 2567 2568 if (sym.st_name >= strsz) /* invalid st_name */ 2569 continue; 2570 2571 s_bind = GELF_ST_BIND(sym.st_info); 2572 s_type = GELF_ST_TYPE(sym.st_info); 2573 2574 /* 2575 * In case you haven't already guessed, this relies on 2576 * the bitmask used in <libproc.h> for encoding symbol 2577 * type and binding matching the order of STB and STT 2578 * constants in <sys/elf.h>. ELF can't change without 2579 * breaking binary compatibility, so I think this is 2580 * reasonably fair game. 2581 */ 2582 if (s_bind < STB_NUM && s_type < STT_NUM) { 2583 type = (1 << (s_type + 8)) | (1 << s_bind); 2584 if ((type & ~mask) != 0) 2585 continue; 2586 } else 2587 continue; /* Invalid type or binding */ 2588 2589 if (GELF_ST_TYPE(sym.st_info) != STT_TLS) 2590 sym.st_value += fptr->file_dyn_base; 2591 2592 si.prs_name = strs + sym.st_name; 2593 2594 /* 2595 * If symbol's type is STT_SECTION, then try to lookup 2596 * the name of the corresponding section. 2597 */ 2598 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && 2599 fptr->file_shstrs != NULL && 2600 gelf_getshdr(elf_getscn(fptr->file_elf, 2601 sym.st_shndx), &shdr) != NULL && 2602 shdr.sh_name != 0 && 2603 shdr.sh_name < fptr->file_shstrsz) 2604 si.prs_name = fptr->file_shstrs + shdr.sh_name; 2605 2606 si.prs_id = ndx; 2607 if ((rv = func(cd, &sym, si.prs_name, &si)) != 0) 2608 break; 2609 } 2610 } 2611 2612 return (rv); 2613 } 2614 2615 int 2616 Pxsymbol_iter(struct ps_prochandle *P, Lmid_t lmid, const char *object_name, 2617 int which, int mask, proc_xsym_f *func, void *cd) 2618 { 2619 return (Psymbol_iter_com(P, lmid, object_name, which, mask, 2620 PRO_NATURAL, func, cd)); 2621 } 2622 2623 int 2624 Psymbol_iter_by_lmid(struct ps_prochandle *P, Lmid_t lmid, 2625 const char *object_name, int which, int mask, proc_sym_f *func, void *cd) 2626 { 2627 return (Psymbol_iter_com(P, lmid, object_name, which, mask, 2628 PRO_NATURAL, (proc_xsym_f *)func, cd)); 2629 } 2630 2631 int 2632 Psymbol_iter(struct ps_prochandle *P, 2633 const char *object_name, int which, int mask, proc_sym_f *func, void *cd) 2634 { 2635 return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask, 2636 PRO_NATURAL, (proc_xsym_f *)func, cd)); 2637 } 2638 2639 int 2640 Psymbol_iter_by_addr(struct ps_prochandle *P, 2641 const char *object_name, int which, int mask, proc_sym_f *func, void *cd) 2642 { 2643 return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask, 2644 PRO_BYADDR, (proc_xsym_f *)func, cd)); 2645 } 2646 2647 int 2648 Psymbol_iter_by_name(struct ps_prochandle *P, 2649 const char *object_name, int which, int mask, proc_sym_f *func, void *cd) 2650 { 2651 return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask, 2652 PRO_BYNAME, (proc_xsym_f *)func, cd)); 2653 } 2654 2655 /* 2656 * Get the platform string from the core file if we have it; 2657 * just perform the system call for the caller if this is a live process. 2658 */ 2659 char * 2660 Pplatform(struct ps_prochandle *P, char *s, size_t n) 2661 { 2662 if (P->state == PS_IDLE) { 2663 errno = ENODATA; 2664 return (NULL); 2665 } 2666 2667 if (P->state == PS_DEAD) { 2668 if (P->core->core_platform == NULL) { 2669 errno = ENODATA; 2670 return (NULL); 2671 } 2672 (void) strncpy(s, P->core->core_platform, n - 1); 2673 s[n - 1] = '\0'; 2674 2675 } else if (sysinfo(SI_PLATFORM, s, n) == -1) 2676 return (NULL); 2677 2678 return (s); 2679 } 2680 2681 /* 2682 * Get the uname(2) information from the core file if we have it; 2683 * just perform the system call for the caller if this is a live process. 2684 */ 2685 int 2686 Puname(struct ps_prochandle *P, struct utsname *u) 2687 { 2688 if (P->state == PS_IDLE) { 2689 errno = ENODATA; 2690 return (-1); 2691 } 2692 2693 if (P->state == PS_DEAD) { 2694 if (P->core->core_uts == NULL) { 2695 errno = ENODATA; 2696 return (-1); 2697 } 2698 (void) memcpy(u, P->core->core_uts, sizeof (struct utsname)); 2699 return (0); 2700 } 2701 return (uname(u)); 2702 } 2703 2704 /* 2705 * Get the zone name from the core file if we have it; look up the 2706 * name based on the zone id if this is a live process. 2707 */ 2708 char * 2709 Pzonename(struct ps_prochandle *P, char *s, size_t n) 2710 { 2711 if (P->state == PS_IDLE) { 2712 errno = ENODATA; 2713 return (NULL); 2714 } 2715 2716 if (P->state == PS_DEAD) { 2717 if (P->core->core_zonename == NULL) { 2718 errno = ENODATA; 2719 return (NULL); 2720 } 2721 (void) strlcpy(s, P->core->core_zonename, n); 2722 } else { 2723 if (getzonenamebyid(P->status.pr_zoneid, s, n) < 0) 2724 return (NULL); 2725 s[n - 1] = '\0'; 2726 } 2727 return (s); 2728 } 2729 2730 /* 2731 * Called from Pcreate(), Pgrab(), and Pfgrab_core() to initialize 2732 * the symbol table heads in the new ps_prochandle. 2733 */ 2734 void 2735 Pinitsym(struct ps_prochandle *P) 2736 { 2737 P->num_files = 0; 2738 list_link(&P->file_head, NULL); 2739 } 2740 2741 /* 2742 * Called from Prelease() to destroy the symbol tables. 2743 * Must be called by the client after an exec() in the victim process. 2744 */ 2745 void 2746 Preset_maps(struct ps_prochandle *P) 2747 { 2748 int i; 2749 2750 if (P->rap != NULL) { 2751 rd_delete(P->rap); 2752 P->rap = NULL; 2753 } 2754 2755 if (P->execname != NULL) { 2756 free(P->execname); 2757 P->execname = NULL; 2758 } 2759 2760 if (P->auxv != NULL) { 2761 free(P->auxv); 2762 P->auxv = NULL; 2763 P->nauxv = 0; 2764 } 2765 2766 for (i = 0; i < P->map_count; i++) 2767 map_info_free(P, &P->mappings[i]); 2768 2769 if (P->mappings != NULL) { 2770 free(P->mappings); 2771 P->mappings = NULL; 2772 } 2773 P->map_count = P->map_alloc = 0; 2774 2775 P->info_valid = 0; 2776 } 2777 2778 typedef struct getenv_data { 2779 char *buf; 2780 size_t bufsize; 2781 const char *search; 2782 size_t searchlen; 2783 } getenv_data_t; 2784 2785 /*ARGSUSED*/ 2786 static int 2787 getenv_func(void *data, struct ps_prochandle *P, uintptr_t addr, 2788 const char *nameval) 2789 { 2790 getenv_data_t *d = data; 2791 size_t len; 2792 2793 if (nameval == NULL) 2794 return (0); 2795 2796 if (d->searchlen < strlen(nameval) && 2797 strncmp(nameval, d->search, d->searchlen) == 0 && 2798 nameval[d->searchlen] == '=') { 2799 len = MIN(strlen(nameval), d->bufsize - 1); 2800 (void) strncpy(d->buf, nameval, len); 2801 d->buf[len] = '\0'; 2802 return (1); 2803 } 2804 2805 return (0); 2806 } 2807 2808 char * 2809 Pgetenv(struct ps_prochandle *P, const char *name, char *buf, size_t buflen) 2810 { 2811 getenv_data_t d; 2812 2813 d.buf = buf; 2814 d.bufsize = buflen; 2815 d.search = name; 2816 d.searchlen = strlen(name); 2817 2818 if (Penv_iter(P, getenv_func, &d) == 1) { 2819 char *equals = strchr(d.buf, '='); 2820 2821 if (equals != NULL) { 2822 (void) memmove(d.buf, equals + 1, 2823 d.buf + buflen - equals - 1); 2824 d.buf[d.buf + buflen - equals] = '\0'; 2825 2826 return (buf); 2827 } 2828 } 2829 2830 return (NULL); 2831 } 2832 2833 /* number of argument or environment pointers to read all at once */ 2834 #define NARG 100 2835 2836 int 2837 Penv_iter(struct ps_prochandle *P, proc_env_f *func, void *data) 2838 { 2839 const psinfo_t *psp; 2840 uintptr_t envpoff; 2841 GElf_Sym sym; 2842 int ret; 2843 char *buf, *nameval; 2844 size_t buflen; 2845 2846 int nenv = NARG; 2847 long envp[NARG]; 2848 2849 /* 2850 * Attempt to find the "_environ" variable in the process. 2851 * Failing that, use the original value provided by Ppsinfo(). 2852 */ 2853 if ((psp = Ppsinfo(P)) == NULL) 2854 return (-1); 2855 2856 envpoff = psp->pr_envp; /* Default if no _environ found */ 2857 2858 if (Plookup_by_name(P, PR_OBJ_EXEC, "_environ", &sym) == 0) { 2859 if (P->status.pr_dmodel == PR_MODEL_NATIVE) { 2860 if (Pread(P, &envpoff, sizeof (envpoff), 2861 sym.st_value) != sizeof (envpoff)) 2862 envpoff = psp->pr_envp; 2863 } else if (P->status.pr_dmodel == PR_MODEL_ILP32) { 2864 uint32_t envpoff32; 2865 2866 if (Pread(P, &envpoff32, sizeof (envpoff32), 2867 sym.st_value) != sizeof (envpoff32)) 2868 envpoff = psp->pr_envp; 2869 else 2870 envpoff = envpoff32; 2871 } 2872 } 2873 2874 buflen = 128; 2875 buf = malloc(buflen); 2876 2877 ret = 0; 2878 for (;;) { 2879 uintptr_t envoff; 2880 2881 if (nenv == NARG) { 2882 (void) memset(envp, 0, sizeof (envp)); 2883 if (P->status.pr_dmodel == PR_MODEL_NATIVE) { 2884 if (Pread(P, envp, 2885 sizeof (envp), envpoff) <= 0) { 2886 ret = -1; 2887 break; 2888 } 2889 } else if (P->status.pr_dmodel == PR_MODEL_ILP32) { 2890 uint32_t e32[NARG]; 2891 int i; 2892 2893 (void) memset(e32, 0, sizeof (e32)); 2894 if (Pread(P, e32, sizeof (e32), envpoff) <= 0) { 2895 ret = -1; 2896 break; 2897 } 2898 for (i = 0; i < NARG; i++) 2899 envp[i] = e32[i]; 2900 } 2901 nenv = 0; 2902 } 2903 2904 if ((envoff = envp[nenv++]) == NULL) 2905 break; 2906 2907 /* 2908 * Attempt to read the string from the process. 2909 */ 2910 again: 2911 ret = Pread_string(P, buf, buflen, envoff); 2912 2913 if (ret <= 0) { 2914 nameval = NULL; 2915 } else if (ret == buflen - 1) { 2916 free(buf); 2917 /* 2918 * Bail if we have a corrupted environment 2919 */ 2920 if (buflen >= ARG_MAX) 2921 return (-1); 2922 buflen *= 2; 2923 buf = malloc(buflen); 2924 goto again; 2925 } else { 2926 nameval = buf; 2927 } 2928 2929 if ((ret = func(data, P, envoff, nameval)) != 0) 2930 break; 2931 2932 envpoff += (P->status.pr_dmodel == PR_MODEL_LP64)? 8 : 4; 2933 } 2934 2935 free(buf); 2936 2937 return (ret); 2938 } 2939