1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 #include <assert.h> 27 #include <stdio.h> 28 #include <stdlib.h> 29 #include <stddef.h> 30 #include <unistd.h> 31 #include <ctype.h> 32 #include <fcntl.h> 33 #include <string.h> 34 #include <strings.h> 35 #include <memory.h> 36 #include <errno.h> 37 #include <dirent.h> 38 #include <signal.h> 39 #include <limits.h> 40 #include <libgen.h> 41 #include <sys/types.h> 42 #include <sys/stat.h> 43 #include <sys/systeminfo.h> 44 #include <sys/sysmacros.h> 45 46 #include "libproc.h" 47 #include "Pcontrol.h" 48 #include "Putil.h" 49 #include "Psymtab_machelf.h" 50 51 static file_info_t *build_map_symtab(struct ps_prochandle *, map_info_t *); 52 static map_info_t *exec_map(struct ps_prochandle *); 53 static map_info_t *object_to_map(struct ps_prochandle *, Lmid_t, const char *); 54 static map_info_t *object_name_to_map(struct ps_prochandle *, 55 Lmid_t, const char *); 56 static GElf_Sym *sym_by_name(sym_tbl_t *, const char *, GElf_Sym *, uint_t *); 57 static int read_ehdr32(struct ps_prochandle *, Elf32_Ehdr *, uint_t *, 58 uintptr_t); 59 #ifdef _LP64 60 static int read_ehdr64(struct ps_prochandle *, Elf64_Ehdr *, uint_t *, 61 uintptr_t); 62 #endif 63 64 #define DATA_TYPES \ 65 ((1 << STT_OBJECT) | (1 << STT_FUNC) | \ 66 (1 << STT_COMMON) | (1 << STT_TLS)) 67 #define IS_DATA_TYPE(tp) (((1 << (tp)) & DATA_TYPES) != 0) 68 69 #define MA_RWX (MA_READ | MA_WRITE | MA_EXEC) 70 71 typedef enum { 72 PRO_NATURAL, 73 PRO_BYADDR, 74 PRO_BYNAME 75 } pr_order_t; 76 77 static int 78 addr_cmp(const void *aa, const void *bb) 79 { 80 uintptr_t a = *((uintptr_t *)aa); 81 uintptr_t b = *((uintptr_t *)bb); 82 83 if (a > b) 84 return (1); 85 if (a < b) 86 return (-1); 87 return (0); 88 } 89 90 /* 91 * This function creates a list of addresses for a load object's sections. 92 * The list is in ascending address order and alternates start address 93 * then end address for each section we're interested in. The function 94 * returns a pointer to the list, which must be freed by the caller. 95 */ 96 static uintptr_t * 97 get_saddrs(struct ps_prochandle *P, uintptr_t ehdr_start, uint_t *n) 98 { 99 uintptr_t a, addr, *addrs, last = 0; 100 uint_t i, naddrs = 0, unordered = 0; 101 102 if (P->status.pr_dmodel == PR_MODEL_ILP32) { 103 Elf32_Ehdr ehdr; 104 Elf32_Phdr phdr; 105 uint_t phnum; 106 107 if (read_ehdr32(P, &ehdr, &phnum, ehdr_start) != 0) 108 return (NULL); 109 110 addrs = malloc(sizeof (uintptr_t) * phnum * 2); 111 a = ehdr_start + ehdr.e_phoff; 112 for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) { 113 if (Pread(P, &phdr, sizeof (phdr), a) != 114 sizeof (phdr)) { 115 free(addrs); 116 return (NULL); 117 } 118 if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0) 119 continue; 120 121 addr = phdr.p_vaddr; 122 if (ehdr.e_type == ET_DYN) 123 addr += ehdr_start; 124 if (last > addr) 125 unordered = 1; 126 addrs[naddrs++] = addr; 127 addrs[naddrs++] = last = addr + phdr.p_memsz - 1; 128 } 129 #ifdef _LP64 130 } else { 131 Elf64_Ehdr ehdr; 132 Elf64_Phdr phdr; 133 uint_t phnum; 134 135 if (read_ehdr64(P, &ehdr, &phnum, ehdr_start) != 0) 136 return (NULL); 137 138 addrs = malloc(sizeof (uintptr_t) * phnum * 2); 139 a = ehdr_start + ehdr.e_phoff; 140 for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) { 141 if (Pread(P, &phdr, sizeof (phdr), a) != 142 sizeof (phdr)) { 143 free(addrs); 144 return (NULL); 145 } 146 if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0) 147 continue; 148 149 addr = phdr.p_vaddr; 150 if (ehdr.e_type == ET_DYN) 151 addr += ehdr_start; 152 if (last > addr) 153 unordered = 1; 154 addrs[naddrs++] = addr; 155 addrs[naddrs++] = last = addr + phdr.p_memsz - 1; 156 } 157 #endif 158 } 159 160 if (unordered) 161 qsort(addrs, naddrs, sizeof (uintptr_t), addr_cmp); 162 163 *n = naddrs; 164 return (addrs); 165 } 166 167 /* 168 * Allocation function for a new file_info_t 169 */ 170 file_info_t * 171 file_info_new(struct ps_prochandle *P, map_info_t *mptr) 172 { 173 file_info_t *fptr; 174 map_info_t *mp; 175 uintptr_t mstart, mend, sstart, send; 176 uint_t i; 177 178 if ((fptr = calloc(1, sizeof (file_info_t))) == NULL) 179 return (NULL); 180 181 list_link(fptr, &P->file_head); 182 (void) strcpy(fptr->file_pname, mptr->map_pmap.pr_mapname); 183 mptr->map_file = fptr; 184 fptr->file_ref = 1; 185 fptr->file_fd = -1; 186 P->num_files++; 187 188 /* 189 * To figure out which map_info_t instances correspond to the mappings 190 * for this load object we try to obtain the start and end address 191 * for each section of our in-memory ELF image. If successful, we 192 * walk down the list of addresses and the list of map_info_t 193 * instances in lock step to correctly find the mappings that 194 * correspond to this load object. 195 */ 196 if ((fptr->file_saddrs = get_saddrs(P, mptr->map_pmap.pr_vaddr, 197 &fptr->file_nsaddrs)) == NULL) 198 return (fptr); 199 200 mp = P->mappings; 201 i = 0; 202 while (mp < P->mappings + P->map_count && i < fptr->file_nsaddrs) { 203 204 /* Calculate the start and end of the mapping and section */ 205 mstart = mp->map_pmap.pr_vaddr; 206 mend = mp->map_pmap.pr_vaddr + mp->map_pmap.pr_size; 207 sstart = fptr->file_saddrs[i]; 208 send = fptr->file_saddrs[i + 1]; 209 210 if (mend <= sstart) { 211 /* This mapping is below the current section */ 212 mp++; 213 } else if (mstart >= send) { 214 /* This mapping is above the current section */ 215 i += 2; 216 } else { 217 /* This mapping overlaps the current section */ 218 if (mp->map_file == NULL) { 219 dprintf("file_info_new: associating " 220 "segment at %p\n", 221 (void *)mp->map_pmap.pr_vaddr); 222 mp->map_file = fptr; 223 fptr->file_ref++; 224 } else { 225 dprintf("file_info_new: segment at %p " 226 "already associated with %s\n", 227 (void *)mp->map_pmap.pr_vaddr, 228 (mp == mptr ? "this file" : 229 mp->map_file->file_pname)); 230 } 231 mp++; 232 } 233 } 234 235 return (fptr); 236 } 237 238 /* 239 * Deallocation function for a file_info_t 240 */ 241 static void 242 file_info_free(struct ps_prochandle *P, file_info_t *fptr) 243 { 244 if (--fptr->file_ref == 0) { 245 list_unlink(fptr); 246 if (fptr->file_symtab.sym_elf) { 247 (void) elf_end(fptr->file_symtab.sym_elf); 248 free(fptr->file_symtab.sym_elfmem); 249 } 250 if (fptr->file_symtab.sym_byname) 251 free(fptr->file_symtab.sym_byname); 252 if (fptr->file_symtab.sym_byaddr) 253 free(fptr->file_symtab.sym_byaddr); 254 255 if (fptr->file_dynsym.sym_elf) { 256 (void) elf_end(fptr->file_dynsym.sym_elf); 257 free(fptr->file_dynsym.sym_elfmem); 258 } 259 if (fptr->file_dynsym.sym_byname) 260 free(fptr->file_dynsym.sym_byname); 261 if (fptr->file_dynsym.sym_byaddr) 262 free(fptr->file_dynsym.sym_byaddr); 263 264 if (fptr->file_lo) 265 free(fptr->file_lo); 266 if (fptr->file_lname) 267 free(fptr->file_lname); 268 if (fptr->file_rname) 269 free(fptr->file_rname); 270 if (fptr->file_elf) 271 (void) elf_end(fptr->file_elf); 272 if (fptr->file_elfmem != NULL) 273 free(fptr->file_elfmem); 274 if (fptr->file_fd >= 0) 275 (void) close(fptr->file_fd); 276 if (fptr->file_ctfp) { 277 ctf_close(fptr->file_ctfp); 278 free(fptr->file_ctf_buf); 279 } 280 if (fptr->file_saddrs) 281 free(fptr->file_saddrs); 282 free(fptr); 283 P->num_files--; 284 } 285 } 286 287 /* 288 * Deallocation function for a map_info_t 289 */ 290 static void 291 map_info_free(struct ps_prochandle *P, map_info_t *mptr) 292 { 293 file_info_t *fptr; 294 295 if ((fptr = mptr->map_file) != NULL) { 296 if (fptr->file_map == mptr) 297 fptr->file_map = NULL; 298 file_info_free(P, fptr); 299 } 300 if (P->execname && mptr == P->map_exec) { 301 free(P->execname); 302 P->execname = NULL; 303 } 304 if (P->auxv && (mptr == P->map_exec || mptr == P->map_ldso)) { 305 free(P->auxv); 306 P->auxv = NULL; 307 P->nauxv = 0; 308 } 309 if (mptr == P->map_exec) 310 P->map_exec = NULL; 311 if (mptr == P->map_ldso) 312 P->map_ldso = NULL; 313 } 314 315 /* 316 * Call-back function for librtld_db to iterate through all of its shared 317 * libraries. We use this to get the load object names for the mappings. 318 */ 319 static int 320 map_iter(const rd_loadobj_t *lop, void *cd) 321 { 322 char buf[PATH_MAX]; 323 struct ps_prochandle *P = cd; 324 map_info_t *mptr; 325 file_info_t *fptr; 326 327 dprintf("encountered rd object at %p\n", (void *)lop->rl_base); 328 329 if ((mptr = Paddr2mptr(P, lop->rl_base)) == NULL) { 330 dprintf("map_iter: base address doesn't match any mapping\n"); 331 return (1); /* Base address does not match any mapping */ 332 } 333 334 if ((fptr = mptr->map_file) == NULL && 335 (fptr = file_info_new(P, mptr)) == NULL) { 336 dprintf("map_iter: failed to allocate a new file_info_t\n"); 337 return (1); /* Failed to allocate a new file_info_t */ 338 } 339 340 if ((fptr->file_lo == NULL) && 341 (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) { 342 dprintf("map_iter: failed to allocate rd_loadobj_t\n"); 343 file_info_free(P, fptr); 344 return (1); /* Failed to allocate rd_loadobj_t */ 345 } 346 347 fptr->file_map = mptr; 348 *fptr->file_lo = *lop; 349 350 fptr->file_lo->rl_plt_base = fptr->file_plt_base; 351 fptr->file_lo->rl_plt_size = fptr->file_plt_size; 352 353 if (fptr->file_lname) { 354 free(fptr->file_lname); 355 fptr->file_lname = NULL; 356 fptr->file_lbase = NULL; 357 } 358 if (fptr->file_rname) { 359 free(fptr->file_rname); 360 fptr->file_rname = NULL; 361 fptr->file_rbase = NULL; 362 } 363 364 if (Pread_string(P, buf, sizeof (buf), lop->rl_nameaddr) > 0) { 365 if ((fptr->file_lname = strdup(buf)) != NULL) 366 fptr->file_lbase = basename(fptr->file_lname); 367 } else { 368 dprintf("map_iter: failed to read string at %p\n", 369 (void *)lop->rl_nameaddr); 370 } 371 372 if ((Pfindmap(P, mptr, buf, sizeof (buf)) != NULL) && 373 ((fptr->file_rname = strdup(buf)) != NULL)) 374 fptr->file_rbase = basename(fptr->file_rname); 375 376 dprintf("loaded rd object %s lmid %lx\n", 377 fptr->file_lname ? buf : "<NULL>", lop->rl_lmident); 378 return (1); 379 } 380 381 static void 382 map_set(struct ps_prochandle *P, map_info_t *mptr, const char *lname) 383 { 384 file_info_t *fptr; 385 char buf[PATH_MAX]; 386 387 if ((fptr = mptr->map_file) == NULL && 388 (fptr = file_info_new(P, mptr)) == NULL) 389 return; /* Failed to allocate a new file_info_t */ 390 391 fptr->file_map = mptr; 392 393 if ((fptr->file_lo == NULL) && 394 (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) { 395 file_info_free(P, fptr); 396 return; /* Failed to allocate rd_loadobj_t */ 397 } 398 399 (void) memset(fptr->file_lo, 0, sizeof (rd_loadobj_t)); 400 fptr->file_lo->rl_base = mptr->map_pmap.pr_vaddr; 401 fptr->file_lo->rl_bend = 402 mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size; 403 404 fptr->file_lo->rl_plt_base = fptr->file_plt_base; 405 fptr->file_lo->rl_plt_size = fptr->file_plt_size; 406 407 if ((fptr->file_lname == NULL) && 408 (fptr->file_lname = strdup(lname)) != NULL) 409 fptr->file_lbase = basename(fptr->file_lname); 410 411 if ((Pfindmap(P, mptr, buf, sizeof (buf)) != NULL) && 412 ((fptr->file_rname = strdup(buf)) != NULL)) 413 fptr->file_rbase = basename(fptr->file_rname); 414 } 415 416 static void 417 load_static_maps(struct ps_prochandle *P) 418 { 419 map_info_t *mptr; 420 421 /* 422 * Construct the map for the a.out. 423 */ 424 if ((mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_EXEC)) != NULL) 425 map_set(P, mptr, "a.out"); 426 427 /* 428 * If the dynamic linker exists for this process, 429 * construct the map for it. 430 */ 431 if (Pgetauxval(P, AT_BASE) != -1L && 432 (mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_LDSO)) != NULL) 433 map_set(P, mptr, "ld.so.1"); 434 } 435 436 /* 437 * Go through all the address space mappings, validating or updating 438 * the information already gathered, or gathering new information. 439 * 440 * This function is only called when we suspect that the mappings have changed 441 * because this is the first time we're calling it or because of rtld activity. 442 */ 443 void 444 Pupdate_maps(struct ps_prochandle *P) 445 { 446 char mapfile[PATH_MAX]; 447 int mapfd; 448 struct stat statb; 449 prmap_t *Pmap = NULL; 450 prmap_t *pmap; 451 ssize_t nmap; 452 int i; 453 uint_t oldmapcount; 454 map_info_t *newmap, *newp; 455 map_info_t *mptr; 456 457 if (P->info_valid || P->state == PS_UNDEAD) 458 return; 459 460 Preadauxvec(P); 461 462 (void) snprintf(mapfile, sizeof (mapfile), "%s/%d/map", 463 procfs_path, (int)P->pid); 464 if ((mapfd = open(mapfile, O_RDONLY)) < 0 || 465 fstat(mapfd, &statb) != 0 || 466 statb.st_size < sizeof (prmap_t) || 467 (Pmap = malloc(statb.st_size)) == NULL || 468 (nmap = pread(mapfd, Pmap, statb.st_size, 0L)) <= 0 || 469 (nmap /= sizeof (prmap_t)) == 0) { 470 if (Pmap != NULL) 471 free(Pmap); 472 if (mapfd >= 0) 473 (void) close(mapfd); 474 Preset_maps(P); /* utter failure; destroy tables */ 475 return; 476 } 477 (void) close(mapfd); 478 479 if ((newmap = calloc(1, nmap * sizeof (map_info_t))) == NULL) 480 return; 481 482 /* 483 * We try to merge any file information we may have for existing 484 * mappings, to avoid having to rebuild the file info. 485 */ 486 mptr = P->mappings; 487 pmap = Pmap; 488 newp = newmap; 489 oldmapcount = P->map_count; 490 for (i = 0; i < nmap; i++, pmap++, newp++) { 491 492 if (oldmapcount == 0) { 493 /* 494 * We've exhausted all the old mappings. Every new 495 * mapping should be added. 496 */ 497 newp->map_pmap = *pmap; 498 499 } else if (pmap->pr_vaddr == mptr->map_pmap.pr_vaddr && 500 pmap->pr_size == mptr->map_pmap.pr_size && 501 pmap->pr_offset == mptr->map_pmap.pr_offset && 502 (pmap->pr_mflags & ~(MA_BREAK | MA_STACK)) == 503 (mptr->map_pmap.pr_mflags & ~(MA_BREAK | MA_STACK)) && 504 pmap->pr_pagesize == mptr->map_pmap.pr_pagesize && 505 pmap->pr_shmid == mptr->map_pmap.pr_shmid && 506 strcmp(pmap->pr_mapname, mptr->map_pmap.pr_mapname) == 0) { 507 508 /* 509 * This mapping matches exactly. Copy over the old 510 * mapping, taking care to get the latest flags. 511 * Make sure the associated file_info_t is updated 512 * appropriately. 513 */ 514 *newp = *mptr; 515 if (P->map_exec == mptr) 516 P->map_exec = newp; 517 if (P->map_ldso == mptr) 518 P->map_ldso = newp; 519 newp->map_pmap.pr_mflags = pmap->pr_mflags; 520 if (mptr->map_file != NULL && 521 mptr->map_file->file_map == mptr) 522 mptr->map_file->file_map = newp; 523 oldmapcount--; 524 mptr++; 525 526 } else if (pmap->pr_vaddr + pmap->pr_size > 527 mptr->map_pmap.pr_vaddr) { 528 529 /* 530 * The old mapping doesn't exist any more, remove it 531 * from the list. 532 */ 533 map_info_free(P, mptr); 534 oldmapcount--; 535 i--; 536 newp--; 537 pmap--; 538 mptr++; 539 540 } else { 541 542 /* 543 * This is a new mapping, add it directly. 544 */ 545 newp->map_pmap = *pmap; 546 } 547 } 548 549 /* 550 * Free any old maps 551 */ 552 while (oldmapcount) { 553 map_info_free(P, mptr); 554 oldmapcount--; 555 mptr++; 556 } 557 558 free(Pmap); 559 if (P->mappings != NULL) 560 free(P->mappings); 561 P->mappings = newmap; 562 P->map_count = P->map_alloc = nmap; 563 P->info_valid = 1; 564 565 /* 566 * Consult librtld_db to get the load object 567 * names for all of the shared libraries. 568 */ 569 if (P->rap != NULL) 570 (void) rd_loadobj_iter(P->rap, map_iter, P); 571 } 572 573 /* 574 * Update all of the mappings and rtld_db as if by Pupdate_maps(), and then 575 * forcibly cache all of the symbol tables associated with all object files. 576 */ 577 void 578 Pupdate_syms(struct ps_prochandle *P) 579 { 580 file_info_t *fptr; 581 int i; 582 583 Pupdate_maps(P); 584 585 for (i = 0, fptr = list_next(&P->file_head); i < P->num_files; 586 i++, fptr = list_next(fptr)) { 587 Pbuild_file_symtab(P, fptr); 588 (void) Pbuild_file_ctf(P, fptr); 589 } 590 } 591 592 /* 593 * Return the librtld_db agent handle for the victim process. 594 * The handle will become invalid at the next successful exec() and the 595 * client (caller of proc_rd_agent()) must not use it beyond that point. 596 * If the process is already dead, we've already tried our best to 597 * create the agent during core file initialization. 598 */ 599 rd_agent_t * 600 Prd_agent(struct ps_prochandle *P) 601 { 602 if (P->rap == NULL && P->state != PS_DEAD && P->state != PS_IDLE) { 603 Pupdate_maps(P); 604 if (P->num_files == 0) 605 load_static_maps(P); 606 rd_log(_libproc_debug); 607 if ((P->rap = rd_new(P)) != NULL) 608 (void) rd_loadobj_iter(P->rap, map_iter, P); 609 } 610 return (P->rap); 611 } 612 613 /* 614 * Return the prmap_t structure containing 'addr', but only if it 615 * is in the dynamic linker's link map and is the text section. 616 */ 617 const prmap_t * 618 Paddr_to_text_map(struct ps_prochandle *P, uintptr_t addr) 619 { 620 map_info_t *mptr; 621 622 if (!P->info_valid) 623 Pupdate_maps(P); 624 625 if ((mptr = Paddr2mptr(P, addr)) != NULL) { 626 file_info_t *fptr = build_map_symtab(P, mptr); 627 const prmap_t *pmp = &mptr->map_pmap; 628 629 /* 630 * Assume that if rl_data_base is NULL, it means that no 631 * data section was found for this load object, and that 632 * a section must be text. Otherwise, a section will be 633 * text unless it ends above the start of the data 634 * section. 635 */ 636 if (fptr != NULL && fptr->file_lo != NULL && 637 (fptr->file_lo->rl_data_base == NULL || 638 pmp->pr_vaddr + pmp->pr_size <= 639 fptr->file_lo->rl_data_base)) 640 return (pmp); 641 } 642 643 return (NULL); 644 } 645 646 /* 647 * Return the prmap_t structure containing 'addr' (no restrictions on 648 * the type of mapping). 649 */ 650 const prmap_t * 651 Paddr_to_map(struct ps_prochandle *P, uintptr_t addr) 652 { 653 map_info_t *mptr; 654 655 if (!P->info_valid) 656 Pupdate_maps(P); 657 658 if ((mptr = Paddr2mptr(P, addr)) != NULL) 659 return (&mptr->map_pmap); 660 661 return (NULL); 662 } 663 664 /* 665 * Convert a full or partial load object name to the prmap_t for its 666 * corresponding primary text mapping. 667 */ 668 const prmap_t * 669 Plmid_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name) 670 { 671 map_info_t *mptr; 672 673 if (name == PR_OBJ_EVERY) 674 return (NULL); /* A reasonable mistake */ 675 676 if ((mptr = object_name_to_map(P, lmid, name)) != NULL) 677 return (&mptr->map_pmap); 678 679 return (NULL); 680 } 681 682 const prmap_t * 683 Pname_to_map(struct ps_prochandle *P, const char *name) 684 { 685 return (Plmid_to_map(P, PR_LMID_EVERY, name)); 686 } 687 688 const rd_loadobj_t * 689 Paddr_to_loadobj(struct ps_prochandle *P, uintptr_t addr) 690 { 691 map_info_t *mptr; 692 693 if (!P->info_valid) 694 Pupdate_maps(P); 695 696 if ((mptr = Paddr2mptr(P, addr)) == NULL) 697 return (NULL); 698 699 /* 700 * By building the symbol table, we implicitly bring the PLT 701 * information up to date in the load object. 702 */ 703 (void) build_map_symtab(P, mptr); 704 705 return (mptr->map_file->file_lo); 706 } 707 708 const rd_loadobj_t * 709 Plmid_to_loadobj(struct ps_prochandle *P, Lmid_t lmid, const char *name) 710 { 711 map_info_t *mptr; 712 713 if (name == PR_OBJ_EVERY) 714 return (NULL); 715 716 if ((mptr = object_name_to_map(P, lmid, name)) == NULL) 717 return (NULL); 718 719 /* 720 * By building the symbol table, we implicitly bring the PLT 721 * information up to date in the load object. 722 */ 723 (void) build_map_symtab(P, mptr); 724 725 return (mptr->map_file->file_lo); 726 } 727 728 const rd_loadobj_t * 729 Pname_to_loadobj(struct ps_prochandle *P, const char *name) 730 { 731 return (Plmid_to_loadobj(P, PR_LMID_EVERY, name)); 732 } 733 734 ctf_file_t * 735 Pbuild_file_ctf(struct ps_prochandle *P, file_info_t *fptr) 736 { 737 ctf_sect_t ctdata, symtab, strtab; 738 sym_tbl_t *symp; 739 int err; 740 741 if (fptr->file_ctfp != NULL) 742 return (fptr->file_ctfp); 743 744 Pbuild_file_symtab(P, fptr); 745 746 if (fptr->file_ctf_size == 0) 747 return (NULL); 748 749 symp = fptr->file_ctf_dyn ? &fptr->file_dynsym : &fptr->file_symtab; 750 if (symp->sym_data_pri == NULL) 751 return (NULL); 752 753 /* 754 * The buffer may alread be allocated if this is a core file that 755 * contained CTF data for this file. 756 */ 757 if (fptr->file_ctf_buf == NULL) { 758 fptr->file_ctf_buf = malloc(fptr->file_ctf_size); 759 if (fptr->file_ctf_buf == NULL) { 760 dprintf("failed to allocate ctf buffer\n"); 761 return (NULL); 762 } 763 764 if (pread(fptr->file_fd, fptr->file_ctf_buf, 765 fptr->file_ctf_size, fptr->file_ctf_off) != 766 fptr->file_ctf_size) { 767 free(fptr->file_ctf_buf); 768 fptr->file_ctf_buf = NULL; 769 dprintf("failed to read ctf data\n"); 770 return (NULL); 771 } 772 } 773 774 ctdata.cts_name = ".SUNW_ctf"; 775 ctdata.cts_type = SHT_PROGBITS; 776 ctdata.cts_flags = 0; 777 ctdata.cts_data = fptr->file_ctf_buf; 778 ctdata.cts_size = fptr->file_ctf_size; 779 ctdata.cts_entsize = 1; 780 ctdata.cts_offset = 0; 781 782 symtab.cts_name = fptr->file_ctf_dyn ? ".dynsym" : ".symtab"; 783 symtab.cts_type = symp->sym_hdr_pri.sh_type; 784 symtab.cts_flags = symp->sym_hdr_pri.sh_flags; 785 symtab.cts_data = symp->sym_data_pri->d_buf; 786 symtab.cts_size = symp->sym_hdr_pri.sh_size; 787 symtab.cts_entsize = symp->sym_hdr_pri.sh_entsize; 788 symtab.cts_offset = symp->sym_hdr_pri.sh_offset; 789 790 strtab.cts_name = fptr->file_ctf_dyn ? ".dynstr" : ".strtab"; 791 strtab.cts_type = symp->sym_strhdr.sh_type; 792 strtab.cts_flags = symp->sym_strhdr.sh_flags; 793 strtab.cts_data = symp->sym_strs; 794 strtab.cts_size = symp->sym_strhdr.sh_size; 795 strtab.cts_entsize = symp->sym_strhdr.sh_entsize; 796 strtab.cts_offset = symp->sym_strhdr.sh_offset; 797 798 fptr->file_ctfp = ctf_bufopen(&ctdata, &symtab, &strtab, &err); 799 if (fptr->file_ctfp == NULL) { 800 dprintf("ctf_bufopen() failed, error code %d\n", err); 801 free(fptr->file_ctf_buf); 802 fptr->file_ctf_buf = NULL; 803 return (NULL); 804 } 805 806 dprintf("loaded %lu bytes of CTF data for %s\n", 807 (ulong_t)fptr->file_ctf_size, fptr->file_pname); 808 809 return (fptr->file_ctfp); 810 } 811 812 ctf_file_t * 813 Paddr_to_ctf(struct ps_prochandle *P, uintptr_t addr) 814 { 815 map_info_t *mptr; 816 file_info_t *fptr; 817 818 if (!P->info_valid) 819 Pupdate_maps(P); 820 821 if ((mptr = Paddr2mptr(P, addr)) == NULL || 822 (fptr = mptr->map_file) == NULL) 823 return (NULL); 824 825 return (Pbuild_file_ctf(P, fptr)); 826 } 827 828 ctf_file_t * 829 Plmid_to_ctf(struct ps_prochandle *P, Lmid_t lmid, const char *name) 830 { 831 map_info_t *mptr; 832 file_info_t *fptr; 833 834 if (name == PR_OBJ_EVERY) 835 return (NULL); 836 837 if ((mptr = object_name_to_map(P, lmid, name)) == NULL || 838 (fptr = mptr->map_file) == NULL) 839 return (NULL); 840 841 return (Pbuild_file_ctf(P, fptr)); 842 } 843 844 ctf_file_t * 845 Pname_to_ctf(struct ps_prochandle *P, const char *name) 846 { 847 return (Plmid_to_ctf(P, PR_LMID_EVERY, name)); 848 } 849 850 /* 851 * If we're not a core file, re-read the /proc/<pid>/auxv file and store 852 * its contents in P->auxv. In the case of a core file, we either 853 * initialized P->auxv in Pcore() from the NT_AUXV, or we don't have an 854 * auxv because the note was missing. 855 */ 856 void 857 Preadauxvec(struct ps_prochandle *P) 858 { 859 char auxfile[64]; 860 struct stat statb; 861 ssize_t naux; 862 int fd; 863 864 if (P->state == PS_DEAD) 865 return; /* Already read during Pgrab_core() */ 866 if (P->state == PS_IDLE) 867 return; /* No aux vec for Pgrab_file() */ 868 869 if (P->auxv != NULL) { 870 free(P->auxv); 871 P->auxv = NULL; 872 P->nauxv = 0; 873 } 874 875 (void) snprintf(auxfile, sizeof (auxfile), "%s/%d/auxv", 876 procfs_path, (int)P->pid); 877 if ((fd = open(auxfile, O_RDONLY)) < 0) 878 return; 879 880 if (fstat(fd, &statb) == 0 && 881 statb.st_size >= sizeof (auxv_t) && 882 (P->auxv = malloc(statb.st_size + sizeof (auxv_t))) != NULL) { 883 if ((naux = read(fd, P->auxv, statb.st_size)) < 0 || 884 (naux /= sizeof (auxv_t)) < 1) { 885 free(P->auxv); 886 P->auxv = NULL; 887 } else { 888 P->auxv[naux].a_type = AT_NULL; 889 P->auxv[naux].a_un.a_val = 0L; 890 P->nauxv = (int)naux; 891 } 892 } 893 894 (void) close(fd); 895 } 896 897 /* 898 * Return a requested element from the process's aux vector. 899 * Return -1 on failure (this is adequate for our purposes). 900 */ 901 long 902 Pgetauxval(struct ps_prochandle *P, int type) 903 { 904 auxv_t *auxv; 905 906 if (P->auxv == NULL) 907 Preadauxvec(P); 908 909 if (P->auxv == NULL) 910 return (-1); 911 912 for (auxv = P->auxv; auxv->a_type != AT_NULL; auxv++) { 913 if (auxv->a_type == type) 914 return (auxv->a_un.a_val); 915 } 916 917 return (-1); 918 } 919 920 /* 921 * Return a pointer to our internal copy of the process's aux vector. 922 * The caller should not hold on to this pointer across any libproc calls. 923 */ 924 const auxv_t * 925 Pgetauxvec(struct ps_prochandle *P) 926 { 927 static const auxv_t empty = { AT_NULL, 0L }; 928 929 if (P->auxv == NULL) 930 Preadauxvec(P); 931 932 if (P->auxv == NULL) 933 return (&empty); 934 935 return (P->auxv); 936 } 937 938 /* 939 * Return 1 if the given mapping corresponds to the given file_info_t's 940 * load object; return 0 otherwise. 941 */ 942 static int 943 is_mapping_in_file(struct ps_prochandle *P, map_info_t *mptr, file_info_t *fptr) 944 { 945 prmap_t *pmap = &mptr->map_pmap; 946 rd_loadobj_t *lop = fptr->file_lo; 947 uint_t i; 948 uintptr_t mstart, mend, sstart, send; 949 950 /* 951 * We can get for free the start address of the text and data 952 * sections of the load object. Start by seeing if the mapping 953 * encloses either of these. 954 */ 955 if ((pmap->pr_vaddr <= lop->rl_base && 956 lop->rl_base < pmap->pr_vaddr + pmap->pr_size) || 957 (pmap->pr_vaddr <= lop->rl_data_base && 958 lop->rl_data_base < pmap->pr_vaddr + pmap->pr_size)) 959 return (1); 960 961 /* 962 * It's still possible that this mapping correponds to the load 963 * object. Consider the example of a mapping whose start and end 964 * addresses correspond to those of the load object's text section. 965 * If the mapping splits, e.g. as a result of a segment demotion, 966 * then although both mappings are still backed by the same section, 967 * only one will be seen to enclose that section's start address. 968 * Thus, to be rigorous, we ask not whether this mapping encloses 969 * the start of a section, but whether there exists a section that 970 * overlaps this mapping. 971 * 972 * If we don't already have the section addresses, and we successfully 973 * get them, then we cache them in case we come here again. 974 */ 975 if (fptr->file_saddrs == NULL && 976 (fptr->file_saddrs = get_saddrs(P, 977 fptr->file_map->map_pmap.pr_vaddr, &fptr->file_nsaddrs)) == NULL) 978 return (0); 979 980 mstart = mptr->map_pmap.pr_vaddr; 981 mend = mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size; 982 for (i = 0; i < fptr->file_nsaddrs; i += 2) { 983 /* Does this section overlap the mapping? */ 984 sstart = fptr->file_saddrs[i]; 985 send = fptr->file_saddrs[i + 1]; 986 if (!(mend <= sstart || mstart >= send)) 987 return (1); 988 } 989 990 return (0); 991 } 992 993 /* 994 * Find or build the symbol table for the given mapping. 995 */ 996 static file_info_t * 997 build_map_symtab(struct ps_prochandle *P, map_info_t *mptr) 998 { 999 prmap_t *pmap = &mptr->map_pmap; 1000 file_info_t *fptr; 1001 uint_t i; 1002 1003 if ((fptr = mptr->map_file) != NULL) { 1004 Pbuild_file_symtab(P, fptr); 1005 return (fptr); 1006 } 1007 1008 if (pmap->pr_mapname[0] == '\0') 1009 return (NULL); 1010 1011 /* 1012 * Attempt to find a matching file. 1013 * (A file can be mapped at several different addresses.) 1014 */ 1015 for (i = 0, fptr = list_next(&P->file_head); i < P->num_files; 1016 i++, fptr = list_next(fptr)) { 1017 if (strcmp(fptr->file_pname, pmap->pr_mapname) == 0 && 1018 fptr->file_lo && is_mapping_in_file(P, mptr, fptr)) { 1019 mptr->map_file = fptr; 1020 fptr->file_ref++; 1021 Pbuild_file_symtab(P, fptr); 1022 return (fptr); 1023 } 1024 } 1025 1026 /* 1027 * If we need to create a new file_info structure, iterate 1028 * through the load objects in order to attempt to connect 1029 * this new file with its primary text mapping. We again 1030 * need to handle ld.so as a special case because we need 1031 * to be able to bootstrap librtld_db. 1032 */ 1033 if ((fptr = file_info_new(P, mptr)) == NULL) 1034 return (NULL); 1035 1036 if (P->map_ldso != mptr) { 1037 if (P->rap != NULL) 1038 (void) rd_loadobj_iter(P->rap, map_iter, P); 1039 else 1040 (void) Prd_agent(P); 1041 } else { 1042 fptr->file_map = mptr; 1043 } 1044 1045 /* 1046 * If librtld_db wasn't able to help us connect the file to a primary 1047 * text mapping, set file_map to the current mapping because we require 1048 * fptr->file_map to be set in Pbuild_file_symtab. librtld_db may be 1049 * unaware of what's going on in the rare case that a legitimate ELF 1050 * file has been mmap(2)ed into the process address space *without* 1051 * the use of dlopen(3x). 1052 */ 1053 if (fptr->file_map == NULL) 1054 fptr->file_map = mptr; 1055 1056 Pbuild_file_symtab(P, fptr); 1057 1058 return (fptr); 1059 } 1060 1061 static int 1062 read_ehdr32(struct ps_prochandle *P, Elf32_Ehdr *ehdr, uint_t *phnum, 1063 uintptr_t addr) 1064 { 1065 if (Pread(P, ehdr, sizeof (*ehdr), addr) != sizeof (*ehdr)) 1066 return (-1); 1067 1068 if (ehdr->e_ident[EI_MAG0] != ELFMAG0 || 1069 ehdr->e_ident[EI_MAG1] != ELFMAG1 || 1070 ehdr->e_ident[EI_MAG2] != ELFMAG2 || 1071 ehdr->e_ident[EI_MAG3] != ELFMAG3 || 1072 ehdr->e_ident[EI_CLASS] != ELFCLASS32 || 1073 #ifdef _BIG_ENDIAN 1074 ehdr->e_ident[EI_DATA] != ELFDATA2MSB || 1075 #else 1076 ehdr->e_ident[EI_DATA] != ELFDATA2LSB || 1077 #endif 1078 ehdr->e_ident[EI_VERSION] != EV_CURRENT) 1079 return (-1); 1080 1081 if ((*phnum = ehdr->e_phnum) == PN_XNUM) { 1082 Elf32_Shdr shdr0; 1083 1084 if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) || 1085 Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) != 1086 sizeof (shdr0)) 1087 return (-1); 1088 1089 if (shdr0.sh_info != 0) 1090 *phnum = shdr0.sh_info; 1091 } 1092 1093 return (0); 1094 } 1095 1096 static int 1097 read_dynamic_phdr32(struct ps_prochandle *P, const Elf32_Ehdr *ehdr, 1098 uint_t phnum, Elf32_Phdr *phdr, uintptr_t addr) 1099 { 1100 uint_t i; 1101 1102 for (i = 0; i < phnum; i++) { 1103 uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize; 1104 if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr)) 1105 return (-1); 1106 1107 if (phdr->p_type == PT_DYNAMIC) 1108 return (0); 1109 } 1110 1111 return (-1); 1112 } 1113 1114 #ifdef _LP64 1115 static int 1116 read_ehdr64(struct ps_prochandle *P, Elf64_Ehdr *ehdr, uint_t *phnum, 1117 uintptr_t addr) 1118 { 1119 if (Pread(P, ehdr, sizeof (Elf64_Ehdr), addr) != sizeof (Elf64_Ehdr)) 1120 return (-1); 1121 1122 if (ehdr->e_ident[EI_MAG0] != ELFMAG0 || 1123 ehdr->e_ident[EI_MAG1] != ELFMAG1 || 1124 ehdr->e_ident[EI_MAG2] != ELFMAG2 || 1125 ehdr->e_ident[EI_MAG3] != ELFMAG3 || 1126 ehdr->e_ident[EI_CLASS] != ELFCLASS64 || 1127 #ifdef _BIG_ENDIAN 1128 ehdr->e_ident[EI_DATA] != ELFDATA2MSB || 1129 #else 1130 ehdr->e_ident[EI_DATA] != ELFDATA2LSB || 1131 #endif 1132 ehdr->e_ident[EI_VERSION] != EV_CURRENT) 1133 return (-1); 1134 1135 if ((*phnum = ehdr->e_phnum) == PN_XNUM) { 1136 Elf64_Shdr shdr0; 1137 1138 if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) || 1139 Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) != 1140 sizeof (shdr0)) 1141 return (-1); 1142 1143 if (shdr0.sh_info != 0) 1144 *phnum = shdr0.sh_info; 1145 } 1146 1147 return (0); 1148 } 1149 1150 static int 1151 read_dynamic_phdr64(struct ps_prochandle *P, const Elf64_Ehdr *ehdr, 1152 uint_t phnum, Elf64_Phdr *phdr, uintptr_t addr) 1153 { 1154 uint_t i; 1155 1156 for (i = 0; i < phnum; i++) { 1157 uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize; 1158 if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr)) 1159 return (-1); 1160 1161 if (phdr->p_type == PT_DYNAMIC) 1162 return (0); 1163 } 1164 1165 return (-1); 1166 } 1167 #endif /* _LP64 */ 1168 1169 /* 1170 * The text segment for each load object contains the elf header and 1171 * program headers. We can use this information to determine if the 1172 * file that corresponds to the load object is the same file that 1173 * was loaded into the process's address space. There can be a discrepency 1174 * if a file is recompiled after the process is started or if the target 1175 * represents a core file from a differently configured system -- two 1176 * common examples. The DT_CHECKSUM entry in the dynamic section 1177 * provides an easy method of comparison. It is important to note that 1178 * the dynamic section usually lives in the data segment, but the meta 1179 * data we use to find the dynamic section lives in the text segment so 1180 * if either of those segments is absent we can't proceed. 1181 * 1182 * We're looking through the elf file for several items: the symbol tables 1183 * (both dynsym and symtab), the procedure linkage table (PLT) base, 1184 * size, and relocation base, and the CTF information. Most of this can 1185 * be recovered from the loaded image of the file itself, the exceptions 1186 * being the symtab and CTF data. 1187 * 1188 * First we try to open the file that we think corresponds to the load 1189 * object, if the DT_CHECKSUM values match, we're all set, and can simply 1190 * recover all the information we need from the file. If the values of 1191 * DT_CHECKSUM don't match, or if we can't access the file for whatever 1192 * reasaon, we fake up a elf file to use in its stead. If we can't read 1193 * the elf data in the process's address space, we fall back to using 1194 * the file even though it may give inaccurate information. 1195 * 1196 * The elf file that we fake up has to consist of sections for the 1197 * dynsym, the PLT and the dynamic section. Note that in the case of a 1198 * core file, we'll get the CTF data in the file_info_t later on from 1199 * a section embedded the core file (if it's present). 1200 * 1201 * file_differs() conservatively looks for mismatched files, identifying 1202 * a match when there is any ambiguity (since that's the legacy behavior). 1203 */ 1204 static int 1205 file_differs(struct ps_prochandle *P, Elf *elf, file_info_t *fptr) 1206 { 1207 Elf_Scn *scn; 1208 GElf_Shdr shdr; 1209 GElf_Dyn dyn; 1210 Elf_Data *data; 1211 uint_t i, ndyn; 1212 GElf_Xword cksum; 1213 uintptr_t addr; 1214 1215 if (fptr->file_map == NULL) 1216 return (0); 1217 1218 if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) != 1219 (CC_CONTENT_TEXT | CC_CONTENT_DATA)) 1220 return (0); 1221 1222 /* 1223 * First, we find the checksum value in the elf file. 1224 */ 1225 scn = NULL; 1226 while ((scn = elf_nextscn(elf, scn)) != NULL) { 1227 if (gelf_getshdr(scn, &shdr) != NULL && 1228 shdr.sh_type == SHT_DYNAMIC) 1229 goto found_shdr; 1230 } 1231 return (0); 1232 1233 found_shdr: 1234 if ((data = elf_getdata(scn, NULL)) == NULL) 1235 return (0); 1236 1237 if (P->status.pr_dmodel == PR_MODEL_ILP32) 1238 ndyn = shdr.sh_size / sizeof (Elf32_Dyn); 1239 #ifdef _LP64 1240 else if (P->status.pr_dmodel == PR_MODEL_LP64) 1241 ndyn = shdr.sh_size / sizeof (Elf64_Dyn); 1242 #endif 1243 else 1244 return (0); 1245 1246 for (i = 0; i < ndyn; i++) { 1247 if (gelf_getdyn(data, i, &dyn) != NULL && 1248 dyn.d_tag == DT_CHECKSUM) 1249 goto found_cksum; 1250 } 1251 1252 /* 1253 * The in-memory ELF has no DT_CHECKSUM section, but we will report it 1254 * as matching the file anyhow. 1255 */ 1256 return (0); 1257 1258 found_cksum: 1259 cksum = dyn.d_un.d_val; 1260 dprintf("elf cksum value is %llx\n", (u_longlong_t)cksum); 1261 1262 /* 1263 * Get the base of the text mapping that corresponds to this file. 1264 */ 1265 addr = fptr->file_map->map_pmap.pr_vaddr; 1266 1267 if (P->status.pr_dmodel == PR_MODEL_ILP32) { 1268 Elf32_Ehdr ehdr; 1269 Elf32_Phdr phdr; 1270 Elf32_Dyn dync, *dynp; 1271 uint_t phnum, i; 1272 1273 if (read_ehdr32(P, &ehdr, &phnum, addr) != 0 || 1274 read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0) 1275 return (0); 1276 1277 if (ehdr.e_type == ET_DYN) 1278 phdr.p_vaddr += addr; 1279 if ((dynp = malloc(phdr.p_filesz)) == NULL) 1280 return (0); 1281 dync.d_tag = DT_NULL; 1282 if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) != 1283 phdr.p_filesz) { 1284 free(dynp); 1285 return (0); 1286 } 1287 1288 for (i = 0; i < phdr.p_filesz / sizeof (Elf32_Dyn); i++) { 1289 if (dynp[i].d_tag == DT_CHECKSUM) 1290 dync = dynp[i]; 1291 } 1292 1293 free(dynp); 1294 1295 if (dync.d_tag != DT_CHECKSUM) 1296 return (0); 1297 1298 dprintf("image cksum value is %llx\n", 1299 (u_longlong_t)dync.d_un.d_val); 1300 return (dync.d_un.d_val != cksum); 1301 #ifdef _LP64 1302 } else if (P->status.pr_dmodel == PR_MODEL_LP64) { 1303 Elf64_Ehdr ehdr; 1304 Elf64_Phdr phdr; 1305 Elf64_Dyn dync, *dynp; 1306 uint_t phnum, i; 1307 1308 if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 || 1309 read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0) 1310 return (0); 1311 1312 if (ehdr.e_type == ET_DYN) 1313 phdr.p_vaddr += addr; 1314 if ((dynp = malloc(phdr.p_filesz)) == NULL) 1315 return (0); 1316 dync.d_tag = DT_NULL; 1317 if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) != 1318 phdr.p_filesz) { 1319 free(dynp); 1320 return (0); 1321 } 1322 1323 for (i = 0; i < phdr.p_filesz / sizeof (Elf64_Dyn); i++) { 1324 if (dynp[i].d_tag == DT_CHECKSUM) 1325 dync = dynp[i]; 1326 } 1327 1328 free(dynp); 1329 1330 if (dync.d_tag != DT_CHECKSUM) 1331 return (0); 1332 1333 dprintf("image cksum value is %llx\n", 1334 (u_longlong_t)dync.d_un.d_val); 1335 return (dync.d_un.d_val != cksum); 1336 #endif /* _LP64 */ 1337 } 1338 1339 return (0); 1340 } 1341 1342 /* 1343 * Read data from the specified process and construct an in memory 1344 * image of an ELF file that represents it well enough to let 1345 * us probe it for information. 1346 */ 1347 static Elf * 1348 fake_elf(struct ps_prochandle *P, file_info_t *fptr) 1349 { 1350 Elf *elf; 1351 uintptr_t addr; 1352 uint_t phnum; 1353 1354 if (fptr->file_map == NULL) 1355 return (NULL); 1356 1357 if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) != 1358 (CC_CONTENT_TEXT | CC_CONTENT_DATA)) 1359 return (NULL); 1360 1361 addr = fptr->file_map->map_pmap.pr_vaddr; 1362 1363 if (P->status.pr_dmodel == PR_MODEL_ILP32) { 1364 Elf32_Ehdr ehdr; 1365 Elf32_Phdr phdr; 1366 1367 if ((read_ehdr32(P, &ehdr, &phnum, addr) != 0) || 1368 read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0) 1369 return (NULL); 1370 1371 elf = fake_elf32(P, fptr, addr, &ehdr, phnum, &phdr); 1372 #ifdef _LP64 1373 } else { 1374 Elf64_Ehdr ehdr; 1375 Elf64_Phdr phdr; 1376 1377 if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 || 1378 read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0) 1379 return (NULL); 1380 1381 elf = fake_elf64(P, fptr, addr, &ehdr, phnum, &phdr); 1382 #endif 1383 } 1384 1385 return (elf); 1386 } 1387 1388 /* 1389 * We wouldn't need these if qsort(3C) took an argument for the callback... 1390 */ 1391 static mutex_t sort_mtx = DEFAULTMUTEX; 1392 static char *sort_strs; 1393 static GElf_Sym *sort_syms; 1394 1395 int 1396 byaddr_cmp_common(GElf_Sym *a, char *aname, GElf_Sym *b, char *bname) 1397 { 1398 if (a->st_value < b->st_value) 1399 return (-1); 1400 if (a->st_value > b->st_value) 1401 return (1); 1402 1403 /* 1404 * Prefer the function to the non-function. 1405 */ 1406 if (GELF_ST_TYPE(a->st_info) != GELF_ST_TYPE(b->st_info)) { 1407 if (GELF_ST_TYPE(a->st_info) == STT_FUNC) 1408 return (-1); 1409 if (GELF_ST_TYPE(b->st_info) == STT_FUNC) 1410 return (1); 1411 } 1412 1413 /* 1414 * Prefer the weak or strong global symbol to the local symbol. 1415 */ 1416 if (GELF_ST_BIND(a->st_info) != GELF_ST_BIND(b->st_info)) { 1417 if (GELF_ST_BIND(b->st_info) == STB_LOCAL) 1418 return (-1); 1419 if (GELF_ST_BIND(a->st_info) == STB_LOCAL) 1420 return (1); 1421 } 1422 1423 /* 1424 * Prefer the symbol that doesn't begin with a '$' since compilers and 1425 * other symbol generators often use it as a prefix. 1426 */ 1427 if (*bname == '$') 1428 return (-1); 1429 if (*aname == '$') 1430 return (1); 1431 1432 /* 1433 * Prefer the name with fewer leading underscores in the name. 1434 */ 1435 while (*aname == '_' && *bname == '_') { 1436 aname++; 1437 bname++; 1438 } 1439 1440 if (*bname == '_') 1441 return (-1); 1442 if (*aname == '_') 1443 return (1); 1444 1445 /* 1446 * Prefer the symbol with the smaller size. 1447 */ 1448 if (a->st_size < b->st_size) 1449 return (-1); 1450 if (a->st_size > b->st_size) 1451 return (1); 1452 1453 /* 1454 * All other factors being equal, fall back to lexicographic order. 1455 */ 1456 return (strcmp(aname, bname)); 1457 } 1458 1459 static int 1460 byaddr_cmp(const void *aa, const void *bb) 1461 { 1462 GElf_Sym *a = &sort_syms[*(uint_t *)aa]; 1463 GElf_Sym *b = &sort_syms[*(uint_t *)bb]; 1464 char *aname = sort_strs + a->st_name; 1465 char *bname = sort_strs + b->st_name; 1466 1467 return (byaddr_cmp_common(a, aname, b, bname)); 1468 } 1469 1470 static int 1471 byname_cmp(const void *aa, const void *bb) 1472 { 1473 GElf_Sym *a = &sort_syms[*(uint_t *)aa]; 1474 GElf_Sym *b = &sort_syms[*(uint_t *)bb]; 1475 char *aname = sort_strs + a->st_name; 1476 char *bname = sort_strs + b->st_name; 1477 1478 return (strcmp(aname, bname)); 1479 } 1480 1481 /* 1482 * Given a symbol index, look up the corresponding symbol from the 1483 * given symbol table. 1484 * 1485 * This function allows the caller to treat the symbol table as a single 1486 * logical entity even though there may be 2 actual ELF symbol tables 1487 * involved. See the comments in Pcontrol.h for details. 1488 */ 1489 static GElf_Sym * 1490 symtab_getsym(sym_tbl_t *symtab, int ndx, GElf_Sym *dst) 1491 { 1492 /* If index is in range of primary symtab, look it up there */ 1493 if (ndx >= symtab->sym_symn_aux) { 1494 return (gelf_getsym(symtab->sym_data_pri, 1495 ndx - symtab->sym_symn_aux, dst)); 1496 } 1497 1498 /* Not in primary: Look it up in the auxiliary symtab */ 1499 return (gelf_getsym(symtab->sym_data_aux, ndx, dst)); 1500 } 1501 1502 void 1503 optimize_symtab(sym_tbl_t *symtab) 1504 { 1505 GElf_Sym *symp, *syms; 1506 uint_t i, *indexa, *indexb; 1507 size_t symn, strsz, count; 1508 1509 if (symtab == NULL || symtab->sym_data_pri == NULL || 1510 symtab->sym_byaddr != NULL) 1511 return; 1512 1513 symn = symtab->sym_symn; 1514 strsz = symtab->sym_strsz; 1515 1516 symp = syms = malloc(sizeof (GElf_Sym) * symn); 1517 if (symp == NULL) { 1518 dprintf("optimize_symtab: failed to malloc symbol array"); 1519 return; 1520 } 1521 1522 /* 1523 * First record all the symbols into a table and count up the ones 1524 * that we're interested in. We mark symbols as invalid by setting 1525 * the st_name to an illegal value. 1526 */ 1527 for (i = 0, count = 0; i < symn; i++, symp++) { 1528 if (symtab_getsym(symtab, i, symp) != NULL && 1529 symp->st_name < strsz && 1530 IS_DATA_TYPE(GELF_ST_TYPE(symp->st_info))) 1531 count++; 1532 else 1533 symp->st_name = strsz; 1534 } 1535 1536 /* 1537 * Allocate sufficient space for both tables and populate them 1538 * with the same symbols we just counted. 1539 */ 1540 symtab->sym_count = count; 1541 indexa = symtab->sym_byaddr = calloc(sizeof (uint_t), count); 1542 indexb = symtab->sym_byname = calloc(sizeof (uint_t), count); 1543 if (indexa == NULL || indexb == NULL) { 1544 dprintf( 1545 "optimize_symtab: failed to malloc symbol index arrays"); 1546 symtab->sym_count = 0; 1547 if (indexa != NULL) { /* First alloc succeeded. Free it */ 1548 free(indexa); 1549 symtab->sym_byaddr = NULL; 1550 } 1551 free(syms); 1552 return; 1553 } 1554 for (i = 0, symp = syms; i < symn; i++, symp++) { 1555 if (symp->st_name < strsz) 1556 *indexa++ = *indexb++ = i; 1557 } 1558 1559 /* 1560 * Sort the two tables according to the appropriate criteria, 1561 * unless the user has overridden this behaviour. 1562 * 1563 * An example where we might not sort the tables is the relatively 1564 * unusual case of a process with very large symbol tables in which 1565 * we perform few lookups. In such a case the total time would be 1566 * dominated by the sort. It is difficult to determine a priori 1567 * how many lookups an arbitrary client will perform, and 1568 * hence whether the symbol tables should be sorted. We therefore 1569 * sort the tables by default, but provide the user with a 1570 * "chicken switch" in the form of the LIBPROC_NO_QSORT 1571 * environment variable. 1572 */ 1573 if (!_libproc_no_qsort) { 1574 (void) mutex_lock(&sort_mtx); 1575 sort_strs = symtab->sym_strs; 1576 sort_syms = syms; 1577 1578 qsort(symtab->sym_byaddr, count, sizeof (uint_t), byaddr_cmp); 1579 qsort(symtab->sym_byname, count, sizeof (uint_t), byname_cmp); 1580 1581 sort_strs = NULL; 1582 sort_syms = NULL; 1583 (void) mutex_unlock(&sort_mtx); 1584 } 1585 1586 free(syms); 1587 } 1588 1589 1590 static Elf * 1591 build_fake_elf(struct ps_prochandle *P, file_info_t *fptr, GElf_Ehdr *ehdr, 1592 size_t *nshdrs, Elf_Data **shdata) 1593 { 1594 size_t shstrndx; 1595 Elf_Scn *scn; 1596 Elf *elf; 1597 1598 if ((elf = fake_elf(P, fptr)) == NULL || 1599 elf_kind(elf) != ELF_K_ELF || 1600 gelf_getehdr(elf, ehdr) == NULL || 1601 elf_getshdrnum(elf, nshdrs) == -1 || 1602 elf_getshdrstrndx(elf, &shstrndx) == -1 || 1603 (scn = elf_getscn(elf, shstrndx)) == NULL || 1604 (*shdata = elf_getdata(scn, NULL)) == NULL) { 1605 if (elf != NULL) 1606 (void) elf_end(elf); 1607 dprintf("failed to fake up ELF file\n"); 1608 return (NULL); 1609 } 1610 1611 return (elf); 1612 } 1613 1614 /* 1615 * Build the symbol table for the given mapped file. 1616 */ 1617 void 1618 Pbuild_file_symtab(struct ps_prochandle *P, file_info_t *fptr) 1619 { 1620 char objectfile[PATH_MAX]; 1621 uint_t i; 1622 1623 GElf_Ehdr ehdr; 1624 GElf_Sym s; 1625 1626 Elf_Data *shdata; 1627 Elf_Scn *scn; 1628 Elf *elf; 1629 size_t nshdrs, shstrndx; 1630 1631 struct { 1632 GElf_Shdr c_shdr; 1633 Elf_Data *c_data; 1634 const char *c_name; 1635 } *cp, *cache = NULL, *dyn = NULL, *plt = NULL, *ctf = NULL; 1636 1637 if (fptr->file_init) 1638 return; /* We've already processed this file */ 1639 1640 /* 1641 * Mark the file_info struct as having the symbol table initialized 1642 * even if we fail below. We tried once; we don't try again. 1643 */ 1644 fptr->file_init = 1; 1645 1646 if (elf_version(EV_CURRENT) == EV_NONE) { 1647 dprintf("libproc ELF version is more recent than libelf\n"); 1648 return; 1649 } 1650 1651 if (P->state == PS_DEAD || P->state == PS_IDLE) { 1652 char *name; 1653 /* 1654 * If we're a not live, we can't open files from the /proc 1655 * object directory; we have only the mapping and file names 1656 * to guide us. We prefer the file_lname, but need to handle 1657 * the case of it being NULL in order to bootstrap: we first 1658 * come here during rd_new() when the only information we have 1659 * is interpreter name associated with the AT_BASE mapping. 1660 * 1661 * Also, if the zone associated with the core file seems 1662 * to exists on this machine we'll try to open the object 1663 * file within the zone. 1664 */ 1665 if (fptr->file_rname != NULL) 1666 name = fptr->file_rname; 1667 else if (fptr->file_lname != NULL) 1668 name = fptr->file_lname; 1669 else 1670 name = fptr->file_pname; 1671 (void) strlcpy(objectfile, name, sizeof (objectfile)); 1672 } else { 1673 (void) snprintf(objectfile, sizeof (objectfile), 1674 "%s/%d/object/%s", 1675 procfs_path, (int)P->pid, fptr->file_pname); 1676 } 1677 1678 /* 1679 * Open the object file, create the elf file, and then get the elf 1680 * header and .shstrtab data buffer so we can process sections by 1681 * name. If anything goes wrong try to fake up an elf file from 1682 * the in-core elf image. 1683 */ 1684 1685 if (_libproc_incore_elf) { 1686 dprintf("Pbuild_file_symtab: using in-core data for: %s\n", 1687 fptr->file_pname); 1688 1689 if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) == 1690 NULL) 1691 return; 1692 1693 } else if ((fptr->file_fd = open(objectfile, O_RDONLY)) < 0) { 1694 dprintf("Pbuild_file_symtab: failed to open %s: %s\n", 1695 objectfile, strerror(errno)); 1696 1697 if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) == 1698 NULL) 1699 return; 1700 1701 } else if ((elf = elf_begin(fptr->file_fd, ELF_C_READ, NULL)) == NULL || 1702 elf_kind(elf) != ELF_K_ELF || 1703 gelf_getehdr(elf, &ehdr) == NULL || 1704 elf_getshdrnum(elf, &nshdrs) == -1 || 1705 elf_getshdrstrndx(elf, &shstrndx) == -1 || 1706 (scn = elf_getscn(elf, shstrndx)) == NULL || 1707 (shdata = elf_getdata(scn, NULL)) == NULL) { 1708 int err = elf_errno(); 1709 1710 dprintf("failed to process ELF file %s: %s\n", 1711 objectfile, (err == 0) ? "<null>" : elf_errmsg(err)); 1712 (void) elf_end(elf); 1713 1714 if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) == 1715 NULL) 1716 return; 1717 1718 } else if (file_differs(P, elf, fptr)) { 1719 Elf *newelf; 1720 1721 /* 1722 * Before we get too excited about this elf file, we'll check 1723 * its checksum value against the value we have in memory. If 1724 * they don't agree, we try to fake up a new elf file and 1725 * proceed with that instead. 1726 */ 1727 dprintf("ELF file %s (%lx) doesn't match in-core image\n", 1728 fptr->file_pname, 1729 (ulong_t)fptr->file_map->map_pmap.pr_vaddr); 1730 1731 if ((newelf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) 1732 != NULL) { 1733 (void) elf_end(elf); 1734 elf = newelf; 1735 dprintf("switched to faked up ELF file\n"); 1736 } 1737 } 1738 1739 if ((cache = malloc(nshdrs * sizeof (*cache))) == NULL) { 1740 dprintf("failed to malloc section cache for %s\n", objectfile); 1741 goto bad; 1742 } 1743 1744 dprintf("processing ELF file %s\n", objectfile); 1745 fptr->file_class = ehdr.e_ident[EI_CLASS]; 1746 fptr->file_etype = ehdr.e_type; 1747 fptr->file_elf = elf; 1748 fptr->file_shstrs = shdata->d_buf; 1749 fptr->file_shstrsz = shdata->d_size; 1750 1751 /* 1752 * Iterate through each section, caching its section header, data 1753 * pointer, and name. We use this for handling sh_link values below. 1754 */ 1755 for (cp = cache + 1, scn = NULL; scn = elf_nextscn(elf, scn); cp++) { 1756 if (gelf_getshdr(scn, &cp->c_shdr) == NULL) { 1757 dprintf("Pbuild_file_symtab: Failed to get section " 1758 "header\n"); 1759 goto bad; /* Failed to get section header */ 1760 } 1761 1762 if ((cp->c_data = elf_getdata(scn, NULL)) == NULL) { 1763 dprintf("Pbuild_file_symtab: Failed to get section " 1764 "data\n"); 1765 goto bad; /* Failed to get section data */ 1766 } 1767 1768 if (cp->c_shdr.sh_name >= shdata->d_size) { 1769 dprintf("Pbuild_file_symtab: corrupt section name"); 1770 goto bad; /* Corrupt section name */ 1771 } 1772 1773 cp->c_name = (const char *)shdata->d_buf + cp->c_shdr.sh_name; 1774 } 1775 1776 /* 1777 * Now iterate through the section cache in order to locate info 1778 * for the .symtab, .dynsym, .SUNW_ldynsym, .dynamic, .plt, 1779 * and .SUNW_ctf sections: 1780 */ 1781 for (i = 1, cp = cache + 1; i < nshdrs; i++, cp++) { 1782 GElf_Shdr *shp = &cp->c_shdr; 1783 1784 if (shp->sh_type == SHT_SYMTAB || shp->sh_type == SHT_DYNSYM) { 1785 sym_tbl_t *symp = shp->sh_type == SHT_SYMTAB ? 1786 &fptr->file_symtab : &fptr->file_dynsym; 1787 /* 1788 * It's possible that the we already got the symbol 1789 * table from the core file itself. Either the file 1790 * differs in which case our faked up elf file will 1791 * only contain the dynsym (not the symtab) or the 1792 * file matches in which case we'll just be replacing 1793 * the symbol table we pulled out of the core file 1794 * with an equivalent one. In either case, this 1795 * check isn't essential, but it's a good idea. 1796 */ 1797 if (symp->sym_data_pri == NULL) { 1798 dprintf("Symbol table found for %s\n", 1799 objectfile); 1800 symp->sym_data_pri = cp->c_data; 1801 symp->sym_symn += 1802 shp->sh_size / shp->sh_entsize; 1803 symp->sym_strs = 1804 cache[shp->sh_link].c_data->d_buf; 1805 symp->sym_strsz = 1806 cache[shp->sh_link].c_data->d_size; 1807 symp->sym_hdr_pri = cp->c_shdr; 1808 symp->sym_strhdr = cache[shp->sh_link].c_shdr; 1809 } else { 1810 dprintf("Symbol table already there for %s\n", 1811 objectfile); 1812 } 1813 } else if (shp->sh_type == SHT_SUNW_LDYNSYM) { 1814 /* .SUNW_ldynsym section is auxiliary to .dynsym */ 1815 if (fptr->file_dynsym.sym_data_aux == NULL) { 1816 dprintf(".SUNW_ldynsym symbol table" 1817 " found for %s\n", objectfile); 1818 fptr->file_dynsym.sym_data_aux = cp->c_data; 1819 fptr->file_dynsym.sym_symn_aux = 1820 shp->sh_size / shp->sh_entsize; 1821 fptr->file_dynsym.sym_symn += 1822 fptr->file_dynsym.sym_symn_aux; 1823 fptr->file_dynsym.sym_hdr_aux = cp->c_shdr; 1824 } else { 1825 dprintf(".SUNW_ldynsym symbol table already" 1826 " there for %s\n", objectfile); 1827 } 1828 } else if (shp->sh_type == SHT_DYNAMIC) { 1829 dyn = cp; 1830 } else if (strcmp(cp->c_name, ".plt") == 0) { 1831 plt = cp; 1832 } else if (strcmp(cp->c_name, ".SUNW_ctf") == 0) { 1833 /* 1834 * Skip over bogus CTF sections so they don't come back 1835 * to haunt us later. 1836 */ 1837 if (shp->sh_link == 0 || 1838 shp->sh_link >= nshdrs || 1839 (cache[shp->sh_link].c_shdr.sh_type != SHT_DYNSYM && 1840 cache[shp->sh_link].c_shdr.sh_type != SHT_SYMTAB)) { 1841 dprintf("Bad sh_link %d for " 1842 "CTF\n", shp->sh_link); 1843 continue; 1844 } 1845 ctf = cp; 1846 } 1847 } 1848 1849 /* 1850 * At this point, we've found all the symbol tables we're ever going 1851 * to find: the ones in the loop above and possibly the symtab that 1852 * was included in the core file. Before we perform any lookups, we 1853 * create sorted versions to optimize for lookups. 1854 */ 1855 optimize_symtab(&fptr->file_symtab); 1856 optimize_symtab(&fptr->file_dynsym); 1857 1858 /* 1859 * Fill in the base address of the text mapping for shared libraries. 1860 * This allows us to translate symbols before librtld_db is ready. 1861 */ 1862 if (fptr->file_etype == ET_DYN) { 1863 fptr->file_dyn_base = fptr->file_map->map_pmap.pr_vaddr - 1864 fptr->file_map->map_pmap.pr_offset; 1865 dprintf("setting file_dyn_base for %s to %lx\n", 1866 objectfile, (long)fptr->file_dyn_base); 1867 } 1868 1869 /* 1870 * Record the CTF section information in the file info structure. 1871 */ 1872 if (ctf != NULL) { 1873 fptr->file_ctf_off = ctf->c_shdr.sh_offset; 1874 fptr->file_ctf_size = ctf->c_shdr.sh_size; 1875 if (ctf->c_shdr.sh_link != 0 && 1876 cache[ctf->c_shdr.sh_link].c_shdr.sh_type == SHT_DYNSYM) 1877 fptr->file_ctf_dyn = 1; 1878 } 1879 1880 if (fptr->file_lo == NULL) 1881 goto done; /* Nothing else to do if no load object info */ 1882 1883 /* 1884 * If the object is a shared library and we have a different rl_base 1885 * value, reset file_dyn_base according to librtld_db's information. 1886 */ 1887 if (fptr->file_etype == ET_DYN && 1888 fptr->file_lo->rl_base != fptr->file_dyn_base) { 1889 dprintf("resetting file_dyn_base for %s to %lx\n", 1890 objectfile, (long)fptr->file_lo->rl_base); 1891 fptr->file_dyn_base = fptr->file_lo->rl_base; 1892 } 1893 1894 /* 1895 * Fill in the PLT information for this file if a PLT symbol is found. 1896 */ 1897 if (sym_by_name(&fptr->file_dynsym, "_PROCEDURE_LINKAGE_TABLE_", &s, 1898 NULL) != NULL) { 1899 fptr->file_plt_base = s.st_value + fptr->file_dyn_base; 1900 fptr->file_plt_size = (plt != NULL) ? plt->c_shdr.sh_size : 0; 1901 1902 /* 1903 * Bring the load object up to date; it is the only way the 1904 * user has to access the PLT data. The PLT information in the 1905 * rd_loadobj_t is not set in the call to map_iter() (the 1906 * callback for rd_loadobj_iter) where we set file_lo. 1907 */ 1908 fptr->file_lo->rl_plt_base = fptr->file_plt_base; 1909 fptr->file_lo->rl_plt_size = fptr->file_plt_size; 1910 1911 dprintf("PLT found at %p, size = %lu\n", 1912 (void *)fptr->file_plt_base, (ulong_t)fptr->file_plt_size); 1913 } 1914 1915 /* 1916 * Fill in the PLT information. 1917 */ 1918 if (dyn != NULL) { 1919 uintptr_t dynaddr = dyn->c_shdr.sh_addr + fptr->file_dyn_base; 1920 size_t ndyn = dyn->c_shdr.sh_size / dyn->c_shdr.sh_entsize; 1921 GElf_Dyn d; 1922 1923 for (i = 0; i < ndyn; i++) { 1924 if (gelf_getdyn(dyn->c_data, i, &d) == NULL) 1925 continue; 1926 1927 switch (d.d_tag) { 1928 case DT_JMPREL: 1929 dprintf("DT_JMPREL is %p\n", 1930 (void *)(uintptr_t)d.d_un.d_ptr); 1931 fptr->file_jmp_rel = 1932 d.d_un.d_ptr + fptr->file_dyn_base; 1933 break; 1934 case DT_STRTAB: 1935 dprintf("DT_STRTAB is %p\n", 1936 (void *)(uintptr_t)d.d_un.d_ptr); 1937 break; 1938 case DT_PLTGOT: 1939 dprintf("DT_PLTGOT is %p\n", 1940 (void *)(uintptr_t)d.d_un.d_ptr); 1941 break; 1942 case DT_SUNW_SYMTAB: 1943 dprintf("DT_SUNW_SYMTAB is %p\n", 1944 (void *)(uintptr_t)d.d_un.d_ptr); 1945 break; 1946 case DT_SYMTAB: 1947 dprintf("DT_SYMTAB is %p\n", 1948 (void *)(uintptr_t)d.d_un.d_ptr); 1949 break; 1950 case DT_HASH: 1951 dprintf("DT_HASH is %p\n", 1952 (void *)(uintptr_t)d.d_un.d_ptr); 1953 break; 1954 } 1955 } 1956 1957 dprintf("_DYNAMIC found at %p, %lu entries, DT_JMPREL = %p\n", 1958 (void *)dynaddr, (ulong_t)ndyn, (void *)fptr->file_jmp_rel); 1959 } 1960 1961 done: 1962 free(cache); 1963 return; 1964 1965 bad: 1966 if (cache != NULL) 1967 free(cache); 1968 1969 (void) elf_end(elf); 1970 fptr->file_elf = NULL; 1971 if (fptr->file_elfmem != NULL) { 1972 free(fptr->file_elfmem); 1973 fptr->file_elfmem = NULL; 1974 } 1975 (void) close(fptr->file_fd); 1976 fptr->file_fd = -1; 1977 } 1978 1979 /* 1980 * Given a process virtual address, return the map_info_t containing it. 1981 * If none found, return NULL. 1982 */ 1983 map_info_t * 1984 Paddr2mptr(struct ps_prochandle *P, uintptr_t addr) 1985 { 1986 int lo = 0; 1987 int hi = P->map_count - 1; 1988 int mid; 1989 map_info_t *mp; 1990 1991 while (lo <= hi) { 1992 1993 mid = (lo + hi) / 2; 1994 mp = &P->mappings[mid]; 1995 1996 /* check that addr is in [vaddr, vaddr + size) */ 1997 if ((addr - mp->map_pmap.pr_vaddr) < mp->map_pmap.pr_size) 1998 return (mp); 1999 2000 if (addr < mp->map_pmap.pr_vaddr) 2001 hi = mid - 1; 2002 else 2003 lo = mid + 1; 2004 } 2005 2006 return (NULL); 2007 } 2008 2009 /* 2010 * Return the map_info_t for the executable file. 2011 * If not found, return NULL. 2012 */ 2013 static map_info_t * 2014 exec_map(struct ps_prochandle *P) 2015 { 2016 uint_t i; 2017 map_info_t *mptr; 2018 map_info_t *mold = NULL; 2019 file_info_t *fptr; 2020 uintptr_t base; 2021 2022 for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) { 2023 if (mptr->map_pmap.pr_mapname[0] == '\0') 2024 continue; 2025 if (strcmp(mptr->map_pmap.pr_mapname, "a.out") == 0) { 2026 if ((fptr = mptr->map_file) != NULL && 2027 fptr->file_lo != NULL) { 2028 base = fptr->file_lo->rl_base; 2029 if (base >= mptr->map_pmap.pr_vaddr && 2030 base < mptr->map_pmap.pr_vaddr + 2031 mptr->map_pmap.pr_size) /* text space */ 2032 return (mptr); 2033 mold = mptr; /* must be the data */ 2034 continue; 2035 } 2036 /* This is a poor way to test for text space */ 2037 if (!(mptr->map_pmap.pr_mflags & MA_EXEC) || 2038 (mptr->map_pmap.pr_mflags & MA_WRITE)) { 2039 mold = mptr; 2040 continue; 2041 } 2042 return (mptr); 2043 } 2044 } 2045 2046 return (mold); 2047 } 2048 2049 /* 2050 * Given a shared object name, return the map_info_t for it. If no matching 2051 * object is found, return NULL. Normally, the link maps contain the full 2052 * object pathname, e.g. /usr/lib/libc.so.1. We allow the object name to 2053 * take one of the following forms: 2054 * 2055 * 1. An exact match (i.e. a full pathname): "/usr/lib/libc.so.1" 2056 * 2. An exact basename match: "libc.so.1" 2057 * 3. An initial basename match up to a '.' suffix: "libc.so" or "libc" 2058 * 4. The literal string "a.out" is an alias for the executable mapping 2059 * 2060 * The third case is a convenience for callers and may not be necessary. 2061 * 2062 * As the exact same object name may be loaded on different link maps (see 2063 * dlmopen(3DL)), we also allow the caller to resolve the object name by 2064 * specifying a particular link map id. If lmid is PR_LMID_EVERY, the 2065 * first matching name will be returned, regardless of the link map id. 2066 */ 2067 static map_info_t * 2068 object_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *objname) 2069 { 2070 map_info_t *mp; 2071 file_info_t *fp; 2072 size_t objlen; 2073 uint_t i; 2074 2075 /* 2076 * If we have no rtld_db, then always treat a request as one for all 2077 * link maps. 2078 */ 2079 if (P->rap == NULL) 2080 lmid = PR_LMID_EVERY; 2081 2082 /* 2083 * First pass: look for exact matches of the entire pathname or 2084 * basename (cases 1 and 2 above): 2085 */ 2086 for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) { 2087 2088 if (mp->map_pmap.pr_mapname[0] == '\0' || 2089 (fp = mp->map_file) == NULL || 2090 ((fp->file_lname == NULL) && (fp->file_rname == NULL))) 2091 continue; 2092 2093 if (lmid != PR_LMID_EVERY && 2094 (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident)) 2095 continue; 2096 2097 /* 2098 * If we match, return the primary text mapping; otherwise 2099 * just return the mapping we matched. 2100 */ 2101 if ((fp->file_lbase && strcmp(fp->file_lbase, objname) == 0) || 2102 (fp->file_rbase && strcmp(fp->file_rbase, objname) == 0) || 2103 (fp->file_lname && strcmp(fp->file_lname, objname) == 0) || 2104 (fp->file_rname && strcmp(fp->file_rname, objname) == 0)) 2105 return (fp->file_map ? fp->file_map : mp); 2106 } 2107 2108 objlen = strlen(objname); 2109 2110 /* 2111 * Second pass: look for partial matches (case 3 above): 2112 */ 2113 for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) { 2114 2115 if (mp->map_pmap.pr_mapname[0] == '\0' || 2116 (fp = mp->map_file) == NULL || 2117 ((fp->file_lname == NULL) && (fp->file_rname == NULL))) 2118 continue; 2119 2120 if (lmid != PR_LMID_EVERY && 2121 (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident)) 2122 continue; 2123 2124 /* 2125 * If we match, return the primary text mapping; otherwise 2126 * just return the mapping we matched. 2127 */ 2128 if ((fp->file_lbase != NULL) && 2129 (strncmp(fp->file_lbase, objname, objlen) == 0) && 2130 (fp->file_lbase[objlen] == '.')) 2131 return (fp->file_map ? fp->file_map : mp); 2132 if ((fp->file_rbase != NULL) && 2133 (strncmp(fp->file_rbase, objname, objlen) == 0) && 2134 (fp->file_rbase[objlen] == '.')) 2135 return (fp->file_map ? fp->file_map : mp); 2136 } 2137 2138 /* 2139 * One last check: we allow "a.out" to always alias the executable, 2140 * assuming this name was not in use for something else. 2141 */ 2142 if ((lmid == PR_LMID_EVERY || lmid == LM_ID_BASE) && 2143 (strcmp(objname, "a.out") == 0)) 2144 return (P->map_exec); 2145 2146 return (NULL); 2147 } 2148 2149 static map_info_t * 2150 object_name_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name) 2151 { 2152 map_info_t *mptr; 2153 2154 if (!P->info_valid) 2155 Pupdate_maps(P); 2156 2157 if (P->map_exec == NULL && ((mptr = Paddr2mptr(P, 2158 Pgetauxval(P, AT_ENTRY))) != NULL || (mptr = exec_map(P)) != NULL)) 2159 P->map_exec = mptr; 2160 2161 if (P->map_ldso == NULL && (mptr = Paddr2mptr(P, 2162 Pgetauxval(P, AT_BASE))) != NULL) 2163 P->map_ldso = mptr; 2164 2165 if (name == PR_OBJ_EXEC) 2166 mptr = P->map_exec; 2167 else if (name == PR_OBJ_LDSO) 2168 mptr = P->map_ldso; 2169 else if (Prd_agent(P) != NULL || P->state == PS_IDLE) 2170 mptr = object_to_map(P, lmid, name); 2171 else 2172 mptr = NULL; 2173 2174 return (mptr); 2175 } 2176 2177 /* 2178 * When two symbols are found by address, decide which one is to be preferred. 2179 */ 2180 static GElf_Sym * 2181 sym_prefer(GElf_Sym *sym1, char *name1, GElf_Sym *sym2, char *name2) 2182 { 2183 /* 2184 * Prefer the non-NULL symbol. 2185 */ 2186 if (sym1 == NULL) 2187 return (sym2); 2188 if (sym2 == NULL) 2189 return (sym1); 2190 2191 /* 2192 * Defer to the sort ordering... 2193 */ 2194 return (byaddr_cmp_common(sym1, name1, sym2, name2) <= 0 ? sym1 : sym2); 2195 } 2196 2197 /* 2198 * Use a binary search to do the work of sym_by_addr(). 2199 */ 2200 static GElf_Sym * 2201 sym_by_addr_binary(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp, 2202 uint_t *idp) 2203 { 2204 GElf_Sym sym, osym; 2205 uint_t i, oid, *byaddr = symtab->sym_byaddr; 2206 int min, max, mid, omid, found = 0; 2207 2208 if (symtab->sym_data_pri == NULL || symtab->sym_count == 0) 2209 return (NULL); 2210 2211 min = 0; 2212 max = symtab->sym_count - 1; 2213 osym.st_value = 0; 2214 2215 /* 2216 * We can't return when we've found a match, we have to continue 2217 * searching for the closest matching symbol. 2218 */ 2219 while (min <= max) { 2220 mid = (max + min) / 2; 2221 2222 i = byaddr[mid]; 2223 (void) symtab_getsym(symtab, i, &sym); 2224 2225 if (addr >= sym.st_value && 2226 addr < sym.st_value + sym.st_size && 2227 (!found || sym.st_value > osym.st_value)) { 2228 osym = sym; 2229 omid = mid; 2230 oid = i; 2231 found = 1; 2232 } 2233 2234 if (addr < sym.st_value) 2235 max = mid - 1; 2236 else 2237 min = mid + 1; 2238 } 2239 2240 if (!found) 2241 return (NULL); 2242 2243 /* 2244 * There may be many symbols with identical values so we walk 2245 * backward in the byaddr table to find the best match. 2246 */ 2247 do { 2248 sym = osym; 2249 i = oid; 2250 2251 if (omid == 0) 2252 break; 2253 2254 oid = byaddr[--omid]; 2255 (void) symtab_getsym(symtab, oid, &osym); 2256 } while (addr >= osym.st_value && 2257 addr < sym.st_value + osym.st_size && 2258 osym.st_value == sym.st_value); 2259 2260 *symp = sym; 2261 if (idp != NULL) 2262 *idp = i; 2263 return (symp); 2264 } 2265 2266 /* 2267 * Use a linear search to do the work of sym_by_addr(). 2268 */ 2269 static GElf_Sym * 2270 sym_by_addr_linear(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symbolp, 2271 uint_t *idp) 2272 { 2273 size_t symn = symtab->sym_symn; 2274 char *strs = symtab->sym_strs; 2275 GElf_Sym sym, *symp = NULL; 2276 GElf_Sym osym, *osymp = NULL; 2277 int i, id; 2278 2279 if (symtab->sym_data_pri == NULL || symn == 0 || strs == NULL) 2280 return (NULL); 2281 2282 for (i = 0; i < symn; i++) { 2283 if ((symp = symtab_getsym(symtab, i, &sym)) != NULL) { 2284 if (addr >= sym.st_value && 2285 addr < sym.st_value + sym.st_size) { 2286 if (osymp) 2287 symp = sym_prefer( 2288 symp, strs + symp->st_name, 2289 osymp, strs + osymp->st_name); 2290 if (symp != osymp) { 2291 osym = sym; 2292 osymp = &osym; 2293 id = i; 2294 } 2295 } 2296 } 2297 } 2298 if (osymp) { 2299 *symbolp = osym; 2300 if (idp) 2301 *idp = id; 2302 return (symbolp); 2303 } 2304 return (NULL); 2305 } 2306 2307 /* 2308 * Look up a symbol by address in the specified symbol table. 2309 * Adjustment to 'addr' must already have been made for the 2310 * offset of the symbol if this is a dynamic library symbol table. 2311 * 2312 * Use a linear or a binary search depending on whether or not we 2313 * chose to sort the table in optimize_symtab(). 2314 */ 2315 static GElf_Sym * 2316 sym_by_addr(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp, uint_t *idp) 2317 { 2318 if (_libproc_no_qsort) { 2319 return (sym_by_addr_linear(symtab, addr, symp, idp)); 2320 } else { 2321 return (sym_by_addr_binary(symtab, addr, symp, idp)); 2322 } 2323 } 2324 2325 /* 2326 * Use a binary search to do the work of sym_by_name(). 2327 */ 2328 static GElf_Sym * 2329 sym_by_name_binary(sym_tbl_t *symtab, const char *name, GElf_Sym *symp, 2330 uint_t *idp) 2331 { 2332 char *strs = symtab->sym_strs; 2333 uint_t i, *byname = symtab->sym_byname; 2334 int min, mid, max, cmp; 2335 2336 if (symtab->sym_data_pri == NULL || strs == NULL || 2337 symtab->sym_count == 0) 2338 return (NULL); 2339 2340 min = 0; 2341 max = symtab->sym_count - 1; 2342 2343 while (min <= max) { 2344 mid = (max + min) / 2; 2345 2346 i = byname[mid]; 2347 (void) symtab_getsym(symtab, i, symp); 2348 2349 if ((cmp = strcmp(name, strs + symp->st_name)) == 0) { 2350 if (idp != NULL) 2351 *idp = i; 2352 return (symp); 2353 } 2354 2355 if (cmp < 0) 2356 max = mid - 1; 2357 else 2358 min = mid + 1; 2359 } 2360 2361 return (NULL); 2362 } 2363 2364 /* 2365 * Use a linear search to do the work of sym_by_name(). 2366 */ 2367 static GElf_Sym * 2368 sym_by_name_linear(sym_tbl_t *symtab, const char *name, GElf_Sym *symp, 2369 uint_t *idp) 2370 { 2371 size_t symn = symtab->sym_symn; 2372 char *strs = symtab->sym_strs; 2373 int i; 2374 2375 if (symtab->sym_data_pri == NULL || symn == 0 || strs == NULL) 2376 return (NULL); 2377 2378 for (i = 0; i < symn; i++) { 2379 if (symtab_getsym(symtab, i, symp) && 2380 strcmp(name, strs + symp->st_name) == 0) { 2381 if (idp) 2382 *idp = i; 2383 return (symp); 2384 } 2385 } 2386 2387 return (NULL); 2388 } 2389 2390 /* 2391 * Look up a symbol by name in the specified symbol table. 2392 * 2393 * Use a linear or a binary search depending on whether or not we 2394 * chose to sort the table in optimize_symtab(). 2395 */ 2396 static GElf_Sym * 2397 sym_by_name(sym_tbl_t *symtab, const char *name, GElf_Sym *symp, uint_t *idp) 2398 { 2399 if (_libproc_no_qsort) { 2400 return (sym_by_name_linear(symtab, name, symp, idp)); 2401 } else { 2402 return (sym_by_name_binary(symtab, name, symp, idp)); 2403 } 2404 } 2405 2406 /* 2407 * Search the process symbol tables looking for a symbol whose 2408 * value to value+size contain the address specified by addr. 2409 * Return values are: 2410 * sym_name_buffer containing the symbol name 2411 * GElf_Sym symbol table entry 2412 * prsyminfo_t ancillary symbol information 2413 * Returns 0 on success, -1 on failure. 2414 */ 2415 static int 2416 i_Pxlookup_by_addr( 2417 struct ps_prochandle *P, 2418 int lmresolve, /* use resolve linker object names */ 2419 uintptr_t addr, /* process address being sought */ 2420 char *sym_name_buffer, /* buffer for the symbol name */ 2421 size_t bufsize, /* size of sym_name_buffer */ 2422 GElf_Sym *symbolp, /* returned symbol table entry */ 2423 prsyminfo_t *sip) /* returned symbol info */ 2424 { 2425 GElf_Sym *symp; 2426 char *name; 2427 GElf_Sym sym1, *sym1p = NULL; 2428 GElf_Sym sym2, *sym2p = NULL; 2429 char *name1 = NULL; 2430 char *name2 = NULL; 2431 uint_t i1; 2432 uint_t i2; 2433 map_info_t *mptr; 2434 file_info_t *fptr; 2435 2436 (void) Prd_agent(P); 2437 2438 if ((mptr = Paddr2mptr(P, addr)) == NULL || /* no such address */ 2439 (fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */ 2440 fptr->file_elf == NULL) /* not an ELF file */ 2441 return (-1); 2442 2443 /* 2444 * Adjust the address by the load object base address in 2445 * case the address turns out to be in a shared library. 2446 */ 2447 addr -= fptr->file_dyn_base; 2448 2449 /* 2450 * Search both symbol tables, symtab first, then dynsym. 2451 */ 2452 if ((sym1p = sym_by_addr(&fptr->file_symtab, addr, &sym1, &i1)) != NULL) 2453 name1 = fptr->file_symtab.sym_strs + sym1.st_name; 2454 if ((sym2p = sym_by_addr(&fptr->file_dynsym, addr, &sym2, &i2)) != NULL) 2455 name2 = fptr->file_dynsym.sym_strs + sym2.st_name; 2456 2457 if ((symp = sym_prefer(sym1p, name1, sym2p, name2)) == NULL) 2458 return (-1); 2459 2460 name = (symp == sym1p) ? name1 : name2; 2461 if (bufsize > 0) { 2462 (void) strncpy(sym_name_buffer, name, bufsize); 2463 sym_name_buffer[bufsize - 1] = '\0'; 2464 } 2465 2466 *symbolp = *symp; 2467 if (sip != NULL) { 2468 sip->prs_name = bufsize == 0 ? NULL : sym_name_buffer; 2469 if (lmresolve && (fptr->file_rname != NULL)) 2470 sip->prs_object = fptr->file_rbase; 2471 else 2472 sip->prs_object = fptr->file_lbase; 2473 sip->prs_id = (symp == sym1p) ? i1 : i2; 2474 sip->prs_table = (symp == sym1p) ? PR_SYMTAB : PR_DYNSYM; 2475 sip->prs_lmid = (fptr->file_lo == NULL) ? LM_ID_BASE : 2476 fptr->file_lo->rl_lmident; 2477 } 2478 2479 if (GELF_ST_TYPE(symbolp->st_info) != STT_TLS) 2480 symbolp->st_value += fptr->file_dyn_base; 2481 2482 return (0); 2483 } 2484 2485 int 2486 Pxlookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf, 2487 size_t bufsize, GElf_Sym *symp, prsyminfo_t *sip) 2488 { 2489 return (i_Pxlookup_by_addr(P, B_FALSE, addr, buf, bufsize, symp, sip)); 2490 } 2491 2492 int 2493 Pxlookup_by_addr_resolved(struct ps_prochandle *P, uintptr_t addr, char *buf, 2494 size_t bufsize, GElf_Sym *symp, prsyminfo_t *sip) 2495 { 2496 return (i_Pxlookup_by_addr(P, B_TRUE, addr, buf, bufsize, symp, sip)); 2497 } 2498 2499 int 2500 Plookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf, 2501 size_t size, GElf_Sym *symp) 2502 { 2503 return (i_Pxlookup_by_addr(P, B_FALSE, addr, buf, size, symp, NULL)); 2504 } 2505 2506 /* 2507 * Search the process symbol tables looking for a symbol whose name matches the 2508 * specified name and whose object and link map optionally match the specified 2509 * parameters. On success, the function returns 0 and fills in the GElf_Sym 2510 * symbol table entry. On failure, -1 is returned. 2511 */ 2512 int 2513 Pxlookup_by_name( 2514 struct ps_prochandle *P, 2515 Lmid_t lmid, /* link map to match, or -1 for any */ 2516 const char *oname, /* load object name */ 2517 const char *sname, /* symbol name */ 2518 GElf_Sym *symp, /* returned symbol table entry */ 2519 prsyminfo_t *sip) /* returned symbol info */ 2520 { 2521 map_info_t *mptr; 2522 file_info_t *fptr; 2523 int cnt; 2524 2525 GElf_Sym sym; 2526 prsyminfo_t si; 2527 int rv = -1; 2528 uint_t id; 2529 2530 if (oname == PR_OBJ_EVERY) { 2531 /* create all the file_info_t's for all the mappings */ 2532 (void) Prd_agent(P); 2533 cnt = P->num_files; 2534 fptr = list_next(&P->file_head); 2535 } else { 2536 cnt = 1; 2537 if ((mptr = object_name_to_map(P, lmid, oname)) == NULL || 2538 (fptr = build_map_symtab(P, mptr)) == NULL) 2539 return (-1); 2540 } 2541 2542 /* 2543 * Iterate through the loaded object files and look for the symbol 2544 * name in the .symtab and .dynsym of each. If we encounter a match 2545 * with SHN_UNDEF, keep looking in hopes of finding a better match. 2546 * This means that a name such as "puts" will match the puts function 2547 * in libc instead of matching the puts PLT entry in the a.out file. 2548 */ 2549 for (; cnt > 0; cnt--, fptr = list_next(fptr)) { 2550 Pbuild_file_symtab(P, fptr); 2551 2552 if (fptr->file_elf == NULL) 2553 continue; 2554 2555 if (lmid != PR_LMID_EVERY && fptr->file_lo != NULL && 2556 lmid != fptr->file_lo->rl_lmident) 2557 continue; 2558 2559 if (fptr->file_symtab.sym_data_pri != NULL && 2560 sym_by_name(&fptr->file_symtab, sname, symp, &id)) { 2561 if (sip != NULL) { 2562 sip->prs_id = id; 2563 sip->prs_table = PR_SYMTAB; 2564 sip->prs_object = oname; 2565 sip->prs_name = sname; 2566 sip->prs_lmid = fptr->file_lo == NULL ? 2567 LM_ID_BASE : fptr->file_lo->rl_lmident; 2568 } 2569 } else if (fptr->file_dynsym.sym_data_pri != NULL && 2570 sym_by_name(&fptr->file_dynsym, sname, symp, &id)) { 2571 if (sip != NULL) { 2572 sip->prs_id = id; 2573 sip->prs_table = PR_DYNSYM; 2574 sip->prs_object = oname; 2575 sip->prs_name = sname; 2576 sip->prs_lmid = fptr->file_lo == NULL ? 2577 LM_ID_BASE : fptr->file_lo->rl_lmident; 2578 } 2579 } else { 2580 continue; 2581 } 2582 2583 if (GELF_ST_TYPE(symp->st_info) != STT_TLS) 2584 symp->st_value += fptr->file_dyn_base; 2585 2586 if (symp->st_shndx != SHN_UNDEF) 2587 return (0); 2588 2589 if (rv != 0) { 2590 if (sip != NULL) 2591 si = *sip; 2592 sym = *symp; 2593 rv = 0; 2594 } 2595 } 2596 2597 if (rv == 0) { 2598 if (sip != NULL) 2599 *sip = si; 2600 *symp = sym; 2601 } 2602 2603 return (rv); 2604 } 2605 2606 /* 2607 * Search the process symbol tables looking for a symbol whose name matches the 2608 * specified name, but without any restriction on the link map id. 2609 */ 2610 int 2611 Plookup_by_name(struct ps_prochandle *P, const char *object, 2612 const char *symbol, GElf_Sym *symp) 2613 { 2614 return (Pxlookup_by_name(P, PR_LMID_EVERY, object, symbol, symp, NULL)); 2615 } 2616 2617 /* 2618 * Iterate over the process's address space mappings. 2619 */ 2620 static int 2621 i_Pmapping_iter(struct ps_prochandle *P, boolean_t lmresolve, 2622 proc_map_f *func, void *cd) 2623 { 2624 map_info_t *mptr; 2625 file_info_t *fptr; 2626 char *object_name; 2627 int rc = 0; 2628 int i; 2629 2630 /* create all the file_info_t's for all the mappings */ 2631 (void) Prd_agent(P); 2632 2633 for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) { 2634 if ((fptr = mptr->map_file) == NULL) 2635 object_name = NULL; 2636 else if (lmresolve && (fptr->file_rname != NULL)) 2637 object_name = fptr->file_rname; 2638 else 2639 object_name = fptr->file_lname; 2640 if ((rc = func(cd, &mptr->map_pmap, object_name)) != 0) 2641 return (rc); 2642 } 2643 return (0); 2644 } 2645 2646 int 2647 Pmapping_iter(struct ps_prochandle *P, proc_map_f *func, void *cd) 2648 { 2649 return (i_Pmapping_iter(P, B_FALSE, func, cd)); 2650 } 2651 2652 int 2653 Pmapping_iter_resolved(struct ps_prochandle *P, proc_map_f *func, void *cd) 2654 { 2655 return (i_Pmapping_iter(P, B_TRUE, func, cd)); 2656 } 2657 2658 /* 2659 * Iterate over the process's mapped objects. 2660 */ 2661 static int 2662 i_Pobject_iter(struct ps_prochandle *P, boolean_t lmresolve, 2663 proc_map_f *func, void *cd) 2664 { 2665 map_info_t *mptr; 2666 file_info_t *fptr; 2667 uint_t cnt; 2668 int rc = 0; 2669 2670 (void) Prd_agent(P); /* create file_info_t's for all the mappings */ 2671 Pupdate_maps(P); 2672 2673 for (cnt = P->num_files, fptr = list_next(&P->file_head); 2674 cnt; cnt--, fptr = list_next(fptr)) { 2675 const char *lname; 2676 2677 if (lmresolve && (fptr->file_rname != NULL)) 2678 lname = fptr->file_rname; 2679 else if (fptr->file_lname != NULL) 2680 lname = fptr->file_lname; 2681 else 2682 lname = ""; 2683 2684 if ((mptr = fptr->file_map) == NULL) 2685 continue; 2686 2687 if ((rc = func(cd, &mptr->map_pmap, lname)) != 0) 2688 return (rc); 2689 2690 if (!P->info_valid) 2691 Pupdate_maps(P); 2692 } 2693 return (0); 2694 } 2695 2696 int 2697 Pobject_iter(struct ps_prochandle *P, proc_map_f *func, void *cd) 2698 { 2699 return (i_Pobject_iter(P, B_FALSE, func, cd)); 2700 } 2701 2702 int 2703 Pobject_iter_resolved(struct ps_prochandle *P, proc_map_f *func, void *cd) 2704 { 2705 return (i_Pobject_iter(P, B_TRUE, func, cd)); 2706 } 2707 2708 static char * 2709 i_Pobjname(struct ps_prochandle *P, boolean_t lmresolve, uintptr_t addr, 2710 char *buffer, size_t bufsize) 2711 { 2712 map_info_t *mptr; 2713 file_info_t *fptr; 2714 2715 /* create all the file_info_t's for all the mappings */ 2716 (void) Prd_agent(P); 2717 2718 if ((mptr = Paddr2mptr(P, addr)) == NULL) 2719 return (NULL); 2720 2721 if (!lmresolve) { 2722 if (((fptr = mptr->map_file) == NULL) || 2723 (fptr->file_lname == NULL)) 2724 return (NULL); 2725 (void) strlcpy(buffer, fptr->file_lname, bufsize); 2726 return (buffer); 2727 } 2728 2729 /* Check for a cached copy of the resolved path */ 2730 if (Pfindmap(P, mptr, buffer, bufsize) != NULL) 2731 return (buffer); 2732 2733 return (NULL); 2734 } 2735 2736 /* 2737 * Given a virtual address, return the name of the underlying 2738 * mapped object (file) as provided by the dynamic linker. 2739 * Return NULL if we can't find any name information for the object. 2740 */ 2741 char * 2742 Pobjname(struct ps_prochandle *P, uintptr_t addr, 2743 char *buffer, size_t bufsize) 2744 { 2745 return (i_Pobjname(P, B_FALSE, addr, buffer, bufsize)); 2746 } 2747 2748 /* 2749 * Given a virtual address, try to return a filesystem path to the 2750 * underlying mapped object (file). If we're in the global zone, 2751 * this path could resolve to an object in another zone. If we're 2752 * unable return a valid filesystem path, we'll fall back to providing 2753 * the mapped object (file) name provided by the dynamic linker in 2754 * the target process (ie, the object reported by Pobjname()). 2755 */ 2756 char * 2757 Pobjname_resolved(struct ps_prochandle *P, uintptr_t addr, 2758 char *buffer, size_t bufsize) 2759 { 2760 return (i_Pobjname(P, B_TRUE, addr, buffer, bufsize)); 2761 } 2762 2763 /* 2764 * Given a virtual address, return the link map id of the underlying mapped 2765 * object (file), as provided by the dynamic linker. Return -1 on failure. 2766 */ 2767 int 2768 Plmid(struct ps_prochandle *P, uintptr_t addr, Lmid_t *lmidp) 2769 { 2770 map_info_t *mptr; 2771 file_info_t *fptr; 2772 2773 /* create all the file_info_t's for all the mappings */ 2774 (void) Prd_agent(P); 2775 2776 if ((mptr = Paddr2mptr(P, addr)) != NULL && 2777 (fptr = mptr->map_file) != NULL && fptr->file_lo != NULL) { 2778 *lmidp = fptr->file_lo->rl_lmident; 2779 return (0); 2780 } 2781 2782 return (-1); 2783 } 2784 2785 /* 2786 * Given an object name and optional lmid, iterate over the object's symbols. 2787 * If which == PR_SYMTAB, search the normal symbol table. 2788 * If which == PR_DYNSYM, search the dynamic symbol table. 2789 */ 2790 static int 2791 Psymbol_iter_com(struct ps_prochandle *P, Lmid_t lmid, const char *object_name, 2792 int which, int mask, pr_order_t order, proc_xsym_f *func, void *cd) 2793 { 2794 #if STT_NUM != (STT_TLS + 1) 2795 #error "STT_NUM has grown. update Psymbol_iter_com()" 2796 #endif 2797 2798 GElf_Sym sym; 2799 GElf_Shdr shdr; 2800 map_info_t *mptr; 2801 file_info_t *fptr; 2802 sym_tbl_t *symtab; 2803 size_t symn; 2804 const char *strs; 2805 size_t strsz; 2806 prsyminfo_t si; 2807 int rv; 2808 uint_t *map, i, count, ndx; 2809 2810 if ((mptr = object_name_to_map(P, lmid, object_name)) == NULL) 2811 return (-1); 2812 2813 if ((fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */ 2814 fptr->file_elf == NULL) /* not an ELF file */ 2815 return (-1); 2816 2817 /* 2818 * Search the specified symbol table. 2819 */ 2820 switch (which) { 2821 case PR_SYMTAB: 2822 symtab = &fptr->file_symtab; 2823 si.prs_table = PR_SYMTAB; 2824 break; 2825 case PR_DYNSYM: 2826 symtab = &fptr->file_dynsym; 2827 si.prs_table = PR_DYNSYM; 2828 break; 2829 default: 2830 return (-1); 2831 } 2832 2833 si.prs_object = object_name; 2834 si.prs_lmid = fptr->file_lo == NULL ? 2835 LM_ID_BASE : fptr->file_lo->rl_lmident; 2836 2837 symn = symtab->sym_symn; 2838 strs = symtab->sym_strs; 2839 strsz = symtab->sym_strsz; 2840 2841 switch (order) { 2842 case PRO_NATURAL: 2843 map = NULL; 2844 count = symn; 2845 break; 2846 case PRO_BYNAME: 2847 map = symtab->sym_byname; 2848 count = symtab->sym_count; 2849 break; 2850 case PRO_BYADDR: 2851 map = symtab->sym_byaddr; 2852 count = symtab->sym_count; 2853 break; 2854 default: 2855 return (-1); 2856 } 2857 2858 if (symtab->sym_data_pri == NULL || strs == NULL || count == 0) 2859 return (-1); 2860 2861 rv = 0; 2862 2863 for (i = 0; i < count; i++) { 2864 ndx = map == NULL ? i : map[i]; 2865 if (symtab_getsym(symtab, ndx, &sym) != NULL) { 2866 uint_t s_bind, s_type, type; 2867 2868 if (sym.st_name >= strsz) /* invalid st_name */ 2869 continue; 2870 2871 s_bind = GELF_ST_BIND(sym.st_info); 2872 s_type = GELF_ST_TYPE(sym.st_info); 2873 2874 /* 2875 * In case you haven't already guessed, this relies on 2876 * the bitmask used in <libproc.h> for encoding symbol 2877 * type and binding matching the order of STB and STT 2878 * constants in <sys/elf.h>. Changes to ELF must 2879 * maintain binary compatibility, so I think this is 2880 * reasonably fair game. 2881 */ 2882 if (s_bind < STB_NUM && s_type < STT_NUM) { 2883 type = (1 << (s_type + 8)) | (1 << s_bind); 2884 if ((type & ~mask) != 0) 2885 continue; 2886 } else 2887 continue; /* Invalid type or binding */ 2888 2889 if (GELF_ST_TYPE(sym.st_info) != STT_TLS) 2890 sym.st_value += fptr->file_dyn_base; 2891 2892 si.prs_name = strs + sym.st_name; 2893 2894 /* 2895 * If symbol's type is STT_SECTION, then try to lookup 2896 * the name of the corresponding section. 2897 */ 2898 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && 2899 fptr->file_shstrs != NULL && 2900 gelf_getshdr(elf_getscn(fptr->file_elf, 2901 sym.st_shndx), &shdr) != NULL && 2902 shdr.sh_name != 0 && 2903 shdr.sh_name < fptr->file_shstrsz) 2904 si.prs_name = fptr->file_shstrs + shdr.sh_name; 2905 2906 si.prs_id = ndx; 2907 if ((rv = func(cd, &sym, si.prs_name, &si)) != 0) 2908 break; 2909 } 2910 } 2911 2912 return (rv); 2913 } 2914 2915 int 2916 Pxsymbol_iter(struct ps_prochandle *P, Lmid_t lmid, const char *object_name, 2917 int which, int mask, proc_xsym_f *func, void *cd) 2918 { 2919 return (Psymbol_iter_com(P, lmid, object_name, which, mask, 2920 PRO_NATURAL, func, cd)); 2921 } 2922 2923 int 2924 Psymbol_iter_by_lmid(struct ps_prochandle *P, Lmid_t lmid, 2925 const char *object_name, int which, int mask, proc_sym_f *func, void *cd) 2926 { 2927 return (Psymbol_iter_com(P, lmid, object_name, which, mask, 2928 PRO_NATURAL, (proc_xsym_f *)func, cd)); 2929 } 2930 2931 int 2932 Psymbol_iter(struct ps_prochandle *P, 2933 const char *object_name, int which, int mask, proc_sym_f *func, void *cd) 2934 { 2935 return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask, 2936 PRO_NATURAL, (proc_xsym_f *)func, cd)); 2937 } 2938 2939 int 2940 Psymbol_iter_by_addr(struct ps_prochandle *P, 2941 const char *object_name, int which, int mask, proc_sym_f *func, void *cd) 2942 { 2943 return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask, 2944 PRO_BYADDR, (proc_xsym_f *)func, cd)); 2945 } 2946 2947 int 2948 Psymbol_iter_by_name(struct ps_prochandle *P, 2949 const char *object_name, int which, int mask, proc_sym_f *func, void *cd) 2950 { 2951 return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask, 2952 PRO_BYNAME, (proc_xsym_f *)func, cd)); 2953 } 2954 2955 /* 2956 * Get the platform string from the core file if we have it; 2957 * just perform the system call for the caller if this is a live process. 2958 */ 2959 char * 2960 Pplatform(struct ps_prochandle *P, char *s, size_t n) 2961 { 2962 if (P->state == PS_IDLE) { 2963 errno = ENODATA; 2964 return (NULL); 2965 } 2966 2967 if (P->state == PS_DEAD) { 2968 if (P->core->core_platform == NULL) { 2969 errno = ENODATA; 2970 return (NULL); 2971 } 2972 (void) strncpy(s, P->core->core_platform, n - 1); 2973 s[n - 1] = '\0'; 2974 2975 } else if (sysinfo(SI_PLATFORM, s, n) == -1) 2976 return (NULL); 2977 2978 return (s); 2979 } 2980 2981 /* 2982 * Get the uname(2) information from the core file if we have it; 2983 * just perform the system call for the caller if this is a live process. 2984 */ 2985 int 2986 Puname(struct ps_prochandle *P, struct utsname *u) 2987 { 2988 if (P->state == PS_IDLE) { 2989 errno = ENODATA; 2990 return (-1); 2991 } 2992 2993 if (P->state == PS_DEAD) { 2994 if (P->core->core_uts == NULL) { 2995 errno = ENODATA; 2996 return (-1); 2997 } 2998 (void) memcpy(u, P->core->core_uts, sizeof (struct utsname)); 2999 return (0); 3000 } 3001 return (uname(u)); 3002 } 3003 3004 /* 3005 * Called from Pcreate(), Pgrab(), and Pfgrab_core() to initialize 3006 * the symbol table heads in the new ps_prochandle. 3007 */ 3008 void 3009 Pinitsym(struct ps_prochandle *P) 3010 { 3011 P->num_files = 0; 3012 list_link(&P->file_head, NULL); 3013 } 3014 3015 /* 3016 * Called from Prelease() to destroy the symbol tables. 3017 * Must be called by the client after an exec() in the victim process. 3018 */ 3019 void 3020 Preset_maps(struct ps_prochandle *P) 3021 { 3022 int i; 3023 3024 if (P->rap != NULL) { 3025 rd_delete(P->rap); 3026 P->rap = NULL; 3027 } 3028 3029 if (P->execname != NULL) { 3030 free(P->execname); 3031 P->execname = NULL; 3032 } 3033 3034 if (P->auxv != NULL) { 3035 free(P->auxv); 3036 P->auxv = NULL; 3037 P->nauxv = 0; 3038 } 3039 3040 for (i = 0; i < P->map_count; i++) 3041 map_info_free(P, &P->mappings[i]); 3042 3043 if (P->mappings != NULL) { 3044 free(P->mappings); 3045 P->mappings = NULL; 3046 } 3047 P->map_count = P->map_alloc = 0; 3048 3049 P->info_valid = 0; 3050 } 3051 3052 typedef struct getenv_data { 3053 char *buf; 3054 size_t bufsize; 3055 const char *search; 3056 size_t searchlen; 3057 } getenv_data_t; 3058 3059 /*ARGSUSED*/ 3060 static int 3061 getenv_func(void *data, struct ps_prochandle *P, uintptr_t addr, 3062 const char *nameval) 3063 { 3064 getenv_data_t *d = data; 3065 size_t len; 3066 3067 if (nameval == NULL) 3068 return (0); 3069 3070 if (d->searchlen < strlen(nameval) && 3071 strncmp(nameval, d->search, d->searchlen) == 0 && 3072 nameval[d->searchlen] == '=') { 3073 len = MIN(strlen(nameval), d->bufsize - 1); 3074 (void) strncpy(d->buf, nameval, len); 3075 d->buf[len] = '\0'; 3076 return (1); 3077 } 3078 3079 return (0); 3080 } 3081 3082 char * 3083 Pgetenv(struct ps_prochandle *P, const char *name, char *buf, size_t buflen) 3084 { 3085 getenv_data_t d; 3086 3087 d.buf = buf; 3088 d.bufsize = buflen; 3089 d.search = name; 3090 d.searchlen = strlen(name); 3091 3092 if (Penv_iter(P, getenv_func, &d) == 1) { 3093 char *equals = strchr(d.buf, '='); 3094 3095 if (equals != NULL) { 3096 (void) memmove(d.buf, equals + 1, 3097 d.buf + buflen - equals - 1); 3098 d.buf[d.buf + buflen - equals] = '\0'; 3099 3100 return (buf); 3101 } 3102 } 3103 3104 return (NULL); 3105 } 3106 3107 /* number of argument or environment pointers to read all at once */ 3108 #define NARG 100 3109 3110 int 3111 Penv_iter(struct ps_prochandle *P, proc_env_f *func, void *data) 3112 { 3113 const psinfo_t *psp; 3114 uintptr_t envpoff; 3115 GElf_Sym sym; 3116 int ret; 3117 char *buf, *nameval; 3118 size_t buflen; 3119 3120 int nenv = NARG; 3121 long envp[NARG]; 3122 3123 /* 3124 * Attempt to find the "_environ" variable in the process. 3125 * Failing that, use the original value provided by Ppsinfo(). 3126 */ 3127 if ((psp = Ppsinfo(P)) == NULL) 3128 return (-1); 3129 3130 envpoff = psp->pr_envp; /* Default if no _environ found */ 3131 3132 if (Plookup_by_name(P, PR_OBJ_EXEC, "_environ", &sym) == 0) { 3133 if (P->status.pr_dmodel == PR_MODEL_NATIVE) { 3134 if (Pread(P, &envpoff, sizeof (envpoff), 3135 sym.st_value) != sizeof (envpoff)) 3136 envpoff = psp->pr_envp; 3137 } else if (P->status.pr_dmodel == PR_MODEL_ILP32) { 3138 uint32_t envpoff32; 3139 3140 if (Pread(P, &envpoff32, sizeof (envpoff32), 3141 sym.st_value) != sizeof (envpoff32)) 3142 envpoff = psp->pr_envp; 3143 else 3144 envpoff = envpoff32; 3145 } 3146 } 3147 3148 buflen = 128; 3149 buf = malloc(buflen); 3150 3151 ret = 0; 3152 for (;;) { 3153 uintptr_t envoff; 3154 3155 if (nenv == NARG) { 3156 (void) memset(envp, 0, sizeof (envp)); 3157 if (P->status.pr_dmodel == PR_MODEL_NATIVE) { 3158 if (Pread(P, envp, 3159 sizeof (envp), envpoff) <= 0) { 3160 ret = -1; 3161 break; 3162 } 3163 } else if (P->status.pr_dmodel == PR_MODEL_ILP32) { 3164 uint32_t e32[NARG]; 3165 int i; 3166 3167 (void) memset(e32, 0, sizeof (e32)); 3168 if (Pread(P, e32, sizeof (e32), envpoff) <= 0) { 3169 ret = -1; 3170 break; 3171 } 3172 for (i = 0; i < NARG; i++) 3173 envp[i] = e32[i]; 3174 } 3175 nenv = 0; 3176 } 3177 3178 if ((envoff = envp[nenv++]) == NULL) 3179 break; 3180 3181 /* 3182 * Attempt to read the string from the process. 3183 */ 3184 again: 3185 ret = Pread_string(P, buf, buflen, envoff); 3186 3187 if (ret <= 0) { 3188 nameval = NULL; 3189 } else if (ret == buflen - 1) { 3190 free(buf); 3191 /* 3192 * Bail if we have a corrupted environment 3193 */ 3194 if (buflen >= ARG_MAX) 3195 return (-1); 3196 buflen *= 2; 3197 buf = malloc(buflen); 3198 goto again; 3199 } else { 3200 nameval = buf; 3201 } 3202 3203 if ((ret = func(data, P, envoff, nameval)) != 0) 3204 break; 3205 3206 envpoff += (P->status.pr_dmodel == PR_MODEL_LP64)? 8 : 4; 3207 } 3208 3209 free(buf); 3210 3211 return (ret); 3212 } 3213