1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 25 * Use is subject to license terms. 26 */ 27 28 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 29 /* All Rights Reserved */ 30 /* 31 * Portions of this source code were derived from Berkeley 32 * 4.3 BSD under license from the Regents of the University of 33 * California. 34 */ 35 36 #pragma ident "%Z%%M% %I% %E% SMI" 37 38 /* 39 * Generic XDR routines impelmentation. 40 * 41 * These are the "floating point" xdr routines used to (de)serialize 42 * most common data items. See xdr.h for more info on the interface to 43 * xdr. 44 */ 45 46 #include "mt.h" 47 #include <sys/types.h> 48 #include <stdio.h> 49 #include <rpc/types.h> 50 #include <rpc/xdr.h> 51 52 /* 53 * This routine works on Suns, 3b2, 68000s, 386 and Vaxen in a manner 54 * which is very efficient as bit twiddling is all that is needed. All 55 * other machines can use this code but the code is inefficient as 56 * various mathematical operations are used to generate the ieee format. 57 * In addition rounding errors may occur due to the calculations involved. 58 * To be most efficient, new machines should have their own ifdefs. 59 * The encoding routines will fail if the machines try to encode a 60 * float/double whose value can not be represented by the ieee format, 61 * e.g. the exponent is too big/small. 62 * ieee largest float = (2 ^ 128) * 0x1.fffff 63 * ieee smallest float = (2 ^ -127) * 0x1.00000 64 * ieee largest double = (2 ^ 1024) * 0x1.fffff 65 * ieee smallest double = (2 ^ -1023) * 0x1.00000 66 * The decoding routines assumes that the receiving machine can handle 67 * floats/doubles as large/small as the values stated above. If you 68 * use a machine which can not represent these values, you will need 69 * to put ifdefs in the decode sections to identify areas of failure. 70 */ 71 72 #if defined(vax) 73 74 /* 75 * What IEEE single precision floating point looks like this on a 76 * vax. 77 */ 78 79 struct ieee_single { 80 unsigned int mantissa: 23; 81 unsigned int exp : 8; 82 unsigned int sign : 1; 83 }; 84 85 #define IEEE_SNG_BIAS 0x7f 86 #define VAX_SNG_BIAS 0x81 87 88 89 /* Vax single precision floating point */ 90 struct vax_single { 91 unsigned int mantissa1 : 7; 92 unsigned int exp : 8; 93 unsigned int sign : 1; 94 unsigned int mantissa2 : 16; 95 }; 96 97 #define VAX_SNG_BIAS 0x81 98 99 static struct sgl_limits { 100 struct vax_single s; 101 struct ieee_single ieee; 102 } sgl_limits[2] = { 103 {{ 0x7f, 0xff, 0x0, 0xffff }, /* Max Vax */ 104 { 0x0, 0xff, 0x0 }}, /* Max IEEE */ 105 {{ 0x0, 0x0, 0x0, 0x0 }, /* Min Vax */ 106 { 0x0, 0x0, 0x0 }} /* Min IEEE */ 107 }; 108 #endif /* vax */ 109 110 bool_t 111 xdr_float(XDR *xdrs, float *fp) 112 { 113 #if defined(vax) 114 struct ieee_single is; 115 struct vax_single vs, *vsp; 116 struct sgl_limits *lim; 117 size_t i; 118 #endif 119 120 switch (xdrs->x_op) { 121 122 case XDR_ENCODE: 123 #if defined(mc68000) || defined(sparc) || defined(u3b2) || \ 124 defined(u3b15) || defined(i386) 125 return (XDR_PUTINT32(xdrs, (int *)fp)); 126 #else 127 #if defined(vax) 128 vs = *((struct vax_single *)fp); 129 if ((vs.exp == 1) || (vs.exp == 2)) { 130 /* map these to subnormals */ 131 is.exp = 0; 132 is.mantissa = (vs.mantissa1 << 16) | vs.mantissa2; 133 /* lose some precision */ 134 is.mantissa >>= 3 - vs.exp; 135 is.mantissa += (1 << (20 + vs.exp)); 136 goto shipit; 137 } 138 for (i = 0, lim = sgl_limits; 139 i < (int)(sizeof (sgl_limits) / 140 sizeof (struct sgl_limits)); 141 i++, lim++) { 142 if ((vs.mantissa2 == lim->s.mantissa2) && 143 (vs.exp == lim->s.exp) && 144 (vs.mantissa1 == lim->s.mantissa1)) { 145 is = lim->ieee; 146 goto shipit; 147 } 148 } 149 is.exp = vs.exp - VAX_SNG_BIAS + IEEE_SNG_BIAS; 150 is.mantissa = (vs.mantissa1 << 16) | vs.mantissa2; 151 shipit: 152 is.sign = vs.sign; 153 return (XDR_PUTINT32(xdrs, (int32_t *)&is)); 154 #else 155 { 156 /* 157 * Every machine can do this, its just not very efficient. 158 * In addtion, some rounding errors may occur do to the 159 * calculations involved. 160 */ 161 float f; 162 int neg = 0; 163 int exp = 0; 164 int32_t val; 165 166 f = *fp; 167 if (f == 0) { 168 val = 0; 169 return (XDR_PUTINT32(xdrs, &val)); 170 } 171 if (f < 0) { 172 f = 0 - f; 173 neg = 1; 174 } 175 while (f < 1) { 176 f = f * 2; 177 --exp; 178 } 179 while (f >= 2) { 180 f = f/2; 181 ++exp; 182 } 183 if ((exp > 128) || (exp < -127)) { 184 /* over or under flowing ieee exponent */ 185 return (FALSE); 186 } 187 val = neg; 188 val = val << 8; /* for the exponent */ 189 val += 127 + exp; /* 127 is the bias */ 190 val = val << 23; /* for the mantissa */ 191 val += (int32_t)((f - 1) * 8388608); /* 2 ^ 23 */ 192 return (XDR_PUTINT32(xdrs, &val)); 193 } 194 #endif 195 #endif 196 197 case XDR_DECODE: 198 #if defined(mc68000) || defined(sparc) || defined(u3b2) || \ 199 defined(u3b15) || defined(i386) 200 return (XDR_GETINT32(xdrs, (int *)fp)); 201 #else 202 #if defined(vax) 203 vsp = (struct vax_single *)fp; 204 if (!XDR_GETINT32(xdrs, (int32_t *)&is)) 205 return (FALSE); 206 207 for (i = 0, lim = sgl_limits; 208 i < (int)(sizeof (sgl_limits) / 209 sizeof (struct sgl_limits)); 210 i++, lim++) { 211 if ((is.exp == lim->ieee.exp) && 212 (is.mantissa == lim->ieee.mantissa)) { 213 *vsp = lim->s; 214 goto doneit; 215 } else if ((is.exp == 0) && (lim->ieee.exp == 0)) { 216 /* Special Case */ 217 unsigned tmp = is.mantissa >> 20; 218 if (tmp >= 4) { 219 vsp->exp = 2; 220 } else if (tmp >= 2) { 221 vsp->exp = 1; 222 } else { 223 *vsp = min.s; 224 break; 225 } /* else */ 226 tmp = is.mantissa - (1 << (20 + vsp->exp)); 227 tmp <<= 3 - vsp->exp; 228 vsp->mantissa2 = tmp; 229 vsp->mantissa1 = (tmp >> 16); 230 goto doneit; 231 } 232 vsp->exp = is.exp - IEEE_SNG_BIAS + VAX_SNG_BIAS; 233 vsp->mantissa2 = is.mantissa; 234 vsp->mantissa1 = (is.mantissa >> 16); 235 doneit: 236 vsp->sign = is.sign; 237 return (TRUE); 238 #else 239 { 240 /* 241 * Every machine can do this, its just not very 242 * efficient. It assumes that the decoding machine's 243 * float can represent any value in the range of 244 * ieee largest float = (2 ^ 128) * 0x1.fffff 245 * to 246 * ieee smallest float = (2 ^ -127) * 0x1.00000 247 * In addtion, some rounding errors may occur do to the 248 * calculations involved. 249 */ 250 float f; 251 int neg = 0; 252 int exp = 0; 253 int32_t val; 254 255 if (!XDR_GETINT32(xdrs, (int32_t *)&val)) 256 return (FALSE); 257 neg = val & 0x80000000; 258 exp = (val & 0x7f800000) >> 23; 259 exp -= 127; /* subtract exponent base */ 260 f = (val & 0x007fffff) * 0.00000011920928955078125; 261 /* 2 ^ -23 */ 262 f++; 263 while (exp != 0) { 264 if (exp < 0) { 265 f = f/2.0; 266 ++exp; 267 } else { 268 f = f * 2.0; 269 --exp; 270 } 271 } 272 if (neg) 273 f = 0 - f; 274 *fp = f; 275 } 276 return (TRUE); 277 #endif 278 #endif 279 280 case XDR_FREE: 281 return (TRUE); 282 } 283 return (FALSE); 284 } 285 286 /* 287 * This routine works on Suns (Sky / 68000's) and Vaxen. 288 */ 289 290 #if defined(vax) 291 /* What IEEE double precision floating point looks like on a Vax */ 292 struct ieee_double { 293 unsigned int mantissa1 : 20; 294 unsigned int exp : 11; 295 unsigned int sign : 1; 296 unsigned int mantissa2 : 32; 297 }; 298 299 /* Vax double precision floating point */ 300 struct vax_double { 301 unsigned int mantissa1 : 7; 302 unsigned int exp : 8; 303 unsigned int sign : 1; 304 unsigned int mantissa2 : 16; 305 unsigned int mantissa3 : 16; 306 unsigned int mantissa4 : 16; 307 }; 308 309 #define VAX_DBL_BIAS 0x81 310 #define IEEE_DBL_BIAS 0x3ff 311 #define MASK(nbits) ((1 << nbits) - 1) 312 313 static struct dbl_limits { 314 struct vax_double d; 315 struct ieee_double ieee; 316 } dbl_limits[2] = { 317 {{ 0x7f, 0xff, 0x0, 0xffff, 0xffff, 0xffff }, /* Max Vax */ 318 { 0x0, 0x7ff, 0x0, 0x0 }}, /* Max IEEE */ 319 {{ 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, /* Min Vax */ 320 { 0x0, 0x0, 0x0, 0x0 }} /* Min IEEE */ 321 }; 322 323 #endif /* vax */ 324 325 326 bool_t 327 xdr_double(XDR *xdrs, double *dp) 328 { 329 int *lp; 330 #if defined(vax) 331 struct ieee_double id; 332 struct vax_double vd; 333 struct dbl_limits *lim; 334 size_t i; 335 #endif 336 337 switch (xdrs->x_op) { 338 339 case XDR_ENCODE: 340 #if defined(mc68000) || defined(u3b2) || defined(u3b15) || \ 341 defined(_LONG_LONG_HTOL) 342 lp = (int *)dp; 343 return (XDR_PUTINT32(xdrs, lp++) && XDR_PUTINT32(xdrs, lp)); 344 #else 345 #if defined(_LONG_LONG_LTOH) 346 lp = (int *)dp; 347 lp++; 348 return (XDR_PUTINT32(xdrs, lp--) && XDR_PUTINT32(xdrs, lp)); 349 #else 350 #if defined(vax) 351 vd = *((struct vax_double *)dp); 352 for (i = 0, lim = dbl_limits; 353 i < (int)(sizeof (dbl_limits) / 354 sizeof (struct dbl_limits)); 355 i++, lim++) { 356 if ((vd.mantissa4 == lim->d.mantissa4) && 357 (vd.mantissa3 == lim->d.mantissa3) && 358 (vd.mantissa2 == lim->d.mantissa2) && 359 (vd.mantissa1 == lim->d.mantissa1) && 360 (vd.exp == lim->d.exp)) { 361 id = lim->ieee; 362 goto shipit; 363 } 364 } 365 id.exp = vd.exp - VAX_DBL_BIAS + IEEE_DBL_BIAS; 366 id.mantissa1 = (vd.mantissa1 << 13) | (vd.mantissa2 >> 3); 367 id.mantissa2 = ((vd.mantissa2 & MASK(3)) << 29) | 368 (vd.mantissa3 << 13) | 369 ((vd.mantissa4 >> 3) & MASK(13)); 370 shipit: 371 id.sign = vd.sign; 372 lp = (int32_t *)&id; 373 #else 374 { 375 /* 376 * Every machine can do this, its just not very efficient. 377 * In addtion, some rounding errors may occur do to the 378 * calculations involved. 379 */ 380 double d; 381 int neg = 0; 382 int exp = 0; 383 int32_t val[2]; 384 385 d = *dp; 386 if (d == 0) { 387 val[0] = 0; 388 val[1] = 0; 389 lp = val; 390 return (XDR_PUTINT32(xdrs, lp++) && 391 XDR_PUTINT32(xdrs, lp)); 392 } 393 if (d < 0) { 394 d = 0 - d; 395 neg = 1; 396 } 397 while (d < 1) { 398 d = d * 2; 399 --exp; 400 } 401 while (d >= 2) { 402 d = d/2; 403 ++exp; 404 } 405 if ((exp > 1024) || (exp < -1023)) { 406 /* over or under flowing ieee exponent */ 407 return (FALSE); 408 } 409 val[0] = neg; 410 val[0] = val[0] << 11; /* for the exponent */ 411 val[0] += 1023 + exp; /* 1023 is the bias */ 412 val[0] = val[0] << 20; /* for the mantissa */ 413 val[0] += (int32_t)((d - 1) * 1048576); /* 2 ^ 20 */ 414 val[1] += (int32_t)((((d - 1) * 1048576) - val[0]) 415 * 4294967296); 416 /* 2 ^ 32 */ 417 lp = val; 418 } 419 #endif 420 return (XDR_PUTINT32(xdrs, lp++) && XDR_PUTINT32(xdrs, lp)); 421 #endif 422 #endif 423 424 case XDR_DECODE: 425 #if defined(mc68000) || defined(u3b2) || defined(u3b15) || \ 426 defined(_LONG_LONG_HTOL) 427 lp = (int *)dp; 428 return (XDR_GETINT32(xdrs, lp++) && XDR_GETINT32(xdrs, lp)); 429 #else 430 #if defined(_LONG_LONG_LTOH) 431 lp = (int *)dp; 432 lp++; 433 return (XDR_GETINT32(xdrs, lp--) && XDR_GETINT32(xdrs, lp)); 434 #else 435 #if defined(vax) 436 lp = (int32_t *)&id; 437 if (!XDR_GETINT32(xdrs, lp++) || !XDR_GETINT32(xdrs, lp)) 438 return (FALSE); 439 for (i = 0, lim = dbl_limits; 440 i < sizeof (dbl_limits)/sizeof (struct dbl_limits); 441 i++, lim++) { 442 if ((id.mantissa2 == lim->ieee.mantissa2) && 443 (id.mantissa1 == lim->ieee.mantissa1) && 444 (id.exp == lim->ieee.exp)) { 445 vd = lim->d; 446 goto doneit; 447 } 448 } 449 vd.exp = id.exp - IEEE_DBL_BIAS + VAX_DBL_BIAS; 450 vd.mantissa1 = (id.mantissa1 >> 13); 451 vd.mantissa2 = ((id.mantissa1 & MASK(13)) << 3) | 452 (id.mantissa2 >> 29); 453 vd.mantissa3 = (id.mantissa2 >> 13); 454 vd.mantissa4 = (id.mantissa2 << 3); 455 doneit: 456 vd.sign = id.sign; 457 *dp = *((double *)&vd); 458 return (TRUE); 459 #else 460 { 461 /* 462 * Every machine can do this, its just not very 463 * efficient. It assumes that the decoding machine's 464 * double can represent any value in the range of 465 * ieee largest double = (2 ^ 1024) * 0x1.fffffffffffff 466 * to 467 * ieee smallest double = (2 ^ -1023) * 0x1.0000000000000 468 * In addtion, some rounding errors may occur do to the 469 * calculations involved. 470 */ 471 double d; 472 int neg = 0; 473 int exp = 0; 474 int32_t val[2]; 475 476 lp = val; 477 if (!XDR_GETINT32(xdrs, lp++) || !XDR_GETINT32(xdrs, lp)) 478 return (FALSE); 479 neg = val[0] & 0x80000000; 480 exp = (val[0] & 0x7ff00000) >> 20; 481 exp -= 1023; /* subtract exponent base */ 482 d = (val[0] & 0x000fffff) * 0.00000095367431640625; 483 /* 2 ^ -20 */ 484 d += (val[1] * 0.0000000000000002220446049250313); 485 /* 2 ^ -52 */ 486 d++; 487 while (exp != 0) { 488 if (exp < 0) { 489 d = d/2.0; 490 ++exp; 491 } else { 492 d = d * 2.0; 493 --exp; 494 } 495 } 496 if (neg) 497 d = 0 - d; 498 *dp = d; 499 } 500 #endif 501 #endif 502 #endif 503 504 case XDR_FREE: 505 return (TRUE); 506 } 507 return (FALSE); 508 } 509 510 /* ARGSUSED */ 511 bool_t 512 xdr_quadruple(XDR *xdrs, long double *fp) 513 { 514 /* 515 * The Sparc uses IEEE FP encoding, so just do a byte copy 516 */ 517 518 #if !defined(sparc) 519 return (FALSE); 520 #else 521 switch (xdrs->x_op) { 522 case XDR_ENCODE: 523 return (XDR_PUTBYTES(xdrs, (char *)fp, sizeof (long double))); 524 case XDR_DECODE: 525 return (XDR_GETBYTES(xdrs, (char *)fp, sizeof (long double))); 526 case XDR_FREE: 527 return (TRUE); 528 } 529 return (FALSE); 530 #endif 531 } 532