xref: /titanic_41/usr/src/lib/libm/common/m9x/fmal.c (revision 1f09d37cbb915965c40754f238d96e861a30213e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  */
25 /*
26  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #pragma weak fmal = __fmal
31 
32 #include "libm.h"
33 #include "fma.h"
34 #include "fenv_inlines.h"
35 
36 #if defined(__sparc)
37 
38 static const union {
39 	unsigned i[2];
40 	double d;
41 } C[] = {
42 	{ 0x3fe00000u, 0 },
43 	{ 0x40000000u, 0 },
44 	{ 0x3ef00000u, 0 },
45 	{ 0x3e700000u, 0 },
46 	{ 0x41300000u, 0 },
47 	{ 0x3e300000u, 0 },
48 	{ 0x3b300000u, 0 },
49 	{ 0x38300000u, 0 },
50 	{ 0x42300000u, 0 },
51 	{ 0x3df00000u, 0 },
52 	{ 0x7fe00000u, 0 },
53 	{ 0x00100000u, 0 },
54 	{ 0x00100001u, 0 },
55 	{ 0, 0 },
56 	{ 0x7ff00000u, 0 },
57 	{ 0x7ff00001u, 0 }
58 };
59 
60 #define	half	C[0].d
61 #define	two	C[1].d
62 #define	twom16	C[2].d
63 #define	twom24	C[3].d
64 #define	two20	C[4].d
65 #define	twom28	C[5].d
66 #define	twom76	C[6].d
67 #define	twom124	C[7].d
68 #define	two36	C[8].d
69 #define	twom32	C[9].d
70 #define	huge	C[10].d
71 #define	tiny	C[11].d
72 #define	tiny2	C[12].d
73 #define	zero	C[13].d
74 #define	inf	C[14].d
75 #define	snan	C[15].d
76 
77 static const unsigned int fsr_rm = 0xc0000000u;
78 
79 /*
80  * fmal for SPARC: 128-bit quad precision, big-endian
81  */
82 long double
83 __fmal(long double x, long double y, long double z) {
84 	union {
85 		unsigned int i[4];
86 		long double q;
87 	} xx, yy, zz;
88 	union {
89 		unsigned int i[2];
90 		double d;
91 	} u;
92 	double dx[5], dy[5], dxy[9], c, s;
93 	unsigned int xy0, xy1, xy2, xy3, xy4, xy5, xy6, xy7;
94 	unsigned int z0, z1, z2, z3, z4, z5, z6, z7;
95 	unsigned int rm, sticky;
96 	unsigned int fsr;
97 	int hx, hy, hz, ex, ey, ez, exy, sxy, sz, e, ibit;
98 	int cx, cy, cz;
99 	volatile double	dummy;
100 
101 	/* extract the high order words of the arguments */
102 	xx.q = x;
103 	yy.q = y;
104 	zz.q = z;
105 	hx = xx.i[0] & ~0x80000000;
106 	hy = yy.i[0] & ~0x80000000;
107 	hz = zz.i[0] & ~0x80000000;
108 
109 	/*
110 	 * distinguish zero, finite nonzero, infinite, and quiet nan
111 	 * arguments; raise invalid and return for signaling nans
112 	 */
113 	if (hx >= 0x7fff0000) {
114 		if ((hx & 0xffff) | xx.i[1] | xx.i[2] | xx.i[3]) {
115 			if (!(hx & 0x8000)) {
116 				/* signaling nan, raise invalid */
117 				dummy = snan;
118 				dummy += snan;
119 				xx.i[0] |= 0x8000;
120 				return (xx.q);
121 			}
122 			cx = 3;	/* quiet nan */
123 		} else
124 			cx = 2;	/* inf */
125 	} else if (hx == 0) {
126 		cx = (xx.i[1] | xx.i[2] | xx.i[3]) ? 1 : 0;
127 				/* subnormal or zero */
128 	} else
129 		cx = 1;		/* finite nonzero */
130 
131 	if (hy >= 0x7fff0000) {
132 		if ((hy & 0xffff) | yy.i[1] | yy.i[2] | yy.i[3]) {
133 			if (!(hy & 0x8000)) {
134 				dummy = snan;
135 				dummy += snan;
136 				yy.i[0] |= 0x8000;
137 				return (yy.q);
138 			}
139 			cy = 3;
140 		} else
141 			cy = 2;
142 	} else if (hy == 0) {
143 		cy = (yy.i[1] | yy.i[2] | yy.i[3]) ? 1 : 0;
144 	} else
145 		cy = 1;
146 
147 	if (hz >= 0x7fff0000) {
148 		if ((hz & 0xffff) | zz.i[1] | zz.i[2] | zz.i[3]) {
149 			if (!(hz & 0x8000)) {
150 				dummy = snan;
151 				dummy += snan;
152 				zz.i[0] |= 0x8000;
153 				return (zz.q);
154 			}
155 			cz = 3;
156 		} else
157 			cz = 2;
158 	} else if (hz == 0) {
159 		cz = (zz.i[1] | zz.i[2] | zz.i[3]) ? 1 : 0;
160 	} else
161 		cz = 1;
162 
163 	/* get the fsr and clear current exceptions */
164 	__fenv_getfsr32(&fsr);
165 	fsr &= ~FSR_CEXC;
166 
167 	/* handle all other zero, inf, and nan cases */
168 	if (cx != 1 || cy != 1 || cz != 1) {
169 		/* if x or y is a quiet nan, return it */
170 		if (cx == 3) {
171 			__fenv_setfsr32(&fsr);
172 			return (x);
173 		}
174 		if (cy == 3) {
175 			__fenv_setfsr32(&fsr);
176 			return (y);
177 		}
178 
179 		/* if x*y is 0*inf, raise invalid and return the default nan */
180 		if ((cx == 0 && cy == 2) || (cx == 2 && cy == 0)) {
181 			dummy = zero;
182 			dummy *= inf;
183 			zz.i[0] = 0x7fffffff;
184 			zz.i[1] = zz.i[2] = zz.i[3] = 0xffffffff;
185 			return (zz.q);
186 		}
187 
188 		/* if z is a quiet nan, return it */
189 		if (cz == 3) {
190 			__fenv_setfsr32(&fsr);
191 			return (z);
192 		}
193 
194 		/*
195 		 * now none of x, y, or z is nan; handle cases where x or y
196 		 * is inf
197 		 */
198 		if (cx == 2 || cy == 2) {
199 			/*
200 			 * if z is also inf, either we have inf-inf or
201 			 * the result is the same as z depending on signs
202 			 */
203 			if (cz == 2) {
204 				if ((int) ((xx.i[0] ^ yy.i[0]) ^ zz.i[0]) < 0) {
205 					dummy = inf;
206 					dummy -= inf;
207 					zz.i[0] = 0x7fffffff;
208 					zz.i[1] = zz.i[2] = zz.i[3] =
209 						0xffffffff;
210 					return (zz.q);
211 				}
212 				__fenv_setfsr32(&fsr);
213 				return (z);
214 			}
215 
216 			/* otherwise the result is inf with appropriate sign */
217 			zz.i[0] = ((xx.i[0] ^ yy.i[0]) & 0x80000000) |
218 				0x7fff0000;
219 			zz.i[1] = zz.i[2] = zz.i[3] = 0;
220 			__fenv_setfsr32(&fsr);
221 			return (zz.q);
222 		}
223 
224 		/* if z is inf, return it */
225 		if (cz == 2) {
226 			__fenv_setfsr32(&fsr);
227 			return (z);
228 		}
229 
230 		/*
231 		 * now x, y, and z are all finite; handle cases where x or y
232 		 * is zero
233 		 */
234 		if (cx == 0 || cy == 0) {
235 			/* either we have 0-0 or the result is the same as z */
236 			if (cz == 0 && (int) ((xx.i[0] ^ yy.i[0]) ^ zz.i[0]) <
237 				0) {
238 				zz.i[0] = (fsr >> 30) == FSR_RM ? 0x80000000 :
239 					0;
240 				__fenv_setfsr32(&fsr);
241 				return (zz.q);
242 			}
243 			__fenv_setfsr32(&fsr);
244 			return (z);
245 		}
246 
247 		/* if we get here, x and y are nonzero finite, z must be zero */
248 		return (x * y);
249 	}
250 
251 	/*
252 	 * now x, y, and z are all finite and nonzero; set round-to-
253 	 * negative-infinity mode
254 	 */
255 	__fenv_setfsr32(&fsr_rm);
256 
257 	/*
258 	 * get the signs and exponents and normalize the significands
259 	 * of x and y
260 	 */
261 	sxy = (xx.i[0] ^ yy.i[0]) & 0x80000000;
262 	ex = hx >> 16;
263 	hx &= 0xffff;
264 	if (!ex) {
265 		if (hx | (xx.i[1] & 0xfffe0000)) {
266 			ex = 1;
267 		} else if (xx.i[1] | (xx.i[2] & 0xfffe0000)) {
268 			hx = xx.i[1];
269 			xx.i[1] = xx.i[2];
270 			xx.i[2] = xx.i[3];
271 			xx.i[3] = 0;
272 			ex = -31;
273 		} else if (xx.i[2] | (xx.i[3] & 0xfffe0000)) {
274 			hx = xx.i[2];
275 			xx.i[1] = xx.i[3];
276 			xx.i[2] = xx.i[3] = 0;
277 			ex = -63;
278 		} else {
279 			hx = xx.i[3];
280 			xx.i[1] = xx.i[2] = xx.i[3] = 0;
281 			ex = -95;
282 		}
283 		while ((hx & 0x10000) == 0) {
284 			hx = (hx << 1) | (xx.i[1] >> 31);
285 			xx.i[1] = (xx.i[1] << 1) | (xx.i[2] >> 31);
286 			xx.i[2] = (xx.i[2] << 1) | (xx.i[3] >> 31);
287 			xx.i[3] <<= 1;
288 			ex--;
289 		}
290 	} else
291 		hx |= 0x10000;
292 	ey = hy >> 16;
293 	hy &= 0xffff;
294 	if (!ey) {
295 		if (hy | (yy.i[1] & 0xfffe0000)) {
296 			ey = 1;
297 		} else if (yy.i[1] | (yy.i[2] & 0xfffe0000)) {
298 			hy = yy.i[1];
299 			yy.i[1] = yy.i[2];
300 			yy.i[2] = yy.i[3];
301 			yy.i[3] = 0;
302 			ey = -31;
303 		} else if (yy.i[2] | (yy.i[3] & 0xfffe0000)) {
304 			hy = yy.i[2];
305 			yy.i[1] = yy.i[3];
306 			yy.i[2] = yy.i[3] = 0;
307 			ey = -63;
308 		} else {
309 			hy = yy.i[3];
310 			yy.i[1] = yy.i[2] = yy.i[3] = 0;
311 			ey = -95;
312 		}
313 		while ((hy & 0x10000) == 0) {
314 			hy = (hy << 1) | (yy.i[1] >> 31);
315 			yy.i[1] = (yy.i[1] << 1) | (yy.i[2] >> 31);
316 			yy.i[2] = (yy.i[2] << 1) | (yy.i[3] >> 31);
317 			yy.i[3] <<= 1;
318 			ey--;
319 		}
320 	} else
321 		hy |= 0x10000;
322 	exy = ex + ey - 0x3fff;
323 
324 	/* convert the significands of x and y to doubles */
325 	c = twom16;
326 	dx[0] = (double) ((int) hx) * c;
327 	dy[0] = (double) ((int) hy) * c;
328 
329 	c *= twom24;
330 	dx[1] = (double) ((int) (xx.i[1] >> 8)) * c;
331 	dy[1] = (double) ((int) (yy.i[1] >> 8)) * c;
332 
333 	c *= twom24;
334 	dx[2] = (double) ((int) (((xx.i[1] << 16) | (xx.i[2] >> 16)) &
335 	    0xffffff)) * c;
336 	dy[2] = (double) ((int) (((yy.i[1] << 16) | (yy.i[2] >> 16)) &
337 	    0xffffff)) * c;
338 
339 	c *= twom24;
340 	dx[3] = (double) ((int) (((xx.i[2] << 8) | (xx.i[3] >> 24)) &
341 	    0xffffff)) * c;
342 	dy[3] = (double) ((int) (((yy.i[2] << 8) | (yy.i[3] >> 24)) &
343 	    0xffffff)) * c;
344 
345 	c *= twom24;
346 	dx[4] = (double) ((int) (xx.i[3] & 0xffffff)) * c;
347 	dy[4] = (double) ((int) (yy.i[3] & 0xffffff)) * c;
348 
349 	/* form the "digits" of the product */
350 	dxy[0] = dx[0] * dy[0];
351 	dxy[1] = dx[0] * dy[1] + dx[1] * dy[0];
352 	dxy[2] = dx[0] * dy[2] + dx[1] * dy[1] + dx[2] * dy[0];
353 	dxy[3] = dx[0] * dy[3] + dx[1] * dy[2] + dx[2] * dy[1] +
354 	    dx[3] * dy[0];
355 	dxy[4] = dx[0] * dy[4] + dx[1] * dy[3] + dx[2] * dy[2] +
356 	    dx[3] * dy[1] + dx[4] * dy[0];
357 	dxy[5] = dx[1] * dy[4] + dx[2] * dy[3] + dx[3] * dy[2] +
358 	    dx[4] * dy[1];
359 	dxy[6] = dx[2] * dy[4] + dx[3] * dy[3] + dx[4] * dy[2];
360 	dxy[7] = dx[3] * dy[4] + dx[4] * dy[3];
361 	dxy[8] = dx[4] * dy[4];
362 
363 	/* split odd-numbered terms and combine into even-numbered terms */
364 	c = (dxy[1] + two20) - two20;
365 	dxy[0] += c;
366 	dxy[1] -= c;
367 	c = (dxy[3] + twom28) - twom28;
368 	dxy[2] += c + dxy[1];
369 	dxy[3] -= c;
370 	c = (dxy[5] + twom76) - twom76;
371 	dxy[4] += c + dxy[3];
372 	dxy[5] -= c;
373 	c = (dxy[7] + twom124) - twom124;
374 	dxy[6] += c + dxy[5];
375 	dxy[8] += (dxy[7] - c);
376 
377 	/* propagate carries, adjusting the exponent if need be */
378 	dxy[7] = dxy[6] + dxy[8];
379 	dxy[5] = dxy[4] + dxy[7];
380 	dxy[3] = dxy[2] + dxy[5];
381 	dxy[1] = dxy[0] + dxy[3];
382 	if (dxy[1] >= two) {
383 		dxy[0] *= half;
384 		dxy[1] *= half;
385 		dxy[2] *= half;
386 		dxy[3] *= half;
387 		dxy[4] *= half;
388 		dxy[5] *= half;
389 		dxy[6] *= half;
390 		dxy[7] *= half;
391 		dxy[8] *= half;
392 		exy++;
393 	}
394 
395 	/* extract the significand of x*y */
396 	s = two36;
397 	u.d = c = dxy[1] + s;
398 	xy0 = u.i[1];
399 	c -= s;
400 	dxy[1] -= c;
401 	dxy[0] -= c;
402 
403 	s *= twom32;
404 	u.d = c = dxy[1] + s;
405 	xy1 = u.i[1];
406 	c -= s;
407 	dxy[2] += (dxy[0] - c);
408 	dxy[3] = dxy[2] + dxy[5];
409 
410 	s *= twom32;
411 	u.d = c = dxy[3] + s;
412 	xy2 = u.i[1];
413 	c -= s;
414 	dxy[4] += (dxy[2] - c);
415 	dxy[5] = dxy[4] + dxy[7];
416 
417 	s *= twom32;
418 	u.d = c = dxy[5] + s;
419 	xy3 = u.i[1];
420 	c -= s;
421 	dxy[4] -= c;
422 	dxy[5] = dxy[4] + dxy[7];
423 
424 	s *= twom32;
425 	u.d = c = dxy[5] + s;
426 	xy4 = u.i[1];
427 	c -= s;
428 	dxy[6] += (dxy[4] - c);
429 	dxy[7] = dxy[6] + dxy[8];
430 
431 	s *= twom32;
432 	u.d = c = dxy[7] + s;
433 	xy5 = u.i[1];
434 	c -= s;
435 	dxy[8] += (dxy[6] - c);
436 
437 	s *= twom32;
438 	u.d = c = dxy[8] + s;
439 	xy6 = u.i[1];
440 	c -= s;
441 	dxy[8] -= c;
442 
443 	s *= twom32;
444 	u.d = c = dxy[8] + s;
445 	xy7 = u.i[1];
446 
447 	/* extract the sign, exponent, and significand of z */
448 	sz = zz.i[0] & 0x80000000;
449 	ez = hz >> 16;
450 	z0 = hz & 0xffff;
451 	if (!ez) {
452 		if (z0 | (zz.i[1] & 0xfffe0000)) {
453 			z1 = zz.i[1];
454 			z2 = zz.i[2];
455 			z3 = zz.i[3];
456 			ez = 1;
457 		} else if (zz.i[1] | (zz.i[2] & 0xfffe0000)) {
458 			z0 = zz.i[1];
459 			z1 = zz.i[2];
460 			z2 = zz.i[3];
461 			z3 = 0;
462 			ez = -31;
463 		} else if (zz.i[2] | (zz.i[3] & 0xfffe0000)) {
464 			z0 = zz.i[2];
465 			z1 = zz.i[3];
466 			z2 = z3 = 0;
467 			ez = -63;
468 		} else {
469 			z0 = zz.i[3];
470 			z1 = z2 = z3 = 0;
471 			ez = -95;
472 		}
473 		while ((z0 & 0x10000) == 0) {
474 			z0 = (z0 << 1) | (z1 >> 31);
475 			z1 = (z1 << 1) | (z2 >> 31);
476 			z2 = (z2 << 1) | (z3 >> 31);
477 			z3 <<= 1;
478 			ez--;
479 		}
480 	} else {
481 		z0 |= 0x10000;
482 		z1 = zz.i[1];
483 		z2 = zz.i[2];
484 		z3 = zz.i[3];
485 	}
486 	z4 = z5 = z6 = z7 = 0;
487 
488 	/*
489 	 * now x*y is represented by sxy, exy, and xy[0-7], and z is
490 	 * represented likewise; swap if need be so |xy| <= |z|
491 	 */
492 	if (exy > ez || (exy == ez && (xy0 > z0 || (xy0 == z0 && (xy1 > z1 ||
493 		(xy1 == z1 && (xy2 > z2 || (xy2 == z2 && (xy3 > z3 ||
494 		(xy3 == z3 && (xy4 | xy5 | xy6 | xy7) != 0)))))))))) {
495 		e = sxy; sxy = sz; sz = e;
496 		e = exy; exy = ez; ez = e;
497 		e = xy0; xy0 = z0; z0 = e;
498 		e = xy1; xy1 = z1; z1 = e;
499 		e = xy2; xy2 = z2; z2 = e;
500 		e = xy3; xy3 = z3; z3 = e;
501 		z4 = xy4; xy4 = 0;
502 		z5 = xy5; xy5 = 0;
503 		z6 = xy6; xy6 = 0;
504 		z7 = xy7; xy7 = 0;
505 	}
506 
507 	/* shift the significand of xy keeping a sticky bit */
508 	e = ez - exy;
509 	if (e > 236) {
510 		xy0 = xy1 = xy2 = xy3 = xy4 = xy5 = xy6 = 0;
511 		xy7 = 1;
512 	} else if (e >= 224) {
513 		sticky = xy7 | xy6 | xy5 | xy4 | xy3 | xy2 | xy1 |
514 			((xy0 << 1) << (255 - e));
515 		xy7 = xy0 >> (e - 224);
516 		if (sticky)
517 			xy7 |= 1;
518 		xy0 = xy1 = xy2 = xy3 = xy4 = xy5 = xy6 = 0;
519 	} else if (e >= 192) {
520 		sticky = xy7 | xy6 | xy5 | xy4 | xy3 | xy2 |
521 			((xy1 << 1) << (223 - e));
522 		xy7 = (xy1 >> (e - 192)) | ((xy0 << 1) << (223 - e));
523 		if (sticky)
524 			xy7 |= 1;
525 		xy6 = xy0 >> (e - 192);
526 		xy0 = xy1 = xy2 = xy3 = xy4 = xy5 = 0;
527 	} else if (e >= 160) {
528 		sticky = xy7 | xy6 | xy5 | xy4 | xy3 |
529 			((xy2 << 1) << (191 - e));
530 		xy7 = (xy2 >> (e - 160)) | ((xy1 << 1) << (191 - e));
531 		if (sticky)
532 			xy7 |= 1;
533 		xy6 = (xy1 >> (e - 160)) | ((xy0 << 1) << (191 - e));
534 		xy5 = xy0 >> (e - 160);
535 		xy0 = xy1 = xy2 = xy3 = xy4 = 0;
536 	} else if (e >= 128) {
537 		sticky = xy7 | xy6 | xy5 | xy4 | ((xy3 << 1) << (159 - e));
538 		xy7 = (xy3 >> (e - 128)) | ((xy2 << 1) << (159 - e));
539 		if (sticky)
540 			xy7 |= 1;
541 		xy6 = (xy2 >> (e - 128)) | ((xy1 << 1) << (159 - e));
542 		xy5 = (xy1 >> (e - 128)) | ((xy0 << 1) << (159 - e));
543 		xy4 = xy0 >> (e - 128);
544 		xy0 = xy1 = xy2 = xy3 = 0;
545 	} else if (e >= 96) {
546 		sticky = xy7 | xy6 | xy5 | ((xy4 << 1) << (127 - e));
547 		xy7 = (xy4 >> (e - 96)) | ((xy3 << 1) << (127 - e));
548 		if (sticky)
549 			xy7 |= 1;
550 		xy6 = (xy3 >> (e - 96)) | ((xy2 << 1) << (127 - e));
551 		xy5 = (xy2 >> (e - 96)) | ((xy1 << 1) << (127 - e));
552 		xy4 = (xy1 >> (e - 96)) | ((xy0 << 1) << (127 - e));
553 		xy3 = xy0 >> (e - 96);
554 		xy0 = xy1 = xy2 = 0;
555 	} else if (e >= 64) {
556 		sticky = xy7 | xy6 | ((xy5 << 1) << (95 - e));
557 		xy7 = (xy5 >> (e - 64)) | ((xy4 << 1) << (95 - e));
558 		if (sticky)
559 			xy7 |= 1;
560 		xy6 = (xy4 >> (e - 64)) | ((xy3 << 1) << (95 - e));
561 		xy5 = (xy3 >> (e - 64)) | ((xy2 << 1) << (95 - e));
562 		xy4 = (xy2 >> (e - 64)) | ((xy1 << 1) << (95 - e));
563 		xy3 = (xy1 >> (e - 64)) | ((xy0 << 1) << (95 - e));
564 		xy2 = xy0 >> (e - 64);
565 		xy0 = xy1 = 0;
566 	} else if (e >= 32) {
567 		sticky = xy7 | ((xy6 << 1) << (63 - e));
568 		xy7 = (xy6 >> (e - 32)) | ((xy5 << 1) << (63 - e));
569 		if (sticky)
570 			xy7 |= 1;
571 		xy6 = (xy5 >> (e - 32)) | ((xy4 << 1) << (63 - e));
572 		xy5 = (xy4 >> (e - 32)) | ((xy3 << 1) << (63 - e));
573 		xy4 = (xy3 >> (e - 32)) | ((xy2 << 1) << (63 - e));
574 		xy3 = (xy2 >> (e - 32)) | ((xy1 << 1) << (63 - e));
575 		xy2 = (xy1 >> (e - 32)) | ((xy0 << 1) << (63 - e));
576 		xy1 = xy0 >> (e - 32);
577 		xy0 = 0;
578 	} else if (e) {
579 		sticky = (xy7 << 1) << (31 - e);
580 		xy7 = (xy7 >> e) | ((xy6 << 1) << (31 - e));
581 		if (sticky)
582 			xy7 |= 1;
583 		xy6 = (xy6 >> e) | ((xy5 << 1) << (31 - e));
584 		xy5 = (xy5 >> e) | ((xy4 << 1) << (31 - e));
585 		xy4 = (xy4 >> e) | ((xy3 << 1) << (31 - e));
586 		xy3 = (xy3 >> e) | ((xy2 << 1) << (31 - e));
587 		xy2 = (xy2 >> e) | ((xy1 << 1) << (31 - e));
588 		xy1 = (xy1 >> e) | ((xy0 << 1) << (31 - e));
589 		xy0 >>= e;
590 	}
591 
592 	/* if this is a magnitude subtract, negate the significand of xy */
593 	if (sxy ^ sz) {
594 		xy0 = ~xy0;
595 		xy1 = ~xy1;
596 		xy2 = ~xy2;
597 		xy3 = ~xy3;
598 		xy4 = ~xy4;
599 		xy5 = ~xy5;
600 		xy6 = ~xy6;
601 		xy7 = -xy7;
602 		if (xy7 == 0)
603 			if (++xy6 == 0)
604 				if (++xy5 == 0)
605 					if (++xy4 == 0)
606 						if (++xy3 == 0)
607 							if (++xy2 == 0)
608 								if (++xy1 == 0)
609 									xy0++;
610 	}
611 
612 	/* add, propagating carries */
613 	z7 += xy7;
614 	e = (z7 < xy7);
615 	z6 += xy6;
616 	if (e) {
617 		z6++;
618 		e = (z6 <= xy6);
619 	} else
620 		e = (z6 < xy6);
621 	z5 += xy5;
622 	if (e) {
623 		z5++;
624 		e = (z5 <= xy5);
625 	} else
626 		e = (z5 < xy5);
627 	z4 += xy4;
628 	if (e) {
629 		z4++;
630 		e = (z4 <= xy4);
631 	} else
632 		e = (z4 < xy4);
633 	z3 += xy3;
634 	if (e) {
635 		z3++;
636 		e = (z3 <= xy3);
637 	} else
638 		e = (z3 < xy3);
639 	z2 += xy2;
640 	if (e) {
641 		z2++;
642 		e = (z2 <= xy2);
643 	} else
644 		e = (z2 < xy2);
645 	z1 += xy1;
646 	if (e) {
647 		z1++;
648 		e = (z1 <= xy1);
649 	} else
650 		e = (z1 < xy1);
651 	z0 += xy0;
652 	if (e)
653 		z0++;
654 
655 	/* postnormalize and collect rounding information into z4 */
656 	if (ez < 1) {
657 		/* result is tiny; shift right until exponent is within range */
658 		e = 1 - ez;
659 		if (e > 116) {
660 			z4 = 1; /* result can't be exactly zero */
661 			z0 = z1 = z2 = z3 = 0;
662 		} else if (e >= 96) {
663 			sticky = z7 | z6 | z5 | z4 | z3 | z2 |
664 				((z1 << 1) << (127 - e));
665 			z4 = (z1 >> (e - 96)) | ((z0 << 1) << (127 - e));
666 			if (sticky)
667 				z4 |= 1;
668 			z3 = z0 >> (e - 96);
669 			z0 = z1 = z2 = 0;
670 		} else if (e >= 64) {
671 			sticky = z7 | z6 | z5 | z4 | z3 |
672 				((z2 << 1) << (95 - e));
673 			z4 = (z2 >> (e - 64)) | ((z1 << 1) << (95 - e));
674 			if (sticky)
675 				z4 |= 1;
676 			z3 = (z1 >> (e - 64)) | ((z0 << 1) << (95 - e));
677 			z2 = z0 >> (e - 64);
678 			z0 = z1 = 0;
679 		} else if (e >= 32) {
680 			sticky = z7 | z6 | z5 | z4 | ((z3 << 1) << (63 - e));
681 			z4 = (z3 >> (e - 32)) | ((z2 << 1) << (63 - e));
682 			if (sticky)
683 				z4 |= 1;
684 			z3 = (z2 >> (e - 32)) | ((z1 << 1) << (63 - e));
685 			z2 = (z1 >> (e - 32)) | ((z0 << 1) << (63 - e));
686 			z1 = z0 >> (e - 32);
687 			z0 = 0;
688 		} else {
689 			sticky = z7 | z6 | z5 | (z4 << 1) << (31 - e);
690 			z4 = (z4 >> e) | ((z3 << 1) << (31 - e));
691 			if (sticky)
692 				z4 |= 1;
693 			z3 = (z3 >> e) | ((z2 << 1) << (31 - e));
694 			z2 = (z2 >> e) | ((z1 << 1) << (31 - e));
695 			z1 = (z1 >> e) | ((z0 << 1) << (31 - e));
696 			z0 >>= e;
697 		}
698 		ez = 1;
699 	} else if (z0 >= 0x20000) {
700 		/* carry out; shift right by one */
701 		sticky = (z4 & 1) | z5 | z6 | z7;
702 		z4 = (z4 >> 1) | (z3 << 31);
703 		if (sticky)
704 			z4 |= 1;
705 		z3 = (z3 >> 1) | (z2 << 31);
706 		z2 = (z2 >> 1) | (z1 << 31);
707 		z1 = (z1 >> 1) | (z0 << 31);
708 		z0 >>= 1;
709 		ez++;
710 	} else {
711 		if (z0 < 0x10000 && (z0 | z1 | z2 | z3 | z4 | z5 | z6 | z7)
712 			!= 0) {
713 			/*
714 			 * borrow/cancellation; shift left as much as
715 			 * exponent allows
716 			 */
717 			while (!(z0 | (z1 & 0xfffe0000)) && ez >= 33) {
718 				z0 = z1;
719 				z1 = z2;
720 				z2 = z3;
721 				z3 = z4;
722 				z4 = z5;
723 				z5 = z6;
724 				z6 = z7;
725 				z7 = 0;
726 				ez -= 32;
727 			}
728 			while (z0 < 0x10000 && ez > 1) {
729 				z0 = (z0 << 1) | (z1 >> 31);
730 				z1 = (z1 << 1) | (z2 >> 31);
731 				z2 = (z2 << 1) | (z3 >> 31);
732 				z3 = (z3 << 1) | (z4 >> 31);
733 				z4 = (z4 << 1) | (z5 >> 31);
734 				z5 = (z5 << 1) | (z6 >> 31);
735 				z6 = (z6 << 1) | (z7 >> 31);
736 				z7 <<= 1;
737 				ez--;
738 			}
739 		}
740 		if (z5 | z6 | z7)
741 			z4 |= 1;
742 	}
743 
744 	/* get the rounding mode */
745 	rm = fsr >> 30;
746 
747 	/* strip off the integer bit, if there is one */
748 	ibit = z0 & 0x10000;
749 	if (ibit)
750 		z0 -= 0x10000;
751 	else {
752 		ez = 0;
753 		if (!(z0 | z1 | z2 | z3 | z4)) { /* exact zero */
754 			zz.i[0] = rm == FSR_RM ? 0x80000000 : 0;
755 			zz.i[1] = zz.i[2] = zz.i[3] = 0;
756 			__fenv_setfsr32(&fsr);
757 			return (zz.q);
758 		}
759 	}
760 
761 	/*
762 	 * flip the sense of directed roundings if the result is negative;
763 	 * the logic below applies to a positive result
764 	 */
765 	if (sz)
766 		rm ^= rm >> 1;
767 
768 	/* round and raise exceptions */
769 	if (z4) {
770 		fsr |= FSR_NXC;
771 
772 		/* decide whether to round the fraction up */
773 		if (rm == FSR_RP || (rm == FSR_RN && (z4 > 0x80000000u ||
774 			(z4 == 0x80000000u && (z3 & 1))))) {
775 			/* round up and renormalize if necessary */
776 			if (++z3 == 0)
777 				if (++z2 == 0)
778 					if (++z1 == 0)
779 						if (++z0 == 0x10000) {
780 							z0 = 0;
781 							ez++;
782 						}
783 		}
784 	}
785 
786 	/* check for under/overflow */
787 	if (ez >= 0x7fff) {
788 		if (rm == FSR_RN || rm == FSR_RP) {
789 			zz.i[0] = sz | 0x7fff0000;
790 			zz.i[1] = zz.i[2] = zz.i[3] = 0;
791 		} else {
792 			zz.i[0] = sz | 0x7ffeffff;
793 			zz.i[1] = zz.i[2] = zz.i[3] = 0xffffffff;
794 		}
795 		fsr |= FSR_OFC | FSR_NXC;
796 	} else {
797 		zz.i[0] = sz | (ez << 16) | z0;
798 		zz.i[1] = z1;
799 		zz.i[2] = z2;
800 		zz.i[3] = z3;
801 
802 		/*
803 		 * !ibit => exact result was tiny before rounding,
804 		 * z4 nonzero => result delivered is inexact
805 		 */
806 		if (!ibit) {
807 			if (z4)
808 				fsr |= FSR_UFC | FSR_NXC;
809 			else if (fsr & FSR_UFM)
810 				fsr |= FSR_UFC;
811 		}
812 	}
813 
814 	/* restore the fsr and emulate exceptions as needed */
815 	if ((fsr & FSR_CEXC) & (fsr >> 23)) {
816 		__fenv_setfsr32(&fsr);
817 		if (fsr & FSR_OFC) {
818 			dummy = huge;
819 			dummy *= huge;
820 		} else if (fsr & FSR_UFC) {
821 			dummy = tiny;
822 			if (fsr & FSR_NXC)
823 				dummy *= tiny;
824 			else
825 				dummy -= tiny2;
826 		} else {
827 			dummy = huge;
828 			dummy += tiny;
829 		}
830 	} else {
831 		fsr |= (fsr & 0x1f) << 5;
832 		__fenv_setfsr32(&fsr);
833 	}
834 	return (zz.q);
835 }
836 
837 #elif defined(__x86)
838 
839 static const union {
840 	unsigned i[2];
841 	double d;
842 } C[] = {
843 	{ 0, 0x3fe00000u },
844 	{ 0, 0x40000000u },
845 	{ 0, 0x3df00000u },
846 	{ 0, 0x3bf00000u },
847 	{ 0, 0x41f00000u },
848 	{ 0, 0x43e00000u },
849 	{ 0, 0x7fe00000u },
850 	{ 0, 0x00100000u },
851 	{ 0, 0x00100001u }
852 };
853 
854 #define	half	C[0].d
855 #define	two	C[1].d
856 #define	twom32	C[2].d
857 #define	twom64	C[3].d
858 #define	two32	C[4].d
859 #define	two63	C[5].d
860 #define	huge	C[6].d
861 #define	tiny	C[7].d
862 #define	tiny2	C[8].d
863 
864 #if defined(__amd64)
865 #define	NI	4
866 #else
867 #define	NI	3
868 #endif
869 
870 /*
871  * fmal for x86: 80-bit extended double precision, little-endian
872  */
873 long double
874 __fmal(long double x, long double y, long double z) {
875 	union {
876 		unsigned i[NI];
877 		long double e;
878 	} xx, yy, zz;
879 	long double xhi, yhi, xlo, ylo, t;
880 	unsigned xy0, xy1, xy2, xy3, xy4, z0, z1, z2, z3, z4;
881 	unsigned oldcwsw, cwsw, rm, sticky, carry;
882 	int ex, ey, ez, exy, sxy, sz, e, tinyafter;
883 	volatile double	dummy;
884 
885 	/* extract the exponents of the arguments */
886 	xx.e = x;
887 	yy.e = y;
888 	zz.e = z;
889 	ex = xx.i[2] & 0x7fff;
890 	ey = yy.i[2] & 0x7fff;
891 	ez = zz.i[2] & 0x7fff;
892 
893 	/* dispense with inf, nan, and zero cases */
894 	if (ex == 0x7fff || ey == 0x7fff || (ex | xx.i[1] | xx.i[0]) == 0 ||
895 		(ey | yy.i[1] | yy.i[0]) == 0)	/* x or y is inf, nan, or 0 */
896 		return (x * y + z);
897 
898 	if (ez == 0x7fff)			/* z is inf or nan */
899 		return (x + z);	/* avoid spurious under/overflow in x * y */
900 
901 	if ((ez | zz.i[1] | zz.i[0]) == 0)	/* z is zero */
902 		/*
903 		 * x * y isn't zero but could underflow to zero,
904 		 * so don't add z, lest we perturb the sign
905 		 */
906 		return (x * y);
907 
908 	/*
909 	 * now x, y, and z are all finite and nonzero; extract signs and
910 	 * normalize the significands (this will raise the denormal operand
911 	 * exception if need be)
912 	 */
913 	sxy = (xx.i[2] ^ yy.i[2]) & 0x8000;
914 	sz = zz.i[2] & 0x8000;
915 	if (!ex) {
916 		xx.e = x * two63;
917 		ex = (xx.i[2] & 0x7fff) - 63;
918 	}
919 	if (!ey) {
920 		yy.e = y * two63;
921 		ey = (yy.i[2] & 0x7fff) - 63;
922 	}
923 	if (!ez) {
924 		zz.e = z * two63;
925 		ez = (zz.i[2] & 0x7fff) - 63;
926 	}
927 
928 	/*
929 	 * save the control and status words, mask all exceptions, and
930 	 * set rounding to 64-bit precision and toward-zero
931 	 */
932 	__fenv_getcwsw(&oldcwsw);
933 	cwsw = (oldcwsw & 0xf0c0ffff) | 0x0f3f0000;
934 	__fenv_setcwsw(&cwsw);
935 
936 	/* multiply x*y to 128 bits */
937 	exy = ex + ey - 0x3fff;
938 	xx.i[2] = 0x3fff;
939 	yy.i[2] = 0x3fff;
940 	x = xx.e;
941 	y = yy.e;
942 	xhi = ((x + twom32) + two32) - two32;
943 	yhi = ((y + twom32) + two32) - two32;
944 	xlo = x - xhi;
945 	ylo = y - yhi;
946 	x *= y;
947 	y = ((xhi * yhi - x) + xhi * ylo + xlo * yhi) + xlo * ylo;
948 	if (x >= two) {
949 		x *= half;
950 		y *= half;
951 		exy++;
952 	}
953 
954 	/* extract the significands */
955 	xx.e = x;
956 	xy0 = xx.i[1];
957 	xy1 = xx.i[0];
958 	yy.e = t = y + twom32;
959 	xy2 = yy.i[0];
960 	yy.e = (y - (t - twom32)) + twom64;
961 	xy3 = yy.i[0];
962 	xy4 = 0;
963 	z0 = zz.i[1];
964 	z1 = zz.i[0];
965 	z2 = z3 = z4 = 0;
966 
967 	/*
968 	 * now x*y is represented by sxy, exy, and xy[0-4], and z is
969 	 * represented likewise; swap if need be so |xy| <= |z|
970 	 */
971 	if (exy > ez || (exy == ez && (xy0 > z0 || (xy0 == z0 &&
972 		(xy1 > z1 || (xy1 == z1 && (xy2 | xy3) != 0)))))) {
973 		e = sxy; sxy = sz; sz = e;
974 		e = exy; exy = ez; ez = e;
975 		e = xy0; xy0 = z0; z0 = e;
976 		e = xy1; xy1 = z1; z1 = e;
977 		z2 = xy2; xy2 = 0;
978 		z3 = xy3; xy3 = 0;
979 	}
980 
981 	/* shift the significand of xy keeping a sticky bit */
982 	e = ez - exy;
983 	if (e > 130) {
984 		xy0 = xy1 = xy2 = xy3 = 0;
985 		xy4 = 1;
986 	} else if (e >= 128) {
987 		sticky = xy3 | xy2 | xy1 | ((xy0 << 1) << (159 - e));
988 		xy4 = xy0 >> (e - 128);
989 		if (sticky)
990 			xy4 |= 1;
991 		xy0 = xy1 = xy2 = xy3 = 0;
992 	} else if (e >= 96) {
993 		sticky = xy3 | xy2 | ((xy1 << 1) << (127 - e));
994 		xy4 = (xy1 >> (e - 96)) | ((xy0 << 1) << (127 - e));
995 		if (sticky)
996 			xy4 |= 1;
997 		xy3 = xy0 >> (e - 96);
998 		xy0 = xy1 = xy2 = 0;
999 	} else if (e >= 64) {
1000 		sticky = xy3 | ((xy2 << 1) << (95 - e));
1001 		xy4 = (xy2 >> (e - 64)) | ((xy1 << 1) << (95 - e));
1002 		if (sticky)
1003 			xy4 |= 1;
1004 		xy3 = (xy1 >> (e - 64)) | ((xy0 << 1) << (95 - e));
1005 		xy2 = xy0 >> (e - 64);
1006 		xy0 = xy1 = 0;
1007 	} else if (e >= 32) {
1008 		sticky = (xy3 << 1) << (63 - e);
1009 		xy4 = (xy3 >> (e - 32)) | ((xy2 << 1) << (63 - e));
1010 		if (sticky)
1011 			xy4 |= 1;
1012 		xy3 = (xy2 >> (e - 32)) | ((xy1 << 1) << (63 - e));
1013 		xy2 = (xy1 >> (e - 32)) | ((xy0 << 1) << (63 - e));
1014 		xy1 = xy0 >> (e - 32);
1015 		xy0 = 0;
1016 	} else if (e) {
1017 		xy4 = (xy3 << 1) << (31 - e);
1018 		xy3 = (xy3 >> e) | ((xy2 << 1) << (31 - e));
1019 		xy2 = (xy2 >> e) | ((xy1 << 1) << (31 - e));
1020 		xy1 = (xy1 >> e) | ((xy0 << 1) << (31 - e));
1021 		xy0 >>= e;
1022 	}
1023 
1024 	/* if this is a magnitude subtract, negate the significand of xy */
1025 	if (sxy ^ sz) {
1026 		xy0 = ~xy0;
1027 		xy1 = ~xy1;
1028 		xy2 = ~xy2;
1029 		xy3 = ~xy3;
1030 		xy4 = -xy4;
1031 		if (xy4 == 0)
1032 			if (++xy3 == 0)
1033 				if (++xy2 == 0)
1034 					if (++xy1 == 0)
1035 						xy0++;
1036 	}
1037 
1038 	/* add, propagating carries */
1039 	z4 += xy4;
1040 	carry = (z4 < xy4);
1041 	z3 += xy3;
1042 	if (carry) {
1043 		z3++;
1044 		carry = (z3 <= xy3);
1045 	} else
1046 		carry = (z3 < xy3);
1047 	z2 += xy2;
1048 	if (carry) {
1049 		z2++;
1050 		carry = (z2 <= xy2);
1051 	} else
1052 		carry = (z2 < xy2);
1053 	z1 += xy1;
1054 	if (carry) {
1055 		z1++;
1056 		carry = (z1 <= xy1);
1057 	} else
1058 		carry = (z1 < xy1);
1059 	z0 += xy0;
1060 	if (carry) {
1061 		z0++;
1062 		carry = (z0 <= xy0);
1063 	} else
1064 		carry = (z0 < xy0);
1065 
1066 	/* for a magnitude subtract, ignore the last carry out */
1067 	if (sxy ^ sz)
1068 		carry = 0;
1069 
1070 	/* postnormalize and collect rounding information into z2 */
1071 	if (ez < 1) {
1072 		/* result is tiny; shift right until exponent is within range */
1073 		e = 1 - ez;
1074 		if (e > 67) {
1075 			z2 = 1;	/* result can't be exactly zero */
1076 			z0 = z1 = 0;
1077 		} else if (e >= 64) {
1078 			sticky = z4 | z3 | z2 | z1 | ((z0 << 1) << (95 - e));
1079 			z2 = (z0 >> (e - 64)) | ((carry << 1) << (95 - e));
1080 			if (sticky)
1081 				z2 |= 1;
1082 			z1 = carry >> (e - 64);
1083 			z0 = 0;
1084 		} else if (e >= 32) {
1085 			sticky = z4 | z3 | z2 | ((z1 << 1) << (63 - e));
1086 			z2 = (z1 >> (e - 32)) | ((z0 << 1) << (63 - e));
1087 			if (sticky)
1088 				z2 |= 1;
1089 			z1 = (z0 >> (e - 32)) | ((carry << 1) << (63 - e));
1090 			z0 = carry >> (e - 32);
1091 		} else {
1092 			sticky = z4 | z3 | (z2 << 1) << (31 - e);
1093 			z2 = (z2 >> e) | ((z1 << 1) << (31 - e));
1094 			if (sticky)
1095 				z2 |= 1;
1096 			z1 = (z1 >> e) | ((z0 << 1) << (31 - e));
1097 			z0 = (z0 >> e) | ((carry << 1) << (31 - e));
1098 		}
1099 		ez = 1;
1100 	} else if (carry) {
1101 		/* carry out; shift right by one */
1102 		sticky = (z2 & 1) | z3 | z4;
1103 		z2 = (z2 >> 1) | (z1 << 31);
1104 		if (sticky)
1105 			z2 |= 1;
1106 		z1 = (z1 >> 1) | (z0 << 31);
1107 		z0 = (z0 >> 1) | 0x80000000;
1108 		ez++;
1109 	} else {
1110 		if (z0 < 0x80000000u && (z0 | z1 | z2 | z3 | z4) != 0) {
1111 			/*
1112 			 * borrow/cancellation; shift left as much as
1113 			 * exponent allows
1114 			 */
1115 			while (!z0 && ez >= 33) {
1116 				z0 = z1;
1117 				z1 = z2;
1118 				z2 = z3;
1119 				z3 = z4;
1120 				z4 = 0;
1121 				ez -= 32;
1122 			}
1123 			while (z0 < 0x80000000u && ez > 1) {
1124 				z0 = (z0 << 1) | (z1 >> 31);
1125 				z1 = (z1 << 1) | (z2 >> 31);
1126 				z2 = (z2 << 1) | (z3 >> 31);
1127 				z3 = (z3 << 1) | (z4 >> 31);
1128 				z4 <<= 1;
1129 				ez--;
1130 			}
1131 		}
1132 		if (z3 | z4)
1133 			z2 |= 1;
1134 	}
1135 
1136 	/* get the rounding mode */
1137 	rm = oldcwsw & 0x0c000000;
1138 
1139 	/* adjust exponent if result is subnormal */
1140 	tinyafter = 0;
1141 	if (!(z0 & 0x80000000)) {
1142 		ez = 0;
1143 		tinyafter = 1;
1144 		if (!(z0 | z1 | z2)) { /* exact zero */
1145 			zz.i[2] = rm == FCW_RM ? 0x8000 : 0;
1146 			zz.i[1] = zz.i[0] = 0;
1147 			__fenv_setcwsw(&oldcwsw);
1148 			return (zz.e);
1149 		}
1150 	}
1151 
1152 	/*
1153 	 * flip the sense of directed roundings if the result is negative;
1154 	 * the logic below applies to a positive result
1155 	 */
1156 	if (sz && (rm == FCW_RM || rm == FCW_RP))
1157 		rm = (FCW_RM + FCW_RP) - rm;
1158 
1159 	/* round */
1160 	if (z2) {
1161 		if (rm == FCW_RP || (rm == FCW_RN && (z2 > 0x80000000u ||
1162 			(z2 == 0x80000000u && (z1 & 1))))) {
1163 			/* round up and renormalize if necessary */
1164 			if (++z1 == 0) {
1165 				if (++z0 == 0) {
1166 					z0 = 0x80000000;
1167 					ez++;
1168 				} else if (z0 == 0x80000000) {
1169 					/* rounded up to smallest normal */
1170 					ez = 1;
1171 					if ((rm == FCW_RP && z2 >
1172 						0x80000000u) || (rm == FCW_RN &&
1173 						z2 >= 0xc0000000u))
1174 						/*
1175 						 * would have rounded up to
1176 						 * smallest normal even with
1177 						 * unbounded range
1178 						 */
1179 						tinyafter = 0;
1180 				}
1181 			}
1182 		}
1183 	}
1184 
1185 	/* restore the control and status words, check for over/underflow */
1186 	__fenv_setcwsw(&oldcwsw);
1187 	if (ez >= 0x7fff) {
1188 		if (rm == FCW_RN || rm == FCW_RP) {
1189 			zz.i[2] = sz | 0x7fff;
1190 			zz.i[1] = 0x80000000;
1191 			zz.i[0] = 0;
1192 		} else {
1193 			zz.i[2] = sz | 0x7ffe;
1194 			zz.i[1] = 0xffffffff;
1195 			zz.i[0] = 0xffffffff;
1196 		}
1197 		dummy = huge;
1198 		dummy *= huge;
1199 	} else {
1200 		zz.i[2] = sz | ez;
1201 		zz.i[1] = z0;
1202 		zz.i[0] = z1;
1203 
1204 		/*
1205 		 * tinyafter => result rounded w/ unbounded range would be tiny,
1206 		 * z2 nonzero => result delivered is inexact
1207 		 */
1208 		if (tinyafter) {
1209 			dummy = tiny;
1210 			if (z2)
1211 				dummy *= tiny;
1212 			else
1213 				dummy -= tiny2;
1214 		} else if (z2) {
1215 			dummy = huge;
1216 			dummy += tiny;
1217 		}
1218 	}
1219 
1220 	return (zz.e);
1221 }
1222 
1223 #else
1224 #error Unknown architecture
1225 #endif
1226