xref: /titanic_41/usr/src/lib/libipadm/common/libipadm.c (revision e4f5a11d4a234623168c1558fcdf4341e11769e1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <string.h>
28 #include <errno.h>
29 #include <fcntl.h>
30 #include <unistd.h>
31 #include <stropts.h>
32 #include <sys/sockio.h>
33 #include <sys/types.h>
34 #include <sys/stat.h>
35 #include <sys/socket.h>
36 #include <net/route.h>
37 #include <netinet/in.h>
38 #include <inet/ip.h>
39 #include <arpa/inet.h>
40 #include <libintl.h>
41 #include <libdlpi.h>
42 #include <libinetutil.h>
43 #include <libdladm.h>
44 #include <libdllink.h>
45 #include <libdliptun.h>
46 #include <strings.h>
47 #include <zone.h>
48 #include <ctype.h>
49 #include <limits.h>
50 #include <assert.h>
51 #include <netdb.h>
52 #include <pwd.h>
53 #include <auth_attr.h>
54 #include <secdb.h>
55 #include <nss_dbdefs.h>
56 #include "libipadm_impl.h"
57 
58 /* error codes and text description */
59 static struct ipadm_error_info {
60 	ipadm_status_t	error_code;
61 	const char	*error_desc;
62 } ipadm_errors[] = {
63 	{ IPADM_SUCCESS,	"Operation succeeded" },
64 	{ IPADM_FAILURE,	"Operation failed" },
65 	{ IPADM_EAUTH,		"Insufficient user authorizations" },
66 	{ IPADM_EPERM,		"Permission denied" },
67 	{ IPADM_NO_BUFS,	"No buffer space available" },
68 	{ IPADM_NO_MEMORY,	"Insufficient memory" },
69 	{ IPADM_BAD_ADDR,	"Invalid address" },
70 	{ IPADM_BAD_PROTOCOL,	"Incorrect protocol family for operation" },
71 	{ IPADM_DAD_FOUND,	"Duplicate address detected" },
72 	{ IPADM_EXISTS,		"Already exists" },
73 	{ IPADM_IF_EXISTS,	"Interface already exists" },
74 	{ IPADM_ADDROBJ_EXISTS, "Address object already exists" },
75 	{ IPADM_ADDRCONF_EXISTS, "Addrconf already in progress" },
76 	{ IPADM_ENXIO,		"Interface does not exist" },
77 	{ IPADM_GRP_NOTEMPTY,	"IPMP group is not empty" },
78 	{ IPADM_INVALID_ARG,	"Invalid argument provided" },
79 	{ IPADM_INVALID_NAME,	"Invalid name" },
80 	{ IPADM_DLPI_FAILURE,	"Could not open DLPI link" },
81 	{ IPADM_DLADM_FAILURE,	"Datalink does not exist" },
82 	{ IPADM_PROP_UNKNOWN,   "Unknown property" },
83 	{ IPADM_ERANGE,		"Value is outside the allowed range" },
84 	{ IPADM_ESRCH,		"Value does not exist" },
85 	{ IPADM_EOVERFLOW,	"Number of values exceeds the allowed limit" },
86 	{ IPADM_NOTFOUND,	"Object not found" },
87 	{ IPADM_IF_INUSE,	"Interface already in use" },
88 	{ IPADM_ADDR_INUSE,	"Address already in use" },
89 	{ IPADM_BAD_HOSTNAME,	"Hostname maps to multiple IP addresses" },
90 	{ IPADM_ADDR_NOTAVAIL,	"Can't assign requested address" },
91 	{ IPADM_ALL_ADDRS_NOT_ENABLED, "All addresses could not be enabled" },
92 	{ IPADM_NDPD_NOT_RUNNING, "IPv6 autoconf daemon in.ndpd not running" },
93 	{ IPADM_DHCP_START_ERROR, "Could not start dhcpagent" },
94 	{ IPADM_DHCP_IPC_ERROR,	"Could not communicate with dhcpagent" },
95 	{ IPADM_DHCP_IPC_TIMEOUT, "Communication with dhcpagent timed out" },
96 	{ IPADM_TEMPORARY_OBJ,	"Persistent operation on temporary object" },
97 	{ IPADM_IPC_ERROR,	"Could not communicate with ipmgmtd" },
98 	{ IPADM_NOTSUP,		"Operation not supported" },
99 	{ IPADM_OP_DISABLE_OBJ, "Operation not supported on disabled object" },
100 	{ IPADM_EBADE,		"Invalid data exchange with daemon" },
101 	{ IPADM_GZ_PERM,	"Operation not permitted on from-gz interface"}
102 };
103 
104 #define	IPADM_NUM_ERRORS	(sizeof (ipadm_errors) / sizeof (*ipadm_errors))
105 
106 ipadm_status_t
107 ipadm_errno2status(int error)
108 {
109 	switch (error) {
110 	case 0:
111 		return (IPADM_SUCCESS);
112 	case ENXIO:
113 		return (IPADM_ENXIO);
114 	case ENOMEM:
115 		return (IPADM_NO_MEMORY);
116 	case ENOBUFS:
117 		return (IPADM_NO_BUFS);
118 	case EINVAL:
119 		return (IPADM_INVALID_ARG);
120 	case EBUSY:
121 		return (IPADM_IF_INUSE);
122 	case EEXIST:
123 		return (IPADM_EXISTS);
124 	case EADDRNOTAVAIL:
125 		return (IPADM_ADDR_NOTAVAIL);
126 	case EADDRINUSE:
127 		return (IPADM_ADDR_INUSE);
128 	case ENOENT:
129 		return (IPADM_NOTFOUND);
130 	case ERANGE:
131 		return (IPADM_ERANGE);
132 	case EPERM:
133 		return (IPADM_EPERM);
134 	case ENOTSUP:
135 	case EOPNOTSUPP:
136 		return (IPADM_NOTSUP);
137 	case EBADF:
138 		return (IPADM_IPC_ERROR);
139 	case EBADE:
140 		return (IPADM_EBADE);
141 	case ESRCH:
142 		return (IPADM_ESRCH);
143 	case EOVERFLOW:
144 		return (IPADM_EOVERFLOW);
145 	default:
146 		return (IPADM_FAILURE);
147 	}
148 }
149 
150 /*
151  * Returns a message string for the given libipadm error status.
152  */
153 const char *
154 ipadm_status2str(ipadm_status_t status)
155 {
156 	int	i;
157 
158 	for (i = 0; i < IPADM_NUM_ERRORS; i++) {
159 		if (status == ipadm_errors[i].error_code)
160 			return (dgettext(TEXT_DOMAIN,
161 			    ipadm_errors[i].error_desc));
162 	}
163 
164 	return (dgettext(TEXT_DOMAIN, "<unknown error>"));
165 }
166 
167 /*
168  * Opens a handle to libipadm.
169  * Possible values for flags:
170  *  IPH_VRRP:	Used by VRRP daemon to set the socket option SO_VRRP.
171  *  IPH_LEGACY:	This is used whenever an application needs to provide a
172  *		logical interface name while creating or deleting
173  *		interfaces and static addresses.
174  *  IPH_INIT:   Used by ipadm_init_prop(), to initialize protocol properties
175  *		on reboot.
176  */
177 ipadm_status_t
178 ipadm_open(ipadm_handle_t *handle, uint32_t flags)
179 {
180 	ipadm_handle_t	iph;
181 	ipadm_status_t	status = IPADM_SUCCESS;
182 	zoneid_t	zoneid;
183 	ushort_t	zflags;
184 	int		on = B_TRUE;
185 
186 	if (handle == NULL)
187 		return (IPADM_INVALID_ARG);
188 	*handle = NULL;
189 
190 	if (flags & ~(IPH_VRRP|IPH_LEGACY|IPH_INIT|IPH_IPMGMTD))
191 		return (IPADM_INVALID_ARG);
192 
193 	if ((iph = calloc(1, sizeof (struct ipadm_handle))) == NULL)
194 		return (IPADM_NO_MEMORY);
195 	iph->iph_sock = -1;
196 	iph->iph_sock6 = -1;
197 	iph->iph_door_fd = -1;
198 	iph->iph_rtsock = -1;
199 	iph->iph_flags = flags;
200 	(void) pthread_mutex_init(&iph->iph_lock, NULL);
201 
202 	if ((iph->iph_sock = socket(AF_INET, SOCK_DGRAM, 0)) < 0 ||
203 	    (iph->iph_sock6 = socket(AF_INET6, SOCK_DGRAM, 0)) < 0) {
204 		goto errnofail;
205 	}
206 
207 	/*
208 	 * We open a handle to libdladm here, to facilitate some daemons (like
209 	 * nwamd) which opens handle to libipadm before devfsadmd installs the
210 	 * right device permissions into the kernel and requires "all"
211 	 * privileges to open DLD_CONTROL_DEV.
212 	 *
213 	 * In a non-global shared-ip zone there will be no DLD_CONTROL_DEV node
214 	 * and dladm_open() will fail. So, we avoid this by not calling
215 	 * dladm_open() for such zones.
216 	 */
217 	zoneid = getzoneid();
218 	iph->iph_zoneid = zoneid;
219 	if (zoneid != GLOBAL_ZONEID) {
220 		if (zone_getattr(zoneid, ZONE_ATTR_FLAGS, &zflags,
221 		    sizeof (zflags)) < 0) {
222 			goto errnofail;
223 		}
224 	}
225 	if ((zoneid == GLOBAL_ZONEID) || (zflags & ZF_NET_EXCL)) {
226 		if (dladm_open(&iph->iph_dlh) != DLADM_STATUS_OK) {
227 			ipadm_close(iph);
228 			return (IPADM_DLADM_FAILURE);
229 		}
230 		if (zoneid != GLOBAL_ZONEID) {
231 			iph->iph_rtsock = socket(PF_ROUTE, SOCK_RAW, 0);
232 			/*
233 			 * Failure to open rtsock is ignored as this is
234 			 * only used in non-global zones to initialize
235 			 * routing socket information.
236 			 */
237 		}
238 	} else {
239 		assert(zoneid != GLOBAL_ZONEID);
240 		iph->iph_dlh = NULL;
241 	}
242 	if (flags & IPH_VRRP) {
243 		if (setsockopt(iph->iph_sock6, SOL_SOCKET, SO_VRRP, &on,
244 		    sizeof (on)) < 0 || setsockopt(iph->iph_sock, SOL_SOCKET,
245 		    SO_VRRP, &on, sizeof (on)) < 0) {
246 			goto errnofail;
247 		}
248 	}
249 	*handle = iph;
250 	return (status);
251 
252 errnofail:
253 	status = ipadm_errno2status(errno);
254 	ipadm_close(iph);
255 	return (status);
256 }
257 
258 /*
259  * Closes and frees the libipadm handle.
260  */
261 void
262 ipadm_close(ipadm_handle_t iph)
263 {
264 	if (iph == NULL)
265 		return;
266 	if (iph->iph_sock != -1)
267 		(void) close(iph->iph_sock);
268 	if (iph->iph_sock6 != -1)
269 		(void) close(iph->iph_sock6);
270 	if (iph->iph_rtsock != -1)
271 		(void) close(iph->iph_rtsock);
272 	if (iph->iph_door_fd != -1)
273 		(void) close(iph->iph_door_fd);
274 	dladm_close(iph->iph_dlh);
275 	(void) pthread_mutex_destroy(&iph->iph_lock);
276 	free(iph);
277 }
278 
279 /*
280  * Checks if the caller has the authorization to configure network
281  * interfaces.
282  */
283 boolean_t
284 ipadm_check_auth(void)
285 {
286 	struct passwd	pwd;
287 	char		buf[NSS_BUFLEN_PASSWD];
288 
289 	/* get the password entry for the given user ID */
290 	if (getpwuid_r(getuid(), &pwd, buf, sizeof (buf)) == NULL)
291 		return (B_FALSE);
292 
293 	/* check for presence of given authorization */
294 	return (chkauthattr(NETWORK_INTERFACE_CONFIG_AUTH, pwd.pw_name) != 0);
295 }
296 
297 /*
298  * Stores the index value of the interface in `ifname' for the address
299  * family `af' into the buffer pointed to by `index'.
300  */
301 static ipadm_status_t
302 i_ipadm_get_index(ipadm_handle_t iph, const char *ifname, sa_family_t af,
303     int *index)
304 {
305 	struct lifreq	lifr;
306 	int		sock;
307 
308 	bzero(&lifr, sizeof (lifr));
309 	(void) strlcpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name));
310 	if (af == AF_INET)
311 		sock = iph->iph_sock;
312 	else
313 		sock = iph->iph_sock6;
314 
315 	if (ioctl(sock, SIOCGLIFINDEX, (caddr_t)&lifr) < 0)
316 		return (ipadm_errno2status(errno));
317 	*index = lifr.lifr_index;
318 
319 	return (IPADM_SUCCESS);
320 }
321 
322 /*
323  * Maximum amount of time (in milliseconds) to wait for Duplicate Address
324  * Detection to complete in the kernel.
325  */
326 #define	DAD_WAIT_TIME		1000
327 
328 /*
329  * Any time that flags are changed on an interface where either the new or the
330  * existing flags have IFF_UP set, we'll get a RTM_NEWADDR message to
331  * announce the new address added and its flag status.
332  * We wait here for that message and look for IFF_UP.
333  * If something's amiss with the kernel, though, we don't wait forever.
334  * (Note that IFF_DUPLICATE is a high-order bit, and we cannot see
335  * it in the routing socket messages.)
336  */
337 static ipadm_status_t
338 i_ipadm_dad_wait(ipadm_handle_t handle, const char *lifname, sa_family_t af,
339     int rtsock)
340 {
341 	struct pollfd	fds[1];
342 	union {
343 		struct if_msghdr ifm;
344 		char buf[1024];
345 	} msg;
346 	int		index;
347 	ipadm_status_t	retv;
348 	uint64_t	flags;
349 	hrtime_t	starttime, now;
350 
351 	fds[0].fd = rtsock;
352 	fds[0].events = POLLIN;
353 	fds[0].revents = 0;
354 
355 	retv = i_ipadm_get_index(handle, lifname, af, &index);
356 	if (retv != IPADM_SUCCESS)
357 		return (retv);
358 
359 	starttime = gethrtime();
360 	for (;;) {
361 		now = gethrtime();
362 		now = (now - starttime) / 1000000;
363 		if (now >= DAD_WAIT_TIME)
364 			break;
365 		if (poll(fds, 1, DAD_WAIT_TIME - (int)now) <= 0)
366 			break;
367 		if (read(rtsock, &msg, sizeof (msg)) <= 0)
368 			break;
369 		if (msg.ifm.ifm_type != RTM_NEWADDR)
370 			continue;
371 		/* Note that ifm_index is just 16 bits */
372 		if (index == msg.ifm.ifm_index && (msg.ifm.ifm_flags & IFF_UP))
373 			return (IPADM_SUCCESS);
374 	}
375 
376 	retv = i_ipadm_get_flags(handle, lifname, af, &flags);
377 	if (retv != IPADM_SUCCESS)
378 		return (retv);
379 	if (flags & IFF_DUPLICATE)
380 		return (IPADM_DAD_FOUND);
381 
382 	return (IPADM_SUCCESS);
383 }
384 
385 /*
386  * Sets the flags `on_flags' and resets the flags `off_flags' for the logical
387  * interface in `lifname'.
388  *
389  * If the new flags value will transition the interface from "down" to "up"
390  * then duplicate address detection is performed by the kernel.  This routine
391  * waits to get the outcome of that test.
392  */
393 ipadm_status_t
394 i_ipadm_set_flags(ipadm_handle_t iph, const char *lifname, sa_family_t af,
395     uint64_t on_flags, uint64_t off_flags)
396 {
397 	struct lifreq	lifr;
398 	uint64_t	oflags;
399 	ipadm_status_t	ret;
400 	int		rtsock = -1;
401 	int		sock, err;
402 
403 	ret = i_ipadm_get_flags(iph, lifname, af, &oflags);
404 	if (ret != IPADM_SUCCESS)
405 		return (ret);
406 
407 	sock = (af == AF_INET ? iph->iph_sock : iph->iph_sock6);
408 
409 	/*
410 	 * Any time flags are changed on an interface that has IFF_UP set,
411 	 * we get a routing socket message.  We care about the status,
412 	 * though, only when the new flags are marked "up."
413 	 */
414 	if (!(oflags & IFF_UP) && (on_flags & IFF_UP))
415 		rtsock = socket(PF_ROUTE, SOCK_RAW, af);
416 
417 	oflags |= on_flags;
418 	oflags &= ~off_flags;
419 	bzero(&lifr, sizeof (lifr));
420 	(void) strlcpy(lifr.lifr_name, lifname, sizeof (lifr.lifr_name));
421 	lifr.lifr_flags = oflags;
422 	if (ioctl(sock, SIOCSLIFFLAGS, (caddr_t)&lifr) < 0) {
423 		err = errno;
424 		if (rtsock != -1)
425 			(void) close(rtsock);
426 		return (ipadm_errno2status(err));
427 	}
428 	if (rtsock == -1) {
429 		return (IPADM_SUCCESS);
430 	} else {
431 		/* Wait for DAD to complete. */
432 		ret = i_ipadm_dad_wait(iph, lifname, af, rtsock);
433 		(void) close(rtsock);
434 		return (ret);
435 	}
436 }
437 
438 /*
439  * Returns the flags value for the logical interface in `lifname'
440  * in the buffer pointed to by `flags'.
441  */
442 ipadm_status_t
443 i_ipadm_get_flags(ipadm_handle_t iph, const char *lifname, sa_family_t af,
444     uint64_t *flags)
445 {
446 	struct lifreq	lifr;
447 	int		sock;
448 
449 	bzero(&lifr, sizeof (lifr));
450 	(void) strlcpy(lifr.lifr_name, lifname, sizeof (lifr.lifr_name));
451 	if (af == AF_INET)
452 		sock = iph->iph_sock;
453 	else
454 		sock = iph->iph_sock6;
455 
456 	if (ioctl(sock, SIOCGLIFFLAGS, (caddr_t)&lifr) < 0) {
457 		return (ipadm_errno2status(errno));
458 	}
459 	*flags = lifr.lifr_flags;
460 
461 	return (IPADM_SUCCESS);
462 }
463 
464 /*
465  * Determines whether or not an interface name represents a loopback
466  * interface, before the interface has been plumbed.
467  * It is assumed that the interface name in `ifname' is of correct format
468  * as verified by ifparse_ifspec().
469  *
470  * Returns: B_TRUE if loopback, B_FALSE if not.
471  */
472 boolean_t
473 i_ipadm_is_loopback(const char *ifname)
474 {
475 	int len = strlen(LOOPBACK_IF);
476 
477 	return (strncmp(ifname, LOOPBACK_IF, len) == 0 &&
478 	    (ifname[len] == '\0' || ifname[len] == IPADM_LOGICAL_SEP));
479 }
480 
481 /*
482  * Determines whether or not an interface name represents a vni
483  * interface, before the interface has been plumbed.
484  * It is assumed that the interface name in `ifname' is of correct format
485  * as verified by ifparse_ifspec().
486  *
487  * Returns: B_TRUE if vni, B_FALSE if not.
488  */
489 boolean_t
490 i_ipadm_is_vni(const char *ifname)
491 {
492 	ifspec_t	ifsp;
493 
494 	return (ifparse_ifspec(ifname, &ifsp) &&
495 	    strcmp(ifsp.ifsp_devnm, "vni") == 0);
496 }
497 
498 /*
499  * Returns B_TRUE if `ifname' is an IP interface on a 6to4 tunnel.
500  */
501 boolean_t
502 i_ipadm_is_6to4(ipadm_handle_t iph, char *ifname)
503 {
504 	dladm_status_t		dlstatus;
505 	datalink_class_t	class;
506 	iptun_params_t		params;
507 	datalink_id_t		linkid;
508 
509 	if (iph->iph_dlh == NULL) {
510 		assert(iph->iph_zoneid != GLOBAL_ZONEID);
511 		return (B_FALSE);
512 	}
513 	dlstatus = dladm_name2info(iph->iph_dlh, ifname, &linkid, NULL,
514 	    &class, NULL);
515 	if (dlstatus == DLADM_STATUS_OK && class == DATALINK_CLASS_IPTUN) {
516 		params.iptun_param_linkid = linkid;
517 		dlstatus = dladm_iptun_getparams(iph->iph_dlh, &params,
518 		    DLADM_OPT_ACTIVE);
519 		if (dlstatus == DLADM_STATUS_OK &&
520 		    params.iptun_param_type == IPTUN_TYPE_6TO4) {
521 			return (B_TRUE);
522 		}
523 	}
524 	return (B_FALSE);
525 }
526 
527 /*
528  * Returns B_TRUE if `ifname' represents an IPMP underlying interface.
529  */
530 boolean_t
531 i_ipadm_is_under_ipmp(ipadm_handle_t iph, const char *ifname)
532 {
533 	struct lifreq	lifr;
534 
535 	(void) strlcpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name));
536 	if (ioctl(iph->iph_sock, SIOCGLIFGROUPNAME, (caddr_t)&lifr) < 0) {
537 		if (ioctl(iph->iph_sock6, SIOCGLIFGROUPNAME,
538 		    (caddr_t)&lifr) < 0) {
539 			return (B_FALSE);
540 		}
541 	}
542 	return (lifr.lifr_groupname[0] != '\0');
543 }
544 
545 /*
546  * Returns B_TRUE if `ifname' represents an IPMP meta-interface.
547  */
548 boolean_t
549 i_ipadm_is_ipmp(ipadm_handle_t iph, const char *ifname)
550 {
551 	uint64_t flags;
552 
553 	if (i_ipadm_get_flags(iph, ifname, AF_INET, &flags) != IPADM_SUCCESS &&
554 	    i_ipadm_get_flags(iph, ifname, AF_INET6, &flags) != IPADM_SUCCESS)
555 		return (B_FALSE);
556 
557 	return ((flags & IFF_IPMP) != 0);
558 }
559 
560 /*
561  * For a given interface name, ipadm_if_enabled() checks if v4
562  * or v6 or both IP interfaces exist in the active configuration.
563  */
564 boolean_t
565 ipadm_if_enabled(ipadm_handle_t iph, const char *ifname, sa_family_t af)
566 {
567 	struct lifreq	lifr;
568 	int		s4 = iph->iph_sock;
569 	int		s6 = iph->iph_sock6;
570 
571 	bzero(&lifr, sizeof (lifr));
572 	(void) strlcpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name));
573 	switch (af) {
574 	case AF_INET:
575 		if (ioctl(s4, SIOCGLIFFLAGS, (caddr_t)&lifr) == 0)
576 			return (B_TRUE);
577 		break;
578 	case AF_INET6:
579 		if (ioctl(s6, SIOCGLIFFLAGS, (caddr_t)&lifr) == 0)
580 			return (B_TRUE);
581 		break;
582 	case AF_UNSPEC:
583 		if (ioctl(s4, SIOCGLIFFLAGS, (caddr_t)&lifr) == 0 ||
584 		    ioctl(s6, SIOCGLIFFLAGS, (caddr_t)&lifr) == 0) {
585 			return (B_TRUE);
586 		}
587 	}
588 	return (B_FALSE);
589 }
590 
591 /*
592  * Apply the interface property by retrieving information from nvl.
593  */
594 static ipadm_status_t
595 i_ipadm_init_ifprop(ipadm_handle_t iph, nvlist_t *nvl)
596 {
597 	nvpair_t	*nvp;
598 	char		*name, *pname = NULL;
599 	char		*protostr = NULL, *ifname = NULL, *pval = NULL;
600 	uint_t		proto;
601 	int		err = 0;
602 
603 	for (nvp = nvlist_next_nvpair(nvl, NULL); nvp != NULL;
604 	    nvp = nvlist_next_nvpair(nvl, nvp)) {
605 		name = nvpair_name(nvp);
606 		if (strcmp(name, IPADM_NVP_IFNAME) == 0) {
607 			if ((err = nvpair_value_string(nvp, &ifname)) != 0)
608 				break;
609 		} else if (strcmp(name, IPADM_NVP_PROTONAME) == 0) {
610 			if ((err = nvpair_value_string(nvp, &protostr)) != 0)
611 				break;
612 		} else {
613 			assert(!IPADM_PRIV_NVP(name));
614 			pname = name;
615 			if ((err = nvpair_value_string(nvp, &pval)) != 0)
616 				break;
617 		}
618 	}
619 	if (err != 0)
620 		return (ipadm_errno2status(err));
621 	proto = ipadm_str2proto(protostr);
622 	return (ipadm_set_ifprop(iph, ifname, pname, pval, proto,
623 	    IPADM_OPT_ACTIVE));
624 }
625 
626 /*
627  * Instantiate the address object or set the address object property by
628  * retrieving the configuration from the nvlist `nvl'.
629  */
630 ipadm_status_t
631 i_ipadm_init_addrobj(ipadm_handle_t iph, nvlist_t *nvl)
632 {
633 	nvpair_t	*nvp;
634 	char		*name;
635 	char		*aobjname = NULL, *pval = NULL, *ifname = NULL;
636 	sa_family_t	af = AF_UNSPEC;
637 	ipadm_addr_type_t atype = IPADM_ADDR_NONE;
638 	int		err = 0;
639 	ipadm_status_t	status = IPADM_SUCCESS;
640 
641 	for (nvp = nvlist_next_nvpair(nvl, NULL); nvp != NULL;
642 	    nvp = nvlist_next_nvpair(nvl, nvp)) {
643 		name = nvpair_name(nvp);
644 		if (strcmp(name, IPADM_NVP_IFNAME) == 0) {
645 			if ((err = nvpair_value_string(nvp, &ifname)) != 0)
646 				break;
647 		} else if (strcmp(name, IPADM_NVP_AOBJNAME) == 0) {
648 			if ((err = nvpair_value_string(nvp, &aobjname)) != 0)
649 				break;
650 		} else if (i_ipadm_name2atype(name, &af, &atype)) {
651 			break;
652 		} else {
653 			assert(!IPADM_PRIV_NVP(name));
654 			err = nvpair_value_string(nvp, &pval);
655 			break;
656 		}
657 	}
658 	if (err != 0)
659 		return (ipadm_errno2status(err));
660 
661 	switch (atype) {
662 	case IPADM_ADDR_STATIC:
663 		status = i_ipadm_enable_static(iph, ifname, nvl, af);
664 		break;
665 	case IPADM_ADDR_DHCP:
666 		status = i_ipadm_enable_dhcp(iph, ifname, nvl);
667 		if (status == IPADM_DHCP_IPC_TIMEOUT)
668 			status = IPADM_SUCCESS;
669 		break;
670 	case IPADM_ADDR_IPV6_ADDRCONF:
671 		status = i_ipadm_enable_addrconf(iph, ifname, nvl);
672 		break;
673 	case IPADM_ADDR_NONE:
674 		status = ipadm_set_addrprop(iph, name, pval, aobjname,
675 		    IPADM_OPT_ACTIVE);
676 		break;
677 	}
678 
679 	return (status);
680 }
681 
682 /*
683  * Instantiate the interface object by retrieving the configuration from
684  * `ifnvl'. The nvlist `ifnvl' contains all the persistent configuration
685  * (interface properties and address objects on that interface) for the
686  * given `ifname'.
687  */
688 ipadm_status_t
689 i_ipadm_init_ifobj(ipadm_handle_t iph, const char *ifname, nvlist_t *ifnvl)
690 {
691 	nvlist_t	*nvl = NULL;
692 	nvpair_t	*nvp;
693 	char		*afstr;
694 	ipadm_status_t	status;
695 	ipadm_status_t	ret_status = IPADM_SUCCESS;
696 	char		newifname[LIFNAMSIZ];
697 	char		*aobjstr;
698 	sa_family_t	af = AF_UNSPEC;
699 	boolean_t	is_ngz = (iph->iph_zoneid != GLOBAL_ZONEID);
700 
701 	(void) strlcpy(newifname, ifname, sizeof (newifname));
702 	/*
703 	 * First plumb the given interface and then apply all the persistent
704 	 * interface properties and then instantiate any persistent addresses
705 	 * objects on that interface.
706 	 */
707 	for (nvp = nvlist_next_nvpair(ifnvl, NULL); nvp != NULL;
708 	    nvp = nvlist_next_nvpair(ifnvl, nvp)) {
709 		if (nvpair_value_nvlist(nvp, &nvl) != 0)
710 			continue;
711 
712 		if (nvlist_lookup_string(nvl, IPADM_NVP_FAMILY, &afstr) == 0) {
713 			status = i_ipadm_plumb_if(iph, newifname, atoi(afstr),
714 			    IPADM_OPT_ACTIVE);
715 			/*
716 			 * If the interface is already plumbed, we should
717 			 * ignore this error because there might be address
718 			 * address objects on that interface that needs to
719 			 * be enabled again.
720 			 */
721 			if (status == IPADM_IF_EXISTS)
722 				status = IPADM_SUCCESS;
723 
724 			if (is_ngz)
725 				af = atoi(afstr);
726 		} else if (nvlist_lookup_string(nvl, IPADM_NVP_AOBJNAME,
727 		    &aobjstr) == 0) {
728 			/*
729 			 * For a static address, we need to search for
730 			 * the prefixlen in the nvlist `ifnvl'.
731 			 */
732 			if (nvlist_exists(nvl, IPADM_NVP_IPV4ADDR) ||
733 			    nvlist_exists(nvl, IPADM_NVP_IPV6ADDR)) {
734 				status = i_ipadm_merge_prefixlen_from_nvl(ifnvl,
735 				    nvl, aobjstr);
736 				if (status != IPADM_SUCCESS)
737 					continue;
738 			}
739 			status = i_ipadm_init_addrobj(iph, nvl);
740 			/*
741 			 * If this address is in use on some other interface,
742 			 * we want to record an error to be returned as
743 			 * a soft error and continue processing the rest of
744 			 * the addresses.
745 			 */
746 			if (status == IPADM_ADDR_NOTAVAIL) {
747 				ret_status = IPADM_ALL_ADDRS_NOT_ENABLED;
748 				status = IPADM_SUCCESS;
749 			}
750 		} else {
751 			assert(nvlist_exists(nvl, IPADM_NVP_PROTONAME));
752 			status = i_ipadm_init_ifprop(iph, nvl);
753 		}
754 		if (status != IPADM_SUCCESS)
755 			return (status);
756 	}
757 
758 	if (is_ngz && af != AF_UNSPEC)
759 		ret_status = ipadm_init_net_from_gz(iph, newifname, NULL);
760 	return (ret_status);
761 }
762 
763 /*
764  * Retrieves the persistent configuration for the given interface(s) in `ifs'
765  * by contacting the daemon and dumps the information in `allifs'.
766  */
767 ipadm_status_t
768 i_ipadm_init_ifs(ipadm_handle_t iph, const char *ifs, nvlist_t **allifs)
769 {
770 	nvlist_t		*nvl = NULL;
771 	size_t			nvlsize, bufsize;
772 	ipmgmt_initif_arg_t	*iargp;
773 	char			*buf = NULL, *nvlbuf = NULL;
774 	ipmgmt_get_rval_t	*rvalp = NULL;
775 	int			err;
776 	ipadm_status_t		status = IPADM_SUCCESS;
777 
778 	if ((err = ipadm_str2nvlist(ifs, &nvl, IPADM_NORVAL)) != 0)
779 		return (ipadm_errno2status(err));
780 
781 	err = nvlist_pack(nvl, &nvlbuf, &nvlsize, NV_ENCODE_NATIVE, 0);
782 	if (err != 0) {
783 		status = ipadm_errno2status(err);
784 		goto done;
785 	}
786 	bufsize = sizeof (*iargp) + nvlsize;
787 	if ((buf = malloc(bufsize)) == NULL) {
788 		status = ipadm_errno2status(errno);
789 		goto done;
790 	}
791 
792 	/* populate the door_call argument structure */
793 	iargp = (void *)buf;
794 	iargp->ia_cmd = IPMGMT_CMD_INITIF;
795 	iargp->ia_flags = 0;
796 	iargp->ia_family = AF_UNSPEC;
797 	iargp->ia_nvlsize = nvlsize;
798 	(void) bcopy(nvlbuf, buf + sizeof (*iargp), nvlsize);
799 
800 	if ((rvalp = malloc(sizeof (ipmgmt_get_rval_t))) == NULL) {
801 		status = ipadm_errno2status(errno);
802 		goto done;
803 	}
804 	if ((err = ipadm_door_call(iph, iargp, bufsize, (void **)&rvalp,
805 	    sizeof (*rvalp), B_TRUE)) != 0) {
806 		status = ipadm_errno2status(err);
807 		goto done;
808 	}
809 	nvlsize = rvalp->ir_nvlsize;
810 	nvlbuf = (char *)rvalp + sizeof (ipmgmt_get_rval_t);
811 
812 	/*
813 	 * nvlbuf contains a list of nvlists, each of which represents
814 	 * configuration information for the given interface(s)
815 	 */
816 	err = nvlist_unpack(nvlbuf, nvlsize, allifs, NV_ENCODE_NATIVE);
817 	if (err != 0)
818 		status = ipadm_errno2status(err);
819 done:
820 	nvlist_free(nvl);
821 	free(buf);
822 	free(nvlbuf);
823 	free(rvalp);
824 	return (status);
825 }
826 
827 /*
828  * Returns B_FALSE if
829  * (1) `ifname' is NULL or has no string or has a string of invalid length
830  * (2) ifname is a logical interface and IPH_LEGACY is not set, or
831  */
832 boolean_t
833 i_ipadm_validate_ifname(ipadm_handle_t iph, const char *ifname)
834 {
835 	ifspec_t ifsp;
836 
837 	if (ifname == NULL || ifname[0] == '\0' ||
838 	    !ifparse_ifspec(ifname, &ifsp))
839 		return (B_FALSE);
840 	if (ifsp.ifsp_lunvalid)
841 		return (ifsp.ifsp_lun > 0 && (iph->iph_flags & IPH_LEGACY));
842 	return (B_TRUE);
843 }
844 
845 /*
846  * Wrapper for sending a non-transparent I_STR ioctl().
847  * Returns: Result from ioctl().
848  */
849 int
850 i_ipadm_strioctl(int s, int cmd, char *buf, int buflen)
851 {
852 	struct strioctl ioc;
853 
854 	(void) memset(&ioc, 0, sizeof (ioc));
855 	ioc.ic_cmd = cmd;
856 	ioc.ic_timout = 0;
857 	ioc.ic_len = buflen;
858 	ioc.ic_dp = buf;
859 
860 	return (ioctl(s, I_STR, (char *)&ioc));
861 }
862 
863 /*
864  * Make a door call to the server and checks if the door call succeeded or not.
865  * `is_varsize' specifies that the data returned by ipmgmtd daemon is of
866  * variable size and door will allocate buffer using mmap(). In such cases
867  * we re-allocate the required memory,n assign it to `rbufp', copy the data to
868  * `rbufp' and then call munmap() (see below).
869  *
870  * It also checks to see if the server side procedure ran successfully by
871  * checking for ir_err. Therefore, for some callers who just care about the
872  * return status can set `rbufp' to NULL and set `rsize' to 0.
873  */
874 int
875 ipadm_door_call(ipadm_handle_t iph, void *arg, size_t asize, void **rbufp,
876     size_t rsize, boolean_t is_varsize)
877 {
878 	door_arg_t	darg;
879 	int		err;
880 	ipmgmt_retval_t	rval, *rvalp;
881 	boolean_t	reopen = B_FALSE;
882 
883 	if (rbufp == NULL) {
884 		rvalp = &rval;
885 		rbufp = (void **)&rvalp;
886 		rsize = sizeof (rval);
887 	}
888 
889 	darg.data_ptr = arg;
890 	darg.data_size = asize;
891 	darg.desc_ptr = NULL;
892 	darg.desc_num = 0;
893 	darg.rbuf = *rbufp;
894 	darg.rsize = rsize;
895 
896 reopen:
897 	(void) pthread_mutex_lock(&iph->iph_lock);
898 	/* The door descriptor is opened if it isn't already */
899 	if (iph->iph_door_fd == -1) {
900 		if ((iph->iph_door_fd = open(IPMGMT_DOOR, O_RDONLY)) < 0) {
901 			err = errno;
902 			(void) pthread_mutex_unlock(&iph->iph_lock);
903 			return (err);
904 		}
905 	}
906 	(void) pthread_mutex_unlock(&iph->iph_lock);
907 
908 	if (door_call(iph->iph_door_fd, &darg) == -1) {
909 		/*
910 		 * Stale door descriptor is possible if ipmgmtd was restarted
911 		 * since last iph_door_fd was opened, so try re-opening door
912 		 * descriptor.
913 		 */
914 		if (!reopen && errno == EBADF) {
915 			(void) close(iph->iph_door_fd);
916 			iph->iph_door_fd = -1;
917 			reopen = B_TRUE;
918 			goto reopen;
919 		}
920 		return (errno);
921 	}
922 	err = ((ipmgmt_retval_t *)(void *)(darg.rbuf))->ir_err;
923 	if (darg.rbuf != *rbufp) {
924 		/*
925 		 * if the caller is expecting the result to fit in specified
926 		 * buffer then return failure.
927 		 */
928 		if (!is_varsize)
929 			err = EBADE;
930 		/*
931 		 * The size of the buffer `*rbufp' was not big enough
932 		 * and the door itself allocated buffer, for us. We will
933 		 * hit this, on several occasion as for some cases
934 		 * we cannot predict the size of the return structure.
935 		 * Reallocate the buffer `*rbufp' and memcpy() the contents
936 		 * to new buffer.
937 		 */
938 		if (err == 0) {
939 			void *newp;
940 
941 			/* allocated memory will be freed by the caller */
942 			if ((newp = realloc(*rbufp, darg.rsize)) == NULL) {
943 				err = ENOMEM;
944 			} else {
945 				*rbufp = newp;
946 				(void) memcpy(*rbufp, darg.rbuf, darg.rsize);
947 			}
948 		}
949 		/* munmap() the door buffer */
950 		(void) munmap(darg.rbuf, darg.rsize);
951 	} else {
952 		if (darg.rsize != rsize)
953 			err = EBADE;
954 	}
955 	return (err);
956 }
957