1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #ifndef _LIBINETUTIL_H 28 #define _LIBINETUTIL_H 29 30 /* 31 * Contains SMI-private API for general Internet functionality 32 */ 33 34 #ifdef __cplusplus 35 extern "C" { 36 #endif 37 38 #include <netinet/inetutil.h> 39 #include <sys/types.h> 40 #include <sys/socket.h> 41 #include <netinet/in.h> 42 #include <net/if.h> 43 44 #if !defined(_KERNEL) && !defined(_BOOT) 45 46 typedef struct { 47 uint_t ifsp_ppa; /* Physical Point of Attachment */ 48 uint_t ifsp_lun; /* Logical Unit number */ 49 boolean_t ifsp_lunvalid; /* TRUE if lun is valid */ 50 char ifsp_devnm[LIFNAMSIZ]; /* only the device name */ 51 } ifspec_t; 52 53 extern boolean_t ifparse_ifspec(const char *, ifspec_t *); 54 extern void get_netmask4(const struct in_addr *, struct in_addr *); 55 extern boolean_t sockaddrcmp(const struct sockaddr_storage *, 56 const struct sockaddr_storage *); 57 extern int plen2mask(uint_t, sa_family_t, 58 struct sockaddr_storage *); 59 extern int mask2plen(const struct sockaddr_storage *); 60 extern boolean_t sockaddrunspec(const struct sockaddr_storage *); 61 62 /* 63 * Extended version of the classic BSD ifaddrlist() interface: 64 * 65 * int ifaddrlist(struct ifaddrlist **addrlistp, int af, uint_t flags, 66 * char *errbuf); 67 * 68 * * addrlistp: Upon success, ifaddrlist() sets *addrlistp to a 69 * dynamically-allocated array of addresses. 70 * 71 * * af: Either AF_INET to obtain IPv4 addresses, or AF_INET6 to 72 * obtain IPv6 addresses. 73 * 74 * * flags: LIFC_* flags that control the classes of interfaces that 75 * will be visible. 76 * 77 * * errbuf: A caller-supplied buffer of ERRBUFSIZE. Upon failure, 78 * provides the reason for the failure. 79 * 80 * Upon success, ifaddrlist() returns the number of addresses in the array 81 * pointed to by `addrlistp'. If the count is 0, then `addrlistp' is NULL. 82 */ 83 union any_in_addr { 84 struct in6_addr addr6; 85 struct in_addr addr; 86 }; 87 88 struct ifaddrlist { 89 int index; /* interface index */ 90 union any_in_addr addr; /* interface address */ 91 char device[LIFNAMSIZ + 1]; /* interface name */ 92 uint64_t flags; /* interface flags */ 93 }; 94 95 #define ERRBUFSIZE 128 /* expected size of fourth argument */ 96 97 extern int ifaddrlist(struct ifaddrlist **, int, uint_t, char *); 98 99 /* 100 * Similar to ifaddrlist(), but returns a linked-list of addresses for a 101 * *specific* interface name, and allows specific address flags to be matched 102 * against. A linked list is used rather than an array so that information 103 * can grow over time without affecting binary compatibility. Also, leaves 104 * error-handling up to the caller. Returns the number of ifaddrlistx's 105 * chained through ifaddrp. 106 * 107 * int ifaddrlistx(const char *ifname, uint64_t set, uint64_t clear, 108 * ifaddrlistx_t **ifaddrp); 109 * 110 * * ifname: Interface name to match against. 111 * 112 * * set: One or more flags that must be set on the address for 113 * it to be returned. 114 * 115 * * clear: Flags that must be clear on the address for it to be 116 * returned. 117 * 118 * * ifaddrp: Upon success, ifaddrlistx() sets *ifaddrp to the head 119 * of a dynamically-allocated array of ifaddrlistx structures. 120 * 121 * Once done, the caller must free `ifaddrp' by calling ifaddrlistx_free(). 122 */ 123 typedef struct ifaddrlistx { 124 struct ifaddrlistx *ia_next; 125 char ia_name[LIFNAMSIZ]; 126 uint64_t ia_flags; 127 struct sockaddr_storage ia_addr; 128 } ifaddrlistx_t; 129 130 extern int ifaddrlistx(const char *, uint64_t, uint64_t, ifaddrlistx_t **); 131 extern void ifaddrlistx_free(ifaddrlistx_t *); 132 133 /* 134 * Timer queues 135 * 136 * timer queues are a facility for managing timeouts in unix. in the 137 * event driven model, unix provides us with poll(2)/select(3C), which 138 * allow us to coordinate waiting on multiple descriptors with an 139 * optional timeout. however, often (as is the case with the DHCP 140 * agent), we want to manage multiple independent timeouts (say, one 141 * for waiting for an OFFER to come back from a server in response to 142 * a DISCOVER sent out on one interface, and another for waiting for 143 * the T1 time on another interface). timer queues allow us to do 144 * this in the event-driven model. 145 * 146 * note that timer queues do not in and of themselves provide the 147 * event driven model (for instance, there is no handle_events() 148 * routine). they merely provide the hooks to support multiple 149 * independent timeouts. this is done for both simplicity and 150 * applicability (for instance, while one approach would be to use 151 * this timer queue with poll(2), another one would be to use SIGALRM 152 * to wake up periodically, and then process all the expired timers.) 153 */ 154 155 typedef struct iu_timer_queue iu_tq_t; 156 157 /* 158 * a iu_timer_id_t refers to a given timer. its value should not be 159 * interpreted by the interface consumer. it is a signed arithmetic 160 * type, and no valid iu_timer_id_t has the value `-1'. 161 */ 162 163 typedef int iu_timer_id_t; 164 165 #define IU_TIMER_ID_MAX 4096 /* max number of concurrent timers */ 166 167 /* 168 * a iu_tq_callback_t is a function that is called back in response to a 169 * timer expiring. it may then carry out any necessary work, 170 * including rescheduling itself for callback or scheduling / 171 * cancelling other timers. the `void *' argument is the same value 172 * that was passed into iu_schedule_timer(), and if it is dynamically 173 * allocated, it is the callback's responsibility to know that, and to 174 * free it. 175 */ 176 177 typedef void iu_tq_callback_t(iu_tq_t *, void *); 178 179 iu_tq_t *iu_tq_create(void); 180 void iu_tq_destroy(iu_tq_t *); 181 iu_timer_id_t iu_schedule_timer(iu_tq_t *, uint32_t, iu_tq_callback_t *, 182 void *); 183 iu_timer_id_t iu_schedule_timer_ms(iu_tq_t *, uint64_t, iu_tq_callback_t *, 184 void *); 185 int iu_adjust_timer(iu_tq_t *, iu_timer_id_t, uint32_t); 186 int iu_cancel_timer(iu_tq_t *, iu_timer_id_t, void **); 187 int iu_expire_timers(iu_tq_t *); 188 int iu_earliest_timer(iu_tq_t *); 189 190 /* 191 * Event Handler 192 * 193 * an event handler is an object-oriented "wrapper" for select(3C) / 194 * poll(2), aimed to make the event demultiplexing system calls easier 195 * to use and provide a generic reusable component. instead of 196 * applications directly using select(3C) / poll(2), they register 197 * events that should be received with the event handler, providing a 198 * callback function to call when the event occurs. they then call 199 * iu_handle_events() to wait and callback the registered functions 200 * when events occur. also called a `reactor'. 201 */ 202 203 typedef struct iu_event_handler iu_eh_t; 204 205 /* 206 * an iu_event_id_t refers to a given event. its value should not be 207 * interpreted by the interface consumer. it is a signed arithmetic 208 * type, and no valid iu_event_id_t has the value `-1'. 209 */ 210 211 typedef int iu_event_id_t; 212 213 /* 214 * an iu_eh_callback_t is a function that is called back in response to 215 * an event occurring. it may then carry out any work necessary in 216 * response to the event. it receives the file descriptor upon which 217 * the event occurred, a bit array of events that occurred (the same 218 * array used as the revents by poll(2)), and its context through the 219 * `void *' that was originally passed into iu_register_event(). 220 * 221 * NOTE: the same descriptor may not be registered multiple times for 222 * different callbacks. if this behavior is desired, either use dup(2) 223 * to get a unique descriptor, or demultiplex in the callback function 224 * based on the events. 225 */ 226 227 typedef void iu_eh_callback_t(iu_eh_t *, int, short, iu_event_id_t, void *); 228 typedef void iu_eh_sighandler_t(iu_eh_t *, int, void *); 229 typedef boolean_t iu_eh_shutdown_t(iu_eh_t *, void *); 230 231 iu_eh_t *iu_eh_create(void); 232 void iu_eh_destroy(iu_eh_t *); 233 iu_event_id_t iu_register_event(iu_eh_t *, int, short, iu_eh_callback_t *, 234 void *); 235 int iu_unregister_event(iu_eh_t *, iu_event_id_t, void **); 236 int iu_handle_events(iu_eh_t *, iu_tq_t *); 237 void iu_stop_handling_events(iu_eh_t *, unsigned int, 238 iu_eh_shutdown_t *, void *); 239 int iu_eh_register_signal(iu_eh_t *, int, iu_eh_sighandler_t *, 240 void *); 241 int iu_eh_unregister_signal(iu_eh_t *, int, void **); 242 243 #endif /* !defined(_KERNEL) && !defined(_BOOT) */ 244 245 #ifdef __cplusplus 246 } 247 #endif 248 249 #endif /* !_LIBINETUTIL_H */ 250