1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 #include <stdio.h> 27 #include <stdlib.h> 28 #include <errno.h> 29 #include <strings.h> 30 #include <unistd.h> 31 #include <uuid/uuid.h> 32 #include <libintl.h> 33 #include <sys/types.h> 34 #include <sys/dkio.h> 35 #include <sys/vtoc.h> 36 #include <sys/mhd.h> 37 #include <sys/param.h> 38 #include <sys/dktp/fdisk.h> 39 #include <sys/efi_partition.h> 40 #include <sys/byteorder.h> 41 #include <sys/ddi.h> 42 43 static struct uuid_to_ptag { 44 struct uuid uuid; 45 } conversion_array[] = { 46 { EFI_UNUSED }, 47 { EFI_BOOT }, 48 { EFI_ROOT }, 49 { EFI_SWAP }, 50 { EFI_USR }, 51 { EFI_BACKUP }, 52 { 0 }, /* STAND is never used */ 53 { EFI_VAR }, 54 { EFI_HOME }, 55 { EFI_ALTSCTR }, 56 { 0 }, /* CACHE (cachefs) is never used */ 57 { EFI_RESERVED }, 58 { EFI_SYSTEM }, 59 { EFI_LEGACY_MBR }, 60 { EFI_SYMC_PUB }, 61 { EFI_SYMC_CDS }, 62 { EFI_MSFT_RESV }, 63 { EFI_DELL_BASIC }, 64 { EFI_DELL_RAID }, 65 { EFI_DELL_SWAP }, 66 { EFI_DELL_LVM }, 67 { EFI_DELL_RESV }, 68 { EFI_AAPL_HFS }, 69 { EFI_AAPL_UFS } 70 }; 71 72 /* 73 * Default vtoc information for non-SVr4 partitions 74 */ 75 struct dk_map2 default_vtoc_map[NDKMAP] = { 76 { V_ROOT, 0 }, /* a - 0 */ 77 { V_SWAP, V_UNMNT }, /* b - 1 */ 78 { V_BACKUP, V_UNMNT }, /* c - 2 */ 79 { V_UNASSIGNED, 0 }, /* d - 3 */ 80 { V_UNASSIGNED, 0 }, /* e - 4 */ 81 { V_UNASSIGNED, 0 }, /* f - 5 */ 82 { V_USR, 0 }, /* g - 6 */ 83 { V_UNASSIGNED, 0 }, /* h - 7 */ 84 85 #if defined(_SUNOS_VTOC_16) 86 87 #if defined(i386) || defined(__amd64) 88 { V_BOOT, V_UNMNT }, /* i - 8 */ 89 { V_ALTSCTR, 0 }, /* j - 9 */ 90 91 #else 92 #error No VTOC format defined. 93 #endif /* defined(i386) */ 94 95 { V_UNASSIGNED, 0 }, /* k - 10 */ 96 { V_UNASSIGNED, 0 }, /* l - 11 */ 97 { V_UNASSIGNED, 0 }, /* m - 12 */ 98 { V_UNASSIGNED, 0 }, /* n - 13 */ 99 { V_UNASSIGNED, 0 }, /* o - 14 */ 100 { V_UNASSIGNED, 0 }, /* p - 15 */ 101 #endif /* defined(_SUNOS_VTOC_16) */ 102 }; 103 104 #ifdef DEBUG 105 int efi_debug = 1; 106 #else 107 int efi_debug = 0; 108 #endif 109 110 extern unsigned int efi_crc32(const unsigned char *, unsigned int); 111 static int efi_read(int, struct dk_gpt *); 112 113 static int 114 read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize) 115 { 116 struct dk_minfo disk_info; 117 118 if ((ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info)) == -1) 119 return (errno); 120 *capacity = disk_info.dki_capacity; 121 *lbsize = disk_info.dki_lbsize; 122 return (0); 123 } 124 125 /* 126 * the number of blocks the EFI label takes up (round up to nearest 127 * block) 128 */ 129 #define NBLOCKS(p, l) (1 + ((((p) * (int)sizeof (efi_gpe_t)) + \ 130 ((l) - 1)) / (l))) 131 /* number of partitions -- limited by what we can malloc */ 132 #define MAX_PARTS ((4294967295UL - sizeof (struct dk_gpt)) / \ 133 sizeof (struct dk_part)) 134 135 int 136 efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc) 137 { 138 diskaddr_t capacity; 139 uint_t lbsize; 140 uint_t nblocks; 141 size_t length; 142 struct dk_gpt *vptr; 143 struct uuid uuid; 144 145 if (read_disk_info(fd, &capacity, &lbsize) != 0) { 146 if (efi_debug) 147 (void) fprintf(stderr, 148 "couldn't read disk information\n"); 149 return (-1); 150 } 151 152 nblocks = NBLOCKS(nparts, lbsize); 153 if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) { 154 /* 16K plus one block for the GPT */ 155 nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1; 156 } 157 158 if (nparts > MAX_PARTS) { 159 if (efi_debug) { 160 (void) fprintf(stderr, 161 "the maximum number of partitions supported is %lu\n", 162 MAX_PARTS); 163 } 164 return (-1); 165 } 166 167 length = sizeof (struct dk_gpt) + 168 sizeof (struct dk_part) * (nparts - 1); 169 170 if ((*vtoc = calloc(length, 1)) == NULL) 171 return (-1); 172 173 vptr = *vtoc; 174 175 vptr->efi_version = EFI_VERSION_CURRENT; 176 vptr->efi_lbasize = lbsize; 177 vptr->efi_nparts = nparts; 178 /* 179 * add one block here for the PMBR; on disks with a 512 byte 180 * block size and 128 or fewer partitions, efi_first_u_lba 181 * should work out to "34" 182 */ 183 vptr->efi_first_u_lba = nblocks + 1; 184 vptr->efi_last_lba = capacity - 1; 185 vptr->efi_altern_lba = capacity -1; 186 vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks; 187 188 (void) uuid_generate((uchar_t *)&uuid); 189 UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid); 190 return (0); 191 } 192 193 /* 194 * Read EFI - return partition number upon success. 195 */ 196 int 197 efi_alloc_and_read(int fd, struct dk_gpt **vtoc) 198 { 199 int rval; 200 uint32_t nparts; 201 int length; 202 203 /* figure out the number of entries that would fit into 16K */ 204 nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t); 205 length = (int) sizeof (struct dk_gpt) + 206 (int) sizeof (struct dk_part) * (nparts - 1); 207 if ((*vtoc = calloc(length, 1)) == NULL) 208 return (VT_ERROR); 209 210 (*vtoc)->efi_nparts = nparts; 211 rval = efi_read(fd, *vtoc); 212 213 if ((rval == VT_EINVAL) && (*vtoc)->efi_nparts > nparts) { 214 void *tmp; 215 length = (int) sizeof (struct dk_gpt) + 216 (int) sizeof (struct dk_part) * 217 ((*vtoc)->efi_nparts - 1); 218 nparts = (*vtoc)->efi_nparts; 219 if ((tmp = realloc(*vtoc, length)) == NULL) { 220 free (*vtoc); 221 *vtoc = NULL; 222 return (VT_ERROR); 223 } else { 224 *vtoc = tmp; 225 rval = efi_read(fd, *vtoc); 226 } 227 } 228 229 if (rval < 0) { 230 if (efi_debug) { 231 (void) fprintf(stderr, 232 "read of EFI table failed, rval=%d\n", rval); 233 } 234 free (*vtoc); 235 *vtoc = NULL; 236 } 237 238 return (rval); 239 } 240 241 static int 242 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc) 243 { 244 void *data = dk_ioc->dki_data; 245 int error; 246 247 dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data; 248 error = ioctl(fd, cmd, (void *)dk_ioc); 249 dk_ioc->dki_data = data; 250 251 return (error); 252 } 253 254 static int 255 check_label(int fd, dk_efi_t *dk_ioc) 256 { 257 efi_gpt_t *efi; 258 uint_t crc; 259 260 if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) { 261 switch (errno) { 262 case EIO: 263 return (VT_EIO); 264 default: 265 return (VT_ERROR); 266 } 267 } 268 efi = dk_ioc->dki_data; 269 if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) { 270 if (efi_debug) 271 (void) fprintf(stderr, 272 "Bad EFI signature: 0x%llx != 0x%llx\n", 273 (long long)efi->efi_gpt_Signature, 274 (long long)LE_64(EFI_SIGNATURE)); 275 return (VT_EINVAL); 276 } 277 278 /* 279 * check CRC of the header; the size of the header should 280 * never be larger than one block 281 */ 282 crc = efi->efi_gpt_HeaderCRC32; 283 efi->efi_gpt_HeaderCRC32 = 0; 284 285 if (((len_t)LE_32(efi->efi_gpt_HeaderSize) > dk_ioc->dki_length) || 286 crc != LE_32(efi_crc32((unsigned char *)efi, 287 LE_32(efi->efi_gpt_HeaderSize)))) { 288 if (efi_debug) 289 (void) fprintf(stderr, 290 "Bad EFI CRC: 0x%x != 0x%x\n", 291 crc, 292 LE_32(efi_crc32((unsigned char *)efi, 293 sizeof (struct efi_gpt)))); 294 return (VT_EINVAL); 295 } 296 297 return (0); 298 } 299 300 static int 301 efi_read(int fd, struct dk_gpt *vtoc) 302 { 303 int i, j; 304 int label_len; 305 int rval = 0; 306 int md_flag = 0; 307 int vdc_flag = 0; 308 struct dk_minfo disk_info; 309 dk_efi_t dk_ioc; 310 efi_gpt_t *efi; 311 efi_gpe_t *efi_parts; 312 struct dk_cinfo dki_info; 313 uint32_t user_length; 314 boolean_t legacy_label = B_FALSE; 315 316 /* 317 * get the partition number for this file descriptor. 318 */ 319 if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) { 320 if (efi_debug) { 321 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno); 322 } 323 switch (errno) { 324 case EIO: 325 return (VT_EIO); 326 case EINVAL: 327 return (VT_EINVAL); 328 default: 329 return (VT_ERROR); 330 } 331 } 332 if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) && 333 (strncmp(dki_info.dki_dname, "md", 3) == 0)) { 334 md_flag++; 335 } else if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) && 336 (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) { 337 /* 338 * The controller and drive name "vdc" (virtual disk client) 339 * indicates a LDoms virtual disk. 340 */ 341 vdc_flag++; 342 } 343 344 /* get the LBA size */ 345 if (ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) == -1) { 346 if (efi_debug) { 347 (void) fprintf(stderr, 348 "assuming LBA 512 bytes %d\n", 349 errno); 350 } 351 disk_info.dki_lbsize = DEV_BSIZE; 352 } 353 if (disk_info.dki_lbsize == 0) { 354 if (efi_debug) { 355 (void) fprintf(stderr, 356 "efi_read: assuming LBA 512 bytes\n"); 357 } 358 disk_info.dki_lbsize = DEV_BSIZE; 359 } 360 /* 361 * Read the EFI GPT to figure out how many partitions we need 362 * to deal with. 363 */ 364 dk_ioc.dki_lba = 1; 365 if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) { 366 label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize; 367 } else { 368 label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) + 369 disk_info.dki_lbsize; 370 if (label_len % disk_info.dki_lbsize) { 371 /* pad to physical sector size */ 372 label_len += disk_info.dki_lbsize; 373 label_len &= ~(disk_info.dki_lbsize - 1); 374 } 375 } 376 377 if ((dk_ioc.dki_data = calloc(label_len, 1)) == NULL) 378 return (VT_ERROR); 379 380 dk_ioc.dki_length = disk_info.dki_lbsize; 381 user_length = vtoc->efi_nparts; 382 efi = dk_ioc.dki_data; 383 if (md_flag) { 384 dk_ioc.dki_length = label_len; 385 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) { 386 switch (errno) { 387 case EIO: 388 return (VT_EIO); 389 default: 390 return (VT_ERROR); 391 } 392 } 393 } else if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) { 394 /* 395 * No valid label here; try the alternate. Note that here 396 * we just read GPT header and save it into dk_ioc.data, 397 * Later, we will read GUID partition entry array if we 398 * can get valid GPT header. 399 */ 400 401 /* 402 * This is a workaround for legacy systems. In the past, the 403 * last sector of SCSI disk was invisible on x86 platform. At 404 * that time, backup label was saved on the next to the last 405 * sector. It is possible for users to move a disk from previous 406 * solaris system to present system. Here, we attempt to search 407 * legacy backup EFI label first. 408 */ 409 dk_ioc.dki_lba = disk_info.dki_capacity - 2; 410 dk_ioc.dki_length = disk_info.dki_lbsize; 411 rval = check_label(fd, &dk_ioc); 412 if (rval == VT_EINVAL) { 413 /* 414 * we didn't find legacy backup EFI label, try to 415 * search backup EFI label in the last block. 416 */ 417 dk_ioc.dki_lba = disk_info.dki_capacity - 1; 418 dk_ioc.dki_length = disk_info.dki_lbsize; 419 rval = check_label(fd, &dk_ioc); 420 if (rval == 0) { 421 legacy_label = B_TRUE; 422 if (efi_debug) 423 (void) fprintf(stderr, 424 "efi_read: primary label corrupt; " 425 "using EFI backup label located on" 426 " the last block\n"); 427 } 428 } else { 429 if ((efi_debug) && (rval == 0)) 430 (void) fprintf(stderr, "efi_read: primary label" 431 " corrupt; using legacy EFI backup label " 432 " located on the next to last block\n"); 433 } 434 435 if (rval == 0) { 436 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA); 437 vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT; 438 vtoc->efi_nparts = 439 LE_32(efi->efi_gpt_NumberOfPartitionEntries); 440 /* 441 * Partition tables are between backup GPT header 442 * table and ParitionEntryLBA (the starting LBA of 443 * the GUID partition entries array). Now that we 444 * already got valid GPT header and saved it in 445 * dk_ioc.dki_data, we try to get GUID partition 446 * entry array here. 447 */ 448 /* LINTED */ 449 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data 450 + disk_info.dki_lbsize); 451 if (legacy_label) 452 dk_ioc.dki_length = disk_info.dki_capacity - 1 - 453 dk_ioc.dki_lba; 454 else 455 dk_ioc.dki_length = disk_info.dki_capacity - 2 - 456 dk_ioc.dki_lba; 457 dk_ioc.dki_length *= disk_info.dki_lbsize; 458 if (dk_ioc.dki_length > 459 ((len_t)label_len - sizeof (*dk_ioc.dki_data))) { 460 rval = VT_EINVAL; 461 } else { 462 /* 463 * read GUID partition entry array 464 */ 465 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc); 466 } 467 } 468 469 } else if (rval == 0) { 470 471 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA); 472 /* LINTED */ 473 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data 474 + disk_info.dki_lbsize); 475 dk_ioc.dki_length = label_len - disk_info.dki_lbsize; 476 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc); 477 478 } else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) { 479 /* 480 * When the device is a LDoms virtual disk, the DKIOCGETEFI 481 * ioctl can fail with EINVAL if the virtual disk backend 482 * is a ZFS volume serviced by a domain running an old version 483 * of Solaris. This is because the DKIOCGETEFI ioctl was 484 * initially incorrectly implemented for a ZFS volume and it 485 * expected the GPT and GPE to be retrieved with a single ioctl. 486 * So we try to read the GPT and the GPE using that old style 487 * ioctl. 488 */ 489 dk_ioc.dki_lba = 1; 490 dk_ioc.dki_length = label_len; 491 rval = check_label(fd, &dk_ioc); 492 } 493 494 if (rval < 0) { 495 free(efi); 496 return (rval); 497 } 498 499 /* LINTED -- always longlong aligned */ 500 efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize); 501 502 /* 503 * Assemble this into a "dk_gpt" struct for easier 504 * digestibility by applications. 505 */ 506 vtoc->efi_version = LE_32(efi->efi_gpt_Revision); 507 vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries); 508 vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry); 509 vtoc->efi_lbasize = disk_info.dki_lbsize; 510 vtoc->efi_last_lba = disk_info.dki_capacity - 1; 511 vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA); 512 vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA); 513 vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA); 514 UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID); 515 516 /* 517 * If the array the user passed in is too small, set the length 518 * to what it needs to be and return 519 */ 520 if (user_length < vtoc->efi_nparts) { 521 return (VT_EINVAL); 522 } 523 524 for (i = 0; i < vtoc->efi_nparts; i++) { 525 526 UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid, 527 efi_parts[i].efi_gpe_PartitionTypeGUID); 528 529 for (j = 0; 530 j < sizeof (conversion_array) 531 / sizeof (struct uuid_to_ptag); j++) { 532 533 if (bcmp(&vtoc->efi_parts[i].p_guid, 534 &conversion_array[j].uuid, 535 sizeof (struct uuid)) == 0) { 536 vtoc->efi_parts[i].p_tag = j; 537 break; 538 } 539 } 540 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) 541 continue; 542 vtoc->efi_parts[i].p_flag = 543 LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs); 544 vtoc->efi_parts[i].p_start = 545 LE_64(efi_parts[i].efi_gpe_StartingLBA); 546 vtoc->efi_parts[i].p_size = 547 LE_64(efi_parts[i].efi_gpe_EndingLBA) - 548 vtoc->efi_parts[i].p_start + 1; 549 for (j = 0; j < EFI_PART_NAME_LEN; j++) { 550 vtoc->efi_parts[i].p_name[j] = 551 (uchar_t)LE_16( 552 efi_parts[i].efi_gpe_PartitionName[j]); 553 } 554 555 UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid, 556 efi_parts[i].efi_gpe_UniquePartitionGUID); 557 } 558 free(efi); 559 560 return (dki_info.dki_partition); 561 } 562 563 /* writes a "protective" MBR */ 564 static int 565 write_pmbr(int fd, struct dk_gpt *vtoc) 566 { 567 dk_efi_t dk_ioc; 568 struct mboot mb; 569 uchar_t *cp; 570 diskaddr_t size_in_lba; 571 uchar_t *buf; 572 int len; 573 574 len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize; 575 buf = calloc(len, 1); 576 577 /* 578 * Preserve any boot code and disk signature if the first block is 579 * already an MBR. 580 */ 581 dk_ioc.dki_lba = 0; 582 dk_ioc.dki_length = len; 583 /* LINTED -- always longlong aligned */ 584 dk_ioc.dki_data = (efi_gpt_t *)buf; 585 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) { 586 (void *) memcpy(&mb, buf, sizeof (mb)); 587 bzero(&mb, sizeof (mb)); 588 mb.signature = LE_16(MBB_MAGIC); 589 } else { 590 (void *) memcpy(&mb, buf, sizeof (mb)); 591 if (mb.signature != LE_16(MBB_MAGIC)) { 592 bzero(&mb, sizeof (mb)); 593 mb.signature = LE_16(MBB_MAGIC); 594 } 595 } 596 597 bzero(&mb.parts, sizeof (mb.parts)); 598 cp = (uchar_t *)&mb.parts[0]; 599 /* bootable or not */ 600 *cp++ = 0; 601 /* beginning CHS; 0xffffff if not representable */ 602 *cp++ = 0xff; 603 *cp++ = 0xff; 604 *cp++ = 0xff; 605 /* OS type */ 606 *cp++ = EFI_PMBR; 607 /* ending CHS; 0xffffff if not representable */ 608 *cp++ = 0xff; 609 *cp++ = 0xff; 610 *cp++ = 0xff; 611 /* starting LBA: 1 (little endian format) by EFI definition */ 612 *cp++ = 0x01; 613 *cp++ = 0x00; 614 *cp++ = 0x00; 615 *cp++ = 0x00; 616 /* ending LBA: last block on the disk (little endian format) */ 617 size_in_lba = vtoc->efi_last_lba; 618 if (size_in_lba < 0xffffffff) { 619 *cp++ = (size_in_lba & 0x000000ff); 620 *cp++ = (size_in_lba & 0x0000ff00) >> 8; 621 *cp++ = (size_in_lba & 0x00ff0000) >> 16; 622 *cp++ = (size_in_lba & 0xff000000) >> 24; 623 } else { 624 *cp++ = 0xff; 625 *cp++ = 0xff; 626 *cp++ = 0xff; 627 *cp++ = 0xff; 628 } 629 630 (void *) memcpy(buf, &mb, sizeof (mb)); 631 /* LINTED -- always longlong aligned */ 632 dk_ioc.dki_data = (efi_gpt_t *)buf; 633 dk_ioc.dki_lba = 0; 634 dk_ioc.dki_length = len; 635 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 636 free(buf); 637 switch (errno) { 638 case EIO: 639 return (VT_EIO); 640 case EINVAL: 641 return (VT_EINVAL); 642 default: 643 return (VT_ERROR); 644 } 645 } 646 free(buf); 647 return (0); 648 } 649 650 /* make sure the user specified something reasonable */ 651 static int 652 check_input(struct dk_gpt *vtoc) 653 { 654 int resv_part = -1; 655 int i, j; 656 diskaddr_t istart, jstart, isize, jsize, endsect; 657 658 /* 659 * Sanity-check the input (make sure no partitions overlap) 660 */ 661 for (i = 0; i < vtoc->efi_nparts; i++) { 662 /* It can't be unassigned and have an actual size */ 663 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) && 664 (vtoc->efi_parts[i].p_size != 0)) { 665 if (efi_debug) { 666 (void) fprintf(stderr, 667 "partition %d is \"unassigned\" but has a size of %llu", 668 i, 669 vtoc->efi_parts[i].p_size); 670 } 671 return (VT_EINVAL); 672 } 673 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) { 674 if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid)) 675 continue; 676 /* we have encountered an unknown uuid */ 677 vtoc->efi_parts[i].p_tag = 0xff; 678 } 679 if (vtoc->efi_parts[i].p_tag == V_RESERVED) { 680 if (resv_part != -1) { 681 if (efi_debug) { 682 (void) fprintf(stderr, 683 "found duplicate reserved partition at %d\n", 684 i); 685 } 686 return (VT_EINVAL); 687 } 688 resv_part = i; 689 } 690 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) || 691 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) { 692 if (efi_debug) { 693 (void) fprintf(stderr, 694 "Partition %d starts at %llu. ", 695 i, 696 vtoc->efi_parts[i].p_start); 697 (void) fprintf(stderr, 698 "It must be between %llu and %llu.\n", 699 vtoc->efi_first_u_lba, 700 vtoc->efi_last_u_lba); 701 } 702 return (VT_EINVAL); 703 } 704 if ((vtoc->efi_parts[i].p_start + 705 vtoc->efi_parts[i].p_size < 706 vtoc->efi_first_u_lba) || 707 (vtoc->efi_parts[i].p_start + 708 vtoc->efi_parts[i].p_size > 709 vtoc->efi_last_u_lba + 1)) { 710 if (efi_debug) { 711 (void) fprintf(stderr, 712 "Partition %d ends at %llu. ", 713 i, 714 vtoc->efi_parts[i].p_start + 715 vtoc->efi_parts[i].p_size); 716 (void) fprintf(stderr, 717 "It must be between %llu and %llu.\n", 718 vtoc->efi_first_u_lba, 719 vtoc->efi_last_u_lba); 720 } 721 return (VT_EINVAL); 722 } 723 724 for (j = 0; j < vtoc->efi_nparts; j++) { 725 isize = vtoc->efi_parts[i].p_size; 726 jsize = vtoc->efi_parts[j].p_size; 727 istart = vtoc->efi_parts[i].p_start; 728 jstart = vtoc->efi_parts[j].p_start; 729 if ((i != j) && (isize != 0) && (jsize != 0)) { 730 endsect = jstart + jsize -1; 731 if ((jstart <= istart) && 732 (istart <= endsect)) { 733 if (efi_debug) { 734 (void) fprintf(stderr, 735 "Partition %d overlaps partition %d.", 736 i, j); 737 } 738 return (VT_EINVAL); 739 } 740 } 741 } 742 } 743 /* just a warning for now */ 744 if ((resv_part == -1) && efi_debug) { 745 (void) fprintf(stderr, 746 "no reserved partition found\n"); 747 } 748 return (0); 749 } 750 751 /* 752 * add all the unallocated space to the current label 753 */ 754 int 755 efi_use_whole_disk(int fd) 756 { 757 struct dk_gpt *efi_label; 758 int rval; 759 int i; 760 uint_t phy_last_slice = 0; 761 diskaddr_t pl_start = 0; 762 diskaddr_t pl_size; 763 764 rval = efi_alloc_and_read(fd, &efi_label); 765 if (rval < 0) { 766 return (rval); 767 } 768 769 /* find the last physically non-zero partition */ 770 for (i = 0; i < efi_label->efi_nparts - 2; i ++) { 771 if (pl_start < efi_label->efi_parts[i].p_start) { 772 pl_start = efi_label->efi_parts[i].p_start; 773 phy_last_slice = i; 774 } 775 } 776 pl_size = efi_label->efi_parts[phy_last_slice].p_size; 777 778 /* 779 * If alter_lba is 1, we are using the backup label. 780 * Since we can locate the backup label by disk capacity, 781 * there must be no unallocated space. 782 */ 783 if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba 784 >= efi_label->efi_last_lba)) { 785 if (efi_debug) { 786 (void) fprintf(stderr, 787 "efi_use_whole_disk: requested space not found\n"); 788 } 789 efi_free(efi_label); 790 return (VT_ENOSPC); 791 } 792 793 /* 794 * If there is space between the last physically non-zero partition 795 * and the reserved partition, just add the unallocated space to this 796 * area. Otherwise, the unallocated space is added to the last 797 * physically non-zero partition. 798 */ 799 if (pl_start + pl_size - 1 == efi_label->efi_last_u_lba - 800 EFI_MIN_RESV_SIZE) { 801 efi_label->efi_parts[phy_last_slice].p_size += 802 efi_label->efi_last_lba - efi_label->efi_altern_lba; 803 } 804 805 /* 806 * Move the reserved partition. There is currently no data in 807 * here except fabricated devids (which get generated via 808 * efi_write()). So there is no need to copy data. 809 */ 810 efi_label->efi_parts[efi_label->efi_nparts - 1].p_start += 811 efi_label->efi_last_lba - efi_label->efi_altern_lba; 812 efi_label->efi_last_u_lba += efi_label->efi_last_lba 813 - efi_label->efi_altern_lba; 814 815 rval = efi_write(fd, efi_label); 816 if (rval < 0) { 817 if (efi_debug) { 818 (void) fprintf(stderr, 819 "efi_use_whole_disk:fail to write label, rval=%d\n", 820 rval); 821 } 822 efi_free(efi_label); 823 return (rval); 824 } 825 826 efi_free(efi_label); 827 return (0); 828 } 829 830 831 /* 832 * write EFI label and backup label 833 */ 834 int 835 efi_write(int fd, struct dk_gpt *vtoc) 836 { 837 dk_efi_t dk_ioc; 838 efi_gpt_t *efi; 839 efi_gpe_t *efi_parts; 840 int i, j; 841 struct dk_cinfo dki_info; 842 int md_flag = 0; 843 int nblocks; 844 diskaddr_t lba_backup_gpt_hdr; 845 846 if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) { 847 if (efi_debug) 848 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno); 849 switch (errno) { 850 case EIO: 851 return (VT_EIO); 852 case EINVAL: 853 return (VT_EINVAL); 854 default: 855 return (VT_ERROR); 856 } 857 } 858 859 /* check if we are dealing wih a metadevice */ 860 if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) && 861 (strncmp(dki_info.dki_dname, "md", 3) == 0)) { 862 md_flag = 1; 863 } 864 865 if (check_input(vtoc)) { 866 /* 867 * not valid; if it's a metadevice just pass it down 868 * because SVM will do its own checking 869 */ 870 if (md_flag == 0) { 871 return (VT_EINVAL); 872 } 873 } 874 875 dk_ioc.dki_lba = 1; 876 if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) { 877 dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize; 878 } else { 879 dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts, 880 vtoc->efi_lbasize) * 881 vtoc->efi_lbasize; 882 } 883 884 /* 885 * the number of blocks occupied by GUID partition entry array 886 */ 887 nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1; 888 889 /* 890 * Backup GPT header is located on the block after GUID 891 * partition entry array. Here, we calculate the address 892 * for backup GPT header. 893 */ 894 lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks; 895 if ((dk_ioc.dki_data = calloc(dk_ioc.dki_length, 1)) == NULL) 896 return (VT_ERROR); 897 898 efi = dk_ioc.dki_data; 899 900 /* stuff user's input into EFI struct */ 901 efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE); 902 efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */ 903 efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt)); 904 efi->efi_gpt_Reserved1 = 0; 905 efi->efi_gpt_MyLBA = LE_64(1ULL); 906 efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr); 907 efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba); 908 efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba); 909 efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL); 910 efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts); 911 efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe)); 912 UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid); 913 914 /* LINTED -- always longlong aligned */ 915 efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize); 916 917 for (i = 0; i < vtoc->efi_nparts; i++) { 918 for (j = 0; 919 j < sizeof (conversion_array) / 920 sizeof (struct uuid_to_ptag); j++) { 921 922 if (vtoc->efi_parts[i].p_tag == j) { 923 UUID_LE_CONVERT( 924 efi_parts[i].efi_gpe_PartitionTypeGUID, 925 conversion_array[j].uuid); 926 break; 927 } 928 } 929 930 if (j == sizeof (conversion_array) / 931 sizeof (struct uuid_to_ptag)) { 932 /* 933 * If we didn't have a matching uuid match, bail here. 934 * Don't write a label with unknown uuid. 935 */ 936 if (efi_debug) { 937 (void) fprintf(stderr, 938 "Unknown uuid for p_tag %d\n", 939 vtoc->efi_parts[i].p_tag); 940 } 941 return (VT_EINVAL); 942 } 943 944 efi_parts[i].efi_gpe_StartingLBA = 945 LE_64(vtoc->efi_parts[i].p_start); 946 efi_parts[i].efi_gpe_EndingLBA = 947 LE_64(vtoc->efi_parts[i].p_start + 948 vtoc->efi_parts[i].p_size - 1); 949 efi_parts[i].efi_gpe_Attributes.PartitionAttrs = 950 LE_16(vtoc->efi_parts[i].p_flag); 951 for (j = 0; j < EFI_PART_NAME_LEN; j++) { 952 efi_parts[i].efi_gpe_PartitionName[j] = 953 LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]); 954 } 955 if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) && 956 uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) { 957 (void) uuid_generate((uchar_t *) 958 &vtoc->efi_parts[i].p_uguid); 959 } 960 bcopy(&vtoc->efi_parts[i].p_uguid, 961 &efi_parts[i].efi_gpe_UniquePartitionGUID, 962 sizeof (uuid_t)); 963 } 964 efi->efi_gpt_PartitionEntryArrayCRC32 = 965 LE_32(efi_crc32((unsigned char *)efi_parts, 966 vtoc->efi_nparts * (int)sizeof (struct efi_gpe))); 967 efi->efi_gpt_HeaderCRC32 = 968 LE_32(efi_crc32((unsigned char *)efi, sizeof (struct efi_gpt))); 969 970 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 971 free(dk_ioc.dki_data); 972 switch (errno) { 973 case EIO: 974 return (VT_EIO); 975 case EINVAL: 976 return (VT_EINVAL); 977 default: 978 return (VT_ERROR); 979 } 980 } 981 /* if it's a metadevice we're done */ 982 if (md_flag) { 983 free(dk_ioc.dki_data); 984 return (0); 985 } 986 987 /* write backup partition array */ 988 dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1; 989 dk_ioc.dki_length -= vtoc->efi_lbasize; 990 /* LINTED */ 991 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data + 992 vtoc->efi_lbasize); 993 994 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 995 /* 996 * we wrote the primary label okay, so don't fail 997 */ 998 if (efi_debug) { 999 (void) fprintf(stderr, 1000 "write of backup partitions to block %llu " 1001 "failed, errno %d\n", 1002 vtoc->efi_last_u_lba + 1, 1003 errno); 1004 } 1005 } 1006 /* 1007 * now swap MyLBA and AlternateLBA fields and write backup 1008 * partition table header 1009 */ 1010 dk_ioc.dki_lba = lba_backup_gpt_hdr; 1011 dk_ioc.dki_length = vtoc->efi_lbasize; 1012 /* LINTED */ 1013 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data - 1014 vtoc->efi_lbasize); 1015 efi->efi_gpt_AlternateLBA = LE_64(1ULL); 1016 efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr); 1017 efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1); 1018 efi->efi_gpt_HeaderCRC32 = 0; 1019 efi->efi_gpt_HeaderCRC32 = 1020 LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data, 1021 sizeof (struct efi_gpt))); 1022 1023 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 1024 if (efi_debug) { 1025 (void) fprintf(stderr, 1026 "write of backup header to block %llu failed, " 1027 "errno %d\n", 1028 lba_backup_gpt_hdr, 1029 errno); 1030 } 1031 } 1032 /* write the PMBR */ 1033 (void) write_pmbr(fd, vtoc); 1034 free(dk_ioc.dki_data); 1035 return (0); 1036 } 1037 1038 void 1039 efi_free(struct dk_gpt *ptr) 1040 { 1041 free(ptr); 1042 } 1043 1044 /* 1045 * Input: File descriptor 1046 * Output: 1 if disk has an EFI label, or > 2TB with no VTOC or legacy MBR. 1047 * Otherwise 0. 1048 */ 1049 int 1050 efi_type(int fd) 1051 { 1052 struct vtoc vtoc; 1053 struct extvtoc extvtoc; 1054 1055 if (ioctl(fd, DKIOCGEXTVTOC, &extvtoc) == -1) { 1056 if (errno == ENOTSUP) 1057 return (1); 1058 else if (errno == ENOTTY) { 1059 if (ioctl(fd, DKIOCGVTOC, &vtoc) == -1) 1060 if (errno == ENOTSUP) 1061 return (1); 1062 } 1063 } 1064 return (0); 1065 } 1066 1067 void 1068 efi_err_check(struct dk_gpt *vtoc) 1069 { 1070 int resv_part = -1; 1071 int i, j; 1072 diskaddr_t istart, jstart, isize, jsize, endsect; 1073 int overlap = 0; 1074 1075 /* 1076 * make sure no partitions overlap 1077 */ 1078 for (i = 0; i < vtoc->efi_nparts; i++) { 1079 /* It can't be unassigned and have an actual size */ 1080 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) && 1081 (vtoc->efi_parts[i].p_size != 0)) { 1082 (void) fprintf(stderr, 1083 "partition %d is \"unassigned\" but has a size " 1084 "of %llu\n", i, vtoc->efi_parts[i].p_size); 1085 } 1086 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) { 1087 continue; 1088 } 1089 if (vtoc->efi_parts[i].p_tag == V_RESERVED) { 1090 if (resv_part != -1) { 1091 (void) fprintf(stderr, 1092 "found duplicate reserved partition at " 1093 "%d\n", i); 1094 } 1095 resv_part = i; 1096 if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE) 1097 (void) fprintf(stderr, 1098 "Warning: reserved partition size must " 1099 "be %d sectors\n", EFI_MIN_RESV_SIZE); 1100 } 1101 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) || 1102 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) { 1103 (void) fprintf(stderr, 1104 "Partition %d starts at %llu\n", 1105 i, 1106 vtoc->efi_parts[i].p_start); 1107 (void) fprintf(stderr, 1108 "It must be between %llu and %llu.\n", 1109 vtoc->efi_first_u_lba, 1110 vtoc->efi_last_u_lba); 1111 } 1112 if ((vtoc->efi_parts[i].p_start + 1113 vtoc->efi_parts[i].p_size < 1114 vtoc->efi_first_u_lba) || 1115 (vtoc->efi_parts[i].p_start + 1116 vtoc->efi_parts[i].p_size > 1117 vtoc->efi_last_u_lba + 1)) { 1118 (void) fprintf(stderr, 1119 "Partition %d ends at %llu\n", 1120 i, 1121 vtoc->efi_parts[i].p_start + 1122 vtoc->efi_parts[i].p_size); 1123 (void) fprintf(stderr, 1124 "It must be between %llu and %llu.\n", 1125 vtoc->efi_first_u_lba, 1126 vtoc->efi_last_u_lba); 1127 } 1128 1129 for (j = 0; j < vtoc->efi_nparts; j++) { 1130 isize = vtoc->efi_parts[i].p_size; 1131 jsize = vtoc->efi_parts[j].p_size; 1132 istart = vtoc->efi_parts[i].p_start; 1133 jstart = vtoc->efi_parts[j].p_start; 1134 if ((i != j) && (isize != 0) && (jsize != 0)) { 1135 endsect = jstart + jsize -1; 1136 if ((jstart <= istart) && 1137 (istart <= endsect)) { 1138 if (!overlap) { 1139 (void) fprintf(stderr, 1140 "label error: EFI Labels do not " 1141 "support overlapping partitions\n"); 1142 } 1143 (void) fprintf(stderr, 1144 "Partition %d overlaps partition " 1145 "%d.\n", i, j); 1146 overlap = 1; 1147 } 1148 } 1149 } 1150 } 1151 /* make sure there is a reserved partition */ 1152 if (resv_part == -1) { 1153 (void) fprintf(stderr, 1154 "no reserved partition found\n"); 1155 } 1156 } 1157 1158 /* 1159 * We need to get information necessary to construct a *new* efi 1160 * label type 1161 */ 1162 int 1163 efi_auto_sense(int fd, struct dk_gpt **vtoc) 1164 { 1165 1166 int i; 1167 1168 /* 1169 * Now build the default partition table 1170 */ 1171 if (efi_alloc_and_init(fd, EFI_NUMPAR, vtoc) != 0) { 1172 if (efi_debug) { 1173 (void) fprintf(stderr, "efi_alloc_and_init failed.\n"); 1174 } 1175 return (-1); 1176 } 1177 1178 for (i = 0; i < min((*vtoc)->efi_nparts, V_NUMPAR); i++) { 1179 (*vtoc)->efi_parts[i].p_tag = default_vtoc_map[i].p_tag; 1180 (*vtoc)->efi_parts[i].p_flag = default_vtoc_map[i].p_flag; 1181 (*vtoc)->efi_parts[i].p_start = 0; 1182 (*vtoc)->efi_parts[i].p_size = 0; 1183 } 1184 /* 1185 * Make constants first 1186 * and variable partitions later 1187 */ 1188 1189 /* root partition - s0 128 MB */ 1190 (*vtoc)->efi_parts[0].p_start = 34; 1191 (*vtoc)->efi_parts[0].p_size = 262144; 1192 1193 /* partition - s1 128 MB */ 1194 (*vtoc)->efi_parts[1].p_start = 262178; 1195 (*vtoc)->efi_parts[1].p_size = 262144; 1196 1197 /* partition -s2 is NOT the Backup disk */ 1198 (*vtoc)->efi_parts[2].p_tag = V_UNASSIGNED; 1199 1200 /* partition -s6 /usr partition - HOG */ 1201 (*vtoc)->efi_parts[6].p_start = 524322; 1202 (*vtoc)->efi_parts[6].p_size = (*vtoc)->efi_last_u_lba - 524322 1203 - (1024 * 16); 1204 1205 /* efi reserved partition - s9 16K */ 1206 (*vtoc)->efi_parts[8].p_start = (*vtoc)->efi_last_u_lba - (1024 * 16); 1207 (*vtoc)->efi_parts[8].p_size = (1024 * 16); 1208 (*vtoc)->efi_parts[8].p_tag = V_RESERVED; 1209 return (0); 1210 } 1211