xref: /titanic_41/usr/src/lib/libefi/common/rdwr_efi.c (revision a970c705050f9e90c4b6d7982a9b3211719353fb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2012 Nexenta Systems, Inc.  All rights reserved.
25  */
26 
27 #include <stdio.h>
28 #include <stdlib.h>
29 #include <errno.h>
30 #include <strings.h>
31 #include <unistd.h>
32 #include <uuid/uuid.h>
33 #include <libintl.h>
34 #include <sys/types.h>
35 #include <sys/dkio.h>
36 #include <sys/vtoc.h>
37 #include <sys/mhd.h>
38 #include <sys/param.h>
39 #include <sys/dktp/fdisk.h>
40 #include <sys/efi_partition.h>
41 #include <sys/byteorder.h>
42 #include <sys/ddi.h>
43 
44 static struct uuid_to_ptag {
45 	struct uuid	uuid;
46 } conversion_array[] = {
47 	{ EFI_UNUSED },
48 	{ EFI_BOOT },
49 	{ EFI_ROOT },
50 	{ EFI_SWAP },
51 	{ EFI_USR },
52 	{ EFI_BACKUP },
53 	{ 0 },			/* STAND is never used */
54 	{ EFI_VAR },
55 	{ EFI_HOME },
56 	{ EFI_ALTSCTR },
57 	{ 0 },			/* CACHE (cachefs) is never used */
58 	{ EFI_RESERVED },
59 	{ EFI_SYSTEM },
60 	{ EFI_LEGACY_MBR },
61 	{ EFI_SYMC_PUB },
62 	{ EFI_SYMC_CDS },
63 	{ EFI_MSFT_RESV },
64 	{ EFI_DELL_BASIC },
65 	{ EFI_DELL_RAID },
66 	{ EFI_DELL_SWAP },
67 	{ EFI_DELL_LVM },
68 	{ EFI_DELL_RESV },
69 	{ EFI_AAPL_HFS },
70 	{ EFI_AAPL_UFS },
71 	{ EFI_FREEBSD_BOOT },
72 	{ EFI_FREEBSD_SWAP },
73 	{ EFI_FREEBSD_UFS },
74 	{ EFI_FREEBSD_VINUM },
75 	{ EFI_FREEBSD_ZFS }
76 };
77 
78 /*
79  * Default vtoc information for non-SVr4 partitions
80  */
81 struct dk_map2  default_vtoc_map[NDKMAP] = {
82 	{	V_ROOT,		0	},		/* a - 0 */
83 	{	V_SWAP,		V_UNMNT	},		/* b - 1 */
84 	{	V_BACKUP,	V_UNMNT	},		/* c - 2 */
85 	{	V_UNASSIGNED,	0	},		/* d - 3 */
86 	{	V_UNASSIGNED,	0	},		/* e - 4 */
87 	{	V_UNASSIGNED,	0	},		/* f - 5 */
88 	{	V_USR,		0	},		/* g - 6 */
89 	{	V_UNASSIGNED,	0	},		/* h - 7 */
90 
91 #if defined(_SUNOS_VTOC_16)
92 
93 #if defined(i386) || defined(__amd64)
94 	{	V_BOOT,		V_UNMNT	},		/* i - 8 */
95 	{	V_ALTSCTR,	0	},		/* j - 9 */
96 
97 #else
98 #error No VTOC format defined.
99 #endif			/* defined(i386) */
100 
101 	{	V_UNASSIGNED,	0	},		/* k - 10 */
102 	{	V_UNASSIGNED,	0	},		/* l - 11 */
103 	{	V_UNASSIGNED,	0	},		/* m - 12 */
104 	{	V_UNASSIGNED,	0	},		/* n - 13 */
105 	{	V_UNASSIGNED,	0	},		/* o - 14 */
106 	{	V_UNASSIGNED,	0	},		/* p - 15 */
107 #endif			/* defined(_SUNOS_VTOC_16) */
108 };
109 
110 #ifdef DEBUG
111 int efi_debug = 1;
112 #else
113 int efi_debug = 0;
114 #endif
115 
116 extern unsigned int	efi_crc32(const unsigned char *, unsigned int);
117 static int		efi_read(int, struct dk_gpt *);
118 
119 static int
120 read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize)
121 {
122 	struct dk_minfo		disk_info;
123 
124 	if ((ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info)) == -1)
125 		return (errno);
126 	*capacity = disk_info.dki_capacity;
127 	*lbsize = disk_info.dki_lbsize;
128 	return (0);
129 }
130 
131 /*
132  * the number of blocks the EFI label takes up (round up to nearest
133  * block)
134  */
135 #define	NBLOCKS(p, l)	(1 + ((((p) * (int)sizeof (efi_gpe_t))  + \
136 				((l) - 1)) / (l)))
137 /* number of partitions -- limited by what we can malloc */
138 #define	MAX_PARTS	((4294967295UL - sizeof (struct dk_gpt)) / \
139 			    sizeof (struct dk_part))
140 
141 int
142 efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc)
143 {
144 	diskaddr_t	capacity;
145 	uint_t		lbsize;
146 	uint_t		nblocks;
147 	size_t		length;
148 	struct dk_gpt	*vptr;
149 	struct uuid	uuid;
150 
151 	if (read_disk_info(fd, &capacity, &lbsize) != 0) {
152 		if (efi_debug)
153 			(void) fprintf(stderr,
154 			    "couldn't read disk information\n");
155 		return (-1);
156 	}
157 
158 	nblocks = NBLOCKS(nparts, lbsize);
159 	if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) {
160 		/* 16K plus one block for the GPT */
161 		nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1;
162 	}
163 
164 	if (nparts > MAX_PARTS) {
165 		if (efi_debug) {
166 			(void) fprintf(stderr,
167 			"the maximum number of partitions supported is %lu\n",
168 			    MAX_PARTS);
169 		}
170 		return (-1);
171 	}
172 
173 	length = sizeof (struct dk_gpt) +
174 	    sizeof (struct dk_part) * (nparts - 1);
175 
176 	if ((*vtoc = calloc(length, 1)) == NULL)
177 		return (-1);
178 
179 	vptr = *vtoc;
180 
181 	vptr->efi_version = EFI_VERSION_CURRENT;
182 	vptr->efi_lbasize = lbsize;
183 	vptr->efi_nparts = nparts;
184 	/*
185 	 * add one block here for the PMBR; on disks with a 512 byte
186 	 * block size and 128 or fewer partitions, efi_first_u_lba
187 	 * should work out to "34"
188 	 */
189 	vptr->efi_first_u_lba = nblocks + 1;
190 	vptr->efi_last_lba = capacity - 1;
191 	vptr->efi_altern_lba = capacity -1;
192 	vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks;
193 
194 	(void) uuid_generate((uchar_t *)&uuid);
195 	UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid);
196 	return (0);
197 }
198 
199 /*
200  * Read EFI - return partition number upon success.
201  */
202 int
203 efi_alloc_and_read(int fd, struct dk_gpt **vtoc)
204 {
205 	int			rval;
206 	uint32_t		nparts;
207 	int			length;
208 
209 	/* figure out the number of entries that would fit into 16K */
210 	nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t);
211 	length = (int) sizeof (struct dk_gpt) +
212 	    (int) sizeof (struct dk_part) * (nparts - 1);
213 	if ((*vtoc = calloc(length, 1)) == NULL)
214 		return (VT_ERROR);
215 
216 	(*vtoc)->efi_nparts = nparts;
217 	rval = efi_read(fd, *vtoc);
218 
219 	if ((rval == VT_EINVAL) && (*vtoc)->efi_nparts > nparts) {
220 		void *tmp;
221 		length = (int) sizeof (struct dk_gpt) +
222 		    (int) sizeof (struct dk_part) *
223 		    ((*vtoc)->efi_nparts - 1);
224 		nparts = (*vtoc)->efi_nparts;
225 		if ((tmp = realloc(*vtoc, length)) == NULL) {
226 			free (*vtoc);
227 			*vtoc = NULL;
228 			return (VT_ERROR);
229 		} else {
230 			*vtoc = tmp;
231 			rval = efi_read(fd, *vtoc);
232 		}
233 	}
234 
235 	if (rval < 0) {
236 		if (efi_debug) {
237 			(void) fprintf(stderr,
238 			    "read of EFI table failed, rval=%d\n", rval);
239 		}
240 		free (*vtoc);
241 		*vtoc = NULL;
242 	}
243 
244 	return (rval);
245 }
246 
247 static int
248 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
249 {
250 	void *data = dk_ioc->dki_data;
251 	int error;
252 
253 	dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data;
254 	error = ioctl(fd, cmd, (void *)dk_ioc);
255 	dk_ioc->dki_data = data;
256 
257 	return (error);
258 }
259 
260 static int
261 check_label(int fd, dk_efi_t *dk_ioc)
262 {
263 	efi_gpt_t		*efi;
264 	uint_t			crc;
265 
266 	if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) {
267 		switch (errno) {
268 		case EIO:
269 			return (VT_EIO);
270 		default:
271 			return (VT_ERROR);
272 		}
273 	}
274 	efi = dk_ioc->dki_data;
275 	if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) {
276 		if (efi_debug)
277 			(void) fprintf(stderr,
278 			    "Bad EFI signature: 0x%llx != 0x%llx\n",
279 			    (long long)efi->efi_gpt_Signature,
280 			    (long long)LE_64(EFI_SIGNATURE));
281 		return (VT_EINVAL);
282 	}
283 
284 	/*
285 	 * check CRC of the header; the size of the header should
286 	 * never be larger than one block
287 	 */
288 	crc = efi->efi_gpt_HeaderCRC32;
289 	efi->efi_gpt_HeaderCRC32 = 0;
290 
291 	if (((len_t)LE_32(efi->efi_gpt_HeaderSize) > dk_ioc->dki_length) ||
292 	    crc != LE_32(efi_crc32((unsigned char *)efi,
293 	    LE_32(efi->efi_gpt_HeaderSize)))) {
294 		if (efi_debug)
295 			(void) fprintf(stderr,
296 			    "Bad EFI CRC: 0x%x != 0x%x\n",
297 			    crc,
298 			    LE_32(efi_crc32((unsigned char *)efi,
299 			    sizeof (struct efi_gpt))));
300 		return (VT_EINVAL);
301 	}
302 
303 	return (0);
304 }
305 
306 static int
307 efi_read(int fd, struct dk_gpt *vtoc)
308 {
309 	int			i, j;
310 	int			label_len;
311 	int			rval = 0;
312 	int			md_flag = 0;
313 	int			vdc_flag = 0;
314 	struct dk_minfo		disk_info;
315 	dk_efi_t		dk_ioc;
316 	efi_gpt_t		*efi;
317 	efi_gpe_t		*efi_parts;
318 	struct dk_cinfo		dki_info;
319 	uint32_t		user_length;
320 	boolean_t		legacy_label = B_FALSE;
321 
322 	/*
323 	 * get the partition number for this file descriptor.
324 	 */
325 	if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) {
326 		if (efi_debug) {
327 			(void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
328 		}
329 		switch (errno) {
330 		case EIO:
331 			return (VT_EIO);
332 		case EINVAL:
333 			return (VT_EINVAL);
334 		default:
335 			return (VT_ERROR);
336 		}
337 	}
338 	if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
339 	    (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
340 		md_flag++;
341 	} else if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) &&
342 	    (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) {
343 		/*
344 		 * The controller and drive name "vdc" (virtual disk client)
345 		 * indicates a LDoms virtual disk.
346 		 */
347 		vdc_flag++;
348 	}
349 
350 	/* get the LBA size */
351 	if (ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) == -1) {
352 		if (efi_debug) {
353 			(void) fprintf(stderr,
354 			    "assuming LBA 512 bytes %d\n",
355 			    errno);
356 		}
357 		disk_info.dki_lbsize = DEV_BSIZE;
358 	}
359 	if (disk_info.dki_lbsize == 0) {
360 		if (efi_debug) {
361 			(void) fprintf(stderr,
362 			    "efi_read: assuming LBA 512 bytes\n");
363 		}
364 		disk_info.dki_lbsize = DEV_BSIZE;
365 	}
366 	/*
367 	 * Read the EFI GPT to figure out how many partitions we need
368 	 * to deal with.
369 	 */
370 	dk_ioc.dki_lba = 1;
371 	if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) {
372 		label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize;
373 	} else {
374 		label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) +
375 		    disk_info.dki_lbsize;
376 		if (label_len % disk_info.dki_lbsize) {
377 			/* pad to physical sector size */
378 			label_len += disk_info.dki_lbsize;
379 			label_len &= ~(disk_info.dki_lbsize - 1);
380 		}
381 	}
382 
383 	if ((dk_ioc.dki_data = calloc(label_len, 1)) == NULL)
384 		return (VT_ERROR);
385 
386 	dk_ioc.dki_length = disk_info.dki_lbsize;
387 	user_length = vtoc->efi_nparts;
388 	efi = dk_ioc.dki_data;
389 	if (md_flag) {
390 		dk_ioc.dki_length = label_len;
391 		if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
392 			switch (errno) {
393 			case EIO:
394 				return (VT_EIO);
395 			default:
396 				return (VT_ERROR);
397 			}
398 		}
399 	} else if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) {
400 		/*
401 		 * No valid label here; try the alternate. Note that here
402 		 * we just read GPT header and save it into dk_ioc.data,
403 		 * Later, we will read GUID partition entry array if we
404 		 * can get valid GPT header.
405 		 */
406 
407 		/*
408 		 * This is a workaround for legacy systems. In the past, the
409 		 * last sector of SCSI disk was invisible on x86 platform. At
410 		 * that time, backup label was saved on the next to the last
411 		 * sector. It is possible for users to move a disk from previous
412 		 * solaris system to present system. Here, we attempt to search
413 		 * legacy backup EFI label first.
414 		 */
415 		dk_ioc.dki_lba = disk_info.dki_capacity - 2;
416 		dk_ioc.dki_length = disk_info.dki_lbsize;
417 		rval = check_label(fd, &dk_ioc);
418 		if (rval == VT_EINVAL) {
419 			/*
420 			 * we didn't find legacy backup EFI label, try to
421 			 * search backup EFI label in the last block.
422 			 */
423 			dk_ioc.dki_lba = disk_info.dki_capacity - 1;
424 			dk_ioc.dki_length = disk_info.dki_lbsize;
425 			rval = check_label(fd, &dk_ioc);
426 			if (rval == 0) {
427 				legacy_label = B_TRUE;
428 				if (efi_debug)
429 					(void) fprintf(stderr,
430 					    "efi_read: primary label corrupt; "
431 					    "using EFI backup label located on"
432 					    " the last block\n");
433 			}
434 		} else {
435 			if ((efi_debug) && (rval == 0))
436 				(void) fprintf(stderr, "efi_read: primary label"
437 				    " corrupt; using legacy EFI backup label "
438 				    " located on the next to last block\n");
439 		}
440 
441 		if (rval == 0) {
442 			dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
443 			vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT;
444 			vtoc->efi_nparts =
445 			    LE_32(efi->efi_gpt_NumberOfPartitionEntries);
446 			/*
447 			 * Partition tables are between backup GPT header
448 			 * table and ParitionEntryLBA (the starting LBA of
449 			 * the GUID partition entries array). Now that we
450 			 * already got valid GPT header and saved it in
451 			 * dk_ioc.dki_data, we try to get GUID partition
452 			 * entry array here.
453 			 */
454 			/* LINTED */
455 			dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
456 			    + disk_info.dki_lbsize);
457 			if (legacy_label)
458 				dk_ioc.dki_length = disk_info.dki_capacity - 1 -
459 				    dk_ioc.dki_lba;
460 			else
461 				dk_ioc.dki_length = disk_info.dki_capacity - 2 -
462 				    dk_ioc.dki_lba;
463 			dk_ioc.dki_length *= disk_info.dki_lbsize;
464 			if (dk_ioc.dki_length >
465 			    ((len_t)label_len - sizeof (*dk_ioc.dki_data))) {
466 				rval = VT_EINVAL;
467 			} else {
468 				/*
469 				 * read GUID partition entry array
470 				 */
471 				rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
472 			}
473 		}
474 
475 	} else if (rval == 0) {
476 
477 		dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
478 		/* LINTED */
479 		dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
480 		    + disk_info.dki_lbsize);
481 		dk_ioc.dki_length = label_len - disk_info.dki_lbsize;
482 		rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
483 
484 	} else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) {
485 		/*
486 		 * When the device is a LDoms virtual disk, the DKIOCGETEFI
487 		 * ioctl can fail with EINVAL if the virtual disk backend
488 		 * is a ZFS volume serviced by a domain running an old version
489 		 * of Solaris. This is because the DKIOCGETEFI ioctl was
490 		 * initially incorrectly implemented for a ZFS volume and it
491 		 * expected the GPT and GPE to be retrieved with a single ioctl.
492 		 * So we try to read the GPT and the GPE using that old style
493 		 * ioctl.
494 		 */
495 		dk_ioc.dki_lba = 1;
496 		dk_ioc.dki_length = label_len;
497 		rval = check_label(fd, &dk_ioc);
498 	}
499 
500 	if (rval < 0) {
501 		free(efi);
502 		return (rval);
503 	}
504 
505 	/* LINTED -- always longlong aligned */
506 	efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize);
507 
508 	/*
509 	 * Assemble this into a "dk_gpt" struct for easier
510 	 * digestibility by applications.
511 	 */
512 	vtoc->efi_version = LE_32(efi->efi_gpt_Revision);
513 	vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries);
514 	vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry);
515 	vtoc->efi_lbasize = disk_info.dki_lbsize;
516 	vtoc->efi_last_lba = disk_info.dki_capacity - 1;
517 	vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA);
518 	vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA);
519 	vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA);
520 	UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID);
521 
522 	/*
523 	 * If the array the user passed in is too small, set the length
524 	 * to what it needs to be and return
525 	 */
526 	if (user_length < vtoc->efi_nparts) {
527 		return (VT_EINVAL);
528 	}
529 
530 	for (i = 0; i < vtoc->efi_nparts; i++) {
531 
532 		UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid,
533 		    efi_parts[i].efi_gpe_PartitionTypeGUID);
534 
535 		for (j = 0;
536 		    j < sizeof (conversion_array)
537 		    / sizeof (struct uuid_to_ptag); j++) {
538 
539 			if (bcmp(&vtoc->efi_parts[i].p_guid,
540 			    &conversion_array[j].uuid,
541 			    sizeof (struct uuid)) == 0) {
542 				vtoc->efi_parts[i].p_tag = j;
543 				break;
544 			}
545 		}
546 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
547 			continue;
548 		vtoc->efi_parts[i].p_flag =
549 		    LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs);
550 		vtoc->efi_parts[i].p_start =
551 		    LE_64(efi_parts[i].efi_gpe_StartingLBA);
552 		vtoc->efi_parts[i].p_size =
553 		    LE_64(efi_parts[i].efi_gpe_EndingLBA) -
554 		    vtoc->efi_parts[i].p_start + 1;
555 		for (j = 0; j < EFI_PART_NAME_LEN; j++) {
556 			vtoc->efi_parts[i].p_name[j] =
557 			    (uchar_t)LE_16(
558 			    efi_parts[i].efi_gpe_PartitionName[j]);
559 		}
560 
561 		UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid,
562 		    efi_parts[i].efi_gpe_UniquePartitionGUID);
563 	}
564 	free(efi);
565 
566 	return (dki_info.dki_partition);
567 }
568 
569 /* writes a "protective" MBR */
570 static int
571 write_pmbr(int fd, struct dk_gpt *vtoc)
572 {
573 	dk_efi_t	dk_ioc;
574 	struct mboot	mb;
575 	uchar_t		*cp;
576 	diskaddr_t	size_in_lba;
577 	uchar_t		*buf;
578 	int		len;
579 
580 	len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize;
581 	buf = calloc(len, 1);
582 
583 	/*
584 	 * Preserve any boot code and disk signature if the first block is
585 	 * already an MBR.
586 	 */
587 	dk_ioc.dki_lba = 0;
588 	dk_ioc.dki_length = len;
589 	/* LINTED -- always longlong aligned */
590 	dk_ioc.dki_data = (efi_gpt_t *)buf;
591 	if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
592 		(void *) memcpy(&mb, buf, sizeof (mb));
593 		bzero(&mb, sizeof (mb));
594 		mb.signature = LE_16(MBB_MAGIC);
595 	} else {
596 		(void *) memcpy(&mb, buf, sizeof (mb));
597 		if (mb.signature != LE_16(MBB_MAGIC)) {
598 			bzero(&mb, sizeof (mb));
599 			mb.signature = LE_16(MBB_MAGIC);
600 		}
601 	}
602 
603 	bzero(&mb.parts, sizeof (mb.parts));
604 	cp = (uchar_t *)&mb.parts[0];
605 	/* bootable or not */
606 	*cp++ = 0;
607 	/* beginning CHS; 0xffffff if not representable */
608 	*cp++ = 0xff;
609 	*cp++ = 0xff;
610 	*cp++ = 0xff;
611 	/* OS type */
612 	*cp++ = EFI_PMBR;
613 	/* ending CHS; 0xffffff if not representable */
614 	*cp++ = 0xff;
615 	*cp++ = 0xff;
616 	*cp++ = 0xff;
617 	/* starting LBA: 1 (little endian format) by EFI definition */
618 	*cp++ = 0x01;
619 	*cp++ = 0x00;
620 	*cp++ = 0x00;
621 	*cp++ = 0x00;
622 	/* ending LBA: last block on the disk (little endian format) */
623 	size_in_lba = vtoc->efi_last_lba;
624 	if (size_in_lba < 0xffffffff) {
625 		*cp++ = (size_in_lba & 0x000000ff);
626 		*cp++ = (size_in_lba & 0x0000ff00) >> 8;
627 		*cp++ = (size_in_lba & 0x00ff0000) >> 16;
628 		*cp++ = (size_in_lba & 0xff000000) >> 24;
629 	} else {
630 		*cp++ = 0xff;
631 		*cp++ = 0xff;
632 		*cp++ = 0xff;
633 		*cp++ = 0xff;
634 	}
635 
636 	(void *) memcpy(buf, &mb, sizeof (mb));
637 	/* LINTED -- always longlong aligned */
638 	dk_ioc.dki_data = (efi_gpt_t *)buf;
639 	dk_ioc.dki_lba = 0;
640 	dk_ioc.dki_length = len;
641 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
642 		free(buf);
643 		switch (errno) {
644 		case EIO:
645 			return (VT_EIO);
646 		case EINVAL:
647 			return (VT_EINVAL);
648 		default:
649 			return (VT_ERROR);
650 		}
651 	}
652 	free(buf);
653 	return (0);
654 }
655 
656 /* make sure the user specified something reasonable */
657 static int
658 check_input(struct dk_gpt *vtoc)
659 {
660 	int			resv_part = -1;
661 	int			i, j;
662 	diskaddr_t		istart, jstart, isize, jsize, endsect;
663 
664 	/*
665 	 * Sanity-check the input (make sure no partitions overlap)
666 	 */
667 	for (i = 0; i < vtoc->efi_nparts; i++) {
668 		/* It can't be unassigned and have an actual size */
669 		if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
670 		    (vtoc->efi_parts[i].p_size != 0)) {
671 			if (efi_debug) {
672 				(void) fprintf(stderr,
673 "partition %d is \"unassigned\" but has a size of %llu",
674 				    i,
675 				    vtoc->efi_parts[i].p_size);
676 			}
677 			return (VT_EINVAL);
678 		}
679 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
680 			if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
681 				continue;
682 			/* we have encountered an unknown uuid */
683 			vtoc->efi_parts[i].p_tag = 0xff;
684 		}
685 		if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
686 			if (resv_part != -1) {
687 				if (efi_debug) {
688 					(void) fprintf(stderr,
689 "found duplicate reserved partition at %d\n",
690 					    i);
691 				}
692 				return (VT_EINVAL);
693 			}
694 			resv_part = i;
695 		}
696 		if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
697 		    (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
698 			if (efi_debug) {
699 				(void) fprintf(stderr,
700 				    "Partition %d starts at %llu.  ",
701 				    i,
702 				    vtoc->efi_parts[i].p_start);
703 				(void) fprintf(stderr,
704 				    "It must be between %llu and %llu.\n",
705 				    vtoc->efi_first_u_lba,
706 				    vtoc->efi_last_u_lba);
707 			}
708 			return (VT_EINVAL);
709 		}
710 		if ((vtoc->efi_parts[i].p_start +
711 		    vtoc->efi_parts[i].p_size <
712 		    vtoc->efi_first_u_lba) ||
713 		    (vtoc->efi_parts[i].p_start +
714 		    vtoc->efi_parts[i].p_size >
715 		    vtoc->efi_last_u_lba + 1)) {
716 			if (efi_debug) {
717 				(void) fprintf(stderr,
718 				    "Partition %d ends at %llu.  ",
719 				    i,
720 				    vtoc->efi_parts[i].p_start +
721 				    vtoc->efi_parts[i].p_size);
722 				(void) fprintf(stderr,
723 				    "It must be between %llu and %llu.\n",
724 				    vtoc->efi_first_u_lba,
725 				    vtoc->efi_last_u_lba);
726 			}
727 			return (VT_EINVAL);
728 		}
729 
730 		for (j = 0; j < vtoc->efi_nparts; j++) {
731 			isize = vtoc->efi_parts[i].p_size;
732 			jsize = vtoc->efi_parts[j].p_size;
733 			istart = vtoc->efi_parts[i].p_start;
734 			jstart = vtoc->efi_parts[j].p_start;
735 			if ((i != j) && (isize != 0) && (jsize != 0)) {
736 				endsect = jstart + jsize -1;
737 				if ((jstart <= istart) &&
738 				    (istart <= endsect)) {
739 					if (efi_debug) {
740 						(void) fprintf(stderr,
741 "Partition %d overlaps partition %d.",
742 						    i, j);
743 					}
744 					return (VT_EINVAL);
745 				}
746 			}
747 		}
748 	}
749 	/* just a warning for now */
750 	if ((resv_part == -1) && efi_debug) {
751 		(void) fprintf(stderr,
752 		    "no reserved partition found\n");
753 	}
754 	return (0);
755 }
756 
757 /*
758  * add all the unallocated space to the current label
759  */
760 int
761 efi_use_whole_disk(int fd)
762 {
763 	struct dk_gpt		*efi_label;
764 	int			rval;
765 	int			i;
766 	uint_t			phy_last_slice = 0;
767 	diskaddr_t		pl_start = 0;
768 	diskaddr_t		pl_size;
769 
770 	rval = efi_alloc_and_read(fd, &efi_label);
771 	if (rval < 0) {
772 		return (rval);
773 	}
774 
775 	/* find the last physically non-zero partition */
776 	for (i = 0; i < efi_label->efi_nparts - 2; i ++) {
777 		if (pl_start < efi_label->efi_parts[i].p_start) {
778 			pl_start = efi_label->efi_parts[i].p_start;
779 			phy_last_slice = i;
780 		}
781 	}
782 	pl_size = efi_label->efi_parts[phy_last_slice].p_size;
783 
784 	/*
785 	 * If alter_lba is 1, we are using the backup label.
786 	 * Since we can locate the backup label by disk capacity,
787 	 * there must be no unallocated space.
788 	 */
789 	if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba
790 	    >= efi_label->efi_last_lba)) {
791 		if (efi_debug) {
792 			(void) fprintf(stderr,
793 			    "efi_use_whole_disk: requested space not found\n");
794 		}
795 		efi_free(efi_label);
796 		return (VT_ENOSPC);
797 	}
798 
799 	/*
800 	 * If there is space between the last physically non-zero partition
801 	 * and the reserved partition, just add the unallocated space to this
802 	 * area. Otherwise, the unallocated space is added to the last
803 	 * physically non-zero partition.
804 	 */
805 	if (pl_start + pl_size - 1 == efi_label->efi_last_u_lba -
806 	    EFI_MIN_RESV_SIZE) {
807 		efi_label->efi_parts[phy_last_slice].p_size +=
808 		    efi_label->efi_last_lba - efi_label->efi_altern_lba;
809 	}
810 
811 	/*
812 	 * Move the reserved partition. There is currently no data in
813 	 * here except fabricated devids (which get generated via
814 	 * efi_write()). So there is no need to copy data.
815 	 */
816 	efi_label->efi_parts[efi_label->efi_nparts - 1].p_start +=
817 	    efi_label->efi_last_lba - efi_label->efi_altern_lba;
818 	efi_label->efi_last_u_lba += efi_label->efi_last_lba
819 	    - efi_label->efi_altern_lba;
820 
821 	rval = efi_write(fd, efi_label);
822 	if (rval < 0) {
823 		if (efi_debug) {
824 			(void) fprintf(stderr,
825 			    "efi_use_whole_disk:fail to write label, rval=%d\n",
826 			    rval);
827 		}
828 		efi_free(efi_label);
829 		return (rval);
830 	}
831 
832 	efi_free(efi_label);
833 	return (0);
834 }
835 
836 
837 /*
838  * write EFI label and backup label
839  */
840 int
841 efi_write(int fd, struct dk_gpt *vtoc)
842 {
843 	dk_efi_t		dk_ioc;
844 	efi_gpt_t		*efi;
845 	efi_gpe_t		*efi_parts;
846 	int			i, j;
847 	struct dk_cinfo		dki_info;
848 	int			md_flag = 0;
849 	int			nblocks;
850 	diskaddr_t		lba_backup_gpt_hdr;
851 
852 	if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) {
853 		if (efi_debug)
854 			(void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
855 		switch (errno) {
856 		case EIO:
857 			return (VT_EIO);
858 		case EINVAL:
859 			return (VT_EINVAL);
860 		default:
861 			return (VT_ERROR);
862 		}
863 	}
864 
865 	/* check if we are dealing wih a metadevice */
866 	if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
867 	    (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
868 		md_flag = 1;
869 	}
870 
871 	if (check_input(vtoc)) {
872 		/*
873 		 * not valid; if it's a metadevice just pass it down
874 		 * because SVM will do its own checking
875 		 */
876 		if (md_flag == 0) {
877 			return (VT_EINVAL);
878 		}
879 	}
880 
881 	dk_ioc.dki_lba = 1;
882 	if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) {
883 		dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize;
884 	} else {
885 		dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts,
886 		    vtoc->efi_lbasize) *
887 		    vtoc->efi_lbasize;
888 	}
889 
890 	/*
891 	 * the number of blocks occupied by GUID partition entry array
892 	 */
893 	nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1;
894 
895 	/*
896 	 * Backup GPT header is located on the block after GUID
897 	 * partition entry array. Here, we calculate the address
898 	 * for backup GPT header.
899 	 */
900 	lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks;
901 	if ((dk_ioc.dki_data = calloc(dk_ioc.dki_length, 1)) == NULL)
902 		return (VT_ERROR);
903 
904 	efi = dk_ioc.dki_data;
905 
906 	/* stuff user's input into EFI struct */
907 	efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
908 	efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */
909 	efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt));
910 	efi->efi_gpt_Reserved1 = 0;
911 	efi->efi_gpt_MyLBA = LE_64(1ULL);
912 	efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr);
913 	efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba);
914 	efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba);
915 	efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
916 	efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts);
917 	efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe));
918 	UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid);
919 
920 	/* LINTED -- always longlong aligned */
921 	efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize);
922 
923 	for (i = 0; i < vtoc->efi_nparts; i++) {
924 		for (j = 0;
925 		    j < sizeof (conversion_array) /
926 		    sizeof (struct uuid_to_ptag); j++) {
927 
928 			if (vtoc->efi_parts[i].p_tag == j) {
929 				UUID_LE_CONVERT(
930 				    efi_parts[i].efi_gpe_PartitionTypeGUID,
931 				    conversion_array[j].uuid);
932 				break;
933 			}
934 		}
935 
936 		if (j == sizeof (conversion_array) /
937 		    sizeof (struct uuid_to_ptag)) {
938 			/*
939 			 * If we didn't have a matching uuid match, bail here.
940 			 * Don't write a label with unknown uuid.
941 			 */
942 			if (efi_debug) {
943 				(void) fprintf(stderr,
944 				    "Unknown uuid for p_tag %d\n",
945 				    vtoc->efi_parts[i].p_tag);
946 			}
947 			return (VT_EINVAL);
948 		}
949 
950 		efi_parts[i].efi_gpe_StartingLBA =
951 		    LE_64(vtoc->efi_parts[i].p_start);
952 		efi_parts[i].efi_gpe_EndingLBA =
953 		    LE_64(vtoc->efi_parts[i].p_start +
954 		    vtoc->efi_parts[i].p_size - 1);
955 		efi_parts[i].efi_gpe_Attributes.PartitionAttrs =
956 		    LE_16(vtoc->efi_parts[i].p_flag);
957 		for (j = 0; j < EFI_PART_NAME_LEN; j++) {
958 			efi_parts[i].efi_gpe_PartitionName[j] =
959 			    LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]);
960 		}
961 		if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) &&
962 		    uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) {
963 			(void) uuid_generate((uchar_t *)
964 			    &vtoc->efi_parts[i].p_uguid);
965 		}
966 		bcopy(&vtoc->efi_parts[i].p_uguid,
967 		    &efi_parts[i].efi_gpe_UniquePartitionGUID,
968 		    sizeof (uuid_t));
969 	}
970 	efi->efi_gpt_PartitionEntryArrayCRC32 =
971 	    LE_32(efi_crc32((unsigned char *)efi_parts,
972 	    vtoc->efi_nparts * (int)sizeof (struct efi_gpe)));
973 	efi->efi_gpt_HeaderCRC32 =
974 	    LE_32(efi_crc32((unsigned char *)efi, sizeof (struct efi_gpt)));
975 
976 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
977 		free(dk_ioc.dki_data);
978 		switch (errno) {
979 		case EIO:
980 			return (VT_EIO);
981 		case EINVAL:
982 			return (VT_EINVAL);
983 		default:
984 			return (VT_ERROR);
985 		}
986 	}
987 	/* if it's a metadevice we're done */
988 	if (md_flag) {
989 		free(dk_ioc.dki_data);
990 		return (0);
991 	}
992 
993 	/* write backup partition array */
994 	dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1;
995 	dk_ioc.dki_length -= vtoc->efi_lbasize;
996 	/* LINTED */
997 	dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data +
998 	    vtoc->efi_lbasize);
999 
1000 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1001 		/*
1002 		 * we wrote the primary label okay, so don't fail
1003 		 */
1004 		if (efi_debug) {
1005 			(void) fprintf(stderr,
1006 			    "write of backup partitions to block %llu "
1007 			    "failed, errno %d\n",
1008 			    vtoc->efi_last_u_lba + 1,
1009 			    errno);
1010 		}
1011 	}
1012 	/*
1013 	 * now swap MyLBA and AlternateLBA fields and write backup
1014 	 * partition table header
1015 	 */
1016 	dk_ioc.dki_lba = lba_backup_gpt_hdr;
1017 	dk_ioc.dki_length = vtoc->efi_lbasize;
1018 	/* LINTED */
1019 	dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data -
1020 	    vtoc->efi_lbasize);
1021 	efi->efi_gpt_AlternateLBA = LE_64(1ULL);
1022 	efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr);
1023 	efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1);
1024 	efi->efi_gpt_HeaderCRC32 = 0;
1025 	efi->efi_gpt_HeaderCRC32 =
1026 	    LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data,
1027 	    sizeof (struct efi_gpt)));
1028 
1029 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1030 		if (efi_debug) {
1031 			(void) fprintf(stderr,
1032 			    "write of backup header to block %llu failed, "
1033 			    "errno %d\n",
1034 			    lba_backup_gpt_hdr,
1035 			    errno);
1036 		}
1037 	}
1038 	/* write the PMBR */
1039 	(void) write_pmbr(fd, vtoc);
1040 	free(dk_ioc.dki_data);
1041 	return (0);
1042 }
1043 
1044 void
1045 efi_free(struct dk_gpt *ptr)
1046 {
1047 	free(ptr);
1048 }
1049 
1050 /*
1051  * Input: File descriptor
1052  * Output: 1 if disk has an EFI label, or > 2TB with no VTOC or legacy MBR.
1053  * Otherwise 0.
1054  */
1055 int
1056 efi_type(int fd)
1057 {
1058 	struct vtoc vtoc;
1059 	struct extvtoc extvtoc;
1060 
1061 	if (ioctl(fd, DKIOCGEXTVTOC, &extvtoc) == -1) {
1062 		if (errno == ENOTSUP)
1063 			return (1);
1064 		else if (errno == ENOTTY) {
1065 			if (ioctl(fd, DKIOCGVTOC, &vtoc) == -1)
1066 				if (errno == ENOTSUP)
1067 					return (1);
1068 		}
1069 	}
1070 	return (0);
1071 }
1072 
1073 void
1074 efi_err_check(struct dk_gpt *vtoc)
1075 {
1076 	int			resv_part = -1;
1077 	int			i, j;
1078 	diskaddr_t		istart, jstart, isize, jsize, endsect;
1079 	int			overlap = 0;
1080 
1081 	/*
1082 	 * make sure no partitions overlap
1083 	 */
1084 	for (i = 0; i < vtoc->efi_nparts; i++) {
1085 		/* It can't be unassigned and have an actual size */
1086 		if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
1087 		    (vtoc->efi_parts[i].p_size != 0)) {
1088 			(void) fprintf(stderr,
1089 			    "partition %d is \"unassigned\" but has a size "
1090 			    "of %llu\n", i, vtoc->efi_parts[i].p_size);
1091 		}
1092 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
1093 			continue;
1094 		}
1095 		if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
1096 			if (resv_part != -1) {
1097 				(void) fprintf(stderr,
1098 				    "found duplicate reserved partition at "
1099 				    "%d\n", i);
1100 			}
1101 			resv_part = i;
1102 			if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE)
1103 				(void) fprintf(stderr,
1104 				    "Warning: reserved partition size must "
1105 				    "be %d sectors\n", EFI_MIN_RESV_SIZE);
1106 		}
1107 		if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
1108 		    (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
1109 			(void) fprintf(stderr,
1110 			    "Partition %d starts at %llu\n",
1111 			    i,
1112 			    vtoc->efi_parts[i].p_start);
1113 			(void) fprintf(stderr,
1114 			    "It must be between %llu and %llu.\n",
1115 			    vtoc->efi_first_u_lba,
1116 			    vtoc->efi_last_u_lba);
1117 		}
1118 		if ((vtoc->efi_parts[i].p_start +
1119 		    vtoc->efi_parts[i].p_size <
1120 		    vtoc->efi_first_u_lba) ||
1121 		    (vtoc->efi_parts[i].p_start +
1122 		    vtoc->efi_parts[i].p_size >
1123 		    vtoc->efi_last_u_lba + 1)) {
1124 			(void) fprintf(stderr,
1125 			    "Partition %d ends at %llu\n",
1126 			    i,
1127 			    vtoc->efi_parts[i].p_start +
1128 			    vtoc->efi_parts[i].p_size);
1129 			(void) fprintf(stderr,
1130 			    "It must be between %llu and %llu.\n",
1131 			    vtoc->efi_first_u_lba,
1132 			    vtoc->efi_last_u_lba);
1133 		}
1134 
1135 		for (j = 0; j < vtoc->efi_nparts; j++) {
1136 			isize = vtoc->efi_parts[i].p_size;
1137 			jsize = vtoc->efi_parts[j].p_size;
1138 			istart = vtoc->efi_parts[i].p_start;
1139 			jstart = vtoc->efi_parts[j].p_start;
1140 			if ((i != j) && (isize != 0) && (jsize != 0)) {
1141 				endsect = jstart + jsize -1;
1142 				if ((jstart <= istart) &&
1143 				    (istart <= endsect)) {
1144 					if (!overlap) {
1145 					(void) fprintf(stderr,
1146 					    "label error: EFI Labels do not "
1147 					    "support overlapping partitions\n");
1148 					}
1149 					(void) fprintf(stderr,
1150 					    "Partition %d overlaps partition "
1151 					    "%d.\n", i, j);
1152 					overlap = 1;
1153 				}
1154 			}
1155 		}
1156 	}
1157 	/* make sure there is a reserved partition */
1158 	if (resv_part == -1) {
1159 		(void) fprintf(stderr,
1160 		    "no reserved partition found\n");
1161 	}
1162 }
1163 
1164 /*
1165  * We need to get information necessary to construct a *new* efi
1166  * label type
1167  */
1168 int
1169 efi_auto_sense(int fd, struct dk_gpt **vtoc)
1170 {
1171 
1172 	int	i;
1173 
1174 	/*
1175 	 * Now build the default partition table
1176 	 */
1177 	if (efi_alloc_and_init(fd, EFI_NUMPAR, vtoc) != 0) {
1178 		if (efi_debug) {
1179 			(void) fprintf(stderr, "efi_alloc_and_init failed.\n");
1180 		}
1181 		return (-1);
1182 	}
1183 
1184 	for (i = 0; i < min((*vtoc)->efi_nparts, V_NUMPAR); i++) {
1185 		(*vtoc)->efi_parts[i].p_tag = default_vtoc_map[i].p_tag;
1186 		(*vtoc)->efi_parts[i].p_flag = default_vtoc_map[i].p_flag;
1187 		(*vtoc)->efi_parts[i].p_start = 0;
1188 		(*vtoc)->efi_parts[i].p_size = 0;
1189 	}
1190 	/*
1191 	 * Make constants first
1192 	 * and variable partitions later
1193 	 */
1194 
1195 	/* root partition - s0 128 MB */
1196 	(*vtoc)->efi_parts[0].p_start = 34;
1197 	(*vtoc)->efi_parts[0].p_size = 262144;
1198 
1199 	/* partition - s1  128 MB */
1200 	(*vtoc)->efi_parts[1].p_start = 262178;
1201 	(*vtoc)->efi_parts[1].p_size = 262144;
1202 
1203 	/* partition -s2 is NOT the Backup disk */
1204 	(*vtoc)->efi_parts[2].p_tag = V_UNASSIGNED;
1205 
1206 	/* partition -s6 /usr partition - HOG */
1207 	(*vtoc)->efi_parts[6].p_start = 524322;
1208 	(*vtoc)->efi_parts[6].p_size = (*vtoc)->efi_last_u_lba - 524322
1209 	    - (1024 * 16);
1210 
1211 	/* efi reserved partition - s9 16K */
1212 	(*vtoc)->efi_parts[8].p_start = (*vtoc)->efi_last_u_lba - (1024 * 16);
1213 	(*vtoc)->efi_parts[8].p_size = (1024 * 16);
1214 	(*vtoc)->efi_parts[8].p_tag = V_RESERVED;
1215 	return (0);
1216 }
1217