1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <stdio.h> 28 #include <stdlib.h> 29 #include <errno.h> 30 #include <strings.h> 31 #include <unistd.h> 32 #include <uuid/uuid.h> 33 #include <libintl.h> 34 #include <sys/types.h> 35 #include <sys/dkio.h> 36 #include <sys/vtoc.h> 37 #include <sys/mhd.h> 38 #include <sys/param.h> 39 #include <sys/dktp/fdisk.h> 40 #include <sys/efi_partition.h> 41 #include <sys/byteorder.h> 42 #include <sys/ddi.h> 43 44 static struct uuid_to_ptag { 45 struct uuid uuid; 46 } conversion_array[] = { 47 { EFI_UNUSED }, 48 { EFI_BOOT }, 49 { EFI_ROOT }, 50 { EFI_SWAP }, 51 { EFI_USR }, 52 { EFI_BACKUP }, 53 { 0 }, /* STAND is never used */ 54 { EFI_VAR }, 55 { EFI_HOME }, 56 { EFI_ALTSCTR }, 57 { 0 }, /* CACHE (cachefs) is never used */ 58 { EFI_RESERVED }, 59 { EFI_SYSTEM }, 60 { EFI_LEGACY_MBR }, 61 { EFI_RESV3 }, 62 { EFI_RESV4 }, 63 { EFI_MSFT_RESV }, 64 { EFI_DELL_BASIC }, 65 { EFI_DELL_RAID }, 66 { EFI_DELL_SWAP }, 67 { EFI_DELL_LVM }, 68 { EFI_DELL_RESV }, 69 { EFI_AAPL_HFS }, 70 { EFI_AAPL_UFS } 71 }; 72 73 /* 74 * Default vtoc information for non-SVr4 partitions 75 */ 76 struct dk_map2 default_vtoc_map[NDKMAP] = { 77 { V_ROOT, 0 }, /* a - 0 */ 78 { V_SWAP, V_UNMNT }, /* b - 1 */ 79 { V_BACKUP, V_UNMNT }, /* c - 2 */ 80 { V_UNASSIGNED, 0 }, /* d - 3 */ 81 { V_UNASSIGNED, 0 }, /* e - 4 */ 82 { V_UNASSIGNED, 0 }, /* f - 5 */ 83 { V_USR, 0 }, /* g - 6 */ 84 { V_UNASSIGNED, 0 }, /* h - 7 */ 85 86 #if defined(_SUNOS_VTOC_16) 87 88 #if defined(i386) || defined(__amd64) 89 { V_BOOT, V_UNMNT }, /* i - 8 */ 90 { V_ALTSCTR, 0 }, /* j - 9 */ 91 92 #else 93 #error No VTOC format defined. 94 #endif /* defined(i386) */ 95 96 { V_UNASSIGNED, 0 }, /* k - 10 */ 97 { V_UNASSIGNED, 0 }, /* l - 11 */ 98 { V_UNASSIGNED, 0 }, /* m - 12 */ 99 { V_UNASSIGNED, 0 }, /* n - 13 */ 100 { V_UNASSIGNED, 0 }, /* o - 14 */ 101 { V_UNASSIGNED, 0 }, /* p - 15 */ 102 #endif /* defined(_SUNOS_VTOC_16) */ 103 }; 104 105 #ifdef DEBUG 106 int efi_debug = 1; 107 #else 108 int efi_debug = 0; 109 #endif 110 111 extern unsigned int efi_crc32(const unsigned char *, unsigned int); 112 static int efi_read(int, struct dk_gpt *); 113 114 static int 115 read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize) 116 { 117 struct dk_minfo disk_info; 118 119 if ((ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info)) == -1) 120 return (errno); 121 *capacity = disk_info.dki_capacity; 122 *lbsize = disk_info.dki_lbsize; 123 return (0); 124 } 125 126 /* 127 * the number of blocks the EFI label takes up (round up to nearest 128 * block) 129 */ 130 #define NBLOCKS(p, l) (1 + ((((p) * (int)sizeof (efi_gpe_t)) + \ 131 ((l) - 1)) / (l))) 132 /* number of partitions -- limited by what we can malloc */ 133 #define MAX_PARTS ((4294967295UL - sizeof (struct dk_gpt)) / \ 134 sizeof (struct dk_part)) 135 136 int 137 efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc) 138 { 139 diskaddr_t capacity; 140 uint_t lbsize; 141 uint_t nblocks; 142 size_t length; 143 struct dk_gpt *vptr; 144 struct uuid uuid; 145 146 if (read_disk_info(fd, &capacity, &lbsize) != 0) { 147 if (efi_debug) 148 (void) fprintf(stderr, 149 "couldn't read disk information\n"); 150 return (-1); 151 } 152 153 nblocks = NBLOCKS(nparts, lbsize); 154 if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) { 155 /* 16K plus one block for the GPT */ 156 nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1; 157 } 158 159 if (nparts > MAX_PARTS) { 160 if (efi_debug) { 161 (void) fprintf(stderr, 162 "the maximum number of partitions supported is %lu\n", 163 MAX_PARTS); 164 } 165 return (-1); 166 } 167 168 length = sizeof (struct dk_gpt) + 169 sizeof (struct dk_part) * (nparts - 1); 170 171 if ((*vtoc = calloc(length, 1)) == NULL) 172 return (-1); 173 174 vptr = *vtoc; 175 176 vptr->efi_version = EFI_VERSION_CURRENT; 177 vptr->efi_lbasize = lbsize; 178 vptr->efi_nparts = nparts; 179 /* 180 * add one block here for the PMBR; on disks with a 512 byte 181 * block size and 128 or fewer partitions, efi_first_u_lba 182 * should work out to "34" 183 */ 184 vptr->efi_first_u_lba = nblocks + 1; 185 vptr->efi_last_lba = capacity - 1; 186 vptr->efi_altern_lba = capacity -1; 187 vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks; 188 189 (void) uuid_generate((uchar_t *)&uuid); 190 UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid); 191 return (0); 192 } 193 194 /* 195 * Read EFI - return partition number upon success. 196 */ 197 int 198 efi_alloc_and_read(int fd, struct dk_gpt **vtoc) 199 { 200 int rval; 201 uint32_t nparts; 202 int length; 203 204 /* figure out the number of entries that would fit into 16K */ 205 nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t); 206 length = (int) sizeof (struct dk_gpt) + 207 (int) sizeof (struct dk_part) * (nparts - 1); 208 if ((*vtoc = calloc(length, 1)) == NULL) 209 return (VT_ERROR); 210 211 (*vtoc)->efi_nparts = nparts; 212 rval = efi_read(fd, *vtoc); 213 214 if ((rval == VT_EINVAL) && (*vtoc)->efi_nparts > nparts) { 215 void *tmp; 216 length = (int) sizeof (struct dk_gpt) + 217 (int) sizeof (struct dk_part) * 218 ((*vtoc)->efi_nparts - 1); 219 nparts = (*vtoc)->efi_nparts; 220 if ((tmp = realloc(*vtoc, length)) == NULL) { 221 free (*vtoc); 222 *vtoc = NULL; 223 return (VT_ERROR); 224 } else { 225 *vtoc = tmp; 226 rval = efi_read(fd, *vtoc); 227 } 228 } 229 230 if (rval < 0) { 231 if (efi_debug) { 232 (void) fprintf(stderr, 233 "read of EFI table failed, rval=%d\n", rval); 234 } 235 free (*vtoc); 236 *vtoc = NULL; 237 } 238 239 return (rval); 240 } 241 242 static int 243 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc) 244 { 245 void *data = dk_ioc->dki_data; 246 int error; 247 248 dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data; 249 error = ioctl(fd, cmd, (void *)dk_ioc); 250 dk_ioc->dki_data = data; 251 252 return (error); 253 } 254 255 static int 256 check_label(int fd, dk_efi_t *dk_ioc) 257 { 258 efi_gpt_t *efi; 259 uint_t crc; 260 261 if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) { 262 switch (errno) { 263 case EIO: 264 return (VT_EIO); 265 default: 266 return (VT_ERROR); 267 } 268 } 269 efi = dk_ioc->dki_data; 270 if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) { 271 if (efi_debug) 272 (void) fprintf(stderr, 273 "Bad EFI signature: 0x%llx != 0x%llx\n", 274 (long long)efi->efi_gpt_Signature, 275 (long long)LE_64(EFI_SIGNATURE)); 276 return (VT_EINVAL); 277 } 278 279 /* 280 * check CRC of the header; the size of the header should 281 * never be larger than one block 282 */ 283 crc = efi->efi_gpt_HeaderCRC32; 284 efi->efi_gpt_HeaderCRC32 = 0; 285 286 if (((len_t)LE_32(efi->efi_gpt_HeaderSize) > dk_ioc->dki_length) || 287 crc != LE_32(efi_crc32((unsigned char *)efi, 288 LE_32(efi->efi_gpt_HeaderSize)))) { 289 if (efi_debug) 290 (void) fprintf(stderr, 291 "Bad EFI CRC: 0x%x != 0x%x\n", 292 crc, 293 LE_32(efi_crc32((unsigned char *)efi, 294 sizeof (struct efi_gpt)))); 295 return (VT_EINVAL); 296 } 297 298 return (0); 299 } 300 301 static int 302 efi_read(int fd, struct dk_gpt *vtoc) 303 { 304 int i, j; 305 int label_len; 306 int rval = 0; 307 int md_flag = 0; 308 int vdc_flag = 0; 309 struct dk_minfo disk_info; 310 dk_efi_t dk_ioc; 311 efi_gpt_t *efi; 312 efi_gpe_t *efi_parts; 313 struct dk_cinfo dki_info; 314 uint32_t user_length; 315 boolean_t legacy_label = B_FALSE; 316 317 /* 318 * get the partition number for this file descriptor. 319 */ 320 if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) { 321 if (efi_debug) { 322 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno); 323 } 324 switch (errno) { 325 case EIO: 326 return (VT_EIO); 327 case EINVAL: 328 return (VT_EINVAL); 329 default: 330 return (VT_ERROR); 331 } 332 } 333 if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) && 334 (strncmp(dki_info.dki_dname, "md", 3) == 0)) { 335 md_flag++; 336 } else if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) && 337 (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) { 338 /* 339 * The controller and drive name "vdc" (virtual disk client) 340 * indicates a LDoms virtual disk. 341 */ 342 vdc_flag++; 343 } 344 345 /* get the LBA size */ 346 if (ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) == -1) { 347 if (efi_debug) { 348 (void) fprintf(stderr, 349 "assuming LBA 512 bytes %d\n", 350 errno); 351 } 352 disk_info.dki_lbsize = DEV_BSIZE; 353 } 354 if (disk_info.dki_lbsize == 0) { 355 if (efi_debug) { 356 (void) fprintf(stderr, 357 "efi_read: assuming LBA 512 bytes\n"); 358 } 359 disk_info.dki_lbsize = DEV_BSIZE; 360 } 361 /* 362 * Read the EFI GPT to figure out how many partitions we need 363 * to deal with. 364 */ 365 dk_ioc.dki_lba = 1; 366 if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) { 367 label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize; 368 } else { 369 label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) + 370 disk_info.dki_lbsize; 371 if (label_len % disk_info.dki_lbsize) { 372 /* pad to physical sector size */ 373 label_len += disk_info.dki_lbsize; 374 label_len &= ~(disk_info.dki_lbsize - 1); 375 } 376 } 377 378 if ((dk_ioc.dki_data = calloc(label_len, 1)) == NULL) 379 return (VT_ERROR); 380 381 dk_ioc.dki_length = disk_info.dki_lbsize; 382 user_length = vtoc->efi_nparts; 383 efi = dk_ioc.dki_data; 384 if (md_flag) { 385 dk_ioc.dki_length = label_len; 386 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) { 387 switch (errno) { 388 case EIO: 389 return (VT_EIO); 390 default: 391 return (VT_ERROR); 392 } 393 } 394 } else if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) { 395 /* 396 * No valid label here; try the alternate. Note that here 397 * we just read GPT header and save it into dk_ioc.data, 398 * Later, we will read GUID partition entry array if we 399 * can get valid GPT header. 400 */ 401 402 /* 403 * This is a workaround for legacy systems. In the past, the 404 * last sector of SCSI disk was invisible on x86 platform. At 405 * that time, backup label was saved on the next to the last 406 * sector. It is possible for users to move a disk from previous 407 * solaris system to present system. Here, we attempt to search 408 * legacy backup EFI label first. 409 */ 410 dk_ioc.dki_lba = disk_info.dki_capacity - 2; 411 dk_ioc.dki_length = disk_info.dki_lbsize; 412 rval = check_label(fd, &dk_ioc); 413 if (rval == VT_EINVAL) { 414 /* 415 * we didn't find legacy backup EFI label, try to 416 * search backup EFI label in the last block. 417 */ 418 dk_ioc.dki_lba = disk_info.dki_capacity - 1; 419 dk_ioc.dki_length = disk_info.dki_lbsize; 420 rval = check_label(fd, &dk_ioc); 421 if (rval == 0) { 422 legacy_label = B_TRUE; 423 if (efi_debug) 424 (void) fprintf(stderr, 425 "efi_read: primary label corrupt; " 426 "using EFI backup label located on" 427 " the last block\n"); 428 } 429 } else { 430 if ((efi_debug) && (rval == 0)) 431 (void) fprintf(stderr, "efi_read: primary label" 432 " corrupt; using legacy EFI backup label " 433 " located on the next to last block\n"); 434 } 435 436 if (rval == 0) { 437 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA); 438 vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT; 439 vtoc->efi_nparts = 440 LE_32(efi->efi_gpt_NumberOfPartitionEntries); 441 /* 442 * Partition tables are between backup GPT header 443 * table and ParitionEntryLBA (the starting LBA of 444 * the GUID partition entries array). Now that we 445 * already got valid GPT header and saved it in 446 * dk_ioc.dki_data, we try to get GUID partition 447 * entry array here. 448 */ 449 /* LINTED */ 450 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data 451 + disk_info.dki_lbsize); 452 if (legacy_label) 453 dk_ioc.dki_length = disk_info.dki_capacity - 1 - 454 dk_ioc.dki_lba; 455 else 456 dk_ioc.dki_length = disk_info.dki_capacity - 2 - 457 dk_ioc.dki_lba; 458 dk_ioc.dki_length *= disk_info.dki_lbsize; 459 if (dk_ioc.dki_length > 460 ((len_t)label_len - sizeof (*dk_ioc.dki_data))) { 461 rval = VT_EINVAL; 462 } else { 463 /* 464 * read GUID partition entry array 465 */ 466 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc); 467 } 468 } 469 470 } else if (rval == 0) { 471 472 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA); 473 /* LINTED */ 474 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data 475 + disk_info.dki_lbsize); 476 dk_ioc.dki_length = label_len - disk_info.dki_lbsize; 477 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc); 478 479 } else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) { 480 /* 481 * When the device is a LDoms virtual disk, the DKIOCGETEFI 482 * ioctl can fail with EINVAL if the virtual disk backend 483 * is a ZFS volume serviced by a domain running an old version 484 * of Solaris. This is because the DKIOCGETEFI ioctl was 485 * initially incorrectly implemented for a ZFS volume and it 486 * expected the GPT and GPE to be retrieved with a single ioctl. 487 * So we try to read the GPT and the GPE using that old style 488 * ioctl. 489 */ 490 dk_ioc.dki_lba = 1; 491 dk_ioc.dki_length = label_len; 492 rval = check_label(fd, &dk_ioc); 493 } 494 495 if (rval < 0) { 496 free(efi); 497 return (rval); 498 } 499 500 /* LINTED -- always longlong aligned */ 501 efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize); 502 503 /* 504 * Assemble this into a "dk_gpt" struct for easier 505 * digestibility by applications. 506 */ 507 vtoc->efi_version = LE_32(efi->efi_gpt_Revision); 508 vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries); 509 vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry); 510 vtoc->efi_lbasize = disk_info.dki_lbsize; 511 vtoc->efi_last_lba = disk_info.dki_capacity - 1; 512 vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA); 513 vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA); 514 vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA); 515 UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID); 516 517 /* 518 * If the array the user passed in is too small, set the length 519 * to what it needs to be and return 520 */ 521 if (user_length < vtoc->efi_nparts) { 522 return (VT_EINVAL); 523 } 524 525 for (i = 0; i < vtoc->efi_nparts; i++) { 526 527 UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid, 528 efi_parts[i].efi_gpe_PartitionTypeGUID); 529 530 for (j = 0; 531 j < sizeof (conversion_array) 532 / sizeof (struct uuid_to_ptag); j++) { 533 534 if (bcmp(&vtoc->efi_parts[i].p_guid, 535 &conversion_array[j].uuid, 536 sizeof (struct uuid)) == 0) { 537 vtoc->efi_parts[i].p_tag = j; 538 break; 539 } 540 } 541 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) 542 continue; 543 vtoc->efi_parts[i].p_flag = 544 LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs); 545 vtoc->efi_parts[i].p_start = 546 LE_64(efi_parts[i].efi_gpe_StartingLBA); 547 vtoc->efi_parts[i].p_size = 548 LE_64(efi_parts[i].efi_gpe_EndingLBA) - 549 vtoc->efi_parts[i].p_start + 1; 550 for (j = 0; j < EFI_PART_NAME_LEN; j++) { 551 vtoc->efi_parts[i].p_name[j] = 552 (uchar_t)LE_16( 553 efi_parts[i].efi_gpe_PartitionName[j]); 554 } 555 556 UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid, 557 efi_parts[i].efi_gpe_UniquePartitionGUID); 558 } 559 free(efi); 560 561 return (dki_info.dki_partition); 562 } 563 564 /* writes a "protective" MBR */ 565 static int 566 write_pmbr(int fd, struct dk_gpt *vtoc) 567 { 568 dk_efi_t dk_ioc; 569 struct mboot mb; 570 uchar_t *cp; 571 diskaddr_t size_in_lba; 572 uchar_t *buf; 573 int len; 574 575 len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize; 576 buf = calloc(len, 1); 577 578 /* 579 * Preserve any boot code and disk signature if the first block is 580 * already an MBR. 581 */ 582 dk_ioc.dki_lba = 0; 583 dk_ioc.dki_length = len; 584 /* LINTED -- always longlong aligned */ 585 dk_ioc.dki_data = (efi_gpt_t *)buf; 586 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) { 587 (void *) memcpy(&mb, buf, sizeof (mb)); 588 bzero(&mb, sizeof (mb)); 589 mb.signature = LE_16(MBB_MAGIC); 590 } else { 591 (void *) memcpy(&mb, buf, sizeof (mb)); 592 if (mb.signature != LE_16(MBB_MAGIC)) { 593 bzero(&mb, sizeof (mb)); 594 mb.signature = LE_16(MBB_MAGIC); 595 } 596 } 597 598 bzero(&mb.parts, sizeof (mb.parts)); 599 cp = (uchar_t *)&mb.parts[0]; 600 /* bootable or not */ 601 *cp++ = 0; 602 /* beginning CHS; 0xffffff if not representable */ 603 *cp++ = 0xff; 604 *cp++ = 0xff; 605 *cp++ = 0xff; 606 /* OS type */ 607 *cp++ = EFI_PMBR; 608 /* ending CHS; 0xffffff if not representable */ 609 *cp++ = 0xff; 610 *cp++ = 0xff; 611 *cp++ = 0xff; 612 /* starting LBA: 1 (little endian format) by EFI definition */ 613 *cp++ = 0x01; 614 *cp++ = 0x00; 615 *cp++ = 0x00; 616 *cp++ = 0x00; 617 /* ending LBA: last block on the disk (little endian format) */ 618 size_in_lba = vtoc->efi_last_lba; 619 if (size_in_lba < 0xffffffff) { 620 *cp++ = (size_in_lba & 0x000000ff); 621 *cp++ = (size_in_lba & 0x0000ff00) >> 8; 622 *cp++ = (size_in_lba & 0x00ff0000) >> 16; 623 *cp++ = (size_in_lba & 0xff000000) >> 24; 624 } else { 625 *cp++ = 0xff; 626 *cp++ = 0xff; 627 *cp++ = 0xff; 628 *cp++ = 0xff; 629 } 630 631 (void *) memcpy(buf, &mb, sizeof (mb)); 632 /* LINTED -- always longlong aligned */ 633 dk_ioc.dki_data = (efi_gpt_t *)buf; 634 dk_ioc.dki_lba = 0; 635 dk_ioc.dki_length = len; 636 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 637 free(buf); 638 switch (errno) { 639 case EIO: 640 return (VT_EIO); 641 case EINVAL: 642 return (VT_EINVAL); 643 default: 644 return (VT_ERROR); 645 } 646 } 647 free(buf); 648 return (0); 649 } 650 651 /* make sure the user specified something reasonable */ 652 static int 653 check_input(struct dk_gpt *vtoc) 654 { 655 int resv_part = -1; 656 int i, j; 657 diskaddr_t istart, jstart, isize, jsize, endsect; 658 659 /* 660 * Sanity-check the input (make sure no partitions overlap) 661 */ 662 for (i = 0; i < vtoc->efi_nparts; i++) { 663 /* It can't be unassigned and have an actual size */ 664 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) && 665 (vtoc->efi_parts[i].p_size != 0)) { 666 if (efi_debug) { 667 (void) fprintf(stderr, 668 "partition %d is \"unassigned\" but has a size of %llu", 669 i, 670 vtoc->efi_parts[i].p_size); 671 } 672 return (VT_EINVAL); 673 } 674 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) { 675 if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid)) 676 continue; 677 /* we have encountered an unknown uuid */ 678 vtoc->efi_parts[i].p_tag = 0xff; 679 } 680 if (vtoc->efi_parts[i].p_tag == V_RESERVED) { 681 if (resv_part != -1) { 682 if (efi_debug) { 683 (void) fprintf(stderr, 684 "found duplicate reserved partition at %d\n", 685 i); 686 } 687 return (VT_EINVAL); 688 } 689 resv_part = i; 690 } 691 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) || 692 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) { 693 if (efi_debug) { 694 (void) fprintf(stderr, 695 "Partition %d starts at %llu. ", 696 i, 697 vtoc->efi_parts[i].p_start); 698 (void) fprintf(stderr, 699 "It must be between %llu and %llu.\n", 700 vtoc->efi_first_u_lba, 701 vtoc->efi_last_u_lba); 702 } 703 return (VT_EINVAL); 704 } 705 if ((vtoc->efi_parts[i].p_start + 706 vtoc->efi_parts[i].p_size < 707 vtoc->efi_first_u_lba) || 708 (vtoc->efi_parts[i].p_start + 709 vtoc->efi_parts[i].p_size > 710 vtoc->efi_last_u_lba + 1)) { 711 if (efi_debug) { 712 (void) fprintf(stderr, 713 "Partition %d ends at %llu. ", 714 i, 715 vtoc->efi_parts[i].p_start + 716 vtoc->efi_parts[i].p_size); 717 (void) fprintf(stderr, 718 "It must be between %llu and %llu.\n", 719 vtoc->efi_first_u_lba, 720 vtoc->efi_last_u_lba); 721 } 722 return (VT_EINVAL); 723 } 724 725 for (j = 0; j < vtoc->efi_nparts; j++) { 726 isize = vtoc->efi_parts[i].p_size; 727 jsize = vtoc->efi_parts[j].p_size; 728 istart = vtoc->efi_parts[i].p_start; 729 jstart = vtoc->efi_parts[j].p_start; 730 if ((i != j) && (isize != 0) && (jsize != 0)) { 731 endsect = jstart + jsize -1; 732 if ((jstart <= istart) && 733 (istart <= endsect)) { 734 if (efi_debug) { 735 (void) fprintf(stderr, 736 "Partition %d overlaps partition %d.", 737 i, j); 738 } 739 return (VT_EINVAL); 740 } 741 } 742 } 743 } 744 /* just a warning for now */ 745 if ((resv_part == -1) && efi_debug) { 746 (void) fprintf(stderr, 747 "no reserved partition found\n"); 748 } 749 return (0); 750 } 751 752 /* 753 * add all the unallocated space to the current label 754 */ 755 int 756 efi_use_whole_disk(int fd) 757 { 758 struct dk_gpt *efi_label; 759 int rval; 760 int i; 761 uint_t phy_last_slice = 0; 762 diskaddr_t pl_start = 0; 763 diskaddr_t pl_size; 764 765 rval = efi_alloc_and_read(fd, &efi_label); 766 if (rval < 0) { 767 return (rval); 768 } 769 770 /* find the last physically non-zero partition */ 771 for (i = 0; i < efi_label->efi_nparts - 2; i ++) { 772 if (pl_start < efi_label->efi_parts[i].p_start) { 773 pl_start = efi_label->efi_parts[i].p_start; 774 phy_last_slice = i; 775 } 776 } 777 pl_size = efi_label->efi_parts[phy_last_slice].p_size; 778 779 /* 780 * If alter_lba is 1, we are using the backup label. 781 * Since we can locate the backup label by disk capacity, 782 * there must be no unallocated space. 783 */ 784 if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba 785 >= efi_label->efi_last_lba)) { 786 if (efi_debug) { 787 (void) fprintf(stderr, 788 "efi_use_whole_disk: requested space not found\n"); 789 } 790 efi_free(efi_label); 791 return (VT_ENOSPC); 792 } 793 794 /* 795 * If there is space between the last physically non-zero partition 796 * and the reserved partition, just add the unallocated space to this 797 * area. Otherwise, the unallocated space is added to the last 798 * physically non-zero partition. 799 */ 800 if (pl_start + pl_size - 1 == efi_label->efi_last_u_lba - 801 EFI_MIN_RESV_SIZE) { 802 efi_label->efi_parts[phy_last_slice].p_size += 803 efi_label->efi_last_lba - efi_label->efi_altern_lba; 804 } 805 806 /* 807 * Move the reserved partition. There is currently no data in 808 * here except fabricated devids (which get generated via 809 * efi_write()). So there is no need to copy data. 810 */ 811 efi_label->efi_parts[efi_label->efi_nparts - 1].p_start += 812 efi_label->efi_last_lba - efi_label->efi_altern_lba; 813 efi_label->efi_last_u_lba += efi_label->efi_last_lba 814 - efi_label->efi_altern_lba; 815 816 rval = efi_write(fd, efi_label); 817 if (rval < 0) { 818 if (efi_debug) { 819 (void) fprintf(stderr, 820 "efi_use_whole_disk:fail to write label, rval=%d\n", 821 rval); 822 } 823 efi_free(efi_label); 824 return (rval); 825 } 826 827 efi_free(efi_label); 828 return (0); 829 } 830 831 832 /* 833 * write EFI label and backup label 834 */ 835 int 836 efi_write(int fd, struct dk_gpt *vtoc) 837 { 838 dk_efi_t dk_ioc; 839 efi_gpt_t *efi; 840 efi_gpe_t *efi_parts; 841 int i, j; 842 struct dk_cinfo dki_info; 843 int md_flag = 0; 844 int nblocks; 845 diskaddr_t lba_backup_gpt_hdr; 846 847 if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) { 848 if (efi_debug) 849 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno); 850 switch (errno) { 851 case EIO: 852 return (VT_EIO); 853 case EINVAL: 854 return (VT_EINVAL); 855 default: 856 return (VT_ERROR); 857 } 858 } 859 860 /* check if we are dealing wih a metadevice */ 861 if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) && 862 (strncmp(dki_info.dki_dname, "md", 3) == 0)) { 863 md_flag = 1; 864 } 865 866 if (check_input(vtoc)) { 867 /* 868 * not valid; if it's a metadevice just pass it down 869 * because SVM will do its own checking 870 */ 871 if (md_flag == 0) { 872 return (VT_EINVAL); 873 } 874 } 875 876 dk_ioc.dki_lba = 1; 877 if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) { 878 dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize; 879 } else { 880 dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts, 881 vtoc->efi_lbasize) * 882 vtoc->efi_lbasize; 883 } 884 885 /* 886 * the number of blocks occupied by GUID partition entry array 887 */ 888 nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1; 889 890 /* 891 * Backup GPT header is located on the block after GUID 892 * partition entry array. Here, we calculate the address 893 * for backup GPT header. 894 */ 895 lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks; 896 if ((dk_ioc.dki_data = calloc(dk_ioc.dki_length, 1)) == NULL) 897 return (VT_ERROR); 898 899 efi = dk_ioc.dki_data; 900 901 /* stuff user's input into EFI struct */ 902 efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE); 903 efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */ 904 efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt)); 905 efi->efi_gpt_Reserved1 = 0; 906 efi->efi_gpt_MyLBA = LE_64(1ULL); 907 efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr); 908 efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba); 909 efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba); 910 efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL); 911 efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts); 912 efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe)); 913 UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid); 914 915 /* LINTED -- always longlong aligned */ 916 efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize); 917 918 for (i = 0; i < vtoc->efi_nparts; i++) { 919 for (j = 0; 920 j < sizeof (conversion_array) / 921 sizeof (struct uuid_to_ptag); j++) { 922 923 if (vtoc->efi_parts[i].p_tag == j) { 924 UUID_LE_CONVERT( 925 efi_parts[i].efi_gpe_PartitionTypeGUID, 926 conversion_array[j].uuid); 927 break; 928 } 929 } 930 931 if (j == sizeof (conversion_array) / 932 sizeof (struct uuid_to_ptag)) { 933 /* 934 * If we didn't have a matching uuid match, bail here. 935 * Don't write a label with unknown uuid. 936 */ 937 if (efi_debug) { 938 (void) fprintf(stderr, 939 "Unknown uuid for p_tag %d\n", 940 vtoc->efi_parts[i].p_tag); 941 } 942 return (VT_EINVAL); 943 } 944 945 efi_parts[i].efi_gpe_StartingLBA = 946 LE_64(vtoc->efi_parts[i].p_start); 947 efi_parts[i].efi_gpe_EndingLBA = 948 LE_64(vtoc->efi_parts[i].p_start + 949 vtoc->efi_parts[i].p_size - 1); 950 efi_parts[i].efi_gpe_Attributes.PartitionAttrs = 951 LE_16(vtoc->efi_parts[i].p_flag); 952 for (j = 0; j < EFI_PART_NAME_LEN; j++) { 953 efi_parts[i].efi_gpe_PartitionName[j] = 954 LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]); 955 } 956 if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) && 957 uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) { 958 (void) uuid_generate((uchar_t *) 959 &vtoc->efi_parts[i].p_uguid); 960 } 961 bcopy(&vtoc->efi_parts[i].p_uguid, 962 &efi_parts[i].efi_gpe_UniquePartitionGUID, 963 sizeof (uuid_t)); 964 } 965 efi->efi_gpt_PartitionEntryArrayCRC32 = 966 LE_32(efi_crc32((unsigned char *)efi_parts, 967 vtoc->efi_nparts * (int)sizeof (struct efi_gpe))); 968 efi->efi_gpt_HeaderCRC32 = 969 LE_32(efi_crc32((unsigned char *)efi, sizeof (struct efi_gpt))); 970 971 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 972 free(dk_ioc.dki_data); 973 switch (errno) { 974 case EIO: 975 return (VT_EIO); 976 case EINVAL: 977 return (VT_EINVAL); 978 default: 979 return (VT_ERROR); 980 } 981 } 982 /* if it's a metadevice we're done */ 983 if (md_flag) { 984 free(dk_ioc.dki_data); 985 return (0); 986 } 987 988 /* write backup partition array */ 989 dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1; 990 dk_ioc.dki_length -= vtoc->efi_lbasize; 991 /* LINTED */ 992 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data + 993 vtoc->efi_lbasize); 994 995 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 996 /* 997 * we wrote the primary label okay, so don't fail 998 */ 999 if (efi_debug) { 1000 (void) fprintf(stderr, 1001 "write of backup partitions to block %llu " 1002 "failed, errno %d\n", 1003 vtoc->efi_last_u_lba + 1, 1004 errno); 1005 } 1006 } 1007 /* 1008 * now swap MyLBA and AlternateLBA fields and write backup 1009 * partition table header 1010 */ 1011 dk_ioc.dki_lba = lba_backup_gpt_hdr; 1012 dk_ioc.dki_length = vtoc->efi_lbasize; 1013 /* LINTED */ 1014 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data - 1015 vtoc->efi_lbasize); 1016 efi->efi_gpt_AlternateLBA = LE_64(1ULL); 1017 efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr); 1018 efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1); 1019 efi->efi_gpt_HeaderCRC32 = 0; 1020 efi->efi_gpt_HeaderCRC32 = 1021 LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data, 1022 sizeof (struct efi_gpt))); 1023 1024 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 1025 if (efi_debug) { 1026 (void) fprintf(stderr, 1027 "write of backup header to block %llu failed, " 1028 "errno %d\n", 1029 lba_backup_gpt_hdr, 1030 errno); 1031 } 1032 } 1033 /* write the PMBR */ 1034 (void) write_pmbr(fd, vtoc); 1035 free(dk_ioc.dki_data); 1036 return (0); 1037 } 1038 1039 void 1040 efi_free(struct dk_gpt *ptr) 1041 { 1042 free(ptr); 1043 } 1044 1045 /* 1046 * Input: File descriptor 1047 * Output: 1 if disk has an EFI label, or > 2TB with no VTOC or legacy MBR. 1048 * Otherwise 0. 1049 */ 1050 int 1051 efi_type(int fd) 1052 { 1053 struct vtoc vtoc; 1054 struct extvtoc extvtoc; 1055 1056 if (ioctl(fd, DKIOCGEXTVTOC, &extvtoc) == -1) { 1057 if (errno == ENOTSUP) 1058 return (1); 1059 else if (errno == ENOTTY) { 1060 if (ioctl(fd, DKIOCGVTOC, &vtoc) == -1) 1061 if (errno == ENOTSUP) 1062 return (1); 1063 } 1064 } 1065 return (0); 1066 } 1067 1068 void 1069 efi_err_check(struct dk_gpt *vtoc) 1070 { 1071 int resv_part = -1; 1072 int i, j; 1073 diskaddr_t istart, jstart, isize, jsize, endsect; 1074 int overlap = 0; 1075 1076 /* 1077 * make sure no partitions overlap 1078 */ 1079 for (i = 0; i < vtoc->efi_nparts; i++) { 1080 /* It can't be unassigned and have an actual size */ 1081 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) && 1082 (vtoc->efi_parts[i].p_size != 0)) { 1083 (void) fprintf(stderr, 1084 "partition %d is \"unassigned\" but has a size " 1085 "of %llu\n", i, vtoc->efi_parts[i].p_size); 1086 } 1087 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) { 1088 continue; 1089 } 1090 if (vtoc->efi_parts[i].p_tag == V_RESERVED) { 1091 if (resv_part != -1) { 1092 (void) fprintf(stderr, 1093 "found duplicate reserved partition at " 1094 "%d\n", i); 1095 } 1096 resv_part = i; 1097 if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE) 1098 (void) fprintf(stderr, 1099 "Warning: reserved partition size must " 1100 "be %d sectors\n", EFI_MIN_RESV_SIZE); 1101 } 1102 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) || 1103 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) { 1104 (void) fprintf(stderr, 1105 "Partition %d starts at %llu\n", 1106 i, 1107 vtoc->efi_parts[i].p_start); 1108 (void) fprintf(stderr, 1109 "It must be between %llu and %llu.\n", 1110 vtoc->efi_first_u_lba, 1111 vtoc->efi_last_u_lba); 1112 } 1113 if ((vtoc->efi_parts[i].p_start + 1114 vtoc->efi_parts[i].p_size < 1115 vtoc->efi_first_u_lba) || 1116 (vtoc->efi_parts[i].p_start + 1117 vtoc->efi_parts[i].p_size > 1118 vtoc->efi_last_u_lba + 1)) { 1119 (void) fprintf(stderr, 1120 "Partition %d ends at %llu\n", 1121 i, 1122 vtoc->efi_parts[i].p_start + 1123 vtoc->efi_parts[i].p_size); 1124 (void) fprintf(stderr, 1125 "It must be between %llu and %llu.\n", 1126 vtoc->efi_first_u_lba, 1127 vtoc->efi_last_u_lba); 1128 } 1129 1130 for (j = 0; j < vtoc->efi_nparts; j++) { 1131 isize = vtoc->efi_parts[i].p_size; 1132 jsize = vtoc->efi_parts[j].p_size; 1133 istart = vtoc->efi_parts[i].p_start; 1134 jstart = vtoc->efi_parts[j].p_start; 1135 if ((i != j) && (isize != 0) && (jsize != 0)) { 1136 endsect = jstart + jsize -1; 1137 if ((jstart <= istart) && 1138 (istart <= endsect)) { 1139 if (!overlap) { 1140 (void) fprintf(stderr, 1141 "label error: EFI Labels do not " 1142 "support overlapping partitions\n"); 1143 } 1144 (void) fprintf(stderr, 1145 "Partition %d overlaps partition " 1146 "%d.\n", i, j); 1147 overlap = 1; 1148 } 1149 } 1150 } 1151 } 1152 /* make sure there is a reserved partition */ 1153 if (resv_part == -1) { 1154 (void) fprintf(stderr, 1155 "no reserved partition found\n"); 1156 } 1157 } 1158 1159 /* 1160 * We need to get information necessary to construct a *new* efi 1161 * label type 1162 */ 1163 int 1164 efi_auto_sense(int fd, struct dk_gpt **vtoc) 1165 { 1166 1167 int i; 1168 1169 /* 1170 * Now build the default partition table 1171 */ 1172 if (efi_alloc_and_init(fd, EFI_NUMPAR, vtoc) != 0) { 1173 if (efi_debug) { 1174 (void) fprintf(stderr, "efi_alloc_and_init failed.\n"); 1175 } 1176 return (-1); 1177 } 1178 1179 for (i = 0; i < min((*vtoc)->efi_nparts, V_NUMPAR); i++) { 1180 (*vtoc)->efi_parts[i].p_tag = default_vtoc_map[i].p_tag; 1181 (*vtoc)->efi_parts[i].p_flag = default_vtoc_map[i].p_flag; 1182 (*vtoc)->efi_parts[i].p_start = 0; 1183 (*vtoc)->efi_parts[i].p_size = 0; 1184 } 1185 /* 1186 * Make constants first 1187 * and variable partitions later 1188 */ 1189 1190 /* root partition - s0 128 MB */ 1191 (*vtoc)->efi_parts[0].p_start = 34; 1192 (*vtoc)->efi_parts[0].p_size = 262144; 1193 1194 /* partition - s1 128 MB */ 1195 (*vtoc)->efi_parts[1].p_start = 262178; 1196 (*vtoc)->efi_parts[1].p_size = 262144; 1197 1198 /* partition -s2 is NOT the Backup disk */ 1199 (*vtoc)->efi_parts[2].p_tag = V_UNASSIGNED; 1200 1201 /* partition -s6 /usr partition - HOG */ 1202 (*vtoc)->efi_parts[6].p_start = 524322; 1203 (*vtoc)->efi_parts[6].p_size = (*vtoc)->efi_last_u_lba - 524322 1204 - (1024 * 16); 1205 1206 /* efi reserved partition - s9 16K */ 1207 (*vtoc)->efi_parts[8].p_start = (*vtoc)->efi_last_u_lba - (1024 * 16); 1208 (*vtoc)->efi_parts[8].p_size = (1024 * 16); 1209 (*vtoc)->efi_parts[8].p_tag = V_RESERVED; 1210 return (0); 1211 } 1212