1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <stdio.h> 28 #include <stdlib.h> 29 #include <errno.h> 30 #include <strings.h> 31 #include <unistd.h> 32 #include <uuid/uuid.h> 33 #include <libintl.h> 34 #include <sys/types.h> 35 #include <sys/dkio.h> 36 #include <sys/vtoc.h> 37 #include <sys/mhd.h> 38 #include <sys/param.h> 39 #include <sys/dktp/fdisk.h> 40 #include <sys/efi_partition.h> 41 #include <sys/byteorder.h> 42 #include <sys/ddi.h> 43 44 static struct uuid_to_ptag { 45 struct uuid uuid; 46 } conversion_array[] = { 47 { EFI_UNUSED }, 48 { EFI_BOOT }, 49 { EFI_ROOT }, 50 { EFI_SWAP }, 51 { EFI_USR }, 52 { EFI_BACKUP }, 53 { 0 }, /* STAND is never used */ 54 { EFI_VAR }, 55 { EFI_HOME }, 56 { EFI_ALTSCTR }, 57 { 0 }, /* CACHE (cachefs) is never used */ 58 { EFI_RESERVED }, 59 { EFI_SYSTEM }, 60 { EFI_LEGACY_MBR }, 61 { EFI_RESV3 }, 62 { EFI_RESV4 }, 63 { EFI_MSFT_RESV }, 64 { EFI_DELL_BASIC }, 65 { EFI_DELL_RAID }, 66 { EFI_DELL_SWAP }, 67 { EFI_DELL_LVM }, 68 { EFI_DELL_RESV }, 69 { EFI_AAPL_HFS }, 70 { EFI_AAPL_UFS } 71 }; 72 73 /* 74 * Default vtoc information for non-SVr4 partitions 75 */ 76 struct dk_map2 default_vtoc_map[NDKMAP] = { 77 { V_ROOT, 0 }, /* a - 0 */ 78 { V_SWAP, V_UNMNT }, /* b - 1 */ 79 { V_BACKUP, V_UNMNT }, /* c - 2 */ 80 { V_UNASSIGNED, 0 }, /* d - 3 */ 81 { V_UNASSIGNED, 0 }, /* e - 4 */ 82 { V_UNASSIGNED, 0 }, /* f - 5 */ 83 { V_USR, 0 }, /* g - 6 */ 84 { V_UNASSIGNED, 0 }, /* h - 7 */ 85 86 #if defined(_SUNOS_VTOC_16) 87 88 #if defined(i386) || defined(__amd64) 89 { V_BOOT, V_UNMNT }, /* i - 8 */ 90 { V_ALTSCTR, 0 }, /* j - 9 */ 91 92 #else 93 #error No VTOC format defined. 94 #endif /* defined(i386) */ 95 96 { V_UNASSIGNED, 0 }, /* k - 10 */ 97 { V_UNASSIGNED, 0 }, /* l - 11 */ 98 { V_UNASSIGNED, 0 }, /* m - 12 */ 99 { V_UNASSIGNED, 0 }, /* n - 13 */ 100 { V_UNASSIGNED, 0 }, /* o - 14 */ 101 { V_UNASSIGNED, 0 }, /* p - 15 */ 102 #endif /* defined(_SUNOS_VTOC_16) */ 103 }; 104 105 #ifdef DEBUG 106 int efi_debug = 1; 107 #else 108 int efi_debug = 0; 109 #endif 110 111 extern unsigned int efi_crc32(const unsigned char *, unsigned int); 112 static int efi_read(int, struct dk_gpt *); 113 114 static int 115 read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize) 116 { 117 struct dk_minfo disk_info; 118 119 if ((ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info)) == -1) 120 return (errno); 121 *capacity = disk_info.dki_capacity; 122 *lbsize = disk_info.dki_lbsize; 123 return (0); 124 } 125 126 /* 127 * the number of blocks the EFI label takes up (round up to nearest 128 * block) 129 */ 130 #define NBLOCKS(p, l) (1 + ((((p) * (int)sizeof (efi_gpe_t)) + \ 131 ((l) - 1)) / (l))) 132 /* number of partitions -- limited by what we can malloc */ 133 #define MAX_PARTS ((4294967295UL - sizeof (struct dk_gpt)) / \ 134 sizeof (struct dk_part)) 135 136 int 137 efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc) 138 { 139 diskaddr_t capacity; 140 uint_t lbsize; 141 uint_t nblocks; 142 size_t length; 143 struct dk_gpt *vptr; 144 struct uuid uuid; 145 146 if (read_disk_info(fd, &capacity, &lbsize) != 0) { 147 if (efi_debug) 148 (void) fprintf(stderr, 149 "couldn't read disk information\n"); 150 return (-1); 151 } 152 153 nblocks = NBLOCKS(nparts, lbsize); 154 if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) { 155 /* 16K plus one block for the GPT */ 156 nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1; 157 } 158 159 if (nparts > MAX_PARTS) { 160 if (efi_debug) { 161 (void) fprintf(stderr, 162 "the maximum number of partitions supported is %lu\n", 163 MAX_PARTS); 164 } 165 return (-1); 166 } 167 168 length = sizeof (struct dk_gpt) + 169 sizeof (struct dk_part) * (nparts - 1); 170 171 if ((*vtoc = calloc(length, 1)) == NULL) 172 return (-1); 173 174 vptr = *vtoc; 175 176 vptr->efi_version = EFI_VERSION_CURRENT; 177 vptr->efi_lbasize = lbsize; 178 vptr->efi_nparts = nparts; 179 /* 180 * add one block here for the PMBR; on disks with a 512 byte 181 * block size and 128 or fewer partitions, efi_first_u_lba 182 * should work out to "34" 183 */ 184 vptr->efi_first_u_lba = nblocks + 1; 185 vptr->efi_last_lba = capacity - 1; 186 vptr->efi_altern_lba = capacity -1; 187 vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks; 188 (void) uuid_generate((uchar_t *)&uuid); 189 UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid); 190 return (0); 191 } 192 193 /* 194 * Read EFI - return partition number upon success. 195 */ 196 int 197 efi_alloc_and_read(int fd, struct dk_gpt **vtoc) 198 { 199 int rval; 200 uint32_t nparts; 201 int length; 202 203 /* figure out the number of entries that would fit into 16K */ 204 nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t); 205 length = (int) sizeof (struct dk_gpt) + 206 (int) sizeof (struct dk_part) * (nparts - 1); 207 if ((*vtoc = calloc(length, 1)) == NULL) 208 return (VT_ERROR); 209 210 (*vtoc)->efi_nparts = nparts; 211 rval = efi_read(fd, *vtoc); 212 213 if ((rval == VT_EINVAL) && (*vtoc)->efi_nparts > nparts) { 214 void *tmp; 215 length = (int) sizeof (struct dk_gpt) + 216 (int) sizeof (struct dk_part) * 217 ((*vtoc)->efi_nparts - 1); 218 nparts = (*vtoc)->efi_nparts; 219 if ((tmp = realloc(*vtoc, length)) == NULL) { 220 free (*vtoc); 221 *vtoc = NULL; 222 return (VT_ERROR); 223 } else { 224 *vtoc = tmp; 225 rval = efi_read(fd, *vtoc); 226 } 227 } 228 229 if (rval < 0) { 230 if (efi_debug) { 231 (void) fprintf(stderr, 232 "read of EFI table failed, rval=%d\n", rval); 233 } 234 free (*vtoc); 235 *vtoc = NULL; 236 } 237 238 return (rval); 239 } 240 241 static int 242 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc) 243 { 244 void *data = dk_ioc->dki_data; 245 int error; 246 247 dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data; 248 error = ioctl(fd, cmd, (void *)dk_ioc); 249 dk_ioc->dki_data = data; 250 251 return (error); 252 } 253 254 static int 255 check_label(int fd, dk_efi_t *dk_ioc) 256 { 257 efi_gpt_t *efi; 258 uint_t crc; 259 260 if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) { 261 switch (errno) { 262 case EIO: 263 return (VT_EIO); 264 default: 265 return (VT_ERROR); 266 } 267 } 268 efi = dk_ioc->dki_data; 269 if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) { 270 if (efi_debug) 271 (void) fprintf(stderr, 272 "Bad EFI signature: 0x%llx != 0x%llx\n", 273 (long long)efi->efi_gpt_Signature, 274 (long long)LE_64(EFI_SIGNATURE)); 275 return (VT_EINVAL); 276 } 277 278 /* 279 * check CRC of the header; the size of the header should 280 * never be larger than one block 281 */ 282 crc = efi->efi_gpt_HeaderCRC32; 283 efi->efi_gpt_HeaderCRC32 = 0; 284 285 if (((len_t)LE_32(efi->efi_gpt_HeaderSize) > dk_ioc->dki_length) || 286 crc != LE_32(efi_crc32((unsigned char *)efi, 287 LE_32(efi->efi_gpt_HeaderSize)))) { 288 if (efi_debug) 289 (void) fprintf(stderr, 290 "Bad EFI CRC: 0x%x != 0x%x\n", 291 crc, 292 LE_32(efi_crc32((unsigned char *)efi, 293 sizeof (struct efi_gpt)))); 294 return (VT_EINVAL); 295 } 296 297 return (0); 298 } 299 300 static int 301 efi_read(int fd, struct dk_gpt *vtoc) 302 { 303 int i, j; 304 int label_len; 305 int rval = 0; 306 int md_flag = 0; 307 int vdc_flag = 0; 308 struct dk_minfo disk_info; 309 dk_efi_t dk_ioc; 310 efi_gpt_t *efi; 311 efi_gpe_t *efi_parts; 312 struct dk_cinfo dki_info; 313 uint32_t user_length; 314 boolean_t legacy_label = B_FALSE; 315 316 /* 317 * get the partition number for this file descriptor. 318 */ 319 if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) { 320 if (efi_debug) { 321 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno); 322 } 323 switch (errno) { 324 case EIO: 325 return (VT_EIO); 326 case EINVAL: 327 return (VT_EINVAL); 328 default: 329 return (VT_ERROR); 330 } 331 } 332 if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) && 333 (strncmp(dki_info.dki_dname, "md", 3) == 0)) { 334 md_flag++; 335 } else if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) && 336 (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) { 337 /* 338 * The controller and drive name "vdc" (virtual disk client) 339 * indicates a LDoms virtual disk. 340 */ 341 vdc_flag++; 342 } 343 344 /* get the LBA size */ 345 if (ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) == -1) { 346 if (efi_debug) { 347 (void) fprintf(stderr, 348 "assuming LBA 512 bytes %d\n", 349 errno); 350 } 351 disk_info.dki_lbsize = DEV_BSIZE; 352 } 353 if (disk_info.dki_lbsize == 0) { 354 if (efi_debug) { 355 (void) fprintf(stderr, 356 "efi_read: assuming LBA 512 bytes\n"); 357 } 358 disk_info.dki_lbsize = DEV_BSIZE; 359 } 360 /* 361 * Read the EFI GPT to figure out how many partitions we need 362 * to deal with. 363 */ 364 dk_ioc.dki_lba = 1; 365 if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) { 366 label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize; 367 } else { 368 label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) + 369 disk_info.dki_lbsize; 370 if (label_len % disk_info.dki_lbsize) { 371 /* pad to physical sector size */ 372 label_len += disk_info.dki_lbsize; 373 label_len &= ~(disk_info.dki_lbsize - 1); 374 } 375 } 376 377 if ((dk_ioc.dki_data = calloc(label_len, 1)) == NULL) 378 return (VT_ERROR); 379 380 dk_ioc.dki_length = disk_info.dki_lbsize; 381 user_length = vtoc->efi_nparts; 382 efi = dk_ioc.dki_data; 383 if (md_flag) { 384 dk_ioc.dki_length = label_len; 385 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) { 386 switch (errno) { 387 case EIO: 388 return (VT_EIO); 389 default: 390 return (VT_ERROR); 391 } 392 } 393 } else if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) { 394 /* 395 * No valid label here; try the alternate. Note that here 396 * we just read GPT header and save it into dk_ioc.data, 397 * Later, we will read GUID partition entry array if we 398 * can get valid GPT header. 399 */ 400 401 /* 402 * This is a workaround for legacy systems. In the past, the 403 * last sector of SCSI disk was invisible on x86 platform. At 404 * that time, backup label was saved on the next to the last 405 * sector. It is possible for users to move a disk from previous 406 * solaris system to present system. Here, we attempt to search 407 * legacy backup EFI label first. 408 */ 409 dk_ioc.dki_lba = disk_info.dki_capacity - 2; 410 dk_ioc.dki_length = disk_info.dki_lbsize; 411 rval = check_label(fd, &dk_ioc); 412 if (rval == VT_EINVAL) { 413 /* 414 * we didn't find legacy backup EFI label, try to 415 * search backup EFI label in the last block. 416 */ 417 dk_ioc.dki_lba = disk_info.dki_capacity - 1; 418 dk_ioc.dki_length = disk_info.dki_lbsize; 419 rval = check_label(fd, &dk_ioc); 420 if (rval == 0) { 421 legacy_label = B_TRUE; 422 if (efi_debug) 423 (void) fprintf(stderr, 424 "efi_read: primary label corrupt; " 425 "using EFI backup label located on" 426 " the last block\n"); 427 } 428 } else { 429 if ((efi_debug) && (rval == 0)) 430 (void) fprintf(stderr, "efi_read: primary label" 431 " corrupt; using legacy EFI backup label " 432 " located on the next to last block\n"); 433 } 434 435 if (rval == 0) { 436 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA); 437 vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT; 438 vtoc->efi_nparts = 439 LE_32(efi->efi_gpt_NumberOfPartitionEntries); 440 441 /* 442 * Partition tables are between backup GPT header 443 * table and ParitionEntryLBA (the starting LBA of 444 * the GUID partition entries array). Now that we 445 * already got valid GPT header and saved it in 446 * dk_ioc.dki_data, we try to get GUID partition 447 * entry array here. 448 */ 449 dk_ioc.dki_data++; 450 if (legacy_label) 451 dk_ioc.dki_length = disk_info.dki_capacity - 1 - 452 dk_ioc.dki_lba; 453 else 454 dk_ioc.dki_length = disk_info.dki_capacity - 2 - 455 dk_ioc.dki_lba; 456 dk_ioc.dki_length *= disk_info.dki_lbsize; 457 if (dk_ioc.dki_length > 458 ((len_t)label_len - sizeof (*dk_ioc.dki_data))) { 459 rval = VT_EINVAL; 460 } else { 461 /* 462 * read GUID partition entry array 463 */ 464 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc); 465 } 466 } 467 468 } else if (rval == 0) { 469 470 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA); 471 dk_ioc.dki_data++; 472 dk_ioc.dki_length = label_len - disk_info.dki_lbsize; 473 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc); 474 475 } else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) { 476 /* 477 * When the device is a LDoms virtual disk, the DKIOCGETEFI 478 * ioctl can fail with EINVAL if the virtual disk backend 479 * is a ZFS volume serviced by a domain running an old version 480 * of Solaris. This is because the DKIOCGETEFI ioctl was 481 * initially incorrectly implemented for a ZFS volume and it 482 * expected the GPT and GPE to be retrieved with a single ioctl. 483 * So we try to read the GPT and the GPE using that old style 484 * ioctl. 485 */ 486 dk_ioc.dki_lba = 1; 487 dk_ioc.dki_length = label_len; 488 rval = check_label(fd, &dk_ioc); 489 } 490 491 if (rval < 0) { 492 free(efi); 493 return (rval); 494 } 495 496 /* LINTED -- always longlong aligned */ 497 efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize); 498 499 /* 500 * Assemble this into a "dk_gpt" struct for easier 501 * digestibility by applications. 502 */ 503 vtoc->efi_version = LE_32(efi->efi_gpt_Revision); 504 vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries); 505 vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry); 506 vtoc->efi_lbasize = disk_info.dki_lbsize; 507 vtoc->efi_last_lba = disk_info.dki_capacity - 1; 508 vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA); 509 vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA); 510 vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA); 511 UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID); 512 513 /* 514 * If the array the user passed in is too small, set the length 515 * to what it needs to be and return 516 */ 517 if (user_length < vtoc->efi_nparts) { 518 return (VT_EINVAL); 519 } 520 521 for (i = 0; i < vtoc->efi_nparts; i++) { 522 523 UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid, 524 efi_parts[i].efi_gpe_PartitionTypeGUID); 525 526 for (j = 0; 527 j < sizeof (conversion_array) 528 / sizeof (struct uuid_to_ptag); j++) { 529 530 if (bcmp(&vtoc->efi_parts[i].p_guid, 531 &conversion_array[j].uuid, 532 sizeof (struct uuid)) == 0) { 533 vtoc->efi_parts[i].p_tag = j; 534 break; 535 } 536 } 537 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) 538 continue; 539 vtoc->efi_parts[i].p_flag = 540 LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs); 541 vtoc->efi_parts[i].p_start = 542 LE_64(efi_parts[i].efi_gpe_StartingLBA); 543 vtoc->efi_parts[i].p_size = 544 LE_64(efi_parts[i].efi_gpe_EndingLBA) - 545 vtoc->efi_parts[i].p_start + 1; 546 for (j = 0; j < EFI_PART_NAME_LEN; j++) { 547 vtoc->efi_parts[i].p_name[j] = 548 (uchar_t)LE_16( 549 efi_parts[i].efi_gpe_PartitionName[j]); 550 } 551 552 UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid, 553 efi_parts[i].efi_gpe_UniquePartitionGUID); 554 } 555 free(efi); 556 557 return (dki_info.dki_partition); 558 } 559 560 /* writes a "protective" MBR */ 561 static int 562 write_pmbr(int fd, struct dk_gpt *vtoc) 563 { 564 dk_efi_t dk_ioc; 565 struct mboot mb; 566 uchar_t *cp; 567 diskaddr_t size_in_lba; 568 569 /* 570 * Preserve any boot code and disk signature if the first block is 571 * already an MBR. 572 */ 573 dk_ioc.dki_lba = 0; 574 dk_ioc.dki_length = sizeof (mb); 575 /* LINTED -- always longlong aligned */ 576 dk_ioc.dki_data = (efi_gpt_t *)&mb; 577 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1 || 578 mb.signature != LE_16(MBB_MAGIC)) { 579 bzero(&mb, sizeof (mb)); 580 mb.signature = LE_16(MBB_MAGIC); 581 } 582 bzero(&mb.parts, sizeof (mb.parts)); 583 cp = (uchar_t *)&mb.parts[0]; 584 /* bootable or not */ 585 *cp++ = 0; 586 /* beginning CHS; 0xffffff if not representable */ 587 *cp++ = 0xff; 588 *cp++ = 0xff; 589 *cp++ = 0xff; 590 /* OS type */ 591 *cp++ = EFI_PMBR; 592 /* ending CHS; 0xffffff if not representable */ 593 *cp++ = 0xff; 594 *cp++ = 0xff; 595 *cp++ = 0xff; 596 /* starting LBA: 1 (little endian format) by EFI definition */ 597 *cp++ = 0x01; 598 *cp++ = 0x00; 599 *cp++ = 0x00; 600 *cp++ = 0x00; 601 /* ending LBA: last block on the disk (little endian format) */ 602 size_in_lba = vtoc->efi_last_lba; 603 if (size_in_lba < 0xffffffff) { 604 *cp++ = (size_in_lba & 0x000000ff); 605 *cp++ = (size_in_lba & 0x0000ff00) >> 8; 606 *cp++ = (size_in_lba & 0x00ff0000) >> 16; 607 *cp++ = (size_in_lba & 0xff000000) >> 24; 608 } else { 609 *cp++ = 0xff; 610 *cp++ = 0xff; 611 *cp++ = 0xff; 612 *cp++ = 0xff; 613 } 614 /* LINTED -- always longlong aligned */ 615 dk_ioc.dki_data = (efi_gpt_t *)&mb; 616 dk_ioc.dki_lba = 0; 617 dk_ioc.dki_length = sizeof (mb); 618 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 619 switch (errno) { 620 case EIO: 621 return (VT_EIO); 622 case EINVAL: 623 return (VT_EINVAL); 624 default: 625 return (VT_ERROR); 626 } 627 } 628 return (0); 629 } 630 631 /* make sure the user specified something reasonable */ 632 static int 633 check_input(struct dk_gpt *vtoc) 634 { 635 int resv_part = -1; 636 int i, j; 637 diskaddr_t istart, jstart, isize, jsize, endsect; 638 639 /* 640 * Sanity-check the input (make sure no partitions overlap) 641 */ 642 for (i = 0; i < vtoc->efi_nparts; i++) { 643 /* It can't be unassigned and have an actual size */ 644 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) && 645 (vtoc->efi_parts[i].p_size != 0)) { 646 if (efi_debug) { 647 (void) fprintf(stderr, 648 "partition %d is \"unassigned\" but has a size of %llu", 649 i, 650 vtoc->efi_parts[i].p_size); 651 } 652 return (VT_EINVAL); 653 } 654 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) { 655 if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid)) 656 continue; 657 /* we have encountered an unknown uuid */ 658 vtoc->efi_parts[i].p_tag = 0xff; 659 } 660 if (vtoc->efi_parts[i].p_tag == V_RESERVED) { 661 if (resv_part != -1) { 662 if (efi_debug) { 663 (void) fprintf(stderr, 664 "found duplicate reserved partition at %d\n", 665 i); 666 } 667 return (VT_EINVAL); 668 } 669 resv_part = i; 670 } 671 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) || 672 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) { 673 if (efi_debug) { 674 (void) fprintf(stderr, 675 "Partition %d starts at %llu. ", 676 i, 677 vtoc->efi_parts[i].p_start); 678 (void) fprintf(stderr, 679 "It must be between %llu and %llu.\n", 680 vtoc->efi_first_u_lba, 681 vtoc->efi_last_u_lba); 682 } 683 return (VT_EINVAL); 684 } 685 if ((vtoc->efi_parts[i].p_start + 686 vtoc->efi_parts[i].p_size < 687 vtoc->efi_first_u_lba) || 688 (vtoc->efi_parts[i].p_start + 689 vtoc->efi_parts[i].p_size > 690 vtoc->efi_last_u_lba + 1)) { 691 if (efi_debug) { 692 (void) fprintf(stderr, 693 "Partition %d ends at %llu. ", 694 i, 695 vtoc->efi_parts[i].p_start + 696 vtoc->efi_parts[i].p_size); 697 (void) fprintf(stderr, 698 "It must be between %llu and %llu.\n", 699 vtoc->efi_first_u_lba, 700 vtoc->efi_last_u_lba); 701 } 702 return (VT_EINVAL); 703 } 704 705 for (j = 0; j < vtoc->efi_nparts; j++) { 706 isize = vtoc->efi_parts[i].p_size; 707 jsize = vtoc->efi_parts[j].p_size; 708 istart = vtoc->efi_parts[i].p_start; 709 jstart = vtoc->efi_parts[j].p_start; 710 if ((i != j) && (isize != 0) && (jsize != 0)) { 711 endsect = jstart + jsize -1; 712 if ((jstart <= istart) && 713 (istart <= endsect)) { 714 if (efi_debug) { 715 (void) fprintf(stderr, 716 "Partition %d overlaps partition %d.", 717 i, j); 718 } 719 return (VT_EINVAL); 720 } 721 } 722 } 723 } 724 /* just a warning for now */ 725 if ((resv_part == -1) && efi_debug) { 726 (void) fprintf(stderr, 727 "no reserved partition found\n"); 728 } 729 return (0); 730 } 731 732 /* 733 * add all the unallocated space to the current label 734 */ 735 int 736 efi_use_whole_disk(int fd) 737 { 738 struct dk_gpt *efi_label; 739 int rval; 740 int i; 741 uint_t phy_last_slice = 0; 742 diskaddr_t pl_start = 0; 743 diskaddr_t pl_size; 744 745 rval = efi_alloc_and_read(fd, &efi_label); 746 if (rval < 0) { 747 return (rval); 748 } 749 750 /* find the last physically non-zero partition */ 751 for (i = 0; i < efi_label->efi_nparts - 2; i ++) { 752 if (pl_start < efi_label->efi_parts[i].p_start) { 753 pl_start = efi_label->efi_parts[i].p_start; 754 phy_last_slice = i; 755 } 756 } 757 pl_size = efi_label->efi_parts[phy_last_slice].p_size; 758 759 /* 760 * If alter_lba is 1, we are using the backup label. 761 * Since we can locate the backup label by disk capacity, 762 * there must be no unallocated space. 763 */ 764 if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba 765 >= efi_label->efi_last_lba)) { 766 if (efi_debug) { 767 (void) fprintf(stderr, 768 "efi_use_whole_disk: requested space not found\n"); 769 } 770 efi_free(efi_label); 771 return (VT_ENOSPC); 772 } 773 774 /* 775 * If there is space between the last physically non-zero partition 776 * and the reserved partition, just add the unallocated space to this 777 * area. Otherwise, the unallocated space is added to the last 778 * physically non-zero partition. 779 */ 780 if (pl_start + pl_size - 1 == efi_label->efi_last_u_lba - 781 EFI_MIN_RESV_SIZE) { 782 efi_label->efi_parts[phy_last_slice].p_size += 783 efi_label->efi_last_lba - efi_label->efi_altern_lba; 784 } 785 786 /* 787 * Move the reserved partition. There is currently no data in 788 * here except fabricated devids (which get generated via 789 * efi_write()). So there is no need to copy data. 790 */ 791 efi_label->efi_parts[efi_label->efi_nparts - 1].p_start += 792 efi_label->efi_last_lba - efi_label->efi_altern_lba; 793 efi_label->efi_last_u_lba += efi_label->efi_last_lba 794 - efi_label->efi_altern_lba; 795 796 rval = efi_write(fd, efi_label); 797 if (rval < 0) { 798 if (efi_debug) { 799 (void) fprintf(stderr, 800 "efi_use_whole_disk:fail to write label, rval=%d\n", 801 rval); 802 } 803 efi_free(efi_label); 804 return (rval); 805 } 806 807 efi_free(efi_label); 808 return (0); 809 } 810 811 812 /* 813 * write EFI label and backup label 814 */ 815 int 816 efi_write(int fd, struct dk_gpt *vtoc) 817 { 818 dk_efi_t dk_ioc; 819 efi_gpt_t *efi; 820 efi_gpe_t *efi_parts; 821 int i, j; 822 struct dk_cinfo dki_info; 823 int md_flag = 0; 824 int nblocks; 825 diskaddr_t lba_backup_gpt_hdr; 826 827 if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) { 828 if (efi_debug) 829 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno); 830 switch (errno) { 831 case EIO: 832 return (VT_EIO); 833 case EINVAL: 834 return (VT_EINVAL); 835 default: 836 return (VT_ERROR); 837 } 838 } 839 840 /* check if we are dealing wih a metadevice */ 841 if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) && 842 (strncmp(dki_info.dki_dname, "md", 3) == 0)) { 843 md_flag = 1; 844 } 845 846 if (check_input(vtoc)) { 847 /* 848 * not valid; if it's a metadevice just pass it down 849 * because SVM will do its own checking 850 */ 851 if (md_flag == 0) { 852 return (VT_EINVAL); 853 } 854 } 855 856 dk_ioc.dki_lba = 1; 857 if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) { 858 dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize; 859 } else { 860 dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts, 861 vtoc->efi_lbasize) * 862 vtoc->efi_lbasize; 863 } 864 865 /* 866 * the number of blocks occupied by GUID partition entry array 867 */ 868 nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1; 869 870 /* 871 * Backup GPT header is located on the block after GUID 872 * partition entry array. Here, we calculate the address 873 * for backup GPT header. 874 */ 875 lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks; 876 877 if ((dk_ioc.dki_data = calloc(dk_ioc.dki_length, 1)) == NULL) 878 return (VT_ERROR); 879 880 efi = dk_ioc.dki_data; 881 882 /* stuff user's input into EFI struct */ 883 efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE); 884 efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */ 885 efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt)); 886 efi->efi_gpt_Reserved1 = 0; 887 efi->efi_gpt_MyLBA = LE_64(1ULL); 888 efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr); 889 efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba); 890 efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba); 891 efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL); 892 efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts); 893 efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe)); 894 UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid); 895 896 /* LINTED -- always longlong aligned */ 897 efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + sizeof (efi_gpt_t)); 898 899 for (i = 0; i < vtoc->efi_nparts; i++) { 900 for (j = 0; 901 j < sizeof (conversion_array) / 902 sizeof (struct uuid_to_ptag); j++) { 903 904 if (vtoc->efi_parts[i].p_tag == j) { 905 UUID_LE_CONVERT( 906 efi_parts[i].efi_gpe_PartitionTypeGUID, 907 conversion_array[j].uuid); 908 break; 909 } 910 } 911 912 if (j == sizeof (conversion_array) / 913 sizeof (struct uuid_to_ptag)) { 914 /* 915 * If we didn't have a matching uuid match, bail here. 916 * Don't write a label with unknown uuid. 917 */ 918 if (efi_debug) { 919 (void) fprintf(stderr, 920 "Unknown uuid for p_tag %d\n", 921 vtoc->efi_parts[i].p_tag); 922 } 923 return (VT_EINVAL); 924 } 925 926 efi_parts[i].efi_gpe_StartingLBA = 927 LE_64(vtoc->efi_parts[i].p_start); 928 efi_parts[i].efi_gpe_EndingLBA = 929 LE_64(vtoc->efi_parts[i].p_start + 930 vtoc->efi_parts[i].p_size - 1); 931 efi_parts[i].efi_gpe_Attributes.PartitionAttrs = 932 LE_16(vtoc->efi_parts[i].p_flag); 933 for (j = 0; j < EFI_PART_NAME_LEN; j++) { 934 efi_parts[i].efi_gpe_PartitionName[j] = 935 LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]); 936 } 937 if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) && 938 uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) { 939 (void) uuid_generate((uchar_t *) 940 &vtoc->efi_parts[i].p_uguid); 941 } 942 bcopy(&vtoc->efi_parts[i].p_uguid, 943 &efi_parts[i].efi_gpe_UniquePartitionGUID, 944 sizeof (uuid_t)); 945 } 946 efi->efi_gpt_PartitionEntryArrayCRC32 = 947 LE_32(efi_crc32((unsigned char *)efi_parts, 948 vtoc->efi_nparts * (int)sizeof (struct efi_gpe))); 949 efi->efi_gpt_HeaderCRC32 = 950 LE_32(efi_crc32((unsigned char *)efi, sizeof (struct efi_gpt))); 951 952 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 953 free(dk_ioc.dki_data); 954 switch (errno) { 955 case EIO: 956 return (VT_EIO); 957 case EINVAL: 958 return (VT_EINVAL); 959 default: 960 return (VT_ERROR); 961 } 962 } 963 /* if it's a metadevice we're done */ 964 if (md_flag) { 965 free(dk_ioc.dki_data); 966 return (0); 967 } 968 /* write backup partition array */ 969 dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1; 970 dk_ioc.dki_length -= vtoc->efi_lbasize; 971 dk_ioc.dki_data++; 972 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 973 /* 974 * we wrote the primary label okay, so don't fail 975 */ 976 if (efi_debug) { 977 (void) fprintf(stderr, 978 "write of backup partitions to block %llu " 979 "failed, errno %d\n", 980 vtoc->efi_last_u_lba + 1, 981 errno); 982 } 983 } 984 /* 985 * now swap MyLBA and AlternateLBA fields and write backup 986 * partition table header 987 */ 988 dk_ioc.dki_lba = lba_backup_gpt_hdr; 989 dk_ioc.dki_length = vtoc->efi_lbasize; 990 dk_ioc.dki_data--; 991 efi->efi_gpt_AlternateLBA = LE_64(1ULL); 992 efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr); 993 efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1); 994 efi->efi_gpt_HeaderCRC32 = 0; 995 efi->efi_gpt_HeaderCRC32 = 996 LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data, 997 sizeof (struct efi_gpt))); 998 999 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 1000 if (efi_debug) { 1001 (void) fprintf(stderr, 1002 "write of backup header to block %llu failed, " 1003 "errno %d\n", 1004 lba_backup_gpt_hdr, 1005 errno); 1006 } 1007 } 1008 /* write the PMBR */ 1009 (void) write_pmbr(fd, vtoc); 1010 free(dk_ioc.dki_data); 1011 return (0); 1012 } 1013 1014 void 1015 efi_free(struct dk_gpt *ptr) 1016 { 1017 free(ptr); 1018 } 1019 1020 /* 1021 * Input: File descriptor 1022 * Output: 1 if disk has an EFI label, or > 2TB with no VTOC or legacy MBR. 1023 * Otherwise 0. 1024 */ 1025 int 1026 efi_type(int fd) 1027 { 1028 struct vtoc vtoc; 1029 struct extvtoc extvtoc; 1030 1031 if (ioctl(fd, DKIOCGEXTVTOC, &extvtoc) == -1) { 1032 if (errno == ENOTSUP) 1033 return (1); 1034 else if (errno == ENOTTY) { 1035 if (ioctl(fd, DKIOCGVTOC, &vtoc) == -1) 1036 if (errno == ENOTSUP) 1037 return (1); 1038 } 1039 } 1040 return (0); 1041 } 1042 1043 void 1044 efi_err_check(struct dk_gpt *vtoc) 1045 { 1046 int resv_part = -1; 1047 int i, j; 1048 diskaddr_t istart, jstart, isize, jsize, endsect; 1049 int overlap = 0; 1050 1051 /* 1052 * make sure no partitions overlap 1053 */ 1054 for (i = 0; i < vtoc->efi_nparts; i++) { 1055 /* It can't be unassigned and have an actual size */ 1056 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) && 1057 (vtoc->efi_parts[i].p_size != 0)) { 1058 (void) fprintf(stderr, 1059 "partition %d is \"unassigned\" but has a size " 1060 "of %llu\n", i, vtoc->efi_parts[i].p_size); 1061 } 1062 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) { 1063 continue; 1064 } 1065 if (vtoc->efi_parts[i].p_tag == V_RESERVED) { 1066 if (resv_part != -1) { 1067 (void) fprintf(stderr, 1068 "found duplicate reserved partition at " 1069 "%d\n", i); 1070 } 1071 resv_part = i; 1072 if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE) 1073 (void) fprintf(stderr, 1074 "Warning: reserved partition size must " 1075 "be %d sectors\n", EFI_MIN_RESV_SIZE); 1076 } 1077 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) || 1078 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) { 1079 (void) fprintf(stderr, 1080 "Partition %d starts at %llu\n", 1081 i, 1082 vtoc->efi_parts[i].p_start); 1083 (void) fprintf(stderr, 1084 "It must be between %llu and %llu.\n", 1085 vtoc->efi_first_u_lba, 1086 vtoc->efi_last_u_lba); 1087 } 1088 if ((vtoc->efi_parts[i].p_start + 1089 vtoc->efi_parts[i].p_size < 1090 vtoc->efi_first_u_lba) || 1091 (vtoc->efi_parts[i].p_start + 1092 vtoc->efi_parts[i].p_size > 1093 vtoc->efi_last_u_lba + 1)) { 1094 (void) fprintf(stderr, 1095 "Partition %d ends at %llu\n", 1096 i, 1097 vtoc->efi_parts[i].p_start + 1098 vtoc->efi_parts[i].p_size); 1099 (void) fprintf(stderr, 1100 "It must be between %llu and %llu.\n", 1101 vtoc->efi_first_u_lba, 1102 vtoc->efi_last_u_lba); 1103 } 1104 1105 for (j = 0; j < vtoc->efi_nparts; j++) { 1106 isize = vtoc->efi_parts[i].p_size; 1107 jsize = vtoc->efi_parts[j].p_size; 1108 istart = vtoc->efi_parts[i].p_start; 1109 jstart = vtoc->efi_parts[j].p_start; 1110 if ((i != j) && (isize != 0) && (jsize != 0)) { 1111 endsect = jstart + jsize -1; 1112 if ((jstart <= istart) && 1113 (istart <= endsect)) { 1114 if (!overlap) { 1115 (void) fprintf(stderr, 1116 "label error: EFI Labels do not " 1117 "support overlapping partitions\n"); 1118 } 1119 (void) fprintf(stderr, 1120 "Partition %d overlaps partition " 1121 "%d.\n", i, j); 1122 overlap = 1; 1123 } 1124 } 1125 } 1126 } 1127 /* make sure there is a reserved partition */ 1128 if (resv_part == -1) { 1129 (void) fprintf(stderr, 1130 "no reserved partition found\n"); 1131 } 1132 } 1133 1134 /* 1135 * We need to get information necessary to construct a *new* efi 1136 * label type 1137 */ 1138 int 1139 efi_auto_sense(int fd, struct dk_gpt **vtoc) 1140 { 1141 1142 int i; 1143 1144 /* 1145 * Now build the default partition table 1146 */ 1147 if (efi_alloc_and_init(fd, EFI_NUMPAR, vtoc) != 0) { 1148 if (efi_debug) { 1149 (void) fprintf(stderr, "efi_alloc_and_init failed.\n"); 1150 } 1151 return (-1); 1152 } 1153 1154 for (i = 0; i < min((*vtoc)->efi_nparts, V_NUMPAR); i++) { 1155 (*vtoc)->efi_parts[i].p_tag = default_vtoc_map[i].p_tag; 1156 (*vtoc)->efi_parts[i].p_flag = default_vtoc_map[i].p_flag; 1157 (*vtoc)->efi_parts[i].p_start = 0; 1158 (*vtoc)->efi_parts[i].p_size = 0; 1159 } 1160 /* 1161 * Make constants first 1162 * and variable partitions later 1163 */ 1164 1165 /* root partition - s0 128 MB */ 1166 (*vtoc)->efi_parts[0].p_start = 34; 1167 (*vtoc)->efi_parts[0].p_size = 262144; 1168 1169 /* partition - s1 128 MB */ 1170 (*vtoc)->efi_parts[1].p_start = 262178; 1171 (*vtoc)->efi_parts[1].p_size = 262144; 1172 1173 /* partition -s2 is NOT the Backup disk */ 1174 (*vtoc)->efi_parts[2].p_tag = V_UNASSIGNED; 1175 1176 /* partition -s6 /usr partition - HOG */ 1177 (*vtoc)->efi_parts[6].p_start = 524322; 1178 (*vtoc)->efi_parts[6].p_size = (*vtoc)->efi_last_u_lba - 524322 1179 - (1024 * 16); 1180 1181 /* efi reserved partition - s9 16K */ 1182 (*vtoc)->efi_parts[8].p_start = (*vtoc)->efi_last_u_lba - (1024 * 16); 1183 (*vtoc)->efi_parts[8].p_size = (1024 * 16); 1184 (*vtoc)->efi_parts[8].p_tag = V_RESERVED; 1185 return (0); 1186 } 1187