1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <stdio.h> 28 #include <stdlib.h> 29 #include <errno.h> 30 #include <strings.h> 31 #include <unistd.h> 32 #include <uuid/uuid.h> 33 #include <libintl.h> 34 #include <sys/types.h> 35 #include <sys/dkio.h> 36 #include <sys/vtoc.h> 37 #include <sys/mhd.h> 38 #include <sys/param.h> 39 #include <sys/dktp/fdisk.h> 40 #include <sys/efi_partition.h> 41 #include <sys/byteorder.h> 42 #include <sys/ddi.h> 43 44 static struct uuid_to_ptag { 45 struct uuid uuid; 46 } conversion_array[] = { 47 { EFI_UNUSED }, 48 { EFI_BOOT }, 49 { EFI_ROOT }, 50 { EFI_SWAP }, 51 { EFI_USR }, 52 { EFI_BACKUP }, 53 { 0 }, /* STAND is never used */ 54 { EFI_VAR }, 55 { EFI_HOME }, 56 { EFI_ALTSCTR }, 57 { 0 }, /* CACHE (cachefs) is never used */ 58 { EFI_RESERVED }, 59 { EFI_SYSTEM }, 60 { EFI_LEGACY_MBR }, 61 { EFI_RESV3 }, 62 { EFI_RESV4 }, 63 { EFI_MSFT_RESV }, 64 { EFI_DELL_BASIC }, 65 { EFI_DELL_RAID }, 66 { EFI_DELL_SWAP }, 67 { EFI_DELL_LVM }, 68 { EFI_DELL_RESV }, 69 { EFI_AAPL_HFS }, 70 { EFI_AAPL_UFS } 71 }; 72 73 /* 74 * Default vtoc information for non-SVr4 partitions 75 */ 76 struct dk_map2 default_vtoc_map[NDKMAP] = { 77 { V_ROOT, 0 }, /* a - 0 */ 78 { V_SWAP, V_UNMNT }, /* b - 1 */ 79 { V_BACKUP, V_UNMNT }, /* c - 2 */ 80 { V_UNASSIGNED, 0 }, /* d - 3 */ 81 { V_UNASSIGNED, 0 }, /* e - 4 */ 82 { V_UNASSIGNED, 0 }, /* f - 5 */ 83 { V_USR, 0 }, /* g - 6 */ 84 { V_UNASSIGNED, 0 }, /* h - 7 */ 85 86 #if defined(_SUNOS_VTOC_16) 87 88 #if defined(i386) || defined(__amd64) 89 { V_BOOT, V_UNMNT }, /* i - 8 */ 90 { V_ALTSCTR, 0 }, /* j - 9 */ 91 92 #else 93 #error No VTOC format defined. 94 #endif /* defined(i386) */ 95 96 { V_UNASSIGNED, 0 }, /* k - 10 */ 97 { V_UNASSIGNED, 0 }, /* l - 11 */ 98 { V_UNASSIGNED, 0 }, /* m - 12 */ 99 { V_UNASSIGNED, 0 }, /* n - 13 */ 100 { V_UNASSIGNED, 0 }, /* o - 14 */ 101 { V_UNASSIGNED, 0 }, /* p - 15 */ 102 #endif /* defined(_SUNOS_VTOC_16) */ 103 }; 104 105 #ifdef DEBUG 106 int efi_debug = 1; 107 #else 108 int efi_debug = 0; 109 #endif 110 111 extern unsigned int efi_crc32(const unsigned char *, unsigned int); 112 static int efi_read(int, struct dk_gpt *); 113 114 static int 115 read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize) 116 { 117 struct dk_minfo disk_info; 118 119 if ((ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info)) == -1) 120 return (errno); 121 *capacity = disk_info.dki_capacity; 122 *lbsize = disk_info.dki_lbsize; 123 return (0); 124 } 125 126 /* 127 * the number of blocks the EFI label takes up (round up to nearest 128 * block) 129 */ 130 #define NBLOCKS(p, l) (1 + ((((p) * (int)sizeof (efi_gpe_t)) + \ 131 ((l) - 1)) / (l))) 132 /* number of partitions -- limited by what we can malloc */ 133 #define MAX_PARTS ((4294967295UL - sizeof (struct dk_gpt)) / \ 134 sizeof (struct dk_part)) 135 136 int 137 efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc) 138 { 139 diskaddr_t capacity; 140 uint_t lbsize; 141 uint_t nblocks; 142 size_t length; 143 struct dk_gpt *vptr; 144 struct uuid uuid; 145 146 if (read_disk_info(fd, &capacity, &lbsize) != 0) { 147 if (efi_debug) 148 (void) fprintf(stderr, 149 "couldn't read disk information\n"); 150 return (-1); 151 } 152 153 nblocks = NBLOCKS(nparts, lbsize); 154 if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) { 155 /* 16K plus one block for the GPT */ 156 nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1; 157 } 158 159 if (nparts > MAX_PARTS) { 160 if (efi_debug) { 161 (void) fprintf(stderr, 162 "the maximum number of partitions supported is %lu\n", 163 MAX_PARTS); 164 } 165 return (-1); 166 } 167 168 length = sizeof (struct dk_gpt) + 169 sizeof (struct dk_part) * (nparts - 1); 170 171 if ((*vtoc = calloc(length, 1)) == NULL) 172 return (-1); 173 174 vptr = *vtoc; 175 176 vptr->efi_version = EFI_VERSION_CURRENT; 177 vptr->efi_lbasize = lbsize; 178 vptr->efi_nparts = nparts; 179 /* 180 * add one block here for the PMBR; on disks with a 512 byte 181 * block size and 128 or fewer partitions, efi_first_u_lba 182 * should work out to "34" 183 */ 184 vptr->efi_first_u_lba = nblocks + 1; 185 vptr->efi_last_lba = capacity - 1; 186 vptr->efi_altern_lba = capacity -1; 187 vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks; 188 (void) uuid_generate((uchar_t *)&uuid); 189 UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid); 190 return (0); 191 } 192 193 /* 194 * Read EFI - return partition number upon success. 195 */ 196 int 197 efi_alloc_and_read(int fd, struct dk_gpt **vtoc) 198 { 199 int rval; 200 uint32_t nparts; 201 int length; 202 203 /* figure out the number of entries that would fit into 16K */ 204 nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t); 205 length = (int) sizeof (struct dk_gpt) + 206 (int) sizeof (struct dk_part) * (nparts - 1); 207 if ((*vtoc = calloc(length, 1)) == NULL) 208 return (VT_ERROR); 209 210 (*vtoc)->efi_nparts = nparts; 211 rval = efi_read(fd, *vtoc); 212 213 if ((rval == VT_EINVAL) && (*vtoc)->efi_nparts > nparts) { 214 void *tmp; 215 length = (int) sizeof (struct dk_gpt) + 216 (int) sizeof (struct dk_part) * 217 ((*vtoc)->efi_nparts - 1); 218 nparts = (*vtoc)->efi_nparts; 219 if ((tmp = realloc(*vtoc, length)) == NULL) { 220 free (*vtoc); 221 *vtoc = NULL; 222 return (VT_ERROR); 223 } else { 224 *vtoc = tmp; 225 rval = efi_read(fd, *vtoc); 226 } 227 } 228 229 if (rval < 0) { 230 if (efi_debug) { 231 (void) fprintf(stderr, 232 "read of EFI table failed, rval=%d\n", rval); 233 } 234 free (*vtoc); 235 *vtoc = NULL; 236 } 237 238 return (rval); 239 } 240 241 static int 242 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc) 243 { 244 void *data = dk_ioc->dki_data; 245 int error; 246 247 dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data; 248 error = ioctl(fd, cmd, (void *)dk_ioc); 249 dk_ioc->dki_data = data; 250 251 return (error); 252 } 253 254 static int 255 check_label(int fd, dk_efi_t *dk_ioc) 256 { 257 efi_gpt_t *efi; 258 uint_t crc; 259 260 if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) { 261 switch (errno) { 262 case EIO: 263 return (VT_EIO); 264 default: 265 return (VT_ERROR); 266 } 267 } 268 efi = dk_ioc->dki_data; 269 if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) { 270 if (efi_debug) 271 (void) fprintf(stderr, 272 "Bad EFI signature: 0x%llx != 0x%llx\n", 273 (long long)efi->efi_gpt_Signature, 274 (long long)LE_64(EFI_SIGNATURE)); 275 return (VT_EINVAL); 276 } 277 278 /* 279 * check CRC of the header; the size of the header should 280 * never be larger than one block 281 */ 282 crc = efi->efi_gpt_HeaderCRC32; 283 efi->efi_gpt_HeaderCRC32 = 0; 284 285 if (((len_t)LE_32(efi->efi_gpt_HeaderSize) > dk_ioc->dki_length) || 286 crc != LE_32(efi_crc32((unsigned char *)efi, 287 LE_32(efi->efi_gpt_HeaderSize)))) { 288 if (efi_debug) 289 (void) fprintf(stderr, 290 "Bad EFI CRC: 0x%x != 0x%x\n", 291 crc, 292 LE_32(efi_crc32((unsigned char *)efi, 293 sizeof (struct efi_gpt)))); 294 return (VT_EINVAL); 295 } 296 297 return (0); 298 } 299 300 static int 301 efi_read(int fd, struct dk_gpt *vtoc) 302 { 303 int i, j; 304 int label_len; 305 int rval = 0; 306 int md_flag = 0; 307 struct dk_minfo disk_info; 308 dk_efi_t dk_ioc; 309 efi_gpt_t *efi; 310 efi_gpe_t *efi_parts; 311 struct dk_cinfo dki_info; 312 uint32_t user_length; 313 boolean_t legacy_label = B_FALSE; 314 315 /* 316 * get the partition number for this file descriptor. 317 */ 318 if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) { 319 if (efi_debug) { 320 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno); 321 } 322 switch (errno) { 323 case EIO: 324 return (VT_EIO); 325 case EINVAL: 326 return (VT_EINVAL); 327 default: 328 return (VT_ERROR); 329 } 330 } 331 if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) && 332 (strncmp(dki_info.dki_dname, "md", 3) == 0)) { 333 md_flag++; 334 } 335 /* get the LBA size */ 336 if (ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) == -1) { 337 if (efi_debug) { 338 (void) fprintf(stderr, 339 "assuming LBA 512 bytes %d\n", 340 errno); 341 } 342 disk_info.dki_lbsize = DEV_BSIZE; 343 } 344 if (disk_info.dki_lbsize == 0) { 345 if (efi_debug) { 346 (void) fprintf(stderr, 347 "efi_read: assuming LBA 512 bytes\n"); 348 } 349 disk_info.dki_lbsize = DEV_BSIZE; 350 } 351 /* 352 * Read the EFI GPT to figure out how many partitions we need 353 * to deal with. 354 */ 355 dk_ioc.dki_lba = 1; 356 if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) { 357 label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize; 358 } else { 359 label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) + 360 disk_info.dki_lbsize; 361 if (label_len % disk_info.dki_lbsize) { 362 /* pad to physical sector size */ 363 label_len += disk_info.dki_lbsize; 364 label_len &= ~(disk_info.dki_lbsize - 1); 365 } 366 } 367 368 if ((dk_ioc.dki_data = calloc(label_len, 1)) == NULL) 369 return (VT_ERROR); 370 371 dk_ioc.dki_length = disk_info.dki_lbsize; 372 user_length = vtoc->efi_nparts; 373 efi = dk_ioc.dki_data; 374 if (md_flag) { 375 dk_ioc.dki_length = label_len; 376 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) { 377 switch (errno) { 378 case EIO: 379 return (VT_EIO); 380 default: 381 return (VT_ERROR); 382 } 383 } 384 } else if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) { 385 /* 386 * No valid label here; try the alternate. Note that here 387 * we just read GPT header and save it into dk_ioc.data, 388 * Later, we will read GUID partition entry array if we 389 * can get valid GPT header. 390 */ 391 392 /* 393 * This is a workaround for legacy systems. In the past, the 394 * last sector of SCSI disk was invisible on x86 platform. At 395 * that time, backup label was saved on the next to the last 396 * sector. It is possible for users to move a disk from previous 397 * solaris system to present system. Here, we attempt to search 398 * legacy backup EFI label first. 399 */ 400 dk_ioc.dki_lba = disk_info.dki_capacity - 2; 401 dk_ioc.dki_length = disk_info.dki_lbsize; 402 rval = check_label(fd, &dk_ioc); 403 if (rval == VT_EINVAL) { 404 /* 405 * we didn't find legacy backup EFI label, try to 406 * search backup EFI label in the last block. 407 */ 408 dk_ioc.dki_lba = disk_info.dki_capacity - 1; 409 dk_ioc.dki_length = disk_info.dki_lbsize; 410 rval = check_label(fd, &dk_ioc); 411 if (rval == 0) { 412 legacy_label = B_TRUE; 413 if (efi_debug) 414 (void) fprintf(stderr, 415 "efi_read: primary label corrupt; " 416 "using EFI backup label located on" 417 " the last block\n"); 418 } 419 } else { 420 if ((efi_debug) && (rval == 0)) 421 (void) fprintf(stderr, "efi_read: primary label" 422 " corrupt; using legacy EFI backup label " 423 " located on the next to last block\n"); 424 } 425 426 if (rval == 0) { 427 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA); 428 vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT; 429 vtoc->efi_nparts = 430 LE_32(efi->efi_gpt_NumberOfPartitionEntries); 431 432 /* 433 * Partition tables are between backup GPT header 434 * table and ParitionEntryLBA (the starting LBA of 435 * the GUID partition entries array). Now that we 436 * already got valid GPT header and saved it in 437 * dk_ioc.dki_data, we try to get GUID partition 438 * entry array here. 439 */ 440 dk_ioc.dki_data++; 441 if (legacy_label) 442 dk_ioc.dki_length = disk_info.dki_capacity - 1 - 443 dk_ioc.dki_lba; 444 else 445 dk_ioc.dki_length = disk_info.dki_capacity - 2 - 446 dk_ioc.dki_lba; 447 dk_ioc.dki_length *= disk_info.dki_lbsize; 448 if (dk_ioc.dki_length > 449 ((len_t)label_len - sizeof (*dk_ioc.dki_data))) { 450 rval = VT_EINVAL; 451 } else { 452 /* 453 * read GUID partition entry array 454 */ 455 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc); 456 } 457 } 458 } else { 459 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA); 460 dk_ioc.dki_data++; 461 dk_ioc.dki_length = label_len - disk_info.dki_lbsize; 462 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc); 463 } 464 if (rval < 0) { 465 free(efi); 466 return (rval); 467 } 468 469 /* LINTED -- always longlong aligned */ 470 efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize); 471 472 /* 473 * Assemble this into a "dk_gpt" struct for easier 474 * digestibility by applications. 475 */ 476 vtoc->efi_version = LE_32(efi->efi_gpt_Revision); 477 vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries); 478 vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry); 479 vtoc->efi_lbasize = disk_info.dki_lbsize; 480 vtoc->efi_last_lba = disk_info.dki_capacity - 1; 481 vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA); 482 vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA); 483 vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA); 484 UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID); 485 486 /* 487 * If the array the user passed in is too small, set the length 488 * to what it needs to be and return 489 */ 490 if (user_length < vtoc->efi_nparts) { 491 return (VT_EINVAL); 492 } 493 494 for (i = 0; i < vtoc->efi_nparts; i++) { 495 496 UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid, 497 efi_parts[i].efi_gpe_PartitionTypeGUID); 498 499 for (j = 0; 500 j < sizeof (conversion_array) 501 / sizeof (struct uuid_to_ptag); j++) { 502 503 if (bcmp(&vtoc->efi_parts[i].p_guid, 504 &conversion_array[j].uuid, 505 sizeof (struct uuid)) == 0) { 506 vtoc->efi_parts[i].p_tag = j; 507 break; 508 } 509 } 510 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) 511 continue; 512 vtoc->efi_parts[i].p_flag = 513 LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs); 514 vtoc->efi_parts[i].p_start = 515 LE_64(efi_parts[i].efi_gpe_StartingLBA); 516 vtoc->efi_parts[i].p_size = 517 LE_64(efi_parts[i].efi_gpe_EndingLBA) - 518 vtoc->efi_parts[i].p_start + 1; 519 for (j = 0; j < EFI_PART_NAME_LEN; j++) { 520 vtoc->efi_parts[i].p_name[j] = 521 (uchar_t)LE_16( 522 efi_parts[i].efi_gpe_PartitionName[j]); 523 } 524 525 UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid, 526 efi_parts[i].efi_gpe_UniquePartitionGUID); 527 } 528 free(efi); 529 530 return (dki_info.dki_partition); 531 } 532 533 /* writes a "protective" MBR */ 534 static int 535 write_pmbr(int fd, struct dk_gpt *vtoc) 536 { 537 dk_efi_t dk_ioc; 538 struct mboot mb; 539 uchar_t *cp; 540 diskaddr_t size_in_lba; 541 542 /* 543 * Preserve any boot code and disk signature if the first block is 544 * already an MBR. 545 */ 546 dk_ioc.dki_lba = 0; 547 dk_ioc.dki_length = sizeof (mb); 548 /* LINTED -- always longlong aligned */ 549 dk_ioc.dki_data = (efi_gpt_t *)&mb; 550 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1 || 551 mb.signature != LE_16(MBB_MAGIC)) { 552 bzero(&mb, sizeof (mb)); 553 mb.signature = LE_16(MBB_MAGIC); 554 } 555 bzero(&mb.parts, sizeof (mb.parts)); 556 cp = (uchar_t *)&mb.parts[0]; 557 /* bootable or not */ 558 *cp++ = 0; 559 /* beginning CHS; 0xffffff if not representable */ 560 *cp++ = 0xff; 561 *cp++ = 0xff; 562 *cp++ = 0xff; 563 /* OS type */ 564 *cp++ = EFI_PMBR; 565 /* ending CHS; 0xffffff if not representable */ 566 *cp++ = 0xff; 567 *cp++ = 0xff; 568 *cp++ = 0xff; 569 /* starting LBA: 1 (little endian format) by EFI definition */ 570 *cp++ = 0x01; 571 *cp++ = 0x00; 572 *cp++ = 0x00; 573 *cp++ = 0x00; 574 /* ending LBA: last block on the disk (little endian format) */ 575 size_in_lba = vtoc->efi_last_lba; 576 if (size_in_lba < 0xffffffff) { 577 *cp++ = (size_in_lba & 0x000000ff); 578 *cp++ = (size_in_lba & 0x0000ff00) >> 8; 579 *cp++ = (size_in_lba & 0x00ff0000) >> 16; 580 *cp++ = (size_in_lba & 0xff000000) >> 24; 581 } else { 582 *cp++ = 0xff; 583 *cp++ = 0xff; 584 *cp++ = 0xff; 585 *cp++ = 0xff; 586 } 587 /* LINTED -- always longlong aligned */ 588 dk_ioc.dki_data = (efi_gpt_t *)&mb; 589 dk_ioc.dki_lba = 0; 590 dk_ioc.dki_length = sizeof (mb); 591 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 592 switch (errno) { 593 case EIO: 594 return (VT_EIO); 595 case EINVAL: 596 return (VT_EINVAL); 597 default: 598 return (VT_ERROR); 599 } 600 } 601 return (0); 602 } 603 604 /* make sure the user specified something reasonable */ 605 static int 606 check_input(struct dk_gpt *vtoc) 607 { 608 int resv_part = -1; 609 int i, j; 610 diskaddr_t istart, jstart, isize, jsize, endsect; 611 612 /* 613 * Sanity-check the input (make sure no partitions overlap) 614 */ 615 for (i = 0; i < vtoc->efi_nparts; i++) { 616 /* It can't be unassigned and have an actual size */ 617 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) && 618 (vtoc->efi_parts[i].p_size != 0)) { 619 if (efi_debug) { 620 (void) fprintf(stderr, 621 "partition %d is \"unassigned\" but has a size of %llu", 622 i, 623 vtoc->efi_parts[i].p_size); 624 } 625 return (VT_EINVAL); 626 } 627 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) { 628 if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid)) 629 continue; 630 /* we have encountered an unknown uuid */ 631 vtoc->efi_parts[i].p_tag = 0xff; 632 } 633 if (vtoc->efi_parts[i].p_tag == V_RESERVED) { 634 if (resv_part != -1) { 635 if (efi_debug) { 636 (void) fprintf(stderr, 637 "found duplicate reserved partition at %d\n", 638 i); 639 } 640 return (VT_EINVAL); 641 } 642 resv_part = i; 643 } 644 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) || 645 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) { 646 if (efi_debug) { 647 (void) fprintf(stderr, 648 "Partition %d starts at %llu. ", 649 i, 650 vtoc->efi_parts[i].p_start); 651 (void) fprintf(stderr, 652 "It must be between %llu and %llu.\n", 653 vtoc->efi_first_u_lba, 654 vtoc->efi_last_u_lba); 655 } 656 return (VT_EINVAL); 657 } 658 if ((vtoc->efi_parts[i].p_start + 659 vtoc->efi_parts[i].p_size < 660 vtoc->efi_first_u_lba) || 661 (vtoc->efi_parts[i].p_start + 662 vtoc->efi_parts[i].p_size > 663 vtoc->efi_last_u_lba + 1)) { 664 if (efi_debug) { 665 (void) fprintf(stderr, 666 "Partition %d ends at %llu. ", 667 i, 668 vtoc->efi_parts[i].p_start + 669 vtoc->efi_parts[i].p_size); 670 (void) fprintf(stderr, 671 "It must be between %llu and %llu.\n", 672 vtoc->efi_first_u_lba, 673 vtoc->efi_last_u_lba); 674 } 675 return (VT_EINVAL); 676 } 677 678 for (j = 0; j < vtoc->efi_nparts; j++) { 679 isize = vtoc->efi_parts[i].p_size; 680 jsize = vtoc->efi_parts[j].p_size; 681 istart = vtoc->efi_parts[i].p_start; 682 jstart = vtoc->efi_parts[j].p_start; 683 if ((i != j) && (isize != 0) && (jsize != 0)) { 684 endsect = jstart + jsize -1; 685 if ((jstart <= istart) && 686 (istart <= endsect)) { 687 if (efi_debug) { 688 (void) fprintf(stderr, 689 "Partition %d overlaps partition %d.", 690 i, j); 691 } 692 return (VT_EINVAL); 693 } 694 } 695 } 696 } 697 /* just a warning for now */ 698 if ((resv_part == -1) && efi_debug) { 699 (void) fprintf(stderr, 700 "no reserved partition found\n"); 701 } 702 return (0); 703 } 704 705 /* 706 * add all the unallocated space to the current label 707 */ 708 int 709 efi_use_whole_disk(int fd) 710 { 711 struct dk_gpt *efi_label; 712 int rval; 713 int i; 714 uint_t phy_last_slice = 0; 715 diskaddr_t pl_start = 0; 716 diskaddr_t pl_size; 717 718 rval = efi_alloc_and_read(fd, &efi_label); 719 if (rval < 0) { 720 return (rval); 721 } 722 723 /* find the last physically non-zero partition */ 724 for (i = 0; i < efi_label->efi_nparts - 2; i ++) { 725 if (pl_start < efi_label->efi_parts[i].p_start) { 726 pl_start = efi_label->efi_parts[i].p_start; 727 phy_last_slice = i; 728 } 729 } 730 pl_size = efi_label->efi_parts[phy_last_slice].p_size; 731 732 /* 733 * If alter_lba is 1, we are using the backup label. 734 * Since we can locate the backup label by disk capacity, 735 * there must be no unallocated space. 736 */ 737 if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba 738 >= efi_label->efi_last_lba)) { 739 if (efi_debug) { 740 (void) fprintf(stderr, 741 "efi_use_whole_disk: requested space not found\n"); 742 } 743 efi_free(efi_label); 744 return (VT_ENOSPC); 745 } 746 747 /* 748 * If there is space between the last physically non-zero partition 749 * and the reserved partition, just add the unallocated space to this 750 * area. Otherwise, the unallocated space is added to the last 751 * physically non-zero partition. 752 */ 753 if (pl_start + pl_size - 1 == efi_label->efi_last_u_lba - 754 EFI_MIN_RESV_SIZE) { 755 efi_label->efi_parts[phy_last_slice].p_size += 756 efi_label->efi_last_lba - efi_label->efi_altern_lba; 757 } 758 759 /* 760 * Move the reserved partition. There is currently no data in 761 * here except fabricated devids (which get generated via 762 * efi_write()). So there is no need to copy data. 763 */ 764 efi_label->efi_parts[efi_label->efi_nparts - 1].p_start += 765 efi_label->efi_last_lba - efi_label->efi_altern_lba; 766 efi_label->efi_last_u_lba += efi_label->efi_last_lba 767 - efi_label->efi_altern_lba; 768 769 rval = efi_write(fd, efi_label); 770 if (rval < 0) { 771 if (efi_debug) { 772 (void) fprintf(stderr, 773 "efi_use_whole_disk:fail to write label, rval=%d\n", 774 rval); 775 } 776 efi_free(efi_label); 777 return (rval); 778 } 779 780 efi_free(efi_label); 781 return (0); 782 } 783 784 785 /* 786 * write EFI label and backup label 787 */ 788 int 789 efi_write(int fd, struct dk_gpt *vtoc) 790 { 791 dk_efi_t dk_ioc; 792 efi_gpt_t *efi; 793 efi_gpe_t *efi_parts; 794 int i, j; 795 struct dk_cinfo dki_info; 796 int md_flag = 0; 797 int nblocks; 798 diskaddr_t lba_backup_gpt_hdr; 799 800 if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) { 801 if (efi_debug) 802 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno); 803 switch (errno) { 804 case EIO: 805 return (VT_EIO); 806 case EINVAL: 807 return (VT_EINVAL); 808 default: 809 return (VT_ERROR); 810 } 811 } 812 813 /* check if we are dealing wih a metadevice */ 814 if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) && 815 (strncmp(dki_info.dki_dname, "md", 3) == 0)) { 816 md_flag = 1; 817 } 818 819 if (check_input(vtoc)) { 820 /* 821 * not valid; if it's a metadevice just pass it down 822 * because SVM will do its own checking 823 */ 824 if (md_flag == 0) { 825 return (VT_EINVAL); 826 } 827 } 828 829 dk_ioc.dki_lba = 1; 830 if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) { 831 dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize; 832 } else { 833 dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts, 834 vtoc->efi_lbasize) * 835 vtoc->efi_lbasize; 836 } 837 838 /* 839 * the number of blocks occupied by GUID partition entry array 840 */ 841 nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1; 842 843 /* 844 * Backup GPT header is located on the block after GUID 845 * partition entry array. Here, we calculate the address 846 * for backup GPT header. 847 */ 848 lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks; 849 850 if ((dk_ioc.dki_data = calloc(dk_ioc.dki_length, 1)) == NULL) 851 return (VT_ERROR); 852 853 efi = dk_ioc.dki_data; 854 855 /* stuff user's input into EFI struct */ 856 efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE); 857 efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */ 858 efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt)); 859 efi->efi_gpt_Reserved1 = 0; 860 efi->efi_gpt_MyLBA = LE_64(1ULL); 861 efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr); 862 efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba); 863 efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba); 864 efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL); 865 efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts); 866 efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe)); 867 UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid); 868 869 /* LINTED -- always longlong aligned */ 870 efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + sizeof (efi_gpt_t)); 871 872 for (i = 0; i < vtoc->efi_nparts; i++) { 873 for (j = 0; 874 j < sizeof (conversion_array) / 875 sizeof (struct uuid_to_ptag); j++) { 876 877 if (vtoc->efi_parts[i].p_tag == j) { 878 UUID_LE_CONVERT( 879 efi_parts[i].efi_gpe_PartitionTypeGUID, 880 conversion_array[j].uuid); 881 break; 882 } 883 } 884 885 if (j == sizeof (conversion_array) / 886 sizeof (struct uuid_to_ptag)) { 887 /* 888 * If we didn't have a matching uuid match, bail here. 889 * Don't write a label with unknown uuid. 890 */ 891 if (efi_debug) { 892 (void) fprintf(stderr, 893 "Unknown uuid for p_tag %d\n", 894 vtoc->efi_parts[i].p_tag); 895 } 896 return (VT_EINVAL); 897 } 898 899 efi_parts[i].efi_gpe_StartingLBA = 900 LE_64(vtoc->efi_parts[i].p_start); 901 efi_parts[i].efi_gpe_EndingLBA = 902 LE_64(vtoc->efi_parts[i].p_start + 903 vtoc->efi_parts[i].p_size - 1); 904 efi_parts[i].efi_gpe_Attributes.PartitionAttrs = 905 LE_16(vtoc->efi_parts[i].p_flag); 906 for (j = 0; j < EFI_PART_NAME_LEN; j++) { 907 efi_parts[i].efi_gpe_PartitionName[j] = 908 LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]); 909 } 910 if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) && 911 uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) { 912 (void) uuid_generate((uchar_t *) 913 &vtoc->efi_parts[i].p_uguid); 914 } 915 bcopy(&vtoc->efi_parts[i].p_uguid, 916 &efi_parts[i].efi_gpe_UniquePartitionGUID, 917 sizeof (uuid_t)); 918 } 919 efi->efi_gpt_PartitionEntryArrayCRC32 = 920 LE_32(efi_crc32((unsigned char *)efi_parts, 921 vtoc->efi_nparts * (int)sizeof (struct efi_gpe))); 922 efi->efi_gpt_HeaderCRC32 = 923 LE_32(efi_crc32((unsigned char *)efi, sizeof (struct efi_gpt))); 924 925 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 926 free(dk_ioc.dki_data); 927 switch (errno) { 928 case EIO: 929 return (VT_EIO); 930 case EINVAL: 931 return (VT_EINVAL); 932 default: 933 return (VT_ERROR); 934 } 935 } 936 /* if it's a metadevice we're done */ 937 if (md_flag) { 938 free(dk_ioc.dki_data); 939 return (0); 940 } 941 /* write backup partition array */ 942 dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1; 943 dk_ioc.dki_length -= vtoc->efi_lbasize; 944 dk_ioc.dki_data++; 945 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 946 /* 947 * we wrote the primary label okay, so don't fail 948 */ 949 if (efi_debug) { 950 (void) fprintf(stderr, 951 "write of backup partitions to block %llu " 952 "failed, errno %d\n", 953 vtoc->efi_last_u_lba + 1, 954 errno); 955 } 956 } 957 /* 958 * now swap MyLBA and AlternateLBA fields and write backup 959 * partition table header 960 */ 961 dk_ioc.dki_lba = lba_backup_gpt_hdr; 962 dk_ioc.dki_length = vtoc->efi_lbasize; 963 dk_ioc.dki_data--; 964 efi->efi_gpt_AlternateLBA = LE_64(1ULL); 965 efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr); 966 efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1); 967 efi->efi_gpt_HeaderCRC32 = 0; 968 efi->efi_gpt_HeaderCRC32 = 969 LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data, 970 sizeof (struct efi_gpt))); 971 972 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 973 if (efi_debug) { 974 (void) fprintf(stderr, 975 "write of backup header to block %llu failed, " 976 "errno %d\n", 977 lba_backup_gpt_hdr, 978 errno); 979 } 980 } 981 /* write the PMBR */ 982 (void) write_pmbr(fd, vtoc); 983 free(dk_ioc.dki_data); 984 return (0); 985 } 986 987 void 988 efi_free(struct dk_gpt *ptr) 989 { 990 free(ptr); 991 } 992 993 /* 994 * Input: File descriptor 995 * Output: 1 if disk has an EFI label, or > 2TB with no VTOC or legacy MBR. 996 * Otherwise 0. 997 */ 998 int 999 efi_type(int fd) 1000 { 1001 struct vtoc vtoc; 1002 struct extvtoc extvtoc; 1003 1004 if (ioctl(fd, DKIOCGEXTVTOC, &extvtoc) == -1) { 1005 if (errno == ENOTSUP) 1006 return (1); 1007 else if (errno == ENOTTY) { 1008 if (ioctl(fd, DKIOCGVTOC, &vtoc) == -1) 1009 if (errno == ENOTSUP) 1010 return (1); 1011 } 1012 } 1013 return (0); 1014 } 1015 1016 void 1017 efi_err_check(struct dk_gpt *vtoc) 1018 { 1019 int resv_part = -1; 1020 int i, j; 1021 diskaddr_t istart, jstart, isize, jsize, endsect; 1022 int overlap = 0; 1023 1024 /* 1025 * make sure no partitions overlap 1026 */ 1027 for (i = 0; i < vtoc->efi_nparts; i++) { 1028 /* It can't be unassigned and have an actual size */ 1029 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) && 1030 (vtoc->efi_parts[i].p_size != 0)) { 1031 (void) fprintf(stderr, 1032 "partition %d is \"unassigned\" but has a size " 1033 "of %llu\n", i, vtoc->efi_parts[i].p_size); 1034 } 1035 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) { 1036 continue; 1037 } 1038 if (vtoc->efi_parts[i].p_tag == V_RESERVED) { 1039 if (resv_part != -1) { 1040 (void) fprintf(stderr, 1041 "found duplicate reserved partition at " 1042 "%d\n", i); 1043 } 1044 resv_part = i; 1045 if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE) 1046 (void) fprintf(stderr, 1047 "Warning: reserved partition size must " 1048 "be %d sectors\n", EFI_MIN_RESV_SIZE); 1049 } 1050 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) || 1051 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) { 1052 (void) fprintf(stderr, 1053 "Partition %d starts at %llu\n", 1054 i, 1055 vtoc->efi_parts[i].p_start); 1056 (void) fprintf(stderr, 1057 "It must be between %llu and %llu.\n", 1058 vtoc->efi_first_u_lba, 1059 vtoc->efi_last_u_lba); 1060 } 1061 if ((vtoc->efi_parts[i].p_start + 1062 vtoc->efi_parts[i].p_size < 1063 vtoc->efi_first_u_lba) || 1064 (vtoc->efi_parts[i].p_start + 1065 vtoc->efi_parts[i].p_size > 1066 vtoc->efi_last_u_lba + 1)) { 1067 (void) fprintf(stderr, 1068 "Partition %d ends at %llu\n", 1069 i, 1070 vtoc->efi_parts[i].p_start + 1071 vtoc->efi_parts[i].p_size); 1072 (void) fprintf(stderr, 1073 "It must be between %llu and %llu.\n", 1074 vtoc->efi_first_u_lba, 1075 vtoc->efi_last_u_lba); 1076 } 1077 1078 for (j = 0; j < vtoc->efi_nparts; j++) { 1079 isize = vtoc->efi_parts[i].p_size; 1080 jsize = vtoc->efi_parts[j].p_size; 1081 istart = vtoc->efi_parts[i].p_start; 1082 jstart = vtoc->efi_parts[j].p_start; 1083 if ((i != j) && (isize != 0) && (jsize != 0)) { 1084 endsect = jstart + jsize -1; 1085 if ((jstart <= istart) && 1086 (istart <= endsect)) { 1087 if (!overlap) { 1088 (void) fprintf(stderr, 1089 "label error: EFI Labels do not " 1090 "support overlapping partitions\n"); 1091 } 1092 (void) fprintf(stderr, 1093 "Partition %d overlaps partition " 1094 "%d.\n", i, j); 1095 overlap = 1; 1096 } 1097 } 1098 } 1099 } 1100 /* make sure there is a reserved partition */ 1101 if (resv_part == -1) { 1102 (void) fprintf(stderr, 1103 "no reserved partition found\n"); 1104 } 1105 } 1106 1107 /* 1108 * We need to get information necessary to construct a *new* efi 1109 * label type 1110 */ 1111 int 1112 efi_auto_sense(int fd, struct dk_gpt **vtoc) 1113 { 1114 1115 int i; 1116 1117 /* 1118 * Now build the default partition table 1119 */ 1120 if (efi_alloc_and_init(fd, EFI_NUMPAR, vtoc) != 0) { 1121 if (efi_debug) { 1122 (void) fprintf(stderr, "efi_alloc_and_init failed.\n"); 1123 } 1124 return (-1); 1125 } 1126 1127 for (i = 0; i < min((*vtoc)->efi_nparts, V_NUMPAR); i++) { 1128 (*vtoc)->efi_parts[i].p_tag = default_vtoc_map[i].p_tag; 1129 (*vtoc)->efi_parts[i].p_flag = default_vtoc_map[i].p_flag; 1130 (*vtoc)->efi_parts[i].p_start = 0; 1131 (*vtoc)->efi_parts[i].p_size = 0; 1132 } 1133 /* 1134 * Make constants first 1135 * and variable partitions later 1136 */ 1137 1138 /* root partition - s0 128 MB */ 1139 (*vtoc)->efi_parts[0].p_start = 34; 1140 (*vtoc)->efi_parts[0].p_size = 262144; 1141 1142 /* partition - s1 128 MB */ 1143 (*vtoc)->efi_parts[1].p_start = 262178; 1144 (*vtoc)->efi_parts[1].p_size = 262144; 1145 1146 /* partition -s2 is NOT the Backup disk */ 1147 (*vtoc)->efi_parts[2].p_tag = V_UNASSIGNED; 1148 1149 /* partition -s6 /usr partition - HOG */ 1150 (*vtoc)->efi_parts[6].p_start = 524322; 1151 (*vtoc)->efi_parts[6].p_size = (*vtoc)->efi_last_u_lba - 524322 1152 - (1024 * 16); 1153 1154 /* efi reserved partition - s9 16K */ 1155 (*vtoc)->efi_parts[8].p_start = (*vtoc)->efi_last_u_lba - (1024 * 16); 1156 (*vtoc)->efi_parts[8].p_size = (1024 * 16); 1157 (*vtoc)->efi_parts[8].p_tag = V_RESERVED; 1158 return (0); 1159 } 1160