xref: /titanic_41/usr/src/lib/libefi/common/rdwr_efi.c (revision 1007fd6fd24227460e77ce89f5ca85641a85a576)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 #include <stdio.h>
27 #include <stdlib.h>
28 #include <errno.h>
29 #include <strings.h>
30 #include <unistd.h>
31 #include <uuid/uuid.h>
32 #include <libintl.h>
33 #include <sys/types.h>
34 #include <sys/dkio.h>
35 #include <sys/vtoc.h>
36 #include <sys/mhd.h>
37 #include <sys/param.h>
38 #include <sys/dktp/fdisk.h>
39 #include <sys/efi_partition.h>
40 #include <sys/byteorder.h>
41 #include <sys/ddi.h>
42 
43 static struct uuid_to_ptag {
44 	struct uuid	uuid;
45 } conversion_array[] = {
46 	{ EFI_UNUSED },
47 	{ EFI_BOOT },
48 	{ EFI_ROOT },
49 	{ EFI_SWAP },
50 	{ EFI_USR },
51 	{ EFI_BACKUP },
52 	{ 0 },			/* STAND is never used */
53 	{ EFI_VAR },
54 	{ EFI_HOME },
55 	{ EFI_ALTSCTR },
56 	{ 0 },			/* CACHE (cachefs) is never used */
57 	{ EFI_RESERVED },
58 	{ EFI_SYSTEM },
59 	{ EFI_LEGACY_MBR },
60 	{ EFI_SYMC_PUB },
61 	{ EFI_SYMC_CDS },
62 	{ EFI_MSFT_RESV },
63 	{ EFI_DELL_BASIC },
64 	{ EFI_DELL_RAID },
65 	{ EFI_DELL_SWAP },
66 	{ EFI_DELL_LVM },
67 	{ EFI_DELL_RESV },
68 	{ EFI_AAPL_HFS },
69 	{ EFI_AAPL_UFS }
70 };
71 
72 /*
73  * Default vtoc information for non-SVr4 partitions
74  */
75 struct dk_map2  default_vtoc_map[NDKMAP] = {
76 	{	V_ROOT,		0	},		/* a - 0 */
77 	{	V_SWAP,		V_UNMNT	},		/* b - 1 */
78 	{	V_BACKUP,	V_UNMNT	},		/* c - 2 */
79 	{	V_UNASSIGNED,	0	},		/* d - 3 */
80 	{	V_UNASSIGNED,	0	},		/* e - 4 */
81 	{	V_UNASSIGNED,	0	},		/* f - 5 */
82 	{	V_USR,		0	},		/* g - 6 */
83 	{	V_UNASSIGNED,	0	},		/* h - 7 */
84 
85 #if defined(_SUNOS_VTOC_16)
86 
87 #if defined(i386) || defined(__amd64)
88 	{	V_BOOT,		V_UNMNT	},		/* i - 8 */
89 	{	V_ALTSCTR,	0	},		/* j - 9 */
90 
91 #else
92 #error No VTOC format defined.
93 #endif			/* defined(i386) */
94 
95 	{	V_UNASSIGNED,	0	},		/* k - 10 */
96 	{	V_UNASSIGNED,	0	},		/* l - 11 */
97 	{	V_UNASSIGNED,	0	},		/* m - 12 */
98 	{	V_UNASSIGNED,	0	},		/* n - 13 */
99 	{	V_UNASSIGNED,	0	},		/* o - 14 */
100 	{	V_UNASSIGNED,	0	},		/* p - 15 */
101 #endif			/* defined(_SUNOS_VTOC_16) */
102 };
103 
104 #ifdef DEBUG
105 int efi_debug = 1;
106 #else
107 int efi_debug = 0;
108 #endif
109 
110 extern unsigned int	efi_crc32(const unsigned char *, unsigned int);
111 static int		efi_read(int, struct dk_gpt *);
112 
113 static int
114 read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize)
115 {
116 	struct dk_minfo		disk_info;
117 
118 	if ((ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info)) == -1)
119 		return (errno);
120 	*capacity = disk_info.dki_capacity;
121 	*lbsize = disk_info.dki_lbsize;
122 	return (0);
123 }
124 
125 /*
126  * the number of blocks the EFI label takes up (round up to nearest
127  * block)
128  */
129 #define	NBLOCKS(p, l)	(1 + ((((p) * (int)sizeof (efi_gpe_t))  + \
130 				((l) - 1)) / (l)))
131 /* number of partitions -- limited by what we can malloc */
132 #define	MAX_PARTS	((4294967295UL - sizeof (struct dk_gpt)) / \
133 			    sizeof (struct dk_part))
134 
135 int
136 efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc)
137 {
138 	diskaddr_t	capacity;
139 	uint_t		lbsize;
140 	uint_t		nblocks;
141 	size_t		length;
142 	struct dk_gpt	*vptr;
143 	struct uuid	uuid;
144 
145 	if (read_disk_info(fd, &capacity, &lbsize) != 0) {
146 		if (efi_debug)
147 			(void) fprintf(stderr,
148 			    "couldn't read disk information\n");
149 		return (-1);
150 	}
151 
152 	nblocks = NBLOCKS(nparts, lbsize);
153 	if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) {
154 		/* 16K plus one block for the GPT */
155 		nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1;
156 	}
157 
158 	if (nparts > MAX_PARTS) {
159 		if (efi_debug) {
160 			(void) fprintf(stderr,
161 			"the maximum number of partitions supported is %lu\n",
162 			    MAX_PARTS);
163 		}
164 		return (-1);
165 	}
166 
167 	length = sizeof (struct dk_gpt) +
168 	    sizeof (struct dk_part) * (nparts - 1);
169 
170 	if ((*vtoc = calloc(length, 1)) == NULL)
171 		return (-1);
172 
173 	vptr = *vtoc;
174 
175 	vptr->efi_version = EFI_VERSION_CURRENT;
176 	vptr->efi_lbasize = lbsize;
177 	vptr->efi_nparts = nparts;
178 	/*
179 	 * add one block here for the PMBR; on disks with a 512 byte
180 	 * block size and 128 or fewer partitions, efi_first_u_lba
181 	 * should work out to "34"
182 	 */
183 	vptr->efi_first_u_lba = nblocks + 1;
184 	vptr->efi_last_lba = capacity - 1;
185 	vptr->efi_altern_lba = capacity -1;
186 	vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks;
187 
188 	(void) uuid_generate((uchar_t *)&uuid);
189 	UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid);
190 	return (0);
191 }
192 
193 /*
194  * Read EFI - return partition number upon success.
195  */
196 int
197 efi_alloc_and_read(int fd, struct dk_gpt **vtoc)
198 {
199 	int			rval;
200 	uint32_t		nparts;
201 	int			length;
202 
203 	/* figure out the number of entries that would fit into 16K */
204 	nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t);
205 	length = (int) sizeof (struct dk_gpt) +
206 	    (int) sizeof (struct dk_part) * (nparts - 1);
207 	if ((*vtoc = calloc(length, 1)) == NULL)
208 		return (VT_ERROR);
209 
210 	(*vtoc)->efi_nparts = nparts;
211 	rval = efi_read(fd, *vtoc);
212 
213 	if ((rval == VT_EINVAL) && (*vtoc)->efi_nparts > nparts) {
214 		void *tmp;
215 		length = (int) sizeof (struct dk_gpt) +
216 		    (int) sizeof (struct dk_part) *
217 		    ((*vtoc)->efi_nparts - 1);
218 		nparts = (*vtoc)->efi_nparts;
219 		if ((tmp = realloc(*vtoc, length)) == NULL) {
220 			free (*vtoc);
221 			*vtoc = NULL;
222 			return (VT_ERROR);
223 		} else {
224 			*vtoc = tmp;
225 			rval = efi_read(fd, *vtoc);
226 		}
227 	}
228 
229 	if (rval < 0) {
230 		if (efi_debug) {
231 			(void) fprintf(stderr,
232 			    "read of EFI table failed, rval=%d\n", rval);
233 		}
234 		free (*vtoc);
235 		*vtoc = NULL;
236 	}
237 
238 	return (rval);
239 }
240 
241 static int
242 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
243 {
244 	void *data = dk_ioc->dki_data;
245 	int error;
246 
247 	dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data;
248 	error = ioctl(fd, cmd, (void *)dk_ioc);
249 	dk_ioc->dki_data = data;
250 
251 	return (error);
252 }
253 
254 static int
255 check_label(int fd, dk_efi_t *dk_ioc)
256 {
257 	efi_gpt_t		*efi;
258 	uint_t			crc;
259 
260 	if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) {
261 		switch (errno) {
262 		case EIO:
263 			return (VT_EIO);
264 		default:
265 			return (VT_ERROR);
266 		}
267 	}
268 	efi = dk_ioc->dki_data;
269 	if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) {
270 		if (efi_debug)
271 			(void) fprintf(stderr,
272 			    "Bad EFI signature: 0x%llx != 0x%llx\n",
273 			    (long long)efi->efi_gpt_Signature,
274 			    (long long)LE_64(EFI_SIGNATURE));
275 		return (VT_EINVAL);
276 	}
277 
278 	/*
279 	 * check CRC of the header; the size of the header should
280 	 * never be larger than one block
281 	 */
282 	crc = efi->efi_gpt_HeaderCRC32;
283 	efi->efi_gpt_HeaderCRC32 = 0;
284 
285 	if (((len_t)LE_32(efi->efi_gpt_HeaderSize) > dk_ioc->dki_length) ||
286 	    crc != LE_32(efi_crc32((unsigned char *)efi,
287 	    LE_32(efi->efi_gpt_HeaderSize)))) {
288 		if (efi_debug)
289 			(void) fprintf(stderr,
290 			    "Bad EFI CRC: 0x%x != 0x%x\n",
291 			    crc,
292 			    LE_32(efi_crc32((unsigned char *)efi,
293 			    sizeof (struct efi_gpt))));
294 		return (VT_EINVAL);
295 	}
296 
297 	return (0);
298 }
299 
300 static int
301 efi_read(int fd, struct dk_gpt *vtoc)
302 {
303 	int			i, j;
304 	int			label_len;
305 	int			rval = 0;
306 	int			md_flag = 0;
307 	int			vdc_flag = 0;
308 	struct dk_minfo		disk_info;
309 	dk_efi_t		dk_ioc;
310 	efi_gpt_t		*efi;
311 	efi_gpe_t		*efi_parts;
312 	struct dk_cinfo		dki_info;
313 	uint32_t		user_length;
314 	boolean_t		legacy_label = B_FALSE;
315 
316 	/*
317 	 * get the partition number for this file descriptor.
318 	 */
319 	if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) {
320 		if (efi_debug) {
321 			(void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
322 		}
323 		switch (errno) {
324 		case EIO:
325 			return (VT_EIO);
326 		case EINVAL:
327 			return (VT_EINVAL);
328 		default:
329 			return (VT_ERROR);
330 		}
331 	}
332 	if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
333 	    (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
334 		md_flag++;
335 	} else if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) &&
336 	    (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) {
337 		/*
338 		 * The controller and drive name "vdc" (virtual disk client)
339 		 * indicates a LDoms virtual disk.
340 		 */
341 		vdc_flag++;
342 	}
343 
344 	/* get the LBA size */
345 	if (ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) == -1) {
346 		if (efi_debug) {
347 			(void) fprintf(stderr,
348 			    "assuming LBA 512 bytes %d\n",
349 			    errno);
350 		}
351 		disk_info.dki_lbsize = DEV_BSIZE;
352 	}
353 	if (disk_info.dki_lbsize == 0) {
354 		if (efi_debug) {
355 			(void) fprintf(stderr,
356 			    "efi_read: assuming LBA 512 bytes\n");
357 		}
358 		disk_info.dki_lbsize = DEV_BSIZE;
359 	}
360 	/*
361 	 * Read the EFI GPT to figure out how many partitions we need
362 	 * to deal with.
363 	 */
364 	dk_ioc.dki_lba = 1;
365 	if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) {
366 		label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize;
367 	} else {
368 		label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) +
369 		    disk_info.dki_lbsize;
370 		if (label_len % disk_info.dki_lbsize) {
371 			/* pad to physical sector size */
372 			label_len += disk_info.dki_lbsize;
373 			label_len &= ~(disk_info.dki_lbsize - 1);
374 		}
375 	}
376 
377 	if ((dk_ioc.dki_data = calloc(label_len, 1)) == NULL)
378 		return (VT_ERROR);
379 
380 	dk_ioc.dki_length = disk_info.dki_lbsize;
381 	user_length = vtoc->efi_nparts;
382 	efi = dk_ioc.dki_data;
383 	if (md_flag) {
384 		dk_ioc.dki_length = label_len;
385 		if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
386 			switch (errno) {
387 			case EIO:
388 				return (VT_EIO);
389 			default:
390 				return (VT_ERROR);
391 			}
392 		}
393 	} else if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) {
394 		/*
395 		 * No valid label here; try the alternate. Note that here
396 		 * we just read GPT header and save it into dk_ioc.data,
397 		 * Later, we will read GUID partition entry array if we
398 		 * can get valid GPT header.
399 		 */
400 
401 		/*
402 		 * This is a workaround for legacy systems. In the past, the
403 		 * last sector of SCSI disk was invisible on x86 platform. At
404 		 * that time, backup label was saved on the next to the last
405 		 * sector. It is possible for users to move a disk from previous
406 		 * solaris system to present system. Here, we attempt to search
407 		 * legacy backup EFI label first.
408 		 */
409 		dk_ioc.dki_lba = disk_info.dki_capacity - 2;
410 		dk_ioc.dki_length = disk_info.dki_lbsize;
411 		rval = check_label(fd, &dk_ioc);
412 		if (rval == VT_EINVAL) {
413 			/*
414 			 * we didn't find legacy backup EFI label, try to
415 			 * search backup EFI label in the last block.
416 			 */
417 			dk_ioc.dki_lba = disk_info.dki_capacity - 1;
418 			dk_ioc.dki_length = disk_info.dki_lbsize;
419 			rval = check_label(fd, &dk_ioc);
420 			if (rval == 0) {
421 				legacy_label = B_TRUE;
422 				if (efi_debug)
423 					(void) fprintf(stderr,
424 					    "efi_read: primary label corrupt; "
425 					    "using EFI backup label located on"
426 					    " the last block\n");
427 			}
428 		} else {
429 			if ((efi_debug) && (rval == 0))
430 				(void) fprintf(stderr, "efi_read: primary label"
431 				    " corrupt; using legacy EFI backup label "
432 				    " located on the next to last block\n");
433 		}
434 
435 		if (rval == 0) {
436 			dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
437 			vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT;
438 			vtoc->efi_nparts =
439 			    LE_32(efi->efi_gpt_NumberOfPartitionEntries);
440 			/*
441 			 * Partition tables are between backup GPT header
442 			 * table and ParitionEntryLBA (the starting LBA of
443 			 * the GUID partition entries array). Now that we
444 			 * already got valid GPT header and saved it in
445 			 * dk_ioc.dki_data, we try to get GUID partition
446 			 * entry array here.
447 			 */
448 			/* LINTED */
449 			dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
450 			    + disk_info.dki_lbsize);
451 			if (legacy_label)
452 				dk_ioc.dki_length = disk_info.dki_capacity - 1 -
453 				    dk_ioc.dki_lba;
454 			else
455 				dk_ioc.dki_length = disk_info.dki_capacity - 2 -
456 				    dk_ioc.dki_lba;
457 			dk_ioc.dki_length *= disk_info.dki_lbsize;
458 			if (dk_ioc.dki_length >
459 			    ((len_t)label_len - sizeof (*dk_ioc.dki_data))) {
460 				rval = VT_EINVAL;
461 			} else {
462 				/*
463 				 * read GUID partition entry array
464 				 */
465 				rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
466 			}
467 		}
468 
469 	} else if (rval == 0) {
470 
471 		dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
472 		/* LINTED */
473 		dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
474 		    + disk_info.dki_lbsize);
475 		dk_ioc.dki_length = label_len - disk_info.dki_lbsize;
476 		rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
477 
478 	} else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) {
479 		/*
480 		 * When the device is a LDoms virtual disk, the DKIOCGETEFI
481 		 * ioctl can fail with EINVAL if the virtual disk backend
482 		 * is a ZFS volume serviced by a domain running an old version
483 		 * of Solaris. This is because the DKIOCGETEFI ioctl was
484 		 * initially incorrectly implemented for a ZFS volume and it
485 		 * expected the GPT and GPE to be retrieved with a single ioctl.
486 		 * So we try to read the GPT and the GPE using that old style
487 		 * ioctl.
488 		 */
489 		dk_ioc.dki_lba = 1;
490 		dk_ioc.dki_length = label_len;
491 		rval = check_label(fd, &dk_ioc);
492 	}
493 
494 	if (rval < 0) {
495 		free(efi);
496 		return (rval);
497 	}
498 
499 	/* LINTED -- always longlong aligned */
500 	efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize);
501 
502 	/*
503 	 * Assemble this into a "dk_gpt" struct for easier
504 	 * digestibility by applications.
505 	 */
506 	vtoc->efi_version = LE_32(efi->efi_gpt_Revision);
507 	vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries);
508 	vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry);
509 	vtoc->efi_lbasize = disk_info.dki_lbsize;
510 	vtoc->efi_last_lba = disk_info.dki_capacity - 1;
511 	vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA);
512 	vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA);
513 	vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA);
514 	UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID);
515 
516 	/*
517 	 * If the array the user passed in is too small, set the length
518 	 * to what it needs to be and return
519 	 */
520 	if (user_length < vtoc->efi_nparts) {
521 		return (VT_EINVAL);
522 	}
523 
524 	for (i = 0; i < vtoc->efi_nparts; i++) {
525 
526 		UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid,
527 		    efi_parts[i].efi_gpe_PartitionTypeGUID);
528 
529 		for (j = 0;
530 		    j < sizeof (conversion_array)
531 		    / sizeof (struct uuid_to_ptag); j++) {
532 
533 			if (bcmp(&vtoc->efi_parts[i].p_guid,
534 			    &conversion_array[j].uuid,
535 			    sizeof (struct uuid)) == 0) {
536 				vtoc->efi_parts[i].p_tag = j;
537 				break;
538 			}
539 		}
540 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
541 			continue;
542 		vtoc->efi_parts[i].p_flag =
543 		    LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs);
544 		vtoc->efi_parts[i].p_start =
545 		    LE_64(efi_parts[i].efi_gpe_StartingLBA);
546 		vtoc->efi_parts[i].p_size =
547 		    LE_64(efi_parts[i].efi_gpe_EndingLBA) -
548 		    vtoc->efi_parts[i].p_start + 1;
549 		for (j = 0; j < EFI_PART_NAME_LEN; j++) {
550 			vtoc->efi_parts[i].p_name[j] =
551 			    (uchar_t)LE_16(
552 			    efi_parts[i].efi_gpe_PartitionName[j]);
553 		}
554 
555 		UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid,
556 		    efi_parts[i].efi_gpe_UniquePartitionGUID);
557 	}
558 	free(efi);
559 
560 	return (dki_info.dki_partition);
561 }
562 
563 /* writes a "protective" MBR */
564 static int
565 write_pmbr(int fd, struct dk_gpt *vtoc)
566 {
567 	dk_efi_t	dk_ioc;
568 	struct mboot	mb;
569 	uchar_t		*cp;
570 	diskaddr_t	size_in_lba;
571 	uchar_t		*buf;
572 	int		len;
573 
574 	len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize;
575 	buf = calloc(len, 1);
576 
577 	/*
578 	 * Preserve any boot code and disk signature if the first block is
579 	 * already an MBR.
580 	 */
581 	dk_ioc.dki_lba = 0;
582 	dk_ioc.dki_length = len;
583 	/* LINTED -- always longlong aligned */
584 	dk_ioc.dki_data = (efi_gpt_t *)buf;
585 	if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
586 		(void *) memcpy(&mb, buf, sizeof (mb));
587 		bzero(&mb, sizeof (mb));
588 		mb.signature = LE_16(MBB_MAGIC);
589 	} else {
590 		(void *) memcpy(&mb, buf, sizeof (mb));
591 		if (mb.signature != LE_16(MBB_MAGIC)) {
592 			bzero(&mb, sizeof (mb));
593 			mb.signature = LE_16(MBB_MAGIC);
594 		}
595 	}
596 
597 	bzero(&mb.parts, sizeof (mb.parts));
598 	cp = (uchar_t *)&mb.parts[0];
599 	/* bootable or not */
600 	*cp++ = 0;
601 	/* beginning CHS; 0xffffff if not representable */
602 	*cp++ = 0xff;
603 	*cp++ = 0xff;
604 	*cp++ = 0xff;
605 	/* OS type */
606 	*cp++ = EFI_PMBR;
607 	/* ending CHS; 0xffffff if not representable */
608 	*cp++ = 0xff;
609 	*cp++ = 0xff;
610 	*cp++ = 0xff;
611 	/* starting LBA: 1 (little endian format) by EFI definition */
612 	*cp++ = 0x01;
613 	*cp++ = 0x00;
614 	*cp++ = 0x00;
615 	*cp++ = 0x00;
616 	/* ending LBA: last block on the disk (little endian format) */
617 	size_in_lba = vtoc->efi_last_lba;
618 	if (size_in_lba < 0xffffffff) {
619 		*cp++ = (size_in_lba & 0x000000ff);
620 		*cp++ = (size_in_lba & 0x0000ff00) >> 8;
621 		*cp++ = (size_in_lba & 0x00ff0000) >> 16;
622 		*cp++ = (size_in_lba & 0xff000000) >> 24;
623 	} else {
624 		*cp++ = 0xff;
625 		*cp++ = 0xff;
626 		*cp++ = 0xff;
627 		*cp++ = 0xff;
628 	}
629 
630 	(void *) memcpy(buf, &mb, sizeof (mb));
631 	/* LINTED -- always longlong aligned */
632 	dk_ioc.dki_data = (efi_gpt_t *)buf;
633 	dk_ioc.dki_lba = 0;
634 	dk_ioc.dki_length = len;
635 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
636 		free(buf);
637 		switch (errno) {
638 		case EIO:
639 			return (VT_EIO);
640 		case EINVAL:
641 			return (VT_EINVAL);
642 		default:
643 			return (VT_ERROR);
644 		}
645 	}
646 	free(buf);
647 	return (0);
648 }
649 
650 /* make sure the user specified something reasonable */
651 static int
652 check_input(struct dk_gpt *vtoc)
653 {
654 	int			resv_part = -1;
655 	int			i, j;
656 	diskaddr_t		istart, jstart, isize, jsize, endsect;
657 
658 	/*
659 	 * Sanity-check the input (make sure no partitions overlap)
660 	 */
661 	for (i = 0; i < vtoc->efi_nparts; i++) {
662 		/* It can't be unassigned and have an actual size */
663 		if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
664 		    (vtoc->efi_parts[i].p_size != 0)) {
665 			if (efi_debug) {
666 				(void) fprintf(stderr,
667 "partition %d is \"unassigned\" but has a size of %llu",
668 				    i,
669 				    vtoc->efi_parts[i].p_size);
670 			}
671 			return (VT_EINVAL);
672 		}
673 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
674 			if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
675 				continue;
676 			/* we have encountered an unknown uuid */
677 			vtoc->efi_parts[i].p_tag = 0xff;
678 		}
679 		if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
680 			if (resv_part != -1) {
681 				if (efi_debug) {
682 					(void) fprintf(stderr,
683 "found duplicate reserved partition at %d\n",
684 					    i);
685 				}
686 				return (VT_EINVAL);
687 			}
688 			resv_part = i;
689 		}
690 		if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
691 		    (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
692 			if (efi_debug) {
693 				(void) fprintf(stderr,
694 				    "Partition %d starts at %llu.  ",
695 				    i,
696 				    vtoc->efi_parts[i].p_start);
697 				(void) fprintf(stderr,
698 				    "It must be between %llu and %llu.\n",
699 				    vtoc->efi_first_u_lba,
700 				    vtoc->efi_last_u_lba);
701 			}
702 			return (VT_EINVAL);
703 		}
704 		if ((vtoc->efi_parts[i].p_start +
705 		    vtoc->efi_parts[i].p_size <
706 		    vtoc->efi_first_u_lba) ||
707 		    (vtoc->efi_parts[i].p_start +
708 		    vtoc->efi_parts[i].p_size >
709 		    vtoc->efi_last_u_lba + 1)) {
710 			if (efi_debug) {
711 				(void) fprintf(stderr,
712 				    "Partition %d ends at %llu.  ",
713 				    i,
714 				    vtoc->efi_parts[i].p_start +
715 				    vtoc->efi_parts[i].p_size);
716 				(void) fprintf(stderr,
717 				    "It must be between %llu and %llu.\n",
718 				    vtoc->efi_first_u_lba,
719 				    vtoc->efi_last_u_lba);
720 			}
721 			return (VT_EINVAL);
722 		}
723 
724 		for (j = 0; j < vtoc->efi_nparts; j++) {
725 			isize = vtoc->efi_parts[i].p_size;
726 			jsize = vtoc->efi_parts[j].p_size;
727 			istart = vtoc->efi_parts[i].p_start;
728 			jstart = vtoc->efi_parts[j].p_start;
729 			if ((i != j) && (isize != 0) && (jsize != 0)) {
730 				endsect = jstart + jsize -1;
731 				if ((jstart <= istart) &&
732 				    (istart <= endsect)) {
733 					if (efi_debug) {
734 						(void) fprintf(stderr,
735 "Partition %d overlaps partition %d.",
736 						    i, j);
737 					}
738 					return (VT_EINVAL);
739 				}
740 			}
741 		}
742 	}
743 	/* just a warning for now */
744 	if ((resv_part == -1) && efi_debug) {
745 		(void) fprintf(stderr,
746 		    "no reserved partition found\n");
747 	}
748 	return (0);
749 }
750 
751 /*
752  * add all the unallocated space to the current label
753  */
754 int
755 efi_use_whole_disk(int fd)
756 {
757 	struct dk_gpt		*efi_label;
758 	int			rval;
759 	int			i;
760 	uint_t			phy_last_slice = 0;
761 	diskaddr_t		pl_start = 0;
762 	diskaddr_t		pl_size;
763 
764 	rval = efi_alloc_and_read(fd, &efi_label);
765 	if (rval < 0) {
766 		return (rval);
767 	}
768 
769 	/* find the last physically non-zero partition */
770 	for (i = 0; i < efi_label->efi_nparts - 2; i ++) {
771 		if (pl_start < efi_label->efi_parts[i].p_start) {
772 			pl_start = efi_label->efi_parts[i].p_start;
773 			phy_last_slice = i;
774 		}
775 	}
776 	pl_size = efi_label->efi_parts[phy_last_slice].p_size;
777 
778 	/*
779 	 * If alter_lba is 1, we are using the backup label.
780 	 * Since we can locate the backup label by disk capacity,
781 	 * there must be no unallocated space.
782 	 */
783 	if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba
784 	    >= efi_label->efi_last_lba)) {
785 		if (efi_debug) {
786 			(void) fprintf(stderr,
787 			    "efi_use_whole_disk: requested space not found\n");
788 		}
789 		efi_free(efi_label);
790 		return (VT_ENOSPC);
791 	}
792 
793 	/*
794 	 * If there is space between the last physically non-zero partition
795 	 * and the reserved partition, just add the unallocated space to this
796 	 * area. Otherwise, the unallocated space is added to the last
797 	 * physically non-zero partition.
798 	 */
799 	if (pl_start + pl_size - 1 == efi_label->efi_last_u_lba -
800 	    EFI_MIN_RESV_SIZE) {
801 		efi_label->efi_parts[phy_last_slice].p_size +=
802 		    efi_label->efi_last_lba - efi_label->efi_altern_lba;
803 	}
804 
805 	/*
806 	 * Move the reserved partition. There is currently no data in
807 	 * here except fabricated devids (which get generated via
808 	 * efi_write()). So there is no need to copy data.
809 	 */
810 	efi_label->efi_parts[efi_label->efi_nparts - 1].p_start +=
811 	    efi_label->efi_last_lba - efi_label->efi_altern_lba;
812 	efi_label->efi_last_u_lba += efi_label->efi_last_lba
813 	    - efi_label->efi_altern_lba;
814 
815 	rval = efi_write(fd, efi_label);
816 	if (rval < 0) {
817 		if (efi_debug) {
818 			(void) fprintf(stderr,
819 			    "efi_use_whole_disk:fail to write label, rval=%d\n",
820 			    rval);
821 		}
822 		efi_free(efi_label);
823 		return (rval);
824 	}
825 
826 	efi_free(efi_label);
827 	return (0);
828 }
829 
830 
831 /*
832  * write EFI label and backup label
833  */
834 int
835 efi_write(int fd, struct dk_gpt *vtoc)
836 {
837 	dk_efi_t		dk_ioc;
838 	efi_gpt_t		*efi;
839 	efi_gpe_t		*efi_parts;
840 	int			i, j;
841 	struct dk_cinfo		dki_info;
842 	int			md_flag = 0;
843 	int			nblocks;
844 	diskaddr_t		lba_backup_gpt_hdr;
845 
846 	if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) {
847 		if (efi_debug)
848 			(void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
849 		switch (errno) {
850 		case EIO:
851 			return (VT_EIO);
852 		case EINVAL:
853 			return (VT_EINVAL);
854 		default:
855 			return (VT_ERROR);
856 		}
857 	}
858 
859 	/* check if we are dealing wih a metadevice */
860 	if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
861 	    (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
862 		md_flag = 1;
863 	}
864 
865 	if (check_input(vtoc)) {
866 		/*
867 		 * not valid; if it's a metadevice just pass it down
868 		 * because SVM will do its own checking
869 		 */
870 		if (md_flag == 0) {
871 			return (VT_EINVAL);
872 		}
873 	}
874 
875 	dk_ioc.dki_lba = 1;
876 	if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) {
877 		dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize;
878 	} else {
879 		dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts,
880 		    vtoc->efi_lbasize) *
881 		    vtoc->efi_lbasize;
882 	}
883 
884 	/*
885 	 * the number of blocks occupied by GUID partition entry array
886 	 */
887 	nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1;
888 
889 	/*
890 	 * Backup GPT header is located on the block after GUID
891 	 * partition entry array. Here, we calculate the address
892 	 * for backup GPT header.
893 	 */
894 	lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks;
895 	if ((dk_ioc.dki_data = calloc(dk_ioc.dki_length, 1)) == NULL)
896 		return (VT_ERROR);
897 
898 	efi = dk_ioc.dki_data;
899 
900 	/* stuff user's input into EFI struct */
901 	efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
902 	efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */
903 	efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt));
904 	efi->efi_gpt_Reserved1 = 0;
905 	efi->efi_gpt_MyLBA = LE_64(1ULL);
906 	efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr);
907 	efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba);
908 	efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba);
909 	efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
910 	efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts);
911 	efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe));
912 	UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid);
913 
914 	/* LINTED -- always longlong aligned */
915 	efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize);
916 
917 	for (i = 0; i < vtoc->efi_nparts; i++) {
918 		for (j = 0;
919 		    j < sizeof (conversion_array) /
920 		    sizeof (struct uuid_to_ptag); j++) {
921 
922 			if (vtoc->efi_parts[i].p_tag == j) {
923 				UUID_LE_CONVERT(
924 				    efi_parts[i].efi_gpe_PartitionTypeGUID,
925 				    conversion_array[j].uuid);
926 				break;
927 			}
928 		}
929 
930 		if (j == sizeof (conversion_array) /
931 		    sizeof (struct uuid_to_ptag)) {
932 			/*
933 			 * If we didn't have a matching uuid match, bail here.
934 			 * Don't write a label with unknown uuid.
935 			 */
936 			if (efi_debug) {
937 				(void) fprintf(stderr,
938 				    "Unknown uuid for p_tag %d\n",
939 				    vtoc->efi_parts[i].p_tag);
940 			}
941 			return (VT_EINVAL);
942 		}
943 
944 		efi_parts[i].efi_gpe_StartingLBA =
945 		    LE_64(vtoc->efi_parts[i].p_start);
946 		efi_parts[i].efi_gpe_EndingLBA =
947 		    LE_64(vtoc->efi_parts[i].p_start +
948 		    vtoc->efi_parts[i].p_size - 1);
949 		efi_parts[i].efi_gpe_Attributes.PartitionAttrs =
950 		    LE_16(vtoc->efi_parts[i].p_flag);
951 		for (j = 0; j < EFI_PART_NAME_LEN; j++) {
952 			efi_parts[i].efi_gpe_PartitionName[j] =
953 			    LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]);
954 		}
955 		if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) &&
956 		    uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) {
957 			(void) uuid_generate((uchar_t *)
958 			    &vtoc->efi_parts[i].p_uguid);
959 		}
960 		bcopy(&vtoc->efi_parts[i].p_uguid,
961 		    &efi_parts[i].efi_gpe_UniquePartitionGUID,
962 		    sizeof (uuid_t));
963 	}
964 	efi->efi_gpt_PartitionEntryArrayCRC32 =
965 	    LE_32(efi_crc32((unsigned char *)efi_parts,
966 	    vtoc->efi_nparts * (int)sizeof (struct efi_gpe)));
967 	efi->efi_gpt_HeaderCRC32 =
968 	    LE_32(efi_crc32((unsigned char *)efi, sizeof (struct efi_gpt)));
969 
970 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
971 		free(dk_ioc.dki_data);
972 		switch (errno) {
973 		case EIO:
974 			return (VT_EIO);
975 		case EINVAL:
976 			return (VT_EINVAL);
977 		default:
978 			return (VT_ERROR);
979 		}
980 	}
981 	/* if it's a metadevice we're done */
982 	if (md_flag) {
983 		free(dk_ioc.dki_data);
984 		return (0);
985 	}
986 
987 	/* write backup partition array */
988 	dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1;
989 	dk_ioc.dki_length -= vtoc->efi_lbasize;
990 	/* LINTED */
991 	dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data +
992 	    vtoc->efi_lbasize);
993 
994 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
995 		/*
996 		 * we wrote the primary label okay, so don't fail
997 		 */
998 		if (efi_debug) {
999 			(void) fprintf(stderr,
1000 			    "write of backup partitions to block %llu "
1001 			    "failed, errno %d\n",
1002 			    vtoc->efi_last_u_lba + 1,
1003 			    errno);
1004 		}
1005 	}
1006 	/*
1007 	 * now swap MyLBA and AlternateLBA fields and write backup
1008 	 * partition table header
1009 	 */
1010 	dk_ioc.dki_lba = lba_backup_gpt_hdr;
1011 	dk_ioc.dki_length = vtoc->efi_lbasize;
1012 	/* LINTED */
1013 	dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data -
1014 	    vtoc->efi_lbasize);
1015 	efi->efi_gpt_AlternateLBA = LE_64(1ULL);
1016 	efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr);
1017 	efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1);
1018 	efi->efi_gpt_HeaderCRC32 = 0;
1019 	efi->efi_gpt_HeaderCRC32 =
1020 	    LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data,
1021 	    sizeof (struct efi_gpt)));
1022 
1023 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1024 		if (efi_debug) {
1025 			(void) fprintf(stderr,
1026 			    "write of backup header to block %llu failed, "
1027 			    "errno %d\n",
1028 			    lba_backup_gpt_hdr,
1029 			    errno);
1030 		}
1031 	}
1032 	/* write the PMBR */
1033 	(void) write_pmbr(fd, vtoc);
1034 	free(dk_ioc.dki_data);
1035 	return (0);
1036 }
1037 
1038 void
1039 efi_free(struct dk_gpt *ptr)
1040 {
1041 	free(ptr);
1042 }
1043 
1044 /*
1045  * Input: File descriptor
1046  * Output: 1 if disk has an EFI label, or > 2TB with no VTOC or legacy MBR.
1047  * Otherwise 0.
1048  */
1049 int
1050 efi_type(int fd)
1051 {
1052 	struct vtoc vtoc;
1053 	struct extvtoc extvtoc;
1054 
1055 	if (ioctl(fd, DKIOCGEXTVTOC, &extvtoc) == -1) {
1056 		if (errno == ENOTSUP)
1057 			return (1);
1058 		else if (errno == ENOTTY) {
1059 			if (ioctl(fd, DKIOCGVTOC, &vtoc) == -1)
1060 				if (errno == ENOTSUP)
1061 					return (1);
1062 		}
1063 	}
1064 	return (0);
1065 }
1066 
1067 void
1068 efi_err_check(struct dk_gpt *vtoc)
1069 {
1070 	int			resv_part = -1;
1071 	int			i, j;
1072 	diskaddr_t		istart, jstart, isize, jsize, endsect;
1073 	int			overlap = 0;
1074 
1075 	/*
1076 	 * make sure no partitions overlap
1077 	 */
1078 	for (i = 0; i < vtoc->efi_nparts; i++) {
1079 		/* It can't be unassigned and have an actual size */
1080 		if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
1081 		    (vtoc->efi_parts[i].p_size != 0)) {
1082 			(void) fprintf(stderr,
1083 			    "partition %d is \"unassigned\" but has a size "
1084 			    "of %llu\n", i, vtoc->efi_parts[i].p_size);
1085 		}
1086 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
1087 			continue;
1088 		}
1089 		if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
1090 			if (resv_part != -1) {
1091 				(void) fprintf(stderr,
1092 				    "found duplicate reserved partition at "
1093 				    "%d\n", i);
1094 			}
1095 			resv_part = i;
1096 			if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE)
1097 				(void) fprintf(stderr,
1098 				    "Warning: reserved partition size must "
1099 				    "be %d sectors\n", EFI_MIN_RESV_SIZE);
1100 		}
1101 		if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
1102 		    (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
1103 			(void) fprintf(stderr,
1104 			    "Partition %d starts at %llu\n",
1105 			    i,
1106 			    vtoc->efi_parts[i].p_start);
1107 			(void) fprintf(stderr,
1108 			    "It must be between %llu and %llu.\n",
1109 			    vtoc->efi_first_u_lba,
1110 			    vtoc->efi_last_u_lba);
1111 		}
1112 		if ((vtoc->efi_parts[i].p_start +
1113 		    vtoc->efi_parts[i].p_size <
1114 		    vtoc->efi_first_u_lba) ||
1115 		    (vtoc->efi_parts[i].p_start +
1116 		    vtoc->efi_parts[i].p_size >
1117 		    vtoc->efi_last_u_lba + 1)) {
1118 			(void) fprintf(stderr,
1119 			    "Partition %d ends at %llu\n",
1120 			    i,
1121 			    vtoc->efi_parts[i].p_start +
1122 			    vtoc->efi_parts[i].p_size);
1123 			(void) fprintf(stderr,
1124 			    "It must be between %llu and %llu.\n",
1125 			    vtoc->efi_first_u_lba,
1126 			    vtoc->efi_last_u_lba);
1127 		}
1128 
1129 		for (j = 0; j < vtoc->efi_nparts; j++) {
1130 			isize = vtoc->efi_parts[i].p_size;
1131 			jsize = vtoc->efi_parts[j].p_size;
1132 			istart = vtoc->efi_parts[i].p_start;
1133 			jstart = vtoc->efi_parts[j].p_start;
1134 			if ((i != j) && (isize != 0) && (jsize != 0)) {
1135 				endsect = jstart + jsize -1;
1136 				if ((jstart <= istart) &&
1137 				    (istart <= endsect)) {
1138 					if (!overlap) {
1139 					(void) fprintf(stderr,
1140 					    "label error: EFI Labels do not "
1141 					    "support overlapping partitions\n");
1142 					}
1143 					(void) fprintf(stderr,
1144 					    "Partition %d overlaps partition "
1145 					    "%d.\n", i, j);
1146 					overlap = 1;
1147 				}
1148 			}
1149 		}
1150 	}
1151 	/* make sure there is a reserved partition */
1152 	if (resv_part == -1) {
1153 		(void) fprintf(stderr,
1154 		    "no reserved partition found\n");
1155 	}
1156 }
1157 
1158 /*
1159  * We need to get information necessary to construct a *new* efi
1160  * label type
1161  */
1162 int
1163 efi_auto_sense(int fd, struct dk_gpt **vtoc)
1164 {
1165 
1166 	int	i;
1167 
1168 	/*
1169 	 * Now build the default partition table
1170 	 */
1171 	if (efi_alloc_and_init(fd, EFI_NUMPAR, vtoc) != 0) {
1172 		if (efi_debug) {
1173 			(void) fprintf(stderr, "efi_alloc_and_init failed.\n");
1174 		}
1175 		return (-1);
1176 	}
1177 
1178 	for (i = 0; i < min((*vtoc)->efi_nparts, V_NUMPAR); i++) {
1179 		(*vtoc)->efi_parts[i].p_tag = default_vtoc_map[i].p_tag;
1180 		(*vtoc)->efi_parts[i].p_flag = default_vtoc_map[i].p_flag;
1181 		(*vtoc)->efi_parts[i].p_start = 0;
1182 		(*vtoc)->efi_parts[i].p_size = 0;
1183 	}
1184 	/*
1185 	 * Make constants first
1186 	 * and variable partitions later
1187 	 */
1188 
1189 	/* root partition - s0 128 MB */
1190 	(*vtoc)->efi_parts[0].p_start = 34;
1191 	(*vtoc)->efi_parts[0].p_size = 262144;
1192 
1193 	/* partition - s1  128 MB */
1194 	(*vtoc)->efi_parts[1].p_start = 262178;
1195 	(*vtoc)->efi_parts[1].p_size = 262144;
1196 
1197 	/* partition -s2 is NOT the Backup disk */
1198 	(*vtoc)->efi_parts[2].p_tag = V_UNASSIGNED;
1199 
1200 	/* partition -s6 /usr partition - HOG */
1201 	(*vtoc)->efi_parts[6].p_start = 524322;
1202 	(*vtoc)->efi_parts[6].p_size = (*vtoc)->efi_last_u_lba - 524322
1203 	    - (1024 * 16);
1204 
1205 	/* efi reserved partition - s9 16K */
1206 	(*vtoc)->efi_parts[8].p_start = (*vtoc)->efi_last_u_lba - (1024 * 16);
1207 	(*vtoc)->efi_parts[8].p_size = (1024 * 16);
1208 	(*vtoc)->efi_parts[8].p_tag = V_RESERVED;
1209 	return (0);
1210 }
1211