1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * DTrace Process Control 31 * 32 * This file provides a set of routines that permit libdtrace and its clients 33 * to create and grab process handles using libproc, and to share these handles 34 * between library mechanisms that need libproc access, such as ustack(), and 35 * client mechanisms that need libproc access, such as dtrace(1M) -c and -p. 36 * The library provides several mechanisms in the libproc control layer: 37 * 38 * Reference Counting: The library code and client code can independently grab 39 * the same process handles without interfering with one another. Only when 40 * the reference count drops to zero and the handle is not being cached (see 41 * below for more information on caching) will Prelease() be called on it. 42 * 43 * Handle Caching: If a handle is grabbed PGRAB_RDONLY (e.g. by ustack()) and 44 * the reference count drops to zero, the handle is not immediately released. 45 * Instead, libproc handles are maintained on dph_lrulist in order from most- 46 * recently accessed to least-recently accessed. Idle handles are maintained 47 * until a pre-defined LRU cache limit is exceeded, permitting repeated calls 48 * to ustack() to avoid the overhead of releasing and re-grabbing processes. 49 * 50 * Process Control: For processes that are grabbed for control (~PGRAB_RDONLY) 51 * or created by dt_proc_create(), a control thread is created to provide 52 * callbacks on process exit and symbol table caching on dlopen()s. 53 * 54 * MT-Safety: Libproc is not MT-Safe, so dt_proc_lock() and dt_proc_unlock() 55 * are provided to synchronize access to the libproc handle between libdtrace 56 * code and client code and the control thread's use of the ps_prochandle. 57 * 58 * NOTE: MT-Safety is NOT provided for libdtrace itself, or for use of the 59 * dtrace_proc_grab/dtrace_proc_create mechanisms. Like all exported libdtrace 60 * calls, these are assumed to be MT-Unsafe. MT-Safety is ONLY provided for 61 * synchronization between libdtrace control threads and the client thread. 62 * 63 * The ps_prochandles themselves are maintained along with a dt_proc_t struct 64 * in a hash table indexed by PID. This provides basic locking and reference 65 * counting. The dt_proc_t is also maintained in LRU order on dph_lrulist. 66 * The dph_lrucnt and dph_lrulim count the number of cacheable processes and 67 * the current limit on the number of actively cached entries. 68 * 69 * The control thread for a process establishes breakpoints at the rtld_db 70 * locations of interest, updates mappings and symbol tables at these points, 71 * and handles exec and fork (by always following the parent). The control 72 * thread automatically exits when the process dies or control is lost. 73 * 74 * A simple notification mechanism is provided for libdtrace clients using 75 * dtrace_handle_proc() for notification of PS_UNDEAD or PS_LOST events. If 76 * such an event occurs, the dt_proc_t itself is enqueued on a notification 77 * list and the control thread broadcasts to dph_cv. dtrace_sleep() will wake 78 * up using this condition and will then call the client handler as necessary. 79 */ 80 81 #include <sys/wait.h> 82 #include <sys/lwp.h> 83 #include <strings.h> 84 #include <signal.h> 85 #include <assert.h> 86 #include <errno.h> 87 88 #include <dt_proc.h> 89 #include <dt_pid.h> 90 #include <dt_impl.h> 91 92 #define IS_SYS_EXEC(w) (w == SYS_exec || w == SYS_execve) 93 #define IS_SYS_FORK(w) (w == SYS_vfork || w == SYS_fork1 || \ 94 w == SYS_forkall || w == SYS_forksys) 95 96 static dt_bkpt_t * 97 dt_proc_bpcreate(dt_proc_t *dpr, uintptr_t addr, dt_bkpt_f *func, void *data) 98 { 99 struct ps_prochandle *P = dpr->dpr_proc; 100 dt_bkpt_t *dbp; 101 102 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 103 104 if ((dbp = dt_zalloc(dpr->dpr_hdl, sizeof (dt_bkpt_t))) != NULL) { 105 dbp->dbp_func = func; 106 dbp->dbp_data = data; 107 dbp->dbp_addr = addr; 108 109 if (Psetbkpt(P, dbp->dbp_addr, &dbp->dbp_instr) == 0) 110 dbp->dbp_active = B_TRUE; 111 112 dt_list_append(&dpr->dpr_bps, dbp); 113 } 114 115 return (dbp); 116 } 117 118 static void 119 dt_proc_bpdestroy(dt_proc_t *dpr, int delbkpts) 120 { 121 int state = Pstate(dpr->dpr_proc); 122 dt_bkpt_t *dbp, *nbp; 123 124 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 125 126 for (dbp = dt_list_next(&dpr->dpr_bps); dbp != NULL; dbp = nbp) { 127 if (delbkpts && dbp->dbp_active && 128 state != PS_LOST && state != PS_UNDEAD) { 129 (void) Pdelbkpt(dpr->dpr_proc, 130 dbp->dbp_addr, dbp->dbp_instr); 131 } 132 nbp = dt_list_next(dbp); 133 dt_list_delete(&dpr->dpr_bps, dbp); 134 dt_free(dpr->dpr_hdl, dbp); 135 } 136 } 137 138 static void 139 dt_proc_bpmatch(dtrace_hdl_t *dtp, dt_proc_t *dpr) 140 { 141 const lwpstatus_t *psp = &Pstatus(dpr->dpr_proc)->pr_lwp; 142 dt_bkpt_t *dbp; 143 144 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 145 146 for (dbp = dt_list_next(&dpr->dpr_bps); 147 dbp != NULL; dbp = dt_list_next(dbp)) { 148 if (psp->pr_reg[R_PC] == dbp->dbp_addr) 149 break; 150 } 151 152 if (dbp == NULL) { 153 dt_dprintf("pid %d: spurious breakpoint wakeup for %lx\n", 154 (int)dpr->dpr_pid, (ulong_t)psp->pr_reg[R_PC]); 155 return; 156 } 157 158 dt_dprintf("pid %d: hit breakpoint at %lx (%lu)\n", 159 (int)dpr->dpr_pid, (ulong_t)dbp->dbp_addr, ++dbp->dbp_hits); 160 161 dbp->dbp_func(dtp, dpr, dbp->dbp_data); 162 (void) Pxecbkpt(dpr->dpr_proc, dbp->dbp_instr); 163 } 164 165 static void 166 dt_proc_bpenable(dt_proc_t *dpr) 167 { 168 dt_bkpt_t *dbp; 169 170 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 171 172 for (dbp = dt_list_next(&dpr->dpr_bps); 173 dbp != NULL; dbp = dt_list_next(dbp)) { 174 if (!dbp->dbp_active && Psetbkpt(dpr->dpr_proc, 175 dbp->dbp_addr, &dbp->dbp_instr) == 0) 176 dbp->dbp_active = B_TRUE; 177 } 178 179 dt_dprintf("breakpoints enabled\n"); 180 } 181 182 static void 183 dt_proc_bpdisable(dt_proc_t *dpr) 184 { 185 dt_bkpt_t *dbp; 186 187 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 188 189 for (dbp = dt_list_next(&dpr->dpr_bps); 190 dbp != NULL; dbp = dt_list_next(dbp)) { 191 if (dbp->dbp_active && Pdelbkpt(dpr->dpr_proc, 192 dbp->dbp_addr, dbp->dbp_instr) == 0) 193 dbp->dbp_active = B_FALSE; 194 } 195 196 dt_dprintf("breakpoints disabled\n"); 197 } 198 199 static void 200 dt_proc_notify(dtrace_hdl_t *dtp, dt_proc_hash_t *dph, dt_proc_t *dpr, 201 const char *msg) 202 { 203 dt_proc_notify_t *dprn = dt_alloc(dtp, sizeof (dt_proc_notify_t)); 204 205 if (dprn == NULL) { 206 dt_dprintf("failed to allocate notification for %d %s\n", 207 (int)dpr->dpr_pid, msg); 208 } else { 209 dprn->dprn_dpr = dpr; 210 if (msg == NULL) 211 dprn->dprn_errmsg[0] = '\0'; 212 else 213 (void) strlcpy(dprn->dprn_errmsg, msg, 214 sizeof (dprn->dprn_errmsg)); 215 216 (void) pthread_mutex_lock(&dph->dph_lock); 217 218 dprn->dprn_next = dph->dph_notify; 219 dph->dph_notify = dprn; 220 221 (void) pthread_cond_broadcast(&dph->dph_cv); 222 (void) pthread_mutex_unlock(&dph->dph_lock); 223 } 224 } 225 226 /* 227 * Check to see if the control thread was requested to stop when the victim 228 * process reached a particular event (why) rather than continuing the victim. 229 * If 'why' is set in the stop mask, we wait on dpr_cv for dt_proc_continue(). 230 * If 'why' is not set, this function returns immediately and does nothing. 231 */ 232 static void 233 dt_proc_stop(dt_proc_t *dpr, uint8_t why) 234 { 235 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 236 assert(why != DT_PROC_STOP_IDLE); 237 238 if (dpr->dpr_stop & why) { 239 dpr->dpr_stop |= DT_PROC_STOP_IDLE; 240 dpr->dpr_stop &= ~why; 241 242 (void) pthread_cond_broadcast(&dpr->dpr_cv); 243 244 /* 245 * We disable breakpoints while stopped to preserve the 246 * integrity of the program text for both our own disassembly 247 * and that of the kernel. 248 */ 249 dt_proc_bpdisable(dpr); 250 251 while (dpr->dpr_stop & DT_PROC_STOP_IDLE) 252 (void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock); 253 254 dt_proc_bpenable(dpr); 255 } 256 } 257 258 /*ARGSUSED*/ 259 static void 260 dt_proc_bpmain(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *fname) 261 { 262 dt_dprintf("pid %d: breakpoint at %s()\n", (int)dpr->dpr_pid, fname); 263 dt_proc_stop(dpr, DT_PROC_STOP_MAIN); 264 } 265 266 static void 267 dt_proc_rdevent(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *evname) 268 { 269 rd_event_msg_t rdm; 270 rd_err_e err; 271 272 if ((err = rd_event_getmsg(dpr->dpr_rtld, &rdm)) != RD_OK) { 273 dt_dprintf("pid %d: failed to get %s event message: %s\n", 274 (int)dpr->dpr_pid, evname, rd_errstr(err)); 275 return; 276 } 277 278 dt_dprintf("pid %d: rtld event %s type=%d state %d\n", 279 (int)dpr->dpr_pid, evname, rdm.type, rdm.u.state); 280 281 switch (rdm.type) { 282 case RD_DLACTIVITY: 283 if (rdm.u.state != RD_CONSISTENT) 284 break; 285 286 Pupdate_syms(dpr->dpr_proc); 287 if (dt_pid_create_probes_module(dtp, dpr) != 0) 288 dt_proc_notify(dtp, dtp->dt_procs, dpr, 289 dpr->dpr_errmsg); 290 291 break; 292 case RD_PREINIT: 293 Pupdate_syms(dpr->dpr_proc); 294 dt_proc_stop(dpr, DT_PROC_STOP_PREINIT); 295 break; 296 case RD_POSTINIT: 297 Pupdate_syms(dpr->dpr_proc); 298 dt_proc_stop(dpr, DT_PROC_STOP_POSTINIT); 299 break; 300 } 301 } 302 303 static void 304 dt_proc_rdwatch(dt_proc_t *dpr, rd_event_e event, const char *evname) 305 { 306 rd_notify_t rdn; 307 rd_err_e err; 308 309 if ((err = rd_event_addr(dpr->dpr_rtld, event, &rdn)) != RD_OK) { 310 dt_dprintf("pid %d: failed to get event address for %s: %s\n", 311 (int)dpr->dpr_pid, evname, rd_errstr(err)); 312 return; 313 } 314 315 if (rdn.type != RD_NOTIFY_BPT) { 316 dt_dprintf("pid %d: event %s has unexpected type %d\n", 317 (int)dpr->dpr_pid, evname, rdn.type); 318 return; 319 } 320 321 (void) dt_proc_bpcreate(dpr, rdn.u.bptaddr, 322 (dt_bkpt_f *)dt_proc_rdevent, (void *)evname); 323 } 324 325 /* 326 * Common code for enabling events associated with the run-time linker after 327 * attaching to a process or after a victim process completes an exec(2). 328 */ 329 static void 330 dt_proc_attach(dt_proc_t *dpr, int exec) 331 { 332 const pstatus_t *psp = Pstatus(dpr->dpr_proc); 333 rd_err_e err; 334 GElf_Sym sym; 335 336 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 337 338 if (exec) { 339 if (psp->pr_lwp.pr_errno != 0) 340 return; /* exec failed: nothing needs to be done */ 341 342 dt_proc_bpdestroy(dpr, B_FALSE); 343 Preset_maps(dpr->dpr_proc); 344 } 345 346 if ((dpr->dpr_rtld = Prd_agent(dpr->dpr_proc)) != NULL && 347 (err = rd_event_enable(dpr->dpr_rtld, B_TRUE)) == RD_OK) { 348 dt_proc_rdwatch(dpr, RD_PREINIT, "RD_PREINIT"); 349 dt_proc_rdwatch(dpr, RD_POSTINIT, "RD_POSTINIT"); 350 dt_proc_rdwatch(dpr, RD_DLACTIVITY, "RD_DLACTIVITY"); 351 } else { 352 dt_dprintf("pid %d: failed to enable rtld events: %s\n", 353 (int)dpr->dpr_pid, dpr->dpr_rtld ? rd_errstr(err) : 354 "rtld_db agent initialization failed"); 355 } 356 357 Pupdate_maps(dpr->dpr_proc); 358 359 if (Pxlookup_by_name(dpr->dpr_proc, LM_ID_BASE, 360 "a.out", "main", &sym, NULL) == 0) { 361 (void) dt_proc_bpcreate(dpr, (uintptr_t)sym.st_value, 362 (dt_bkpt_f *)dt_proc_bpmain, "a.out`main"); 363 } else { 364 dt_dprintf("pid %d: failed to find a.out`main: %s\n", 365 (int)dpr->dpr_pid, strerror(errno)); 366 } 367 } 368 369 /* 370 * Wait for a stopped process to be set running again by some other debugger. 371 * This is typically not required by /proc-based debuggers, since the usual 372 * model is that one debugger controls one victim. But DTrace, as usual, has 373 * its own needs: the stop() action assumes that prun(1) or some other tool 374 * will be applied to resume the victim process. This could be solved by 375 * adding a PCWRUN directive to /proc, but that seems like overkill unless 376 * other debuggers end up needing this functionality, so we implement a cheap 377 * equivalent to PCWRUN using the set of existing kernel mechanisms. 378 * 379 * Our intent is really not just to wait for the victim to run, but rather to 380 * wait for it to run and then stop again for a reason other than the current 381 * PR_REQUESTED stop. Since PCWSTOP/Pstopstatus() can be applied repeatedly 382 * to a stopped process and will return the same result without affecting the 383 * victim, we can just perform these operations repeatedly until Pstate() 384 * changes, the representative LWP ID changes, or the stop timestamp advances. 385 * dt_proc_control() will then rediscover the new state and continue as usual. 386 * When the process is still stopped in the same exact state, we sleep for a 387 * brief interval before waiting again so as not to spin consuming CPU cycles. 388 */ 389 static void 390 dt_proc_waitrun(dt_proc_t *dpr) 391 { 392 struct ps_prochandle *P = dpr->dpr_proc; 393 const lwpstatus_t *psp = &Pstatus(P)->pr_lwp; 394 395 int krflag = psp->pr_flags & (PR_KLC | PR_RLC); 396 timestruc_t tstamp = psp->pr_tstamp; 397 lwpid_t lwpid = psp->pr_lwpid; 398 399 const long wstop = PCWSTOP; 400 int pfd = Pctlfd(P); 401 402 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 403 assert(psp->pr_flags & PR_STOPPED); 404 assert(Pstate(P) == PS_STOP); 405 406 /* 407 * While we are waiting for the victim to run, clear PR_KLC and PR_RLC 408 * so that if the libdtrace client is killed, the victim stays stopped. 409 * dt_proc_destroy() will also observe this and perform PRELEASE_HANG. 410 */ 411 (void) Punsetflags(P, krflag); 412 Psync(P); 413 414 (void) pthread_mutex_unlock(&dpr->dpr_lock); 415 416 while (!dpr->dpr_quit) { 417 if (write(pfd, &wstop, sizeof (wstop)) == -1 && errno == EINTR) 418 continue; /* check dpr_quit and continue waiting */ 419 420 (void) pthread_mutex_lock(&dpr->dpr_lock); 421 (void) Pstopstatus(P, PCNULL, 0); 422 psp = &Pstatus(P)->pr_lwp; 423 424 /* 425 * If we've reached a new state, found a new representative, or 426 * the stop timestamp has changed, restore PR_KLC/PR_RLC to its 427 * original setting and then return with dpr_lock held. 428 */ 429 if (Pstate(P) != PS_STOP || psp->pr_lwpid != lwpid || 430 bcmp(&psp->pr_tstamp, &tstamp, sizeof (tstamp)) != 0) { 431 (void) Psetflags(P, krflag); 432 Psync(P); 433 return; 434 } 435 436 (void) pthread_mutex_unlock(&dpr->dpr_lock); 437 (void) poll(NULL, 0, MILLISEC / 2); 438 } 439 440 (void) pthread_mutex_lock(&dpr->dpr_lock); 441 } 442 443 typedef struct dt_proc_control_data { 444 dtrace_hdl_t *dpcd_hdl; /* DTrace handle */ 445 dt_proc_t *dpcd_proc; /* proccess to control */ 446 } dt_proc_control_data_t; 447 448 /* 449 * Main loop for all victim process control threads. We initialize all the 450 * appropriate /proc control mechanisms, and then enter a loop waiting for 451 * the process to stop on an event or die. We process any events by calling 452 * appropriate subroutines, and exit when the victim dies or we lose control. 453 * 454 * The control thread synchronizes the use of dpr_proc with other libdtrace 455 * threads using dpr_lock. We hold the lock for all of our operations except 456 * waiting while the process is running: this is accomplished by writing a 457 * PCWSTOP directive directly to the underlying /proc/<pid>/ctl file. If the 458 * libdtrace client wishes to exit or abort our wait, SIGCANCEL can be used. 459 */ 460 static void * 461 dt_proc_control(void *arg) 462 { 463 dt_proc_control_data_t *datap = arg; 464 dtrace_hdl_t *dtp = datap->dpcd_hdl; 465 dt_proc_t *dpr = datap->dpcd_proc; 466 dt_proc_hash_t *dph = dpr->dpr_hdl->dt_procs; 467 struct ps_prochandle *P = dpr->dpr_proc; 468 469 int pfd = Pctlfd(P); 470 int pid = dpr->dpr_pid; 471 472 const long wstop = PCWSTOP; 473 int notify = B_FALSE; 474 475 /* 476 * We disable the POSIX thread cancellation mechanism so that the 477 * client program using libdtrace can't accidentally cancel our thread. 478 * dt_proc_destroy() uses SIGCANCEL explicitly to simply poke us out 479 * of PCWSTOP with EINTR, at which point we will see dpr_quit and exit. 480 */ 481 (void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL); 482 483 /* 484 * Set up the corresponding process for tracing by libdtrace. We want 485 * to be able to catch breakpoints and efficiently single-step over 486 * them, and we need to enable librtld_db to watch libdl activity. 487 */ 488 (void) pthread_mutex_lock(&dpr->dpr_lock); 489 490 (void) Punsetflags(P, PR_ASYNC); /* require synchronous mode */ 491 (void) Psetflags(P, PR_BPTADJ); /* always adjust eip on x86 */ 492 (void) Punsetflags(P, PR_FORK); /* do not inherit on fork */ 493 494 (void) Pfault(P, FLTBPT, B_TRUE); /* always trace breakpoints */ 495 (void) Pfault(P, FLTTRACE, B_TRUE); /* always trace single-step */ 496 497 /* 498 * We must trace exit from exec() system calls so that if the exec is 499 * successful, we can reset our breakpoints and re-initialize libproc. 500 */ 501 (void) Psysexit(P, SYS_exec, B_TRUE); 502 (void) Psysexit(P, SYS_execve, B_TRUE); 503 504 /* 505 * We must trace entry and exit for fork() system calls in order to 506 * disable our breakpoints temporarily during the fork. We do not set 507 * the PR_FORK flag, so if fork succeeds the child begins executing and 508 * does not inherit any other tracing behaviors or a control thread. 509 */ 510 (void) Psysentry(P, SYS_vfork, B_TRUE); 511 (void) Psysexit(P, SYS_vfork, B_TRUE); 512 (void) Psysentry(P, SYS_fork1, B_TRUE); 513 (void) Psysexit(P, SYS_fork1, B_TRUE); 514 (void) Psysentry(P, SYS_forkall, B_TRUE); 515 (void) Psysexit(P, SYS_forkall, B_TRUE); 516 (void) Psysentry(P, SYS_forksys, B_TRUE); 517 (void) Psysexit(P, SYS_forksys, B_TRUE); 518 519 Psync(P); /* enable all /proc changes */ 520 dt_proc_attach(dpr, B_FALSE); /* enable rtld breakpoints */ 521 522 /* 523 * If PR_KLC is set, we created the process; otherwise we grabbed it. 524 * Check for an appropriate stop request and wait for dt_proc_continue. 525 */ 526 if (Pstatus(P)->pr_flags & PR_KLC) 527 dt_proc_stop(dpr, DT_PROC_STOP_CREATE); 528 else 529 dt_proc_stop(dpr, DT_PROC_STOP_GRAB); 530 531 if (Psetrun(P, 0, 0) == -1) { 532 dt_dprintf("pid %d: failed to set running: %s\n", 533 (int)dpr->dpr_pid, strerror(errno)); 534 } 535 536 (void) pthread_mutex_unlock(&dpr->dpr_lock); 537 538 /* 539 * Wait for the process corresponding to this control thread to stop, 540 * process the event, and then set it running again. We want to sleep 541 * with dpr_lock *unheld* so that other parts of libdtrace can use the 542 * ps_prochandle in the meantime (e.g. ustack()). To do this, we write 543 * a PCWSTOP directive directly to the underlying /proc/<pid>/ctl file. 544 * Once the process stops, we wake up, grab dpr_lock, and then call 545 * Pwait() (which will return immediately) and do our processing. 546 */ 547 while (!dpr->dpr_quit) { 548 const lwpstatus_t *psp; 549 550 if (write(pfd, &wstop, sizeof (wstop)) == -1 && errno == EINTR) 551 continue; /* check dpr_quit and continue waiting */ 552 553 (void) pthread_mutex_lock(&dpr->dpr_lock); 554 pwait_locked: 555 if (Pstopstatus(P, PCNULL, 0) == -1 && errno == EINTR) { 556 (void) pthread_mutex_unlock(&dpr->dpr_lock); 557 continue; /* check dpr_quit and continue waiting */ 558 } 559 560 switch (Pstate(P)) { 561 case PS_STOP: 562 psp = &Pstatus(P)->pr_lwp; 563 564 dt_dprintf("pid %d: proc stopped showing %d/%d\n", 565 pid, psp->pr_why, psp->pr_what); 566 567 /* 568 * If the process stops showing PR_REQUESTED, then the 569 * DTrace stop() action was applied to it or another 570 * debugging utility (e.g. pstop(1)) asked it to stop. 571 * In either case, the user's intention is for the 572 * process to remain stopped until another external 573 * mechanism (e.g. prun(1)) is applied. So instead of 574 * setting the process running ourself, we wait for 575 * someone else to do so. Once that happens, we return 576 * to our normal loop waiting for an event of interest. 577 */ 578 if (psp->pr_why == PR_REQUESTED) { 579 dt_proc_waitrun(dpr); 580 (void) pthread_mutex_unlock(&dpr->dpr_lock); 581 continue; 582 } 583 584 /* 585 * If the process stops showing one of the events that 586 * we are tracing, perform the appropriate response. 587 * Note that we ignore PR_SUSPENDED, PR_CHECKPOINT, and 588 * PR_JOBCONTROL by design: if one of these conditions 589 * occurs, we will fall through to Psetrun() but the 590 * process will remain stopped in the kernel by the 591 * corresponding mechanism (e.g. job control stop). 592 */ 593 if (psp->pr_why == PR_FAULTED && psp->pr_what == FLTBPT) 594 dt_proc_bpmatch(dtp, dpr); 595 else if (psp->pr_why == PR_SYSENTRY && 596 IS_SYS_FORK(psp->pr_what)) 597 dt_proc_bpdisable(dpr); 598 else if (psp->pr_why == PR_SYSEXIT && 599 IS_SYS_FORK(psp->pr_what)) 600 dt_proc_bpenable(dpr); 601 else if (psp->pr_why == PR_SYSEXIT && 602 IS_SYS_EXEC(psp->pr_what)) 603 dt_proc_attach(dpr, B_TRUE); 604 break; 605 606 case PS_LOST: 607 if (Preopen(P) == 0) 608 goto pwait_locked; 609 610 dt_dprintf("pid %d: proc lost: %s\n", 611 pid, strerror(errno)); 612 613 dpr->dpr_quit = B_TRUE; 614 notify = B_TRUE; 615 break; 616 617 case PS_UNDEAD: 618 dt_dprintf("pid %d: proc died\n", pid); 619 dpr->dpr_quit = B_TRUE; 620 notify = B_TRUE; 621 break; 622 } 623 624 if (Pstate(P) != PS_UNDEAD && Psetrun(P, 0, 0) == -1) { 625 dt_dprintf("pid %d: failed to set running: %s\n", 626 (int)dpr->dpr_pid, strerror(errno)); 627 } 628 629 (void) pthread_mutex_unlock(&dpr->dpr_lock); 630 } 631 632 /* 633 * If the control thread detected PS_UNDEAD or PS_LOST, then enqueue 634 * the dt_proc_t structure on the dt_proc_hash_t notification list. 635 */ 636 if (notify) 637 dt_proc_notify(dtp, dph, dpr, NULL); 638 639 /* 640 * Destroy and remove any remaining breakpoints, set dpr_done and clear 641 * dpr_tid to indicate the control thread has exited, and notify any 642 * waiting thread in dt_proc_destroy() that we have succesfully exited. 643 */ 644 (void) pthread_mutex_lock(&dpr->dpr_lock); 645 646 dt_proc_bpdestroy(dpr, B_TRUE); 647 dpr->dpr_done = B_TRUE; 648 dpr->dpr_tid = 0; 649 650 (void) pthread_cond_broadcast(&dpr->dpr_cv); 651 (void) pthread_mutex_unlock(&dpr->dpr_lock); 652 653 return (NULL); 654 } 655 656 /*PRINTFLIKE3*/ 657 static struct ps_prochandle * 658 dt_proc_error(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *format, ...) 659 { 660 va_list ap; 661 662 va_start(ap, format); 663 dt_set_errmsg(dtp, NULL, NULL, NULL, 0, format, ap); 664 va_end(ap); 665 666 if (dpr->dpr_proc != NULL) 667 Prelease(dpr->dpr_proc, 0); 668 669 dt_free(dtp, dpr); 670 (void) dt_set_errno(dtp, EDT_COMPILER); 671 return (NULL); 672 } 673 674 dt_proc_t * 675 dt_proc_lookup(dtrace_hdl_t *dtp, struct ps_prochandle *P, int remove) 676 { 677 dt_proc_hash_t *dph = dtp->dt_procs; 678 pid_t pid = Pstatus(P)->pr_pid; 679 dt_proc_t *dpr, **dpp = &dph->dph_hash[pid & (dph->dph_hashlen - 1)]; 680 681 for (dpr = *dpp; dpr != NULL; dpr = dpr->dpr_hash) { 682 if (dpr->dpr_pid == pid) 683 break; 684 else 685 dpp = &dpr->dpr_hash; 686 } 687 688 assert(dpr != NULL); 689 assert(dpr->dpr_proc == P); 690 691 if (remove) 692 *dpp = dpr->dpr_hash; /* remove from pid hash chain */ 693 694 return (dpr); 695 } 696 697 static void 698 dt_proc_destroy(dtrace_hdl_t *dtp, struct ps_prochandle *P) 699 { 700 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 701 dt_proc_hash_t *dph = dtp->dt_procs; 702 dt_proc_notify_t *npr, **npp; 703 int rflag; 704 705 assert(dpr != NULL); 706 707 /* 708 * If neither PR_KLC nor PR_RLC is set, then the process is stopped by 709 * an external debugger and we were waiting in dt_proc_waitrun(). 710 * Leave the process in this condition using PRELEASE_HANG. 711 */ 712 if (!(Pstatus(dpr->dpr_proc)->pr_flags & (PR_KLC | PR_RLC))) { 713 dt_dprintf("abandoning pid %d\n", (int)dpr->dpr_pid); 714 rflag = PRELEASE_HANG; 715 } else { 716 dt_dprintf("releasing pid %d\n", (int)dpr->dpr_pid); 717 rflag = 0; /* apply kill or run-on-last-close */ 718 } 719 720 if (dpr->dpr_tid) { 721 /* 722 * Set the dpr_quit flag to tell the daemon thread to exit. We 723 * send it a SIGCANCEL to poke it out of PCWSTOP or any other 724 * long-term /proc system call. Our daemon threads have POSIX 725 * cancellation disabled, so EINTR will be the only effect. We 726 * then wait for dpr_done to indicate the thread has exited. 727 * 728 * We can't use pthread_kill() to send SIGCANCEL because the 729 * interface forbids it and we can't use pthread_cancel() 730 * because with cancellation disabled it won't actually 731 * send SIGCANCEL to the target thread, so we use _lwp_kill() 732 * to do the job. This is all built on evil knowledge of 733 * the details of the cancellation mechanism in libc. 734 */ 735 (void) pthread_mutex_lock(&dpr->dpr_lock); 736 dpr->dpr_quit = B_TRUE; 737 (void) _lwp_kill(dpr->dpr_tid, SIGCANCEL); 738 739 /* 740 * If the process is currently idling in dt_proc_stop(), re- 741 * enable breakpoints and poke it into running again. 742 */ 743 if (dpr->dpr_stop & DT_PROC_STOP_IDLE) { 744 dt_proc_bpenable(dpr); 745 dpr->dpr_stop &= ~DT_PROC_STOP_IDLE; 746 (void) pthread_cond_broadcast(&dpr->dpr_cv); 747 } 748 749 while (!dpr->dpr_done) 750 (void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock); 751 752 (void) pthread_mutex_unlock(&dpr->dpr_lock); 753 } 754 755 /* 756 * Before we free the process structure, remove this dt_proc_t from the 757 * lookup hash, and then walk the dt_proc_hash_t's notification list 758 * and remove this dt_proc_t if it is enqueued. 759 */ 760 (void) pthread_mutex_lock(&dph->dph_lock); 761 (void) dt_proc_lookup(dtp, P, B_TRUE); 762 npp = &dph->dph_notify; 763 764 while ((npr = *npp) != NULL) { 765 if (npr->dprn_dpr == dpr) { 766 *npp = npr->dprn_next; 767 dt_free(dtp, npr); 768 } else { 769 npp = &npr->dprn_next; 770 } 771 } 772 773 (void) pthread_mutex_unlock(&dph->dph_lock); 774 775 /* 776 * Remove the dt_proc_list from the LRU list, release the underlying 777 * libproc handle, and free our dt_proc_t data structure. 778 */ 779 if (dpr->dpr_cacheable) { 780 assert(dph->dph_lrucnt != 0); 781 dph->dph_lrucnt--; 782 } 783 784 dt_list_delete(&dph->dph_lrulist, dpr); 785 Prelease(dpr->dpr_proc, rflag); 786 dt_free(dtp, dpr); 787 } 788 789 static int 790 dt_proc_create_thread(dtrace_hdl_t *dtp, dt_proc_t *dpr, uint_t stop) 791 { 792 dt_proc_control_data_t data; 793 sigset_t nset, oset; 794 pthread_attr_t a; 795 int err; 796 797 (void) pthread_mutex_lock(&dpr->dpr_lock); 798 dpr->dpr_stop |= stop; /* set bit for initial rendezvous */ 799 800 (void) pthread_attr_init(&a); 801 (void) pthread_attr_setdetachstate(&a, PTHREAD_CREATE_DETACHED); 802 803 (void) sigfillset(&nset); 804 (void) sigdelset(&nset, SIGABRT); /* unblocked for assert() */ 805 (void) sigdelset(&nset, SIGCANCEL); /* see dt_proc_destroy() */ 806 807 data.dpcd_hdl = dtp; 808 data.dpcd_proc = dpr; 809 810 (void) pthread_sigmask(SIG_SETMASK, &nset, &oset); 811 err = pthread_create(&dpr->dpr_tid, &a, dt_proc_control, &data); 812 (void) pthread_sigmask(SIG_SETMASK, &oset, NULL); 813 814 /* 815 * If the control thread was created, then wait on dpr_cv for either 816 * dpr_done to be set (the victim died or the control thread failed) 817 * or DT_PROC_STOP_IDLE to be set, indicating that the victim is now 818 * stopped by /proc and the control thread is at the rendezvous event. 819 * On success, we return with the process and control thread stopped: 820 * the caller can then apply dt_proc_continue() to resume both. 821 */ 822 if (err == 0) { 823 while (!dpr->dpr_done && !(dpr->dpr_stop & DT_PROC_STOP_IDLE)) 824 (void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock); 825 826 /* 827 * If dpr_done is set, the control thread aborted before it 828 * reached the rendezvous event. This is either due to PS_LOST 829 * or PS_UNDEAD (i.e. the process died). We try to provide a 830 * small amount of useful information to help figure it out. 831 */ 832 if (dpr->dpr_done) { 833 const psinfo_t *prp = Ppsinfo(dpr->dpr_proc); 834 int stat = prp ? prp->pr_wstat : 0; 835 int pid = dpr->dpr_pid; 836 837 if (Pstate(dpr->dpr_proc) == PS_LOST) { 838 (void) dt_proc_error(dpr->dpr_hdl, dpr, 839 "failed to control pid %d: process exec'd " 840 "set-id or unobservable program\n", pid); 841 } else if (WIFSIGNALED(stat)) { 842 (void) dt_proc_error(dpr->dpr_hdl, dpr, 843 "failed to control pid %d: process died " 844 "from signal %d\n", pid, WTERMSIG(stat)); 845 } else { 846 (void) dt_proc_error(dpr->dpr_hdl, dpr, 847 "failed to control pid %d: process exited " 848 "with status %d\n", pid, WEXITSTATUS(stat)); 849 } 850 851 err = ESRCH; /* cause grab() or create() to fail */ 852 } 853 } else { 854 (void) dt_proc_error(dpr->dpr_hdl, dpr, 855 "failed to create control thread for process-id %d: %s\n", 856 (int)dpr->dpr_pid, strerror(err)); 857 } 858 859 (void) pthread_mutex_unlock(&dpr->dpr_lock); 860 (void) pthread_attr_destroy(&a); 861 862 return (err); 863 } 864 865 struct ps_prochandle * 866 dt_proc_create(dtrace_hdl_t *dtp, const char *file, char *const *argv) 867 { 868 dt_proc_hash_t *dph = dtp->dt_procs; 869 dt_proc_t *dpr; 870 int err; 871 872 if ((dpr = dt_zalloc(dtp, sizeof (dt_proc_t))) == NULL) 873 return (NULL); /* errno is set for us */ 874 875 (void) pthread_mutex_init(&dpr->dpr_lock, NULL); 876 (void) pthread_cond_init(&dpr->dpr_cv, NULL); 877 878 if ((dpr->dpr_proc = Pcreate(file, argv, &err, NULL, 0)) == NULL) { 879 return (dt_proc_error(dtp, dpr, 880 "failed to execute %s: %s\n", file, Pcreate_error(err))); 881 } 882 883 dpr->dpr_hdl = dtp; 884 dpr->dpr_pid = Pstatus(dpr->dpr_proc)->pr_pid; 885 886 (void) Punsetflags(dpr->dpr_proc, PR_RLC); 887 (void) Psetflags(dpr->dpr_proc, PR_KLC); 888 889 if (dt_proc_create_thread(dtp, dpr, dtp->dt_prcmode) != 0) 890 return (NULL); /* dt_proc_error() has been called for us */ 891 892 dpr->dpr_hash = dph->dph_hash[dpr->dpr_pid & (dph->dph_hashlen - 1)]; 893 dph->dph_hash[dpr->dpr_pid & (dph->dph_hashlen - 1)] = dpr; 894 dt_list_prepend(&dph->dph_lrulist, dpr); 895 896 dt_dprintf("created pid %d\n", (int)dpr->dpr_pid); 897 dpr->dpr_refs++; 898 899 return (dpr->dpr_proc); 900 } 901 902 struct ps_prochandle * 903 dt_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int flags, int nomonitor) 904 { 905 dt_proc_hash_t *dph = dtp->dt_procs; 906 uint_t h = pid & (dph->dph_hashlen - 1); 907 dt_proc_t *dpr, *opr; 908 int err; 909 910 /* 911 * Search the hash table for the pid. If it is already grabbed or 912 * created, move the handle to the front of the lrulist, increment 913 * the reference count, and return the existing ps_prochandle. 914 */ 915 for (dpr = dph->dph_hash[h]; dpr != NULL; dpr = dpr->dpr_hash) { 916 if (dpr->dpr_pid == pid && !dpr->dpr_stale) { 917 /* 918 * If the cached handle was opened read-only and 919 * this request is for a writeable handle, mark 920 * the cached handle as stale and open a new handle. 921 * Since it's stale, unmark it as cacheable. 922 */ 923 if (dpr->dpr_rdonly && !(flags & PGRAB_RDONLY)) { 924 dt_dprintf("upgrading pid %d\n", (int)pid); 925 dpr->dpr_stale = B_TRUE; 926 dpr->dpr_cacheable = B_FALSE; 927 dph->dph_lrucnt--; 928 break; 929 } 930 931 dt_dprintf("grabbed pid %d (cached)\n", (int)pid); 932 dt_list_delete(&dph->dph_lrulist, dpr); 933 dt_list_prepend(&dph->dph_lrulist, dpr); 934 dpr->dpr_refs++; 935 return (dpr->dpr_proc); 936 } 937 } 938 939 if ((dpr = dt_zalloc(dtp, sizeof (dt_proc_t))) == NULL) 940 return (NULL); /* errno is set for us */ 941 942 (void) pthread_mutex_init(&dpr->dpr_lock, NULL); 943 (void) pthread_cond_init(&dpr->dpr_cv, NULL); 944 945 if ((dpr->dpr_proc = Pgrab(pid, flags, &err)) == NULL) { 946 return (dt_proc_error(dtp, dpr, 947 "failed to grab pid %d: %s\n", (int)pid, Pgrab_error(err))); 948 } 949 950 dpr->dpr_hdl = dtp; 951 dpr->dpr_pid = pid; 952 953 (void) Punsetflags(dpr->dpr_proc, PR_KLC); 954 (void) Psetflags(dpr->dpr_proc, PR_RLC); 955 956 /* 957 * If we are attempting to grab the process without a monitor 958 * thread, then mark the process cacheable only if it's being 959 * grabbed read-only. If we're currently caching more process 960 * handles than dph_lrulim permits, attempt to find the 961 * least-recently-used handle that is currently unreferenced and 962 * release it from the cache. Otherwise we are grabbing the process 963 * for control: create a control thread for this process and store 964 * its ID in dpr->dpr_tid. 965 */ 966 if (nomonitor || (flags & PGRAB_RDONLY)) { 967 if (dph->dph_lrucnt >= dph->dph_lrulim) { 968 for (opr = dt_list_prev(&dph->dph_lrulist); 969 opr != NULL; opr = dt_list_prev(opr)) { 970 if (opr->dpr_cacheable && opr->dpr_refs == 0) { 971 dt_proc_destroy(dtp, opr->dpr_proc); 972 break; 973 } 974 } 975 } 976 977 if (flags & PGRAB_RDONLY) { 978 dpr->dpr_cacheable = B_TRUE; 979 dpr->dpr_rdonly = B_TRUE; 980 dph->dph_lrucnt++; 981 } 982 983 } else if (dt_proc_create_thread(dtp, dpr, DT_PROC_STOP_GRAB) != 0) 984 return (NULL); /* dt_proc_error() has been called for us */ 985 986 dpr->dpr_hash = dph->dph_hash[h]; 987 dph->dph_hash[h] = dpr; 988 dt_list_prepend(&dph->dph_lrulist, dpr); 989 990 dt_dprintf("grabbed pid %d\n", (int)pid); 991 dpr->dpr_refs++; 992 993 return (dpr->dpr_proc); 994 } 995 996 void 997 dt_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P) 998 { 999 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 1000 dt_proc_hash_t *dph = dtp->dt_procs; 1001 1002 assert(dpr != NULL); 1003 assert(dpr->dpr_refs != 0); 1004 1005 if (--dpr->dpr_refs == 0 && 1006 (!dpr->dpr_cacheable || dph->dph_lrucnt > dph->dph_lrulim)) 1007 dt_proc_destroy(dtp, P); 1008 } 1009 1010 void 1011 dt_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1012 { 1013 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 1014 1015 (void) pthread_mutex_lock(&dpr->dpr_lock); 1016 1017 if (dpr->dpr_stop & DT_PROC_STOP_IDLE) { 1018 dpr->dpr_stop &= ~DT_PROC_STOP_IDLE; 1019 (void) pthread_cond_broadcast(&dpr->dpr_cv); 1020 } 1021 1022 (void) pthread_mutex_unlock(&dpr->dpr_lock); 1023 } 1024 1025 void 1026 dt_proc_lock(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1027 { 1028 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 1029 int err = pthread_mutex_lock(&dpr->dpr_lock); 1030 assert(err == 0); /* check for recursion */ 1031 } 1032 1033 void 1034 dt_proc_unlock(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1035 { 1036 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 1037 int err = pthread_mutex_unlock(&dpr->dpr_lock); 1038 assert(err == 0); /* check for unheld lock */ 1039 } 1040 1041 void 1042 dt_proc_hash_create(dtrace_hdl_t *dtp) 1043 { 1044 if ((dtp->dt_procs = dt_zalloc(dtp, sizeof (dt_proc_hash_t) + 1045 sizeof (dt_proc_t *) * _dtrace_pidbuckets - 1)) != NULL) { 1046 1047 (void) pthread_mutex_init(&dtp->dt_procs->dph_lock, NULL); 1048 (void) pthread_cond_init(&dtp->dt_procs->dph_cv, NULL); 1049 1050 dtp->dt_procs->dph_hashlen = _dtrace_pidbuckets; 1051 dtp->dt_procs->dph_lrulim = _dtrace_pidlrulim; 1052 } 1053 } 1054 1055 void 1056 dt_proc_hash_destroy(dtrace_hdl_t *dtp) 1057 { 1058 dt_proc_hash_t *dph = dtp->dt_procs; 1059 dt_proc_t *dpr; 1060 1061 while ((dpr = dt_list_next(&dph->dph_lrulist)) != NULL) 1062 dt_proc_destroy(dtp, dpr->dpr_proc); 1063 1064 dtp->dt_procs = NULL; 1065 dt_free(dtp, dph); 1066 } 1067 1068 struct ps_prochandle * 1069 dtrace_proc_create(dtrace_hdl_t *dtp, const char *file, char *const *argv) 1070 { 1071 dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target"); 1072 struct ps_prochandle *P = dt_proc_create(dtp, file, argv); 1073 1074 if (P != NULL && idp != NULL && idp->di_id == 0) 1075 idp->di_id = Pstatus(P)->pr_pid; /* $target = created pid */ 1076 1077 return (P); 1078 } 1079 1080 struct ps_prochandle * 1081 dtrace_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int flags) 1082 { 1083 dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target"); 1084 struct ps_prochandle *P = dt_proc_grab(dtp, pid, flags, 0); 1085 1086 if (P != NULL && idp != NULL && idp->di_id == 0) 1087 idp->di_id = pid; /* $target = grabbed pid */ 1088 1089 return (P); 1090 } 1091 1092 void 1093 dtrace_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1094 { 1095 dt_proc_release(dtp, P); 1096 } 1097 1098 void 1099 dtrace_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1100 { 1101 dt_proc_continue(dtp, P); 1102 } 1103